1 /* $NetBSD: rf_reconstruct.c,v 1.47 2002/10/06 05:32:59 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.47 2002/10/06 05:32:59 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 /************************************************************************** 162 * 163 * sets up the parameters that will be used by the reconstruction process 164 * currently there are none, except for those that the layout-specific 165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 166 * 167 * in the kernel, we fire off the recon thread. 168 * 169 **************************************************************************/ 170 static void 171 rf_ShutdownReconstruction(ignored) 172 void *ignored; 173 { 174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 176 } 177 178 int 179 rf_ConfigureReconstruction(listp) 180 RF_ShutdownList_t **listp; 181 { 182 int rc; 183 184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 186 if (rf_recond_freelist == NULL) 187 return (ENOMEM); 188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 190 if (rf_rdp_freelist == NULL) { 191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 192 return (ENOMEM); 193 } 194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 195 if (rc) { 196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 197 rf_ShutdownReconstruction(NULL); 198 return (rc); 199 } 200 return (0); 201 } 202 203 static RF_RaidReconDesc_t * 204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 205 RF_Raid_t *raidPtr; 206 RF_RowCol_t row; 207 RF_RowCol_t col; 208 RF_RaidDisk_t *spareDiskPtr; 209 int numDisksDone; 210 RF_RowCol_t srow; 211 RF_RowCol_t scol; 212 { 213 214 RF_RaidReconDesc_t *reconDesc; 215 216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 217 218 reconDesc->raidPtr = raidPtr; 219 reconDesc->row = row; 220 reconDesc->col = col; 221 reconDesc->spareDiskPtr = spareDiskPtr; 222 reconDesc->numDisksDone = numDisksDone; 223 reconDesc->srow = srow; 224 reconDesc->scol = scol; 225 reconDesc->state = 0; 226 reconDesc->next = NULL; 227 228 return (reconDesc); 229 } 230 231 static void 232 FreeReconDesc(reconDesc) 233 RF_RaidReconDesc_t *reconDesc; 234 { 235 #if RF_RECON_STATS > 0 236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 238 #endif /* RF_RECON_STATS > 0 */ 239 printf("RAIDframe: %lu max exec ticks\n", 240 (long) reconDesc->maxReconExecTicks); 241 #if (RF_RECON_STATS > 0) || defined(KERNEL) 242 printf("\n"); 243 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 245 } 246 247 248 /***************************************************************************** 249 * 250 * primary routine to reconstruct a failed disk. This should be called from 251 * within its own thread. It won't return until reconstruction completes, 252 * fails, or is aborted. 253 *****************************************************************************/ 254 int 255 rf_ReconstructFailedDisk(raidPtr, row, col) 256 RF_Raid_t *raidPtr; 257 RF_RowCol_t row; 258 RF_RowCol_t col; 259 { 260 RF_LayoutSW_t *lp; 261 int rc; 262 263 lp = raidPtr->Layout.map; 264 if (lp->SubmitReconBuffer) { 265 /* 266 * The current infrastructure only supports reconstructing one 267 * disk at a time for each array. 268 */ 269 RF_LOCK_MUTEX(raidPtr->mutex); 270 while (raidPtr->reconInProgress) { 271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 272 } 273 raidPtr->reconInProgress++; 274 RF_UNLOCK_MUTEX(raidPtr->mutex); 275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 276 RF_LOCK_MUTEX(raidPtr->mutex); 277 raidPtr->reconInProgress--; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 } else { 280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 281 lp->parityConfig); 282 rc = EIO; 283 } 284 RF_SIGNAL_COND(raidPtr->waitForReconCond); 285 return (rc); 286 } 287 288 int 289 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 290 RF_Raid_t *raidPtr; 291 RF_RowCol_t row; 292 RF_RowCol_t col; 293 { 294 RF_ComponentLabel_t c_label; 295 RF_RaidDisk_t *spareDiskPtr = NULL; 296 RF_RaidReconDesc_t *reconDesc; 297 RF_RowCol_t srow, scol; 298 int numDisksDone = 0, rc; 299 300 /* first look for a spare drive onto which to reconstruct the data */ 301 /* spare disk descriptors are stored in row 0. This may have to 302 * change eventually */ 303 304 RF_LOCK_MUTEX(raidPtr->mutex); 305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 306 307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 308 if (raidPtr->status[row] != rf_rs_degraded) { 309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 310 RF_UNLOCK_MUTEX(raidPtr->mutex); 311 return (EINVAL); 312 } 313 srow = row; 314 scol = (-1); 315 } else { 316 srow = 0; 317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 319 spareDiskPtr = &raidPtr->Disks[srow][scol]; 320 spareDiskPtr->status = rf_ds_used_spare; 321 break; 322 } 323 } 324 if (!spareDiskPtr) { 325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 326 RF_UNLOCK_MUTEX(raidPtr->mutex); 327 return (ENOSPC); 328 } 329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 330 } 331 RF_UNLOCK_MUTEX(raidPtr->mutex); 332 333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 334 raidPtr->reconDesc = (void *) reconDesc; 335 #if RF_RECON_STATS > 0 336 reconDesc->hsStallCount = 0; 337 reconDesc->numReconExecDelays = 0; 338 reconDesc->numReconEventWaits = 0; 339 #endif /* RF_RECON_STATS > 0 */ 340 reconDesc->reconExecTimerRunning = 0; 341 reconDesc->reconExecTicks = 0; 342 reconDesc->maxReconExecTicks = 0; 343 rc = rf_ContinueReconstructFailedDisk(reconDesc); 344 345 if (!rc) { 346 /* fix up the component label */ 347 /* Don't actually need the read here.. */ 348 raidread_component_label( 349 raidPtr->raid_cinfo[srow][scol].ci_dev, 350 raidPtr->raid_cinfo[srow][scol].ci_vp, 351 &c_label); 352 353 raid_init_component_label( raidPtr, &c_label); 354 c_label.row = row; 355 c_label.column = col; 356 c_label.clean = RF_RAID_DIRTY; 357 c_label.status = rf_ds_optimal; 358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 359 360 /* We've just done a rebuild based on all the other 361 disks, so at this point the parity is known to be 362 clean, even if it wasn't before. */ 363 364 /* XXX doesn't hold for RAID 6!!*/ 365 366 raidPtr->parity_good = RF_RAID_CLEAN; 367 368 /* XXXX MORE NEEDED HERE */ 369 370 raidwrite_component_label( 371 raidPtr->raid_cinfo[srow][scol].ci_dev, 372 raidPtr->raid_cinfo[srow][scol].ci_vp, 373 &c_label); 374 375 } 376 return (rc); 377 } 378 379 /* 380 381 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 382 and you don't get a spare until the next Monday. With this function 383 (and hot-swappable drives) you can now put your new disk containing 384 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 385 rebuild the data "on the spot". 386 387 */ 388 389 int 390 rf_ReconstructInPlace(raidPtr, row, col) 391 RF_Raid_t *raidPtr; 392 RF_RowCol_t row; 393 RF_RowCol_t col; 394 { 395 RF_RaidDisk_t *spareDiskPtr = NULL; 396 RF_RaidReconDesc_t *reconDesc; 397 RF_LayoutSW_t *lp; 398 RF_ComponentLabel_t c_label; 399 int numDisksDone = 0, rc; 400 struct partinfo dpart; 401 struct vnode *vp; 402 struct vattr va; 403 struct proc *proc; 404 int retcode; 405 int ac; 406 407 lp = raidPtr->Layout.map; 408 if (lp->SubmitReconBuffer) { 409 /* 410 * The current infrastructure only supports reconstructing one 411 * disk at a time for each array. 412 */ 413 RF_LOCK_MUTEX(raidPtr->mutex); 414 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 415 (raidPtr->numFailures > 0)) { 416 /* XXX 0 above shouldn't be constant!!! */ 417 /* some component other than this has failed. 418 Let's not make things worse than they already 419 are... */ 420 printf("raid%d: Unable to reconstruct to disk at:\n", 421 raidPtr->raidid); 422 printf("raid%d: Row: %d Col: %d Too many failures.\n", 423 raidPtr->raidid, row, col); 424 RF_UNLOCK_MUTEX(raidPtr->mutex); 425 return (EINVAL); 426 } 427 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 428 printf("raid%d: Unable to reconstruct to disk at:\n", 429 raidPtr->raidid); 430 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 431 432 RF_UNLOCK_MUTEX(raidPtr->mutex); 433 return (EINVAL); 434 } 435 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 436 RF_UNLOCK_MUTEX(raidPtr->mutex); 437 return (EINVAL); 438 } 439 440 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 441 /* "It's gone..." */ 442 raidPtr->numFailures++; 443 raidPtr->Disks[row][col].status = rf_ds_failed; 444 raidPtr->status[row] = rf_rs_degraded; 445 rf_update_component_labels(raidPtr, 446 RF_NORMAL_COMPONENT_UPDATE); 447 } 448 449 while (raidPtr->reconInProgress) { 450 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 451 } 452 453 raidPtr->reconInProgress++; 454 455 456 /* first look for a spare drive onto which to reconstruct 457 the data. spare disk descriptors are stored in row 0. 458 This may have to change eventually */ 459 460 /* Actually, we don't care if it's failed or not... 461 On a RAID set with correct parity, this function 462 should be callable on any component without ill affects. */ 463 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 464 */ 465 466 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 467 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 468 469 raidPtr->reconInProgress--; 470 RF_UNLOCK_MUTEX(raidPtr->mutex); 471 return (EINVAL); 472 } 473 474 proc = raidPtr->engine_thread; 475 476 /* This device may have been opened successfully the 477 first time. Close it before trying to open it again.. */ 478 479 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 480 #if 0 481 printf("Closed the open device: %s\n", 482 raidPtr->Disks[row][col].devname); 483 #endif 484 vp = raidPtr->raid_cinfo[row][col].ci_vp; 485 ac = raidPtr->Disks[row][col].auto_configured; 486 rf_close_component(raidPtr, vp, ac); 487 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 488 } 489 /* note that this disk was *not* auto_configured (any longer)*/ 490 raidPtr->Disks[row][col].auto_configured = 0; 491 492 #if 0 493 printf("About to (re-)open the device for rebuilding: %s\n", 494 raidPtr->Disks[row][col].devname); 495 #endif 496 497 retcode = raidlookup(raidPtr->Disks[row][col].devname, 498 proc, &vp); 499 500 if (retcode) { 501 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 502 raidPtr->Disks[row][col].devname, retcode); 503 504 /* the component isn't responding properly... 505 must be still dead :-( */ 506 raidPtr->reconInProgress--; 507 RF_UNLOCK_MUTEX(raidPtr->mutex); 508 return(retcode); 509 510 } else { 511 512 /* Ok, so we can at least do a lookup... 513 How about actually getting a vp for it? */ 514 515 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 516 proc)) != 0) { 517 raidPtr->reconInProgress--; 518 RF_UNLOCK_MUTEX(raidPtr->mutex); 519 return(retcode); 520 } 521 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 522 FREAD, proc->p_ucred, proc); 523 if (retcode) { 524 raidPtr->reconInProgress--; 525 RF_UNLOCK_MUTEX(raidPtr->mutex); 526 return(retcode); 527 } 528 raidPtr->Disks[row][col].blockSize = 529 dpart.disklab->d_secsize; 530 531 raidPtr->Disks[row][col].numBlocks = 532 dpart.part->p_size - rf_protectedSectors; 533 534 raidPtr->raid_cinfo[row][col].ci_vp = vp; 535 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 536 537 raidPtr->Disks[row][col].dev = va.va_rdev; 538 539 /* we allow the user to specify that only a 540 fraction of the disks should be used this is 541 just for debug: it speeds up 542 * the parity scan */ 543 raidPtr->Disks[row][col].numBlocks = 544 raidPtr->Disks[row][col].numBlocks * 545 rf_sizePercentage / 100; 546 } 547 548 549 550 spareDiskPtr = &raidPtr->Disks[row][col]; 551 spareDiskPtr->status = rf_ds_used_spare; 552 553 printf("raid%d: initiating in-place reconstruction on\n", 554 raidPtr->raidid); 555 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 556 raidPtr->raidid, row, col, row, col); 557 558 RF_UNLOCK_MUTEX(raidPtr->mutex); 559 560 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 561 spareDiskPtr, numDisksDone, 562 row, col); 563 raidPtr->reconDesc = (void *) reconDesc; 564 #if RF_RECON_STATS > 0 565 reconDesc->hsStallCount = 0; 566 reconDesc->numReconExecDelays = 0; 567 reconDesc->numReconEventWaits = 0; 568 #endif /* RF_RECON_STATS > 0 */ 569 reconDesc->reconExecTimerRunning = 0; 570 reconDesc->reconExecTicks = 0; 571 reconDesc->maxReconExecTicks = 0; 572 rc = rf_ContinueReconstructFailedDisk(reconDesc); 573 574 RF_LOCK_MUTEX(raidPtr->mutex); 575 raidPtr->reconInProgress--; 576 RF_UNLOCK_MUTEX(raidPtr->mutex); 577 578 } else { 579 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 580 lp->parityConfig); 581 rc = EIO; 582 } 583 RF_LOCK_MUTEX(raidPtr->mutex); 584 585 if (!rc) { 586 /* Need to set these here, as at this point it'll be claiming 587 that the disk is in rf_ds_spared! But we know better :-) */ 588 589 raidPtr->Disks[row][col].status = rf_ds_optimal; 590 raidPtr->status[row] = rf_rs_optimal; 591 592 /* fix up the component label */ 593 /* Don't actually need the read here.. */ 594 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 595 raidPtr->raid_cinfo[row][col].ci_vp, 596 &c_label); 597 598 raid_init_component_label(raidPtr, &c_label); 599 600 c_label.row = row; 601 c_label.column = col; 602 603 /* We've just done a rebuild based on all the other 604 disks, so at this point the parity is known to be 605 clean, even if it wasn't before. */ 606 607 /* XXX doesn't hold for RAID 6!!*/ 608 609 raidPtr->parity_good = RF_RAID_CLEAN; 610 611 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 612 raidPtr->raid_cinfo[row][col].ci_vp, 613 &c_label); 614 615 } 616 RF_UNLOCK_MUTEX(raidPtr->mutex); 617 RF_SIGNAL_COND(raidPtr->waitForReconCond); 618 return (rc); 619 } 620 621 622 int 623 rf_ContinueReconstructFailedDisk(reconDesc) 624 RF_RaidReconDesc_t *reconDesc; 625 { 626 RF_Raid_t *raidPtr = reconDesc->raidPtr; 627 RF_RowCol_t row = reconDesc->row; 628 RF_RowCol_t col = reconDesc->col; 629 RF_RowCol_t srow = reconDesc->srow; 630 RF_RowCol_t scol = reconDesc->scol; 631 RF_ReconMap_t *mapPtr; 632 RF_ReconCtrl_t *tmp_reconctrl; 633 RF_ReconEvent_t *event; 634 struct timeval etime, elpsd; 635 unsigned long xor_s, xor_resid_us; 636 int retcode, i, ds; 637 638 switch (reconDesc->state) { 639 640 641 case 0: 642 643 raidPtr->accumXorTimeUs = 0; 644 645 /* create one trace record per physical disk */ 646 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 647 648 /* quiesce the array prior to starting recon. this is needed 649 * to assure no nasty interactions with pending user writes. 650 * We need to do this before we change the disk or row status. */ 651 reconDesc->state = 1; 652 653 Dprintf("RECON: begin request suspend\n"); 654 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 655 Dprintf("RECON: end request suspend\n"); 656 rf_StartUserStats(raidPtr); /* zero out the stats kept on 657 * user accs */ 658 659 /* fall through to state 1 */ 660 661 case 1: 662 663 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 664 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol); 665 666 RF_LOCK_MUTEX(raidPtr->mutex); 667 668 /* create the reconstruction control pointer and install it in 669 * the right slot */ 670 raidPtr->reconControl[row] = tmp_reconctrl; 671 mapPtr = raidPtr->reconControl[row]->reconMap; 672 raidPtr->status[row] = rf_rs_reconstructing; 673 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 674 raidPtr->Disks[row][col].spareRow = srow; 675 raidPtr->Disks[row][col].spareCol = scol; 676 677 RF_UNLOCK_MUTEX(raidPtr->mutex); 678 679 RF_GETTIME(raidPtr->reconControl[row]->starttime); 680 681 /* now start up the actual reconstruction: issue a read for 682 * each surviving disk */ 683 684 reconDesc->numDisksDone = 0; 685 for (i = 0; i < raidPtr->numCol; i++) { 686 if (i != col) { 687 /* find and issue the next I/O on the 688 * indicated disk */ 689 if (IssueNextReadRequest(raidPtr, row, i)) { 690 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 691 reconDesc->numDisksDone++; 692 } 693 } 694 } 695 696 case 2: 697 Dprintf("RECON: resume requests\n"); 698 rf_ResumeNewRequests(raidPtr); 699 700 701 reconDesc->state = 3; 702 703 case 3: 704 705 /* process reconstruction events until all disks report that 706 * they've completed all work */ 707 mapPtr = raidPtr->reconControl[row]->reconMap; 708 709 710 711 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 712 713 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 714 RF_ASSERT(event); 715 716 if (ProcessReconEvent(raidPtr, row, event)) 717 reconDesc->numDisksDone++; 718 raidPtr->reconControl[row]->numRUsTotal = 719 mapPtr->totalRUs; 720 raidPtr->reconControl[row]->numRUsComplete = 721 mapPtr->totalRUs - 722 rf_UnitsLeftToReconstruct(mapPtr); 723 724 raidPtr->reconControl[row]->percentComplete = 725 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 726 #if RF_DEBUG_RECON 727 if (rf_prReconSched) { 728 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 729 } 730 #endif 731 } 732 733 734 735 reconDesc->state = 4; 736 737 738 case 4: 739 mapPtr = raidPtr->reconControl[row]->reconMap; 740 if (rf_reconDebug) { 741 printf("RECON: all reads completed\n"); 742 } 743 /* at this point all the reads have completed. We now wait 744 * for any pending writes to complete, and then we're done */ 745 746 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 747 748 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 749 RF_ASSERT(event); 750 751 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 752 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 753 #if RF_DEBUG_RECON 754 if (rf_prReconSched) { 755 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 756 } 757 #endif 758 } 759 reconDesc->state = 5; 760 761 case 5: 762 /* Success: mark the dead disk as reconstructed. We quiesce 763 * the array here to assure no nasty interactions with pending 764 * user accesses when we free up the psstatus structure as 765 * part of FreeReconControl() */ 766 767 reconDesc->state = 6; 768 769 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 770 rf_StopUserStats(raidPtr); 771 rf_PrintUserStats(raidPtr); /* print out the stats on user 772 * accs accumulated during 773 * recon */ 774 775 /* fall through to state 6 */ 776 case 6: 777 778 779 780 RF_LOCK_MUTEX(raidPtr->mutex); 781 raidPtr->numFailures--; 782 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 783 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 784 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 785 RF_UNLOCK_MUTEX(raidPtr->mutex); 786 RF_GETTIME(etime); 787 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 788 789 /* XXX -- why is state 7 different from state 6 if there is no 790 * return() here? -- XXX Note that I set elpsd above & use it 791 * below, so if you put a return here you'll have to fix this. 792 * (also, FreeReconControl is called below) */ 793 794 case 7: 795 796 rf_ResumeNewRequests(raidPtr); 797 798 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 799 raidPtr->raidid, row, col); 800 xor_s = raidPtr->accumXorTimeUs / 1000000; 801 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 802 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 803 raidPtr->raidid, 804 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 805 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 806 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 807 raidPtr->raidid, 808 (int) raidPtr->reconControl[row]->starttime.tv_sec, 809 (int) raidPtr->reconControl[row]->starttime.tv_usec, 810 (int) etime.tv_sec, (int) etime.tv_usec); 811 812 #if RF_RECON_STATS > 0 813 printf("raid%d: Total head-sep stall count was %d\n", 814 raidPtr->raidid, (int) reconDesc->hsStallCount); 815 #endif /* RF_RECON_STATS > 0 */ 816 rf_FreeReconControl(raidPtr, row); 817 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 818 FreeReconDesc(reconDesc); 819 820 } 821 822 SignalReconDone(raidPtr); 823 return (0); 824 } 825 /***************************************************************************** 826 * do the right thing upon each reconstruction event. 827 * returns nonzero if and only if there is nothing left unread on the 828 * indicated disk 829 *****************************************************************************/ 830 static int 831 ProcessReconEvent(raidPtr, frow, event) 832 RF_Raid_t *raidPtr; 833 RF_RowCol_t frow; 834 RF_ReconEvent_t *event; 835 { 836 int retcode = 0, submitblocked; 837 RF_ReconBuffer_t *rbuf; 838 RF_SectorCount_t sectorsPerRU; 839 840 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 841 switch (event->type) { 842 843 /* a read I/O has completed */ 844 case RF_REVENT_READDONE: 845 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 846 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 847 frow, event->col, rbuf->parityStripeID); 848 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 849 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 850 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 851 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 852 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 853 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 854 if (!submitblocked) 855 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 856 break; 857 858 /* a write I/O has completed */ 859 case RF_REVENT_WRITEDONE: 860 #if RF_DEBUG_RECON 861 if (rf_floatingRbufDebug) { 862 rf_CheckFloatingRbufCount(raidPtr, 1); 863 } 864 #endif 865 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 866 rbuf = (RF_ReconBuffer_t *) event->arg; 867 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 868 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 869 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 870 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 871 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 872 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 873 874 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 875 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 876 raidPtr->numFullReconBuffers--; 877 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 878 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 879 } else 880 if (rbuf->type == RF_RBUF_TYPE_FORCED) 881 rf_FreeReconBuffer(rbuf); 882 else 883 RF_ASSERT(0); 884 break; 885 886 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 887 * cleared */ 888 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 889 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 890 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 891 * BUFCLEAR event if we 892 * couldn't submit */ 893 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 894 break; 895 896 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 897 * blockage has been cleared */ 898 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 899 retcode = TryToRead(raidPtr, frow, event->col); 900 break; 901 902 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 903 * reconstruction blockage has been 904 * cleared */ 905 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 906 retcode = TryToRead(raidPtr, frow, event->col); 907 break; 908 909 /* a buffer has become ready to write */ 910 case RF_REVENT_BUFREADY: 911 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 912 retcode = IssueNextWriteRequest(raidPtr, frow); 913 #if RF_DEBUG_RECON 914 if (rf_floatingRbufDebug) { 915 rf_CheckFloatingRbufCount(raidPtr, 1); 916 } 917 #endif 918 break; 919 920 /* we need to skip the current RU entirely because it got 921 * recon'd while we were waiting for something else to happen */ 922 case RF_REVENT_SKIP: 923 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 924 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 925 break; 926 927 /* a forced-reconstruction read access has completed. Just 928 * submit the buffer */ 929 case RF_REVENT_FORCEDREADDONE: 930 rbuf = (RF_ReconBuffer_t *) event->arg; 931 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 932 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 933 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 934 RF_ASSERT(!submitblocked); 935 break; 936 937 default: 938 RF_PANIC(); 939 } 940 rf_FreeReconEventDesc(event); 941 return (retcode); 942 } 943 /***************************************************************************** 944 * 945 * find the next thing that's needed on the indicated disk, and issue 946 * a read request for it. We assume that the reconstruction buffer 947 * associated with this process is free to receive the data. If 948 * reconstruction is blocked on the indicated RU, we issue a 949 * blockage-release request instead of a physical disk read request. 950 * If the current disk gets too far ahead of the others, we issue a 951 * head-separation wait request and return. 952 * 953 * ctrl->{ru_count, curPSID, diskOffset} and 954 * rbuf->failedDiskSectorOffset are maintained to point to the unit 955 * we're currently accessing. Note that this deviates from the 956 * standard C idiom of having counters point to the next thing to be 957 * accessed. This allows us to easily retry when we're blocked by 958 * head separation or reconstruction-blockage events. 959 * 960 * returns nonzero if and only if there is nothing left unread on the 961 * indicated disk 962 * 963 *****************************************************************************/ 964 static int 965 IssueNextReadRequest(raidPtr, row, col) 966 RF_Raid_t *raidPtr; 967 RF_RowCol_t row; 968 RF_RowCol_t col; 969 { 970 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 971 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 972 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 973 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 974 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 975 int do_new_check = 0, retcode = 0, status; 976 977 /* if we are currently the slowest disk, mark that we have to do a new 978 * check */ 979 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 980 do_new_check = 1; 981 982 while (1) { 983 984 ctrl->ru_count++; 985 if (ctrl->ru_count < RUsPerPU) { 986 ctrl->diskOffset += sectorsPerRU; 987 rbuf->failedDiskSectorOffset += sectorsPerRU; 988 } else { 989 ctrl->curPSID++; 990 ctrl->ru_count = 0; 991 /* code left over from when head-sep was based on 992 * parity stripe id */ 993 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 994 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 995 return (1); /* finito! */ 996 } 997 /* find the disk offsets of the start of the parity 998 * stripe on both the current disk and the failed 999 * disk. skip this entire parity stripe if either disk 1000 * does not appear in the indicated PS */ 1001 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1002 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1003 if (status) { 1004 ctrl->ru_count = RUsPerPU - 1; 1005 continue; 1006 } 1007 } 1008 rbuf->which_ru = ctrl->ru_count; 1009 1010 /* skip this RU if it's already been reconstructed */ 1011 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1012 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1013 continue; 1014 } 1015 break; 1016 } 1017 ctrl->headSepCounter++; 1018 if (do_new_check) 1019 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1020 1021 1022 /* at this point, we have definitely decided what to do, and we have 1023 * only to see if we can actually do it now */ 1024 rbuf->parityStripeID = ctrl->curPSID; 1025 rbuf->which_ru = ctrl->ru_count; 1026 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1027 sizeof(raidPtr->recon_tracerecs[col])); 1028 raidPtr->recon_tracerecs[col].reconacc = 1; 1029 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1030 retcode = TryToRead(raidPtr, row, col); 1031 return (retcode); 1032 } 1033 1034 /* 1035 * tries to issue the next read on the indicated disk. We may be 1036 * blocked by (a) the heads being too far apart, or (b) recon on the 1037 * indicated RU being blocked due to a write by a user thread. In 1038 * this case, we issue a head-sep or blockage wait request, which will 1039 * cause this same routine to be invoked again later when the blockage 1040 * has cleared. 1041 */ 1042 1043 static int 1044 TryToRead(raidPtr, row, col) 1045 RF_Raid_t *raidPtr; 1046 RF_RowCol_t row; 1047 RF_RowCol_t col; 1048 { 1049 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1050 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1051 RF_StripeNum_t psid = ctrl->curPSID; 1052 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1053 RF_DiskQueueData_t *req; 1054 int status, created = 0; 1055 RF_ReconParityStripeStatus_t *pssPtr; 1056 1057 /* if the current disk is too far ahead of the others, issue a 1058 * head-separation wait and return */ 1059 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1060 return (0); 1061 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1062 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1063 1064 /* if recon is blocked on the indicated parity stripe, issue a 1065 * block-wait request and return. this also must mark the indicated RU 1066 * in the stripe as under reconstruction if not blocked. */ 1067 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1068 if (status == RF_PSS_RECON_BLOCKED) { 1069 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1070 goto out; 1071 } else 1072 if (status == RF_PSS_FORCED_ON_WRITE) { 1073 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1074 goto out; 1075 } 1076 /* make one last check to be sure that the indicated RU didn't get 1077 * reconstructed while we were waiting for something else to happen. 1078 * This is unfortunate in that it causes us to make this check twice 1079 * in the normal case. Might want to make some attempt to re-work 1080 * this so that we only do this check if we've definitely blocked on 1081 * one of the above checks. When this condition is detected, we may 1082 * have just created a bogus status entry, which we need to delete. */ 1083 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1084 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1085 if (created) 1086 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1087 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1088 goto out; 1089 } 1090 /* found something to read. issue the I/O */ 1091 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1092 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1093 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1094 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1095 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1096 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1097 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1098 1099 /* should be ok to use a NULL proc pointer here, all the bufs we use 1100 * should be in kernel space */ 1101 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1102 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1103 1104 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1105 1106 ctrl->rbuf->arg = (void *) req; 1107 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1108 pssPtr->issued[col] = 1; 1109 1110 out: 1111 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1112 return (0); 1113 } 1114 1115 1116 /* 1117 * given a parity stripe ID, we want to find out whether both the 1118 * current disk and the failed disk exist in that parity stripe. If 1119 * not, we want to skip this whole PS. If so, we want to find the 1120 * disk offset of the start of the PS on both the current disk and the 1121 * failed disk. 1122 * 1123 * this works by getting a list of disks comprising the indicated 1124 * parity stripe, and searching the list for the current and failed 1125 * disks. Once we've decided they both exist in the parity stripe, we 1126 * need to decide whether each is data or parity, so that we'll know 1127 * which mapping function to call to get the corresponding disk 1128 * offsets. 1129 * 1130 * this is kind of unpleasant, but doing it this way allows the 1131 * reconstruction code to use parity stripe IDs rather than physical 1132 * disks address to march through the failed disk, which greatly 1133 * simplifies a lot of code, as well as eliminating the need for a 1134 * reverse-mapping function. I also think it will execute faster, 1135 * since the calls to the mapping module are kept to a minimum. 1136 * 1137 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1138 * THE STRIPE IN THE CORRECT ORDER */ 1139 1140 1141 static int 1142 ComputePSDiskOffsets( 1143 RF_Raid_t * raidPtr, /* raid descriptor */ 1144 RF_StripeNum_t psid, /* parity stripe identifier */ 1145 RF_RowCol_t row, /* row and column of disk to find the offsets 1146 * for */ 1147 RF_RowCol_t col, 1148 RF_SectorNum_t * outDiskOffset, 1149 RF_SectorNum_t * outFailedDiskSectorOffset, 1150 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1151 RF_RowCol_t * spCol, 1152 RF_SectorNum_t * spOffset) 1153 { /* OUT: offset into disk containing spare unit */ 1154 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1155 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1156 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1157 RF_RowCol_t *diskids; 1158 u_int i, j, k, i_offset, j_offset; 1159 RF_RowCol_t prow, pcol; 1160 int testcol, testrow; 1161 RF_RowCol_t stripe; 1162 RF_SectorNum_t poffset; 1163 char i_is_parity = 0, j_is_parity = 0; 1164 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1165 1166 /* get a listing of the disks comprising that stripe */ 1167 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1168 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1169 RF_ASSERT(diskids); 1170 1171 /* reject this entire parity stripe if it does not contain the 1172 * indicated disk or it does not contain the failed disk */ 1173 if (row != stripe) 1174 goto skipit; 1175 for (i = 0; i < stripeWidth; i++) { 1176 if (col == diskids[i]) 1177 break; 1178 } 1179 if (i == stripeWidth) 1180 goto skipit; 1181 for (j = 0; j < stripeWidth; j++) { 1182 if (fcol == diskids[j]) 1183 break; 1184 } 1185 if (j == stripeWidth) { 1186 goto skipit; 1187 } 1188 /* find out which disk the parity is on */ 1189 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1190 1191 /* find out if either the current RU or the failed RU is parity */ 1192 /* also, if the parity occurs in this stripe prior to the data and/or 1193 * failed col, we need to decrement i and/or j */ 1194 for (k = 0; k < stripeWidth; k++) 1195 if (diskids[k] == pcol) 1196 break; 1197 RF_ASSERT(k < stripeWidth); 1198 i_offset = i; 1199 j_offset = j; 1200 if (k < i) 1201 i_offset--; 1202 else 1203 if (k == i) { 1204 i_is_parity = 1; 1205 i_offset = 0; 1206 } /* set offsets to zero to disable multiply 1207 * below */ 1208 if (k < j) 1209 j_offset--; 1210 else 1211 if (k == j) { 1212 j_is_parity = 1; 1213 j_offset = 0; 1214 } 1215 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1216 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1217 * tells us how far into the stripe the [current,failed] disk is. */ 1218 1219 /* call the mapping routine to get the offset into the current disk, 1220 * repeat for failed disk. */ 1221 if (i_is_parity) 1222 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1223 else 1224 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1225 1226 RF_ASSERT(row == testrow && col == testcol); 1227 1228 if (j_is_parity) 1229 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1230 else 1231 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1232 RF_ASSERT(row == testrow && fcol == testcol); 1233 1234 /* now locate the spare unit for the failed unit */ 1235 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1236 if (j_is_parity) 1237 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1238 else 1239 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1240 } else { 1241 *spRow = raidPtr->reconControl[row]->spareRow; 1242 *spCol = raidPtr->reconControl[row]->spareCol; 1243 *spOffset = *outFailedDiskSectorOffset; 1244 } 1245 1246 return (0); 1247 1248 skipit: 1249 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1250 psid, row, col); 1251 return (1); 1252 } 1253 /* this is called when a buffer has become ready to write to the replacement disk */ 1254 static int 1255 IssueNextWriteRequest(raidPtr, row) 1256 RF_Raid_t *raidPtr; 1257 RF_RowCol_t row; 1258 { 1259 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1260 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1261 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1262 RF_ReconBuffer_t *rbuf; 1263 RF_DiskQueueData_t *req; 1264 1265 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1266 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1267 * have gotten the event that sent us here */ 1268 RF_ASSERT(rbuf->pssPtr); 1269 1270 rbuf->pssPtr->writeRbuf = rbuf; 1271 rbuf->pssPtr = NULL; 1272 1273 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1274 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1275 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1276 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1277 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1278 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1279 1280 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1281 * kernel space */ 1282 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1283 sectorsPerRU, rbuf->buffer, 1284 rbuf->parityStripeID, rbuf->which_ru, 1285 ReconWriteDoneProc, (void *) rbuf, NULL, 1286 &raidPtr->recon_tracerecs[fcol], 1287 (void *) raidPtr, 0, NULL); 1288 1289 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1290 1291 rbuf->arg = (void *) req; 1292 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1293 1294 return (0); 1295 } 1296 1297 /* 1298 * this gets called upon the completion of a reconstruction read 1299 * operation the arg is a pointer to the per-disk reconstruction 1300 * control structure for the process that just finished a read. 1301 * 1302 * called at interrupt context in the kernel, so don't do anything 1303 * illegal here. 1304 */ 1305 static int 1306 ReconReadDoneProc(arg, status) 1307 void *arg; 1308 int status; 1309 { 1310 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1311 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1312 1313 if (status) { 1314 /* 1315 * XXX 1316 */ 1317 printf("Recon read failed!\n"); 1318 RF_PANIC(); 1319 } 1320 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1321 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1322 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1323 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1324 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1325 1326 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1327 return (0); 1328 } 1329 /* this gets called upon the completion of a reconstruction write operation. 1330 * the arg is a pointer to the rbuf that was just written 1331 * 1332 * called at interrupt context in the kernel, so don't do anything illegal here. 1333 */ 1334 static int 1335 ReconWriteDoneProc(arg, status) 1336 void *arg; 1337 int status; 1338 { 1339 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1340 1341 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1342 if (status) { 1343 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1344 * write failed!\n"); */ 1345 RF_PANIC(); 1346 } 1347 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1348 return (0); 1349 } 1350 1351 1352 /* 1353 * computes a new minimum head sep, and wakes up anyone who needs to 1354 * be woken as a result 1355 */ 1356 static void 1357 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1358 RF_Raid_t *raidPtr; 1359 RF_RowCol_t row; 1360 RF_HeadSepLimit_t hsCtr; 1361 { 1362 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1363 RF_HeadSepLimit_t new_min; 1364 RF_RowCol_t i; 1365 RF_CallbackDesc_t *p; 1366 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1367 * of a minimum */ 1368 1369 1370 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1371 1372 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1373 for (i = 0; i < raidPtr->numCol; i++) 1374 if (i != reconCtrlPtr->fcol) { 1375 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1376 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1377 } 1378 /* set the new minimum and wake up anyone who can now run again */ 1379 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1380 reconCtrlPtr->minHeadSepCounter = new_min; 1381 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1382 while (reconCtrlPtr->headSepCBList) { 1383 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1384 break; 1385 p = reconCtrlPtr->headSepCBList; 1386 reconCtrlPtr->headSepCBList = p->next; 1387 p->next = NULL; 1388 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1389 rf_FreeCallbackDesc(p); 1390 } 1391 1392 } 1393 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1394 } 1395 1396 /* 1397 * checks to see that the maximum head separation will not be violated 1398 * if we initiate a reconstruction I/O on the indicated disk. 1399 * Limiting the maximum head separation between two disks eliminates 1400 * the nasty buffer-stall conditions that occur when one disk races 1401 * ahead of the others and consumes all of the floating recon buffers. 1402 * This code is complex and unpleasant but it's necessary to avoid 1403 * some very nasty, albeit fairly rare, reconstruction behavior. 1404 * 1405 * returns non-zero if and only if we have to stop working on the 1406 * indicated disk due to a head-separation delay. 1407 */ 1408 static int 1409 CheckHeadSeparation( 1410 RF_Raid_t * raidPtr, 1411 RF_PerDiskReconCtrl_t * ctrl, 1412 RF_RowCol_t row, 1413 RF_RowCol_t col, 1414 RF_HeadSepLimit_t hsCtr, 1415 RF_ReconUnitNum_t which_ru) 1416 { 1417 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1418 RF_CallbackDesc_t *cb, *p, *pt; 1419 int retval = 0; 1420 1421 /* if we're too far ahead of the slowest disk, stop working on this 1422 * disk until the slower ones catch up. We do this by scheduling a 1423 * wakeup callback for the time when the slowest disk has caught up. 1424 * We define "caught up" with 20% hysteresis, i.e. the head separation 1425 * must have fallen to at most 80% of the max allowable head 1426 * separation before we'll wake up. 1427 * 1428 */ 1429 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1430 if ((raidPtr->headSepLimit >= 0) && 1431 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1432 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1433 raidPtr->raidid, row, col, ctrl->headSepCounter, 1434 reconCtrlPtr->minHeadSepCounter, 1435 raidPtr->headSepLimit); 1436 cb = rf_AllocCallbackDesc(); 1437 /* the minHeadSepCounter value we have to get to before we'll 1438 * wake up. build in 20% hysteresis. */ 1439 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1440 cb->row = row; 1441 cb->col = col; 1442 cb->next = NULL; 1443 1444 /* insert this callback descriptor into the sorted list of 1445 * pending head-sep callbacks */ 1446 p = reconCtrlPtr->headSepCBList; 1447 if (!p) 1448 reconCtrlPtr->headSepCBList = cb; 1449 else 1450 if (cb->callbackArg.v < p->callbackArg.v) { 1451 cb->next = reconCtrlPtr->headSepCBList; 1452 reconCtrlPtr->headSepCBList = cb; 1453 } else { 1454 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1455 cb->next = p; 1456 pt->next = cb; 1457 } 1458 retval = 1; 1459 #if RF_RECON_STATS > 0 1460 ctrl->reconCtrl->reconDesc->hsStallCount++; 1461 #endif /* RF_RECON_STATS > 0 */ 1462 } 1463 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1464 1465 return (retval); 1466 } 1467 /* 1468 * checks to see if reconstruction has been either forced or blocked 1469 * by a user operation. if forced, we skip this RU entirely. else if 1470 * blocked, put ourselves on the wait list. else return 0. 1471 * 1472 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1473 */ 1474 static int 1475 CheckForcedOrBlockedReconstruction( 1476 RF_Raid_t * raidPtr, 1477 RF_ReconParityStripeStatus_t * pssPtr, 1478 RF_PerDiskReconCtrl_t * ctrl, 1479 RF_RowCol_t row, 1480 RF_RowCol_t col, 1481 RF_StripeNum_t psid, 1482 RF_ReconUnitNum_t which_ru) 1483 { 1484 RF_CallbackDesc_t *cb; 1485 int retcode = 0; 1486 1487 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1488 retcode = RF_PSS_FORCED_ON_WRITE; 1489 else 1490 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1491 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1492 cb = rf_AllocCallbackDesc(); /* append ourselves to 1493 * the blockage-wait 1494 * list */ 1495 cb->row = row; 1496 cb->col = col; 1497 cb->next = pssPtr->blockWaitList; 1498 pssPtr->blockWaitList = cb; 1499 retcode = RF_PSS_RECON_BLOCKED; 1500 } 1501 if (!retcode) 1502 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1503 * reconstruction */ 1504 1505 return (retcode); 1506 } 1507 /* 1508 * if reconstruction is currently ongoing for the indicated stripeID, 1509 * reconstruction is forced to completion and we return non-zero to 1510 * indicate that the caller must wait. If not, then reconstruction is 1511 * blocked on the indicated stripe and the routine returns zero. If 1512 * and only if we return non-zero, we'll cause the cbFunc to get 1513 * invoked with the cbArg when the reconstruction has completed. 1514 */ 1515 int 1516 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1517 RF_Raid_t *raidPtr; 1518 RF_AccessStripeMap_t *asmap; 1519 void (*cbFunc) (RF_Raid_t *, void *); 1520 void *cbArg; 1521 { 1522 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1523 * we're working on */ 1524 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1525 * forcing recon on */ 1526 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1527 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1528 * stripe status structure */ 1529 RF_StripeNum_t psid; /* parity stripe id */ 1530 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1531 * offset */ 1532 RF_RowCol_t *diskids; 1533 RF_RowCol_t stripe; 1534 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1535 RF_RowCol_t fcol, diskno, i; 1536 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1537 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1538 RF_CallbackDesc_t *cb; 1539 int created = 0, nPromoted; 1540 1541 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1542 1543 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1544 1545 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1546 1547 /* if recon is not ongoing on this PS, just return */ 1548 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1549 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1550 return (0); 1551 } 1552 /* otherwise, we have to wait for reconstruction to complete on this 1553 * RU. */ 1554 /* In order to avoid waiting for a potentially large number of 1555 * low-priority accesses to complete, we force a normal-priority (i.e. 1556 * not low-priority) reconstruction on this RU. */ 1557 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1558 DDprintf1("Forcing recon on psid %ld\n", psid); 1559 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1560 * forced recon */ 1561 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1562 * that we just set */ 1563 fcol = raidPtr->reconControl[row]->fcol; 1564 1565 /* get a listing of the disks comprising the indicated stripe */ 1566 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1567 RF_ASSERT(row == stripe); 1568 1569 /* For previously issued reads, elevate them to normal 1570 * priority. If the I/O has already completed, it won't be 1571 * found in the queue, and hence this will be a no-op. For 1572 * unissued reads, allocate buffers and issue new reads. The 1573 * fact that we've set the FORCED bit means that the regular 1574 * recon procs will not re-issue these reqs */ 1575 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1576 if ((diskno = diskids[i]) != fcol) { 1577 if (pssPtr->issued[diskno]) { 1578 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1579 if (rf_reconDebug && nPromoted) 1580 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1581 } else { 1582 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1583 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1584 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1585 * location */ 1586 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1587 new_rbuf->which_ru = which_ru; 1588 new_rbuf->failedDiskSectorOffset = fd_offset; 1589 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1590 1591 /* use NULL b_proc b/c all addrs 1592 * should be in kernel space */ 1593 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1594 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1595 NULL, (void *) raidPtr, 0, NULL); 1596 1597 RF_ASSERT(req); /* XXX -- fix this -- 1598 * XXX */ 1599 1600 new_rbuf->arg = req; 1601 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1602 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1603 } 1604 } 1605 /* if the write is sitting in the disk queue, elevate its 1606 * priority */ 1607 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1608 printf("raid%d: promoted write to row %d col %d\n", 1609 raidPtr->raidid, row, fcol); 1610 } 1611 /* install a callback descriptor to be invoked when recon completes on 1612 * this parity stripe. */ 1613 cb = rf_AllocCallbackDesc(); 1614 /* XXX the following is bogus.. These functions don't really match!! 1615 * GO */ 1616 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1617 cb->callbackArg.p = (void *) cbArg; 1618 cb->next = pssPtr->procWaitList; 1619 pssPtr->procWaitList = cb; 1620 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1621 raidPtr->raidid, psid); 1622 1623 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1624 return (1); 1625 } 1626 /* called upon the completion of a forced reconstruction read. 1627 * all we do is schedule the FORCEDREADONE event. 1628 * called at interrupt context in the kernel, so don't do anything illegal here. 1629 */ 1630 static void 1631 ForceReconReadDoneProc(arg, status) 1632 void *arg; 1633 int status; 1634 { 1635 RF_ReconBuffer_t *rbuf = arg; 1636 1637 if (status) { 1638 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1639 * recon read 1640 * failed!\n"); */ 1641 RF_PANIC(); 1642 } 1643 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1644 } 1645 /* releases a block on the reconstruction of the indicated stripe */ 1646 int 1647 rf_UnblockRecon(raidPtr, asmap) 1648 RF_Raid_t *raidPtr; 1649 RF_AccessStripeMap_t *asmap; 1650 { 1651 RF_RowCol_t row = asmap->origRow; 1652 RF_StripeNum_t stripeID = asmap->stripeID; 1653 RF_ReconParityStripeStatus_t *pssPtr; 1654 RF_ReconUnitNum_t which_ru; 1655 RF_StripeNum_t psid; 1656 int created = 0; 1657 RF_CallbackDesc_t *cb; 1658 1659 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1660 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1661 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1662 1663 /* When recon is forced, the pss desc can get deleted before we get 1664 * back to unblock recon. But, this can _only_ happen when recon is 1665 * forced. It would be good to put some kind of sanity check here, but 1666 * how to decide if recon was just forced or not? */ 1667 if (!pssPtr) { 1668 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1669 * RU %d\n",psid,which_ru); */ 1670 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1671 if (rf_reconDebug || rf_pssDebug) 1672 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1673 #endif 1674 goto out; 1675 } 1676 pssPtr->blockCount--; 1677 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1678 raidPtr->raidid, psid, pssPtr->blockCount); 1679 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1680 1681 /* unblock recon before calling CauseReconEvent in case 1682 * CauseReconEvent causes us to try to issue a new read before 1683 * returning here. */ 1684 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1685 1686 1687 while (pssPtr->blockWaitList) { 1688 /* spin through the block-wait list and 1689 release all the waiters */ 1690 cb = pssPtr->blockWaitList; 1691 pssPtr->blockWaitList = cb->next; 1692 cb->next = NULL; 1693 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1694 rf_FreeCallbackDesc(cb); 1695 } 1696 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1697 /* if no recon was requested while recon was blocked */ 1698 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1699 } 1700 } 1701 out: 1702 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1703 return (0); 1704 } 1705