1 /* $NetBSD: rf_reconstruct.c,v 1.117 2011/10/14 09:23:30 hannken Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.117 2011/10/14 09:23:30 hannken Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 #define RF_RECON_WRITE_DONE 5 102 103 #define RF_MAX_FREE_RECONBUFFER 32 104 #define RF_MIN_FREE_RECONBUFFER 16 105 106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 107 RF_RaidDisk_t *, int, RF_RowCol_t); 108 static void FreeReconDesc(RF_RaidReconDesc_t *); 109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 111 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 114 RF_SectorNum_t *); 115 static int IssueNextWriteRequest(RF_Raid_t *); 116 static int ReconReadDoneProc(void *, int); 117 static int ReconWriteDoneProc(void *, int); 118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 120 RF_RowCol_t, RF_HeadSepLimit_t, 121 RF_ReconUnitNum_t); 122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 123 RF_ReconParityStripeStatus_t *, 124 RF_PerDiskReconCtrl_t *, 125 RF_RowCol_t, RF_StripeNum_t, 126 RF_ReconUnitNum_t); 127 static void ForceReconReadDoneProc(void *, int); 128 static void rf_ShutdownReconstruction(void *); 129 130 struct RF_ReconDoneProc_s { 131 void (*proc) (RF_Raid_t *, void *); 132 void *arg; 133 RF_ReconDoneProc_t *next; 134 }; 135 136 /************************************************************************** 137 * 138 * sets up the parameters that will be used by the reconstruction process 139 * currently there are none, except for those that the layout-specific 140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 141 * 142 * in the kernel, we fire off the recon thread. 143 * 144 **************************************************************************/ 145 static void 146 rf_ShutdownReconstruction(void *ignored) 147 { 148 pool_destroy(&rf_pools.reconbuffer); 149 } 150 151 int 152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 153 { 154 155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 158 159 return (0); 160 } 161 162 static RF_RaidReconDesc_t * 163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 165 RF_RowCol_t scol) 166 { 167 168 RF_RaidReconDesc_t *reconDesc; 169 170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 171 (RF_RaidReconDesc_t *)); 172 reconDesc->raidPtr = raidPtr; 173 reconDesc->col = col; 174 reconDesc->spareDiskPtr = spareDiskPtr; 175 reconDesc->numDisksDone = numDisksDone; 176 reconDesc->scol = scol; 177 reconDesc->next = NULL; 178 179 return (reconDesc); 180 } 181 182 static void 183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 184 { 185 #if RF_RECON_STATS > 0 186 printf("raid%d: %lu recon event waits, %lu recon delays\n", 187 reconDesc->raidPtr->raidid, 188 (long) reconDesc->numReconEventWaits, 189 (long) reconDesc->numReconExecDelays); 190 #endif /* RF_RECON_STATS > 0 */ 191 printf("raid%d: %lu max exec ticks\n", 192 reconDesc->raidPtr->raidid, 193 (long) reconDesc->maxReconExecTicks); 194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 195 } 196 197 198 /***************************************************************************** 199 * 200 * primary routine to reconstruct a failed disk. This should be called from 201 * within its own thread. It won't return until reconstruction completes, 202 * fails, or is aborted. 203 *****************************************************************************/ 204 int 205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 206 { 207 const RF_LayoutSW_t *lp; 208 int rc; 209 210 lp = raidPtr->Layout.map; 211 if (lp->SubmitReconBuffer) { 212 /* 213 * The current infrastructure only supports reconstructing one 214 * disk at a time for each array. 215 */ 216 rf_lock_mutex2(raidPtr->mutex); 217 while (raidPtr->reconInProgress) { 218 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 219 } 220 raidPtr->reconInProgress++; 221 rf_unlock_mutex2(raidPtr->mutex); 222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 223 rf_lock_mutex2(raidPtr->mutex); 224 raidPtr->reconInProgress--; 225 } else { 226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 227 lp->parityConfig); 228 rc = EIO; 229 rf_lock_mutex2(raidPtr->mutex); 230 } 231 rf_signal_cond2(raidPtr->waitForReconCond); 232 rf_unlock_mutex2(raidPtr->mutex); 233 return (rc); 234 } 235 236 int 237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 238 { 239 RF_ComponentLabel_t *c_label; 240 RF_RaidDisk_t *spareDiskPtr = NULL; 241 RF_RaidReconDesc_t *reconDesc; 242 RF_RowCol_t scol; 243 int numDisksDone = 0, rc; 244 245 /* first look for a spare drive onto which to reconstruct the data */ 246 /* spare disk descriptors are stored in row 0. This may have to 247 * change eventually */ 248 249 rf_lock_mutex2(raidPtr->mutex); 250 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 252 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 253 if (raidPtr->status != rf_rs_degraded) { 254 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 255 rf_unlock_mutex2(raidPtr->mutex); 256 return (EINVAL); 257 } 258 scol = (-1); 259 } else { 260 #endif 261 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 262 if (raidPtr->Disks[scol].status == rf_ds_spare) { 263 spareDiskPtr = &raidPtr->Disks[scol]; 264 spareDiskPtr->status = rf_ds_used_spare; 265 break; 266 } 267 } 268 if (!spareDiskPtr) { 269 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 270 rf_unlock_mutex2(raidPtr->mutex); 271 return (ENOSPC); 272 } 273 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 275 } 276 #endif 277 rf_unlock_mutex2(raidPtr->mutex); 278 279 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 280 raidPtr->reconDesc = (void *) reconDesc; 281 #if RF_RECON_STATS > 0 282 reconDesc->hsStallCount = 0; 283 reconDesc->numReconExecDelays = 0; 284 reconDesc->numReconEventWaits = 0; 285 #endif /* RF_RECON_STATS > 0 */ 286 reconDesc->reconExecTimerRunning = 0; 287 reconDesc->reconExecTicks = 0; 288 reconDesc->maxReconExecTicks = 0; 289 rc = rf_ContinueReconstructFailedDisk(reconDesc); 290 291 if (!rc) { 292 /* fix up the component label */ 293 /* Don't actually need the read here.. */ 294 c_label = raidget_component_label(raidPtr, scol); 295 296 raid_init_component_label(raidPtr, c_label); 297 c_label->row = 0; 298 c_label->column = col; 299 c_label->clean = RF_RAID_DIRTY; 300 c_label->status = rf_ds_optimal; 301 rf_component_label_set_partitionsize(c_label, 302 raidPtr->Disks[scol].partitionSize); 303 304 /* We've just done a rebuild based on all the other 305 disks, so at this point the parity is known to be 306 clean, even if it wasn't before. */ 307 308 /* XXX doesn't hold for RAID 6!!*/ 309 310 rf_lock_mutex2(raidPtr->mutex); 311 raidPtr->parity_good = RF_RAID_CLEAN; 312 rf_unlock_mutex2(raidPtr->mutex); 313 314 /* XXXX MORE NEEDED HERE */ 315 316 raidflush_component_label(raidPtr, scol); 317 } else { 318 /* Reconstruct failed. */ 319 320 rf_lock_mutex2(raidPtr->mutex); 321 /* Failed disk goes back to "failed" status */ 322 raidPtr->Disks[col].status = rf_ds_failed; 323 324 /* Spare disk goes back to "spare" status. */ 325 spareDiskPtr->status = rf_ds_spare; 326 rf_unlock_mutex2(raidPtr->mutex); 327 328 } 329 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 330 return (rc); 331 } 332 333 /* 334 335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 336 and you don't get a spare until the next Monday. With this function 337 (and hot-swappable drives) you can now put your new disk containing 338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 339 rebuild the data "on the spot". 340 341 */ 342 343 int 344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 345 { 346 RF_RaidDisk_t *spareDiskPtr = NULL; 347 RF_RaidReconDesc_t *reconDesc; 348 const RF_LayoutSW_t *lp; 349 RF_ComponentLabel_t *c_label; 350 int numDisksDone = 0, rc; 351 uint64_t numsec; 352 unsigned int secsize; 353 struct pathbuf *pb; 354 struct vnode *vp; 355 struct vattr va; 356 int retcode; 357 int ac; 358 359 rf_lock_mutex2(raidPtr->mutex); 360 lp = raidPtr->Layout.map; 361 if (!lp->SubmitReconBuffer) { 362 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 363 lp->parityConfig); 364 /* wakeup anyone who might be waiting to do a reconstruct */ 365 rf_signal_cond2(raidPtr->waitForReconCond); 366 rf_unlock_mutex2(raidPtr->mutex); 367 return(EIO); 368 } 369 370 /* 371 * The current infrastructure only supports reconstructing one 372 * disk at a time for each array. 373 */ 374 375 if (raidPtr->Disks[col].status != rf_ds_failed) { 376 /* "It's gone..." */ 377 raidPtr->numFailures++; 378 raidPtr->Disks[col].status = rf_ds_failed; 379 raidPtr->status = rf_rs_degraded; 380 rf_unlock_mutex2(raidPtr->mutex); 381 rf_update_component_labels(raidPtr, 382 RF_NORMAL_COMPONENT_UPDATE); 383 rf_lock_mutex2(raidPtr->mutex); 384 } 385 386 while (raidPtr->reconInProgress) { 387 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 388 } 389 390 raidPtr->reconInProgress++; 391 392 /* first look for a spare drive onto which to reconstruct the 393 data. spare disk descriptors are stored in row 0. This 394 may have to change eventually */ 395 396 /* Actually, we don't care if it's failed or not... On a RAID 397 set with correct parity, this function should be callable 398 on any component without ill effects. */ 399 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 400 401 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 402 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 403 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 404 405 raidPtr->reconInProgress--; 406 rf_signal_cond2(raidPtr->waitForReconCond); 407 rf_unlock_mutex2(raidPtr->mutex); 408 return (EINVAL); 409 } 410 #endif 411 412 /* This device may have been opened successfully the 413 first time. Close it before trying to open it again.. */ 414 415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 416 #if 0 417 printf("Closed the open device: %s\n", 418 raidPtr->Disks[col].devname); 419 #endif 420 vp = raidPtr->raid_cinfo[col].ci_vp; 421 ac = raidPtr->Disks[col].auto_configured; 422 rf_unlock_mutex2(raidPtr->mutex); 423 rf_close_component(raidPtr, vp, ac); 424 rf_lock_mutex2(raidPtr->mutex); 425 raidPtr->raid_cinfo[col].ci_vp = NULL; 426 } 427 /* note that this disk was *not* auto_configured (any longer)*/ 428 raidPtr->Disks[col].auto_configured = 0; 429 430 #if 0 431 printf("About to (re-)open the device for rebuilding: %s\n", 432 raidPtr->Disks[col].devname); 433 #endif 434 rf_unlock_mutex2(raidPtr->mutex); 435 pb = pathbuf_create(raidPtr->Disks[col].devname); 436 if (pb == NULL) { 437 retcode = ENOMEM; 438 } else { 439 retcode = dk_lookup(pb, curlwp, &vp); 440 pathbuf_destroy(pb); 441 } 442 443 if (retcode) { 444 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 445 raidPtr->Disks[col].devname, retcode); 446 447 /* the component isn't responding properly... 448 must be still dead :-( */ 449 rf_lock_mutex2(raidPtr->mutex); 450 raidPtr->reconInProgress--; 451 rf_signal_cond2(raidPtr->waitForReconCond); 452 rf_unlock_mutex2(raidPtr->mutex); 453 return(retcode); 454 } 455 456 /* Ok, so we can at least do a lookup... 457 How about actually getting a vp for it? */ 458 459 vn_lock(vp, LK_SHARED | LK_RETRY); 460 retcode = VOP_GETATTR(vp, &va, curlwp->l_cred); 461 VOP_UNLOCK(vp); 462 if (retcode != 0) { 463 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 464 rf_lock_mutex2(raidPtr->mutex); 465 raidPtr->reconInProgress--; 466 rf_signal_cond2(raidPtr->waitForReconCond); 467 rf_unlock_mutex2(raidPtr->mutex); 468 return(retcode); 469 } 470 471 retcode = getdisksize(vp, &numsec, &secsize); 472 if (retcode) { 473 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 474 rf_lock_mutex2(raidPtr->mutex); 475 raidPtr->reconInProgress--; 476 rf_signal_cond2(raidPtr->waitForReconCond); 477 rf_unlock_mutex2(raidPtr->mutex); 478 return(retcode); 479 } 480 rf_lock_mutex2(raidPtr->mutex); 481 raidPtr->Disks[col].blockSize = secsize; 482 raidPtr->Disks[col].numBlocks = numsec - rf_protectedSectors; 483 484 raidPtr->raid_cinfo[col].ci_vp = vp; 485 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 486 487 raidPtr->Disks[col].dev = va.va_rdev; 488 489 /* we allow the user to specify that only a fraction 490 of the disks should be used this is just for debug: 491 it speeds up * the parity scan */ 492 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 493 rf_sizePercentage / 100; 494 rf_unlock_mutex2(raidPtr->mutex); 495 496 spareDiskPtr = &raidPtr->Disks[col]; 497 spareDiskPtr->status = rf_ds_used_spare; 498 499 printf("raid%d: initiating in-place reconstruction on column %d\n", 500 raidPtr->raidid, col); 501 502 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 503 numDisksDone, col); 504 raidPtr->reconDesc = (void *) reconDesc; 505 #if RF_RECON_STATS > 0 506 reconDesc->hsStallCount = 0; 507 reconDesc->numReconExecDelays = 0; 508 reconDesc->numReconEventWaits = 0; 509 #endif /* RF_RECON_STATS > 0 */ 510 reconDesc->reconExecTimerRunning = 0; 511 reconDesc->reconExecTicks = 0; 512 reconDesc->maxReconExecTicks = 0; 513 rc = rf_ContinueReconstructFailedDisk(reconDesc); 514 515 if (!rc) { 516 rf_lock_mutex2(raidPtr->mutex); 517 /* Need to set these here, as at this point it'll be claiming 518 that the disk is in rf_ds_spared! But we know better :-) */ 519 520 raidPtr->Disks[col].status = rf_ds_optimal; 521 raidPtr->status = rf_rs_optimal; 522 rf_unlock_mutex2(raidPtr->mutex); 523 524 /* fix up the component label */ 525 /* Don't actually need the read here.. */ 526 c_label = raidget_component_label(raidPtr, col); 527 528 rf_lock_mutex2(raidPtr->mutex); 529 raid_init_component_label(raidPtr, c_label); 530 531 c_label->row = 0; 532 c_label->column = col; 533 534 /* We've just done a rebuild based on all the other 535 disks, so at this point the parity is known to be 536 clean, even if it wasn't before. */ 537 538 /* XXX doesn't hold for RAID 6!!*/ 539 540 raidPtr->parity_good = RF_RAID_CLEAN; 541 rf_unlock_mutex2(raidPtr->mutex); 542 543 raidflush_component_label(raidPtr, col); 544 } else { 545 /* Reconstruct-in-place failed. Disk goes back to 546 "failed" status, regardless of what it was before. */ 547 rf_lock_mutex2(raidPtr->mutex); 548 raidPtr->Disks[col].status = rf_ds_failed; 549 rf_unlock_mutex2(raidPtr->mutex); 550 } 551 552 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 553 554 rf_lock_mutex2(raidPtr->mutex); 555 raidPtr->reconInProgress--; 556 rf_signal_cond2(raidPtr->waitForReconCond); 557 rf_unlock_mutex2(raidPtr->mutex); 558 559 return (rc); 560 } 561 562 563 int 564 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 565 { 566 RF_Raid_t *raidPtr = reconDesc->raidPtr; 567 RF_RowCol_t col = reconDesc->col; 568 RF_RowCol_t scol = reconDesc->scol; 569 RF_ReconMap_t *mapPtr; 570 RF_ReconCtrl_t *tmp_reconctrl; 571 RF_ReconEvent_t *event; 572 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 573 RF_ReconUnitCount_t RUsPerPU; 574 struct timeval etime, elpsd; 575 unsigned long xor_s, xor_resid_us; 576 int i, ds; 577 int status, done; 578 int recon_error, write_error; 579 580 raidPtr->accumXorTimeUs = 0; 581 #if RF_ACC_TRACE > 0 582 /* create one trace record per physical disk */ 583 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 584 #endif 585 586 /* quiesce the array prior to starting recon. this is needed 587 * to assure no nasty interactions with pending user writes. 588 * We need to do this before we change the disk or row status. */ 589 590 Dprintf("RECON: begin request suspend\n"); 591 rf_SuspendNewRequestsAndWait(raidPtr); 592 Dprintf("RECON: end request suspend\n"); 593 594 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 595 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 596 597 rf_lock_mutex2(raidPtr->mutex); 598 599 /* create the reconstruction control pointer and install it in 600 * the right slot */ 601 raidPtr->reconControl = tmp_reconctrl; 602 mapPtr = raidPtr->reconControl->reconMap; 603 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 604 raidPtr->reconControl->numRUsComplete = 0; 605 raidPtr->status = rf_rs_reconstructing; 606 raidPtr->Disks[col].status = rf_ds_reconstructing; 607 raidPtr->Disks[col].spareCol = scol; 608 609 rf_unlock_mutex2(raidPtr->mutex); 610 611 RF_GETTIME(raidPtr->reconControl->starttime); 612 613 Dprintf("RECON: resume requests\n"); 614 rf_ResumeNewRequests(raidPtr); 615 616 617 mapPtr = raidPtr->reconControl->reconMap; 618 619 incPSID = RF_RECONMAP_SIZE; 620 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 621 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 622 recon_error = 0; 623 write_error = 0; 624 pending_writes = incPSID; 625 raidPtr->reconControl->lastPSID = incPSID; 626 627 /* start the actual reconstruction */ 628 629 done = 0; 630 while (!done) { 631 632 if (raidPtr->waitShutdown) { 633 /* someone is unconfiguring this array... bail on the reconstruct.. */ 634 recon_error = 1; 635 break; 636 } 637 638 num_writes = 0; 639 640 /* issue a read for each surviving disk */ 641 642 reconDesc->numDisksDone = 0; 643 for (i = 0; i < raidPtr->numCol; i++) { 644 if (i != col) { 645 /* find and issue the next I/O on the 646 * indicated disk */ 647 if (IssueNextReadRequest(raidPtr, i)) { 648 Dprintf1("RECON: done issuing for c%d\n", i); 649 reconDesc->numDisksDone++; 650 } 651 } 652 } 653 654 /* process reconstruction events until all disks report that 655 * they've completed all work */ 656 657 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 658 659 event = rf_GetNextReconEvent(reconDesc); 660 status = ProcessReconEvent(raidPtr, event); 661 662 /* the normal case is that a read completes, and all is well. */ 663 if (status == RF_RECON_DONE_READS) { 664 reconDesc->numDisksDone++; 665 } else if ((status == RF_RECON_READ_ERROR) || 666 (status == RF_RECON_WRITE_ERROR)) { 667 /* an error was encountered while reconstructing... 668 Pretend we've finished this disk. 669 */ 670 recon_error = 1; 671 raidPtr->reconControl->error = 1; 672 673 /* bump the numDisksDone count for reads, 674 but not for writes */ 675 if (status == RF_RECON_READ_ERROR) 676 reconDesc->numDisksDone++; 677 678 /* write errors are special -- when we are 679 done dealing with the reads that are 680 finished, we don't want to wait for any 681 writes */ 682 if (status == RF_RECON_WRITE_ERROR) { 683 write_error = 1; 684 num_writes++; 685 } 686 687 } else if (status == RF_RECON_READ_STOPPED) { 688 /* count this component as being "done" */ 689 reconDesc->numDisksDone++; 690 } else if (status == RF_RECON_WRITE_DONE) { 691 num_writes++; 692 } 693 694 if (recon_error) { 695 /* make sure any stragglers are woken up so that 696 their theads will complete, and we can get out 697 of here with all IO processed */ 698 699 rf_WakeupHeadSepCBWaiters(raidPtr); 700 } 701 702 raidPtr->reconControl->numRUsTotal = 703 mapPtr->totalRUs; 704 raidPtr->reconControl->numRUsComplete = 705 mapPtr->totalRUs - 706 rf_UnitsLeftToReconstruct(mapPtr); 707 708 #if RF_DEBUG_RECON 709 raidPtr->reconControl->percentComplete = 710 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 711 if (rf_prReconSched) { 712 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 713 } 714 #endif 715 } 716 717 /* reads done, wakup any waiters, and then wait for writes */ 718 719 rf_WakeupHeadSepCBWaiters(raidPtr); 720 721 while (!recon_error && (num_writes < pending_writes)) { 722 event = rf_GetNextReconEvent(reconDesc); 723 status = ProcessReconEvent(raidPtr, event); 724 725 if (status == RF_RECON_WRITE_ERROR) { 726 num_writes++; 727 recon_error = 1; 728 raidPtr->reconControl->error = 1; 729 /* an error was encountered at the very end... bail */ 730 } else if (status == RF_RECON_WRITE_DONE) { 731 num_writes++; 732 } /* else it's something else, and we don't care */ 733 } 734 if (recon_error || 735 (raidPtr->reconControl->lastPSID == lastPSID)) { 736 done = 1; 737 break; 738 } 739 740 prev = raidPtr->reconControl->lastPSID; 741 raidPtr->reconControl->lastPSID += incPSID; 742 743 if (raidPtr->reconControl->lastPSID > lastPSID) { 744 pending_writes = lastPSID - prev; 745 raidPtr->reconControl->lastPSID = lastPSID; 746 } 747 748 /* back down curPSID to get ready for the next round... */ 749 for (i = 0; i < raidPtr->numCol; i++) { 750 if (i != col) { 751 raidPtr->reconControl->perDiskInfo[i].curPSID--; 752 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 753 } 754 } 755 } 756 757 mapPtr = raidPtr->reconControl->reconMap; 758 if (rf_reconDebug) { 759 printf("RECON: all reads completed\n"); 760 } 761 /* at this point all the reads have completed. We now wait 762 * for any pending writes to complete, and then we're done */ 763 764 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 765 766 event = rf_GetNextReconEvent(reconDesc); 767 status = ProcessReconEvent(raidPtr, event); 768 769 if (status == RF_RECON_WRITE_ERROR) { 770 recon_error = 1; 771 raidPtr->reconControl->error = 1; 772 /* an error was encountered at the very end... bail */ 773 } else { 774 #if RF_DEBUG_RECON 775 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 776 if (rf_prReconSched) { 777 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 778 } 779 #endif 780 } 781 } 782 783 if (recon_error) { 784 /* we've encountered an error in reconstructing. */ 785 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 786 787 /* we start by blocking IO to the RAID set. */ 788 rf_SuspendNewRequestsAndWait(raidPtr); 789 790 rf_lock_mutex2(raidPtr->mutex); 791 /* mark set as being degraded, rather than 792 rf_rs_reconstructing as we were before the problem. 793 After this is done we can update status of the 794 component disks without worrying about someone 795 trying to read from a failed component. 796 */ 797 raidPtr->status = rf_rs_degraded; 798 rf_unlock_mutex2(raidPtr->mutex); 799 800 /* resume IO */ 801 rf_ResumeNewRequests(raidPtr); 802 803 /* At this point there are two cases: 804 1) If we've experienced a read error, then we've 805 already waited for all the reads we're going to get, 806 and we just need to wait for the writes. 807 808 2) If we've experienced a write error, we've also 809 already waited for all the reads to complete, 810 but there is little point in waiting for the writes -- 811 when they do complete, they will just be ignored. 812 813 So we just wait for writes to complete if we didn't have a 814 write error. 815 */ 816 817 if (!write_error) { 818 /* wait for writes to complete */ 819 while (raidPtr->reconControl->pending_writes > 0) { 820 821 event = rf_GetNextReconEvent(reconDesc); 822 status = ProcessReconEvent(raidPtr, event); 823 824 if (status == RF_RECON_WRITE_ERROR) { 825 raidPtr->reconControl->error = 1; 826 /* an error was encountered at the very end... bail. 827 This will be very bad news for the user, since 828 at this point there will have been a read error 829 on one component, and a write error on another! 830 */ 831 break; 832 } 833 } 834 } 835 836 837 /* cleanup */ 838 839 /* drain the event queue - after waiting for the writes above, 840 there shouldn't be much (if anything!) left in the queue. */ 841 842 rf_DrainReconEventQueue(reconDesc); 843 844 /* XXX As much as we'd like to free the recon control structure 845 and the reconDesc, we have no way of knowing if/when those will 846 be touched by IO that has yet to occur. It is rather poor to be 847 basically causing a 'memory leak' here, but there doesn't seem to be 848 a cleaner alternative at this time. Perhaps when the reconstruct code 849 gets a makeover this problem will go away. 850 */ 851 #if 0 852 rf_FreeReconControl(raidPtr); 853 #endif 854 855 #if RF_ACC_TRACE > 0 856 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 857 #endif 858 /* XXX see comment above */ 859 #if 0 860 FreeReconDesc(reconDesc); 861 #endif 862 863 return (1); 864 } 865 866 /* Success: mark the dead disk as reconstructed. We quiesce 867 * the array here to assure no nasty interactions with pending 868 * user accesses when we free up the psstatus structure as 869 * part of FreeReconControl() */ 870 871 rf_SuspendNewRequestsAndWait(raidPtr); 872 873 rf_lock_mutex2(raidPtr->mutex); 874 raidPtr->numFailures--; 875 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 876 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 877 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 878 rf_unlock_mutex2(raidPtr->mutex); 879 RF_GETTIME(etime); 880 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 881 882 rf_ResumeNewRequests(raidPtr); 883 884 printf("raid%d: Reconstruction of disk at col %d completed\n", 885 raidPtr->raidid, col); 886 xor_s = raidPtr->accumXorTimeUs / 1000000; 887 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 888 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 889 raidPtr->raidid, 890 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 891 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 892 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 893 raidPtr->raidid, 894 (int) raidPtr->reconControl->starttime.tv_sec, 895 (int) raidPtr->reconControl->starttime.tv_usec, 896 (int) etime.tv_sec, (int) etime.tv_usec); 897 #if RF_RECON_STATS > 0 898 printf("raid%d: Total head-sep stall count was %d\n", 899 raidPtr->raidid, (int) reconDesc->hsStallCount); 900 #endif /* RF_RECON_STATS > 0 */ 901 rf_FreeReconControl(raidPtr); 902 #if RF_ACC_TRACE > 0 903 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 904 #endif 905 FreeReconDesc(reconDesc); 906 907 return (0); 908 909 } 910 /***************************************************************************** 911 * do the right thing upon each reconstruction event. 912 *****************************************************************************/ 913 static int 914 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 915 { 916 int retcode = 0, submitblocked; 917 RF_ReconBuffer_t *rbuf; 918 RF_SectorCount_t sectorsPerRU; 919 920 retcode = RF_RECON_READ_STOPPED; 921 922 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 923 924 switch (event->type) { 925 926 /* a read I/O has completed */ 927 case RF_REVENT_READDONE: 928 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 929 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 930 event->col, rbuf->parityStripeID); 931 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 932 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 933 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 934 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 935 if (!raidPtr->reconControl->error) { 936 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 937 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 938 if (!submitblocked) 939 retcode = IssueNextReadRequest(raidPtr, event->col); 940 else 941 retcode = 0; 942 } 943 break; 944 945 /* a write I/O has completed */ 946 case RF_REVENT_WRITEDONE: 947 #if RF_DEBUG_RECON 948 if (rf_floatingRbufDebug) { 949 rf_CheckFloatingRbufCount(raidPtr, 1); 950 } 951 #endif 952 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 953 rbuf = (RF_ReconBuffer_t *) event->arg; 954 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 955 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 956 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 957 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 958 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 959 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 960 961 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 962 raidPtr->reconControl->pending_writes--; 963 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 964 965 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 966 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 967 while(raidPtr->reconControl->rb_lock) { 968 rf_wait_cond2(raidPtr->reconControl->rb_cv, 969 raidPtr->reconControl->rb_mutex); 970 } 971 raidPtr->reconControl->rb_lock = 1; 972 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 973 974 raidPtr->numFullReconBuffers--; 975 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 976 977 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 978 raidPtr->reconControl->rb_lock = 0; 979 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 980 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 981 } else 982 if (rbuf->type == RF_RBUF_TYPE_FORCED) 983 rf_FreeReconBuffer(rbuf); 984 else 985 RF_ASSERT(0); 986 retcode = RF_RECON_WRITE_DONE; 987 break; 988 989 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 990 * cleared */ 991 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 992 if (!raidPtr->reconControl->error) { 993 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 994 0, (int) (long) event->arg); 995 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 996 * BUFCLEAR event if we 997 * couldn't submit */ 998 retcode = IssueNextReadRequest(raidPtr, event->col); 999 } 1000 break; 1001 1002 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 1003 * blockage has been cleared */ 1004 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 1005 if (!raidPtr->reconControl->error) { 1006 retcode = TryToRead(raidPtr, event->col); 1007 } 1008 break; 1009 1010 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1011 * reconstruction blockage has been 1012 * cleared */ 1013 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1014 if (!raidPtr->reconControl->error) { 1015 retcode = TryToRead(raidPtr, event->col); 1016 } 1017 break; 1018 1019 /* a buffer has become ready to write */ 1020 case RF_REVENT_BUFREADY: 1021 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1022 if (!raidPtr->reconControl->error) { 1023 retcode = IssueNextWriteRequest(raidPtr); 1024 #if RF_DEBUG_RECON 1025 if (rf_floatingRbufDebug) { 1026 rf_CheckFloatingRbufCount(raidPtr, 1); 1027 } 1028 #endif 1029 } 1030 break; 1031 1032 /* we need to skip the current RU entirely because it got 1033 * recon'd while we were waiting for something else to happen */ 1034 case RF_REVENT_SKIP: 1035 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1036 if (!raidPtr->reconControl->error) { 1037 retcode = IssueNextReadRequest(raidPtr, event->col); 1038 } 1039 break; 1040 1041 /* a forced-reconstruction read access has completed. Just 1042 * submit the buffer */ 1043 case RF_REVENT_FORCEDREADDONE: 1044 rbuf = (RF_ReconBuffer_t *) event->arg; 1045 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1046 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1047 if (!raidPtr->reconControl->error) { 1048 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1049 RF_ASSERT(!submitblocked); 1050 retcode = 0; 1051 } 1052 break; 1053 1054 /* A read I/O failed to complete */ 1055 case RF_REVENT_READ_FAILED: 1056 retcode = RF_RECON_READ_ERROR; 1057 break; 1058 1059 /* A write I/O failed to complete */ 1060 case RF_REVENT_WRITE_FAILED: 1061 retcode = RF_RECON_WRITE_ERROR; 1062 1063 /* This is an error, but it was a pending write. 1064 Account for it. */ 1065 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1066 raidPtr->reconControl->pending_writes--; 1067 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1068 1069 rbuf = (RF_ReconBuffer_t *) event->arg; 1070 1071 /* cleanup the disk queue data */ 1072 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1073 1074 /* At this point we're erroring out, badly, and floatingRbufs 1075 may not even be valid. Rather than putting this back onto 1076 the floatingRbufs list, just arrange for its immediate 1077 destruction. 1078 */ 1079 rf_FreeReconBuffer(rbuf); 1080 break; 1081 1082 /* a forced read I/O failed to complete */ 1083 case RF_REVENT_FORCEDREAD_FAILED: 1084 retcode = RF_RECON_READ_ERROR; 1085 break; 1086 1087 default: 1088 RF_PANIC(); 1089 } 1090 rf_FreeReconEventDesc(event); 1091 return (retcode); 1092 } 1093 /***************************************************************************** 1094 * 1095 * find the next thing that's needed on the indicated disk, and issue 1096 * a read request for it. We assume that the reconstruction buffer 1097 * associated with this process is free to receive the data. If 1098 * reconstruction is blocked on the indicated RU, we issue a 1099 * blockage-release request instead of a physical disk read request. 1100 * If the current disk gets too far ahead of the others, we issue a 1101 * head-separation wait request and return. 1102 * 1103 * ctrl->{ru_count, curPSID, diskOffset} and 1104 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1105 * we're currently accessing. Note that this deviates from the 1106 * standard C idiom of having counters point to the next thing to be 1107 * accessed. This allows us to easily retry when we're blocked by 1108 * head separation or reconstruction-blockage events. 1109 * 1110 *****************************************************************************/ 1111 static int 1112 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1113 { 1114 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1115 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1116 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1117 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1118 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1119 int do_new_check = 0, retcode = 0, status; 1120 1121 /* if we are currently the slowest disk, mark that we have to do a new 1122 * check */ 1123 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1124 do_new_check = 1; 1125 1126 while (1) { 1127 1128 ctrl->ru_count++; 1129 if (ctrl->ru_count < RUsPerPU) { 1130 ctrl->diskOffset += sectorsPerRU; 1131 rbuf->failedDiskSectorOffset += sectorsPerRU; 1132 } else { 1133 ctrl->curPSID++; 1134 ctrl->ru_count = 0; 1135 /* code left over from when head-sep was based on 1136 * parity stripe id */ 1137 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1138 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1139 return (RF_RECON_DONE_READS); /* finito! */ 1140 } 1141 /* find the disk offsets of the start of the parity 1142 * stripe on both the current disk and the failed 1143 * disk. skip this entire parity stripe if either disk 1144 * does not appear in the indicated PS */ 1145 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1146 &rbuf->spCol, &rbuf->spOffset); 1147 if (status) { 1148 ctrl->ru_count = RUsPerPU - 1; 1149 continue; 1150 } 1151 } 1152 rbuf->which_ru = ctrl->ru_count; 1153 1154 /* skip this RU if it's already been reconstructed */ 1155 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1156 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1157 continue; 1158 } 1159 break; 1160 } 1161 ctrl->headSepCounter++; 1162 if (do_new_check) 1163 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1164 1165 1166 /* at this point, we have definitely decided what to do, and we have 1167 * only to see if we can actually do it now */ 1168 rbuf->parityStripeID = ctrl->curPSID; 1169 rbuf->which_ru = ctrl->ru_count; 1170 #if RF_ACC_TRACE > 0 1171 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1172 sizeof(raidPtr->recon_tracerecs[col])); 1173 raidPtr->recon_tracerecs[col].reconacc = 1; 1174 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1175 #endif 1176 retcode = TryToRead(raidPtr, col); 1177 return (retcode); 1178 } 1179 1180 /* 1181 * tries to issue the next read on the indicated disk. We may be 1182 * blocked by (a) the heads being too far apart, or (b) recon on the 1183 * indicated RU being blocked due to a write by a user thread. In 1184 * this case, we issue a head-sep or blockage wait request, which will 1185 * cause this same routine to be invoked again later when the blockage 1186 * has cleared. 1187 */ 1188 1189 static int 1190 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1191 { 1192 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1193 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1194 RF_StripeNum_t psid = ctrl->curPSID; 1195 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1196 RF_DiskQueueData_t *req; 1197 int status; 1198 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1199 1200 /* if the current disk is too far ahead of the others, issue a 1201 * head-separation wait and return */ 1202 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1203 return (0); 1204 1205 /* allocate a new PSS in case we need it */ 1206 newpssPtr = rf_AllocPSStatus(raidPtr); 1207 1208 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1209 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1210 1211 if (pssPtr != newpssPtr) { 1212 rf_FreePSStatus(raidPtr, newpssPtr); 1213 } 1214 1215 /* if recon is blocked on the indicated parity stripe, issue a 1216 * block-wait request and return. this also must mark the indicated RU 1217 * in the stripe as under reconstruction if not blocked. */ 1218 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1219 if (status == RF_PSS_RECON_BLOCKED) { 1220 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1221 goto out; 1222 } else 1223 if (status == RF_PSS_FORCED_ON_WRITE) { 1224 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1225 goto out; 1226 } 1227 /* make one last check to be sure that the indicated RU didn't get 1228 * reconstructed while we were waiting for something else to happen. 1229 * This is unfortunate in that it causes us to make this check twice 1230 * in the normal case. Might want to make some attempt to re-work 1231 * this so that we only do this check if we've definitely blocked on 1232 * one of the above checks. When this condition is detected, we may 1233 * have just created a bogus status entry, which we need to delete. */ 1234 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1235 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1236 if (pssPtr == newpssPtr) 1237 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1238 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1239 goto out; 1240 } 1241 /* found something to read. issue the I/O */ 1242 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1243 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1244 #if RF_ACC_TRACE > 0 1245 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1246 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1247 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1248 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1249 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1250 #endif 1251 /* should be ok to use a NULL proc pointer here, all the bufs we use 1252 * should be in kernel space */ 1253 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1254 ReconReadDoneProc, (void *) ctrl, 1255 #if RF_ACC_TRACE > 0 1256 &raidPtr->recon_tracerecs[col], 1257 #else 1258 NULL, 1259 #endif 1260 (void *) raidPtr, 0, NULL, PR_WAITOK); 1261 1262 ctrl->rbuf->arg = (void *) req; 1263 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1264 pssPtr->issued[col] = 1; 1265 1266 out: 1267 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1268 return (0); 1269 } 1270 1271 1272 /* 1273 * given a parity stripe ID, we want to find out whether both the 1274 * current disk and the failed disk exist in that parity stripe. If 1275 * not, we want to skip this whole PS. If so, we want to find the 1276 * disk offset of the start of the PS on both the current disk and the 1277 * failed disk. 1278 * 1279 * this works by getting a list of disks comprising the indicated 1280 * parity stripe, and searching the list for the current and failed 1281 * disks. Once we've decided they both exist in the parity stripe, we 1282 * need to decide whether each is data or parity, so that we'll know 1283 * which mapping function to call to get the corresponding disk 1284 * offsets. 1285 * 1286 * this is kind of unpleasant, but doing it this way allows the 1287 * reconstruction code to use parity stripe IDs rather than physical 1288 * disks address to march through the failed disk, which greatly 1289 * simplifies a lot of code, as well as eliminating the need for a 1290 * reverse-mapping function. I also think it will execute faster, 1291 * since the calls to the mapping module are kept to a minimum. 1292 * 1293 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1294 * THE STRIPE IN THE CORRECT ORDER 1295 * 1296 * raidPtr - raid descriptor 1297 * psid - parity stripe identifier 1298 * col - column of disk to find the offsets for 1299 * spCol - out: col of spare unit for failed unit 1300 * spOffset - out: offset into disk containing spare unit 1301 * 1302 */ 1303 1304 1305 static int 1306 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1307 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1308 RF_SectorNum_t *outFailedDiskSectorOffset, 1309 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1310 { 1311 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1312 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1313 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1314 RF_RowCol_t *diskids; 1315 u_int i, j, k, i_offset, j_offset; 1316 RF_RowCol_t pcol; 1317 int testcol; 1318 RF_SectorNum_t poffset; 1319 char i_is_parity = 0, j_is_parity = 0; 1320 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1321 1322 /* get a listing of the disks comprising that stripe */ 1323 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1324 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1325 RF_ASSERT(diskids); 1326 1327 /* reject this entire parity stripe if it does not contain the 1328 * indicated disk or it does not contain the failed disk */ 1329 1330 for (i = 0; i < stripeWidth; i++) { 1331 if (col == diskids[i]) 1332 break; 1333 } 1334 if (i == stripeWidth) 1335 goto skipit; 1336 for (j = 0; j < stripeWidth; j++) { 1337 if (fcol == diskids[j]) 1338 break; 1339 } 1340 if (j == stripeWidth) { 1341 goto skipit; 1342 } 1343 /* find out which disk the parity is on */ 1344 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1345 1346 /* find out if either the current RU or the failed RU is parity */ 1347 /* also, if the parity occurs in this stripe prior to the data and/or 1348 * failed col, we need to decrement i and/or j */ 1349 for (k = 0; k < stripeWidth; k++) 1350 if (diskids[k] == pcol) 1351 break; 1352 RF_ASSERT(k < stripeWidth); 1353 i_offset = i; 1354 j_offset = j; 1355 if (k < i) 1356 i_offset--; 1357 else 1358 if (k == i) { 1359 i_is_parity = 1; 1360 i_offset = 0; 1361 } /* set offsets to zero to disable multiply 1362 * below */ 1363 if (k < j) 1364 j_offset--; 1365 else 1366 if (k == j) { 1367 j_is_parity = 1; 1368 j_offset = 0; 1369 } 1370 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1371 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1372 * tells us how far into the stripe the [current,failed] disk is. */ 1373 1374 /* call the mapping routine to get the offset into the current disk, 1375 * repeat for failed disk. */ 1376 if (i_is_parity) 1377 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1378 else 1379 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1380 1381 RF_ASSERT(col == testcol); 1382 1383 if (j_is_parity) 1384 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1385 else 1386 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1387 RF_ASSERT(fcol == testcol); 1388 1389 /* now locate the spare unit for the failed unit */ 1390 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1391 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1392 if (j_is_parity) 1393 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1394 else 1395 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1396 } else { 1397 #endif 1398 *spCol = raidPtr->reconControl->spareCol; 1399 *spOffset = *outFailedDiskSectorOffset; 1400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1401 } 1402 #endif 1403 return (0); 1404 1405 skipit: 1406 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1407 psid, col); 1408 return (1); 1409 } 1410 /* this is called when a buffer has become ready to write to the replacement disk */ 1411 static int 1412 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1413 { 1414 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1415 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1416 #if RF_ACC_TRACE > 0 1417 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1418 #endif 1419 RF_ReconBuffer_t *rbuf; 1420 RF_DiskQueueData_t *req; 1421 1422 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1423 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1424 * have gotten the event that sent us here */ 1425 RF_ASSERT(rbuf->pssPtr); 1426 1427 rbuf->pssPtr->writeRbuf = rbuf; 1428 rbuf->pssPtr = NULL; 1429 1430 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1431 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1432 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1433 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1434 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1435 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1436 1437 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1438 * kernel space */ 1439 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1440 sectorsPerRU, rbuf->buffer, 1441 rbuf->parityStripeID, rbuf->which_ru, 1442 ReconWriteDoneProc, (void *) rbuf, 1443 #if RF_ACC_TRACE > 0 1444 &raidPtr->recon_tracerecs[fcol], 1445 #else 1446 NULL, 1447 #endif 1448 (void *) raidPtr, 0, NULL, PR_WAITOK); 1449 1450 rbuf->arg = (void *) req; 1451 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1452 raidPtr->reconControl->pending_writes++; 1453 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1454 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1455 1456 return (0); 1457 } 1458 1459 /* 1460 * this gets called upon the completion of a reconstruction read 1461 * operation the arg is a pointer to the per-disk reconstruction 1462 * control structure for the process that just finished a read. 1463 * 1464 * called at interrupt context in the kernel, so don't do anything 1465 * illegal here. 1466 */ 1467 static int 1468 ReconReadDoneProc(void *arg, int status) 1469 { 1470 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1471 RF_Raid_t *raidPtr; 1472 1473 /* Detect that reconCtrl is no longer valid, and if that 1474 is the case, bail without calling rf_CauseReconEvent(). 1475 There won't be anyone listening for this event anyway */ 1476 1477 if (ctrl->reconCtrl == NULL) 1478 return(0); 1479 1480 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1481 1482 if (status) { 1483 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1484 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1485 return(0); 1486 } 1487 #if RF_ACC_TRACE > 0 1488 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1489 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1490 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1491 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1492 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1493 #endif 1494 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1495 return (0); 1496 } 1497 /* this gets called upon the completion of a reconstruction write operation. 1498 * the arg is a pointer to the rbuf that was just written 1499 * 1500 * called at interrupt context in the kernel, so don't do anything illegal here. 1501 */ 1502 static int 1503 ReconWriteDoneProc(void *arg, int status) 1504 { 1505 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1506 1507 /* Detect that reconControl is no longer valid, and if that 1508 is the case, bail without calling rf_CauseReconEvent(). 1509 There won't be anyone listening for this event anyway */ 1510 1511 if (rbuf->raidPtr->reconControl == NULL) 1512 return(0); 1513 1514 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1515 if (status) { 1516 printf("raid%d: Recon write failed (status %d(0x%x)!\n", rbuf->raidPtr->raidid,status,status); 1517 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1518 return(0); 1519 } 1520 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1521 return (0); 1522 } 1523 1524 1525 /* 1526 * computes a new minimum head sep, and wakes up anyone who needs to 1527 * be woken as a result 1528 */ 1529 static void 1530 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1531 { 1532 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1533 RF_HeadSepLimit_t new_min; 1534 RF_RowCol_t i; 1535 RF_CallbackDesc_t *p; 1536 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1537 * of a minimum */ 1538 1539 1540 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1541 while(reconCtrlPtr->rb_lock) { 1542 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1543 } 1544 reconCtrlPtr->rb_lock = 1; 1545 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1546 1547 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1548 for (i = 0; i < raidPtr->numCol; i++) 1549 if (i != reconCtrlPtr->fcol) { 1550 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1551 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1552 } 1553 /* set the new minimum and wake up anyone who can now run again */ 1554 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1555 reconCtrlPtr->minHeadSepCounter = new_min; 1556 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1557 while (reconCtrlPtr->headSepCBList) { 1558 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1559 break; 1560 p = reconCtrlPtr->headSepCBList; 1561 reconCtrlPtr->headSepCBList = p->next; 1562 p->next = NULL; 1563 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1564 rf_FreeCallbackDesc(p); 1565 } 1566 1567 } 1568 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1569 reconCtrlPtr->rb_lock = 0; 1570 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1571 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1572 } 1573 1574 /* 1575 * checks to see that the maximum head separation will not be violated 1576 * if we initiate a reconstruction I/O on the indicated disk. 1577 * Limiting the maximum head separation between two disks eliminates 1578 * the nasty buffer-stall conditions that occur when one disk races 1579 * ahead of the others and consumes all of the floating recon buffers. 1580 * This code is complex and unpleasant but it's necessary to avoid 1581 * some very nasty, albeit fairly rare, reconstruction behavior. 1582 * 1583 * returns non-zero if and only if we have to stop working on the 1584 * indicated disk due to a head-separation delay. 1585 */ 1586 static int 1587 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1588 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1589 RF_ReconUnitNum_t which_ru) 1590 { 1591 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1592 RF_CallbackDesc_t *cb, *p, *pt; 1593 int retval = 0; 1594 1595 /* if we're too far ahead of the slowest disk, stop working on this 1596 * disk until the slower ones catch up. We do this by scheduling a 1597 * wakeup callback for the time when the slowest disk has caught up. 1598 * We define "caught up" with 20% hysteresis, i.e. the head separation 1599 * must have fallen to at most 80% of the max allowable head 1600 * separation before we'll wake up. 1601 * 1602 */ 1603 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1604 while(reconCtrlPtr->rb_lock) { 1605 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1606 } 1607 reconCtrlPtr->rb_lock = 1; 1608 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1609 if ((raidPtr->headSepLimit >= 0) && 1610 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1611 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1612 raidPtr->raidid, col, ctrl->headSepCounter, 1613 reconCtrlPtr->minHeadSepCounter, 1614 raidPtr->headSepLimit); 1615 cb = rf_AllocCallbackDesc(); 1616 /* the minHeadSepCounter value we have to get to before we'll 1617 * wake up. build in 20% hysteresis. */ 1618 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1619 cb->col = col; 1620 cb->next = NULL; 1621 1622 /* insert this callback descriptor into the sorted list of 1623 * pending head-sep callbacks */ 1624 p = reconCtrlPtr->headSepCBList; 1625 if (!p) 1626 reconCtrlPtr->headSepCBList = cb; 1627 else 1628 if (cb->callbackArg.v < p->callbackArg.v) { 1629 cb->next = reconCtrlPtr->headSepCBList; 1630 reconCtrlPtr->headSepCBList = cb; 1631 } else { 1632 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1633 cb->next = p; 1634 pt->next = cb; 1635 } 1636 retval = 1; 1637 #if RF_RECON_STATS > 0 1638 ctrl->reconCtrl->reconDesc->hsStallCount++; 1639 #endif /* RF_RECON_STATS > 0 */ 1640 } 1641 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1642 reconCtrlPtr->rb_lock = 0; 1643 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1644 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1645 1646 return (retval); 1647 } 1648 /* 1649 * checks to see if reconstruction has been either forced or blocked 1650 * by a user operation. if forced, we skip this RU entirely. else if 1651 * blocked, put ourselves on the wait list. else return 0. 1652 * 1653 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1654 */ 1655 static int 1656 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1657 RF_ReconParityStripeStatus_t *pssPtr, 1658 RF_PerDiskReconCtrl_t *ctrl, 1659 RF_RowCol_t col, 1660 RF_StripeNum_t psid, 1661 RF_ReconUnitNum_t which_ru) 1662 { 1663 RF_CallbackDesc_t *cb; 1664 int retcode = 0; 1665 1666 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1667 retcode = RF_PSS_FORCED_ON_WRITE; 1668 else 1669 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1670 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1671 cb = rf_AllocCallbackDesc(); /* append ourselves to 1672 * the blockage-wait 1673 * list */ 1674 cb->col = col; 1675 cb->next = pssPtr->blockWaitList; 1676 pssPtr->blockWaitList = cb; 1677 retcode = RF_PSS_RECON_BLOCKED; 1678 } 1679 if (!retcode) 1680 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1681 * reconstruction */ 1682 1683 return (retcode); 1684 } 1685 /* 1686 * if reconstruction is currently ongoing for the indicated stripeID, 1687 * reconstruction is forced to completion and we return non-zero to 1688 * indicate that the caller must wait. If not, then reconstruction is 1689 * blocked on the indicated stripe and the routine returns zero. If 1690 * and only if we return non-zero, we'll cause the cbFunc to get 1691 * invoked with the cbArg when the reconstruction has completed. 1692 */ 1693 int 1694 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1695 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1696 { 1697 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1698 * forcing recon on */ 1699 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1700 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1701 * stripe status structure */ 1702 RF_StripeNum_t psid; /* parity stripe id */ 1703 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1704 * offset */ 1705 RF_RowCol_t *diskids; 1706 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1707 RF_RowCol_t fcol, diskno, i; 1708 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1709 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1710 RF_CallbackDesc_t *cb; 1711 int nPromoted; 1712 1713 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1714 1715 /* allocate a new PSS in case we need it */ 1716 newpssPtr = rf_AllocPSStatus(raidPtr); 1717 1718 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1719 1720 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1721 1722 if (pssPtr != newpssPtr) { 1723 rf_FreePSStatus(raidPtr, newpssPtr); 1724 } 1725 1726 /* if recon is not ongoing on this PS, just return */ 1727 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1728 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1729 return (0); 1730 } 1731 /* otherwise, we have to wait for reconstruction to complete on this 1732 * RU. */ 1733 /* In order to avoid waiting for a potentially large number of 1734 * low-priority accesses to complete, we force a normal-priority (i.e. 1735 * not low-priority) reconstruction on this RU. */ 1736 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1737 DDprintf1("Forcing recon on psid %ld\n", psid); 1738 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1739 * forced recon */ 1740 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1741 * that we just set */ 1742 fcol = raidPtr->reconControl->fcol; 1743 1744 /* get a listing of the disks comprising the indicated stripe */ 1745 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1746 1747 /* For previously issued reads, elevate them to normal 1748 * priority. If the I/O has already completed, it won't be 1749 * found in the queue, and hence this will be a no-op. For 1750 * unissued reads, allocate buffers and issue new reads. The 1751 * fact that we've set the FORCED bit means that the regular 1752 * recon procs will not re-issue these reqs */ 1753 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1754 if ((diskno = diskids[i]) != fcol) { 1755 if (pssPtr->issued[diskno]) { 1756 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1757 if (rf_reconDebug && nPromoted) 1758 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1759 } else { 1760 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1761 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1762 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1763 * location */ 1764 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1765 new_rbuf->which_ru = which_ru; 1766 new_rbuf->failedDiskSectorOffset = fd_offset; 1767 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1768 1769 /* use NULL b_proc b/c all addrs 1770 * should be in kernel space */ 1771 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1772 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1773 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1774 1775 new_rbuf->arg = req; 1776 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1777 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1778 } 1779 } 1780 /* if the write is sitting in the disk queue, elevate its 1781 * priority */ 1782 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1783 if (rf_reconDebug) 1784 printf("raid%d: promoted write to col %d\n", 1785 raidPtr->raidid, fcol); 1786 } 1787 /* install a callback descriptor to be invoked when recon completes on 1788 * this parity stripe. */ 1789 cb = rf_AllocCallbackDesc(); 1790 /* XXX the following is bogus.. These functions don't really match!! 1791 * GO */ 1792 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1793 cb->callbackArg.p = (void *) cbArg; 1794 cb->next = pssPtr->procWaitList; 1795 pssPtr->procWaitList = cb; 1796 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1797 raidPtr->raidid, psid); 1798 1799 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1800 return (1); 1801 } 1802 /* called upon the completion of a forced reconstruction read. 1803 * all we do is schedule the FORCEDREADONE event. 1804 * called at interrupt context in the kernel, so don't do anything illegal here. 1805 */ 1806 static void 1807 ForceReconReadDoneProc(void *arg, int status) 1808 { 1809 RF_ReconBuffer_t *rbuf = arg; 1810 1811 /* Detect that reconControl is no longer valid, and if that 1812 is the case, bail without calling rf_CauseReconEvent(). 1813 There won't be anyone listening for this event anyway */ 1814 1815 if (rbuf->raidPtr->reconControl == NULL) 1816 return; 1817 1818 if (status) { 1819 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1820 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1821 return; 1822 } 1823 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1824 } 1825 /* releases a block on the reconstruction of the indicated stripe */ 1826 int 1827 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1828 { 1829 RF_StripeNum_t stripeID = asmap->stripeID; 1830 RF_ReconParityStripeStatus_t *pssPtr; 1831 RF_ReconUnitNum_t which_ru; 1832 RF_StripeNum_t psid; 1833 RF_CallbackDesc_t *cb; 1834 1835 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1836 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1837 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1838 1839 /* When recon is forced, the pss desc can get deleted before we get 1840 * back to unblock recon. But, this can _only_ happen when recon is 1841 * forced. It would be good to put some kind of sanity check here, but 1842 * how to decide if recon was just forced or not? */ 1843 if (!pssPtr) { 1844 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1845 * RU %d\n",psid,which_ru); */ 1846 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1847 if (rf_reconDebug || rf_pssDebug) 1848 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1849 #endif 1850 goto out; 1851 } 1852 pssPtr->blockCount--; 1853 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1854 raidPtr->raidid, psid, pssPtr->blockCount); 1855 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1856 1857 /* unblock recon before calling CauseReconEvent in case 1858 * CauseReconEvent causes us to try to issue a new read before 1859 * returning here. */ 1860 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1861 1862 1863 while (pssPtr->blockWaitList) { 1864 /* spin through the block-wait list and 1865 release all the waiters */ 1866 cb = pssPtr->blockWaitList; 1867 pssPtr->blockWaitList = cb->next; 1868 cb->next = NULL; 1869 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1870 rf_FreeCallbackDesc(cb); 1871 } 1872 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1873 /* if no recon was requested while recon was blocked */ 1874 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1875 } 1876 } 1877 out: 1878 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1879 return (0); 1880 } 1881 1882 void 1883 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1884 { 1885 RF_CallbackDesc_t *p; 1886 1887 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1888 while(raidPtr->reconControl->rb_lock) { 1889 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1890 raidPtr->reconControl->rb_mutex); 1891 } 1892 1893 raidPtr->reconControl->rb_lock = 1; 1894 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1895 1896 while (raidPtr->reconControl->headSepCBList) { 1897 p = raidPtr->reconControl->headSepCBList; 1898 raidPtr->reconControl->headSepCBList = p->next; 1899 p->next = NULL; 1900 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1901 rf_FreeCallbackDesc(p); 1902 } 1903 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1904 raidPtr->reconControl->rb_lock = 0; 1905 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1906 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1907 1908 } 1909 1910