xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision df0caa2637da0538ecdf6b878c4d08e684b43d8f)
1 /*	$NetBSD: rf_reconstruct.c,v 1.88 2005/06/08 02:00:53 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.88 2005/06/08 02:00:53 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #if RF_DEBUG_RECON
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 #else /* RF_DEBUG_RECON */
82 
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94 
95 #endif /* RF_DEBUG_RECON */
96 
97 #define RF_RECON_DONE_READS   1
98 #define RF_RECON_READ_ERROR   2
99 #define RF_RECON_WRITE_ERROR  3
100 #define RF_RECON_READ_STOPPED 4
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 	printf("\n");
195 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
196 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198 
199 
200 /*****************************************************************************
201  *
202  * primary routine to reconstruct a failed disk.  This should be called from
203  * within its own thread.  It won't return until reconstruction completes,
204  * fails, or is aborted.
205  *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 	const RF_LayoutSW_t *lp;
210 	int     rc;
211 
212 	lp = raidPtr->Layout.map;
213 	if (lp->SubmitReconBuffer) {
214 		/*
215 	         * The current infrastructure only supports reconstructing one
216 	         * disk at a time for each array.
217 	         */
218 		RF_LOCK_MUTEX(raidPtr->mutex);
219 		while (raidPtr->reconInProgress) {
220 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 		}
222 		raidPtr->reconInProgress++;
223 		RF_UNLOCK_MUTEX(raidPtr->mutex);
224 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 		RF_LOCK_MUTEX(raidPtr->mutex);
226 		raidPtr->reconInProgress--;
227 		RF_UNLOCK_MUTEX(raidPtr->mutex);
228 	} else {
229 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 		    lp->parityConfig);
231 		rc = EIO;
232 	}
233 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 	return (rc);
235 }
236 
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 	RF_ComponentLabel_t c_label;
241 	RF_RaidDisk_t *spareDiskPtr = NULL;
242 	RF_RaidReconDesc_t *reconDesc;
243 	RF_RowCol_t scol;
244 	int     numDisksDone = 0, rc;
245 
246 	/* first look for a spare drive onto which to reconstruct the data */
247 	/* spare disk descriptors are stored in row 0.  This may have to
248 	 * change eventually */
249 
250 	RF_LOCK_MUTEX(raidPtr->mutex);
251 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 		if (raidPtr->status != rf_rs_degraded) {
255 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 			RF_UNLOCK_MUTEX(raidPtr->mutex);
257 			return (EINVAL);
258 		}
259 		scol = (-1);
260 	} else {
261 #endif
262 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 				spareDiskPtr = &raidPtr->Disks[scol];
265 				spareDiskPtr->status = rf_ds_used_spare;
266 				break;
267 			}
268 		}
269 		if (!spareDiskPtr) {
270 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 			RF_UNLOCK_MUTEX(raidPtr->mutex);
272 			return (ENOSPC);
273 		}
274 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 	}
277 #endif
278 	RF_UNLOCK_MUTEX(raidPtr->mutex);
279 
280 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 	raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 	reconDesc->hsStallCount = 0;
284 	reconDesc->numReconExecDelays = 0;
285 	reconDesc->numReconEventWaits = 0;
286 #endif				/* RF_RECON_STATS > 0 */
287 	reconDesc->reconExecTimerRunning = 0;
288 	reconDesc->reconExecTicks = 0;
289 	reconDesc->maxReconExecTicks = 0;
290 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
291 
292 	if (!rc) {
293 		/* fix up the component label */
294 		/* Don't actually need the read here.. */
295 		raidread_component_label(
296                         raidPtr->raid_cinfo[scol].ci_dev,
297 			raidPtr->raid_cinfo[scol].ci_vp,
298 			&c_label);
299 
300 		raid_init_component_label( raidPtr, &c_label);
301 		c_label.row = 0;
302 		c_label.column = col;
303 		c_label.clean = RF_RAID_DIRTY;
304 		c_label.status = rf_ds_optimal;
305 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306 
307 		/* We've just done a rebuild based on all the other
308 		   disks, so at this point the parity is known to be
309 		   clean, even if it wasn't before. */
310 
311 		/* XXX doesn't hold for RAID 6!!*/
312 
313 		RF_LOCK_MUTEX(raidPtr->mutex);
314 		raidPtr->parity_good = RF_RAID_CLEAN;
315 		RF_UNLOCK_MUTEX(raidPtr->mutex);
316 
317 		/* XXXX MORE NEEDED HERE */
318 
319 		raidwrite_component_label(
320                         raidPtr->raid_cinfo[scol].ci_dev,
321 			raidPtr->raid_cinfo[scol].ci_vp,
322 			&c_label);
323 
324 	} else {
325 		/* Reconstruct failed. */
326 
327 		RF_LOCK_MUTEX(raidPtr->mutex);
328 		/* Failed disk goes back to "failed" status */
329 		raidPtr->Disks[col].status = rf_ds_failed;
330 
331 		/* Spare disk goes back to "spare" status. */
332 		spareDiskPtr->status = rf_ds_spare;
333 		RF_UNLOCK_MUTEX(raidPtr->mutex);
334 
335 	}
336 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 	return (rc);
338 }
339 
340 /*
341 
342    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343    and you don't get a spare until the next Monday.  With this function
344    (and hot-swappable drives) you can now put your new disk containing
345    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346    rebuild the data "on the spot".
347 
348 */
349 
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 	RF_RaidDisk_t *spareDiskPtr = NULL;
354 	RF_RaidReconDesc_t *reconDesc;
355 	const RF_LayoutSW_t *lp;
356 	RF_ComponentLabel_t c_label;
357 	int     numDisksDone = 0, rc;
358 	struct partinfo dpart;
359 	struct vnode *vp;
360 	struct vattr va;
361 	struct proc *proc;
362 	int retcode;
363 	int ac;
364 
365 	lp = raidPtr->Layout.map;
366 	if (!lp->SubmitReconBuffer) {
367 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
368 			     lp->parityConfig);
369 		/* wakeup anyone who might be waiting to do a reconstruct */
370 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
371 		return(EIO);
372 	}
373 
374 	/*
375 	 * The current infrastructure only supports reconstructing one
376 	 * disk at a time for each array.
377 	 */
378 	RF_LOCK_MUTEX(raidPtr->mutex);
379 
380 	if (raidPtr->Disks[col].status != rf_ds_failed) {
381 		/* "It's gone..." */
382 		raidPtr->numFailures++;
383 		raidPtr->Disks[col].status = rf_ds_failed;
384 		raidPtr->status = rf_rs_degraded;
385 		RF_UNLOCK_MUTEX(raidPtr->mutex);
386 		rf_update_component_labels(raidPtr,
387 					   RF_NORMAL_COMPONENT_UPDATE);
388 		RF_LOCK_MUTEX(raidPtr->mutex);
389 	}
390 
391 	while (raidPtr->reconInProgress) {
392 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 	}
394 
395 	raidPtr->reconInProgress++;
396 
397 	/* first look for a spare drive onto which to reconstruct the
398 	   data.  spare disk descriptors are stored in row 0.  This
399 	   may have to change eventually */
400 
401 	/* Actually, we don't care if it's failed or not...  On a RAID
402 	   set with correct parity, this function should be callable
403 	   on any component without ill affects. */
404 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
405 
406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
407 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409 
410 		raidPtr->reconInProgress--;
411 		RF_UNLOCK_MUTEX(raidPtr->mutex);
412 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 		return (EINVAL);
414 	}
415 #endif
416 	proc = raidPtr->engine_thread;
417 
418 	/* This device may have been opened successfully the
419 	   first time. Close it before trying to open it again.. */
420 
421 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 		printf("Closed the open device: %s\n",
424 		       raidPtr->Disks[col].devname);
425 #endif
426 		vp = raidPtr->raid_cinfo[col].ci_vp;
427 		ac = raidPtr->Disks[col].auto_configured;
428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
429 		rf_close_component(raidPtr, vp, ac);
430 		RF_LOCK_MUTEX(raidPtr->mutex);
431 		raidPtr->raid_cinfo[col].ci_vp = NULL;
432 	}
433 	/* note that this disk was *not* auto_configured (any longer)*/
434 	raidPtr->Disks[col].auto_configured = 0;
435 
436 #if 0
437 	printf("About to (re-)open the device for rebuilding: %s\n",
438 	       raidPtr->Disks[col].devname);
439 #endif
440 	RF_UNLOCK_MUTEX(raidPtr->mutex);
441 	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
442 
443 	if (retcode) {
444 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 		       raidPtr->Disks[col].devname, retcode);
446 
447 		/* the component isn't responding properly...
448 		   must be still dead :-( */
449 		RF_LOCK_MUTEX(raidPtr->mutex);
450 		raidPtr->reconInProgress--;
451 		RF_UNLOCK_MUTEX(raidPtr->mutex);
452 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 		return(retcode);
454 	}
455 
456 	/* Ok, so we can at least do a lookup...
457 	   How about actually getting a vp for it? */
458 
459 	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
460 		RF_LOCK_MUTEX(raidPtr->mutex);
461 		raidPtr->reconInProgress--;
462 		RF_UNLOCK_MUTEX(raidPtr->mutex);
463 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 		return(retcode);
465 	}
466 
467 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
468 	if (retcode) {
469 		RF_LOCK_MUTEX(raidPtr->mutex);
470 		raidPtr->reconInProgress--;
471 		RF_UNLOCK_MUTEX(raidPtr->mutex);
472 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 		return(retcode);
474 	}
475 	RF_LOCK_MUTEX(raidPtr->mutex);
476 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
477 
478 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 		rf_protectedSectors;
480 
481 	raidPtr->raid_cinfo[col].ci_vp = vp;
482 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483 
484 	raidPtr->Disks[col].dev = va.va_rdev;
485 
486 	/* we allow the user to specify that only a fraction
487 	   of the disks should be used this is just for debug:
488 	   it speeds up * the parity scan */
489 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 		rf_sizePercentage / 100;
491 	RF_UNLOCK_MUTEX(raidPtr->mutex);
492 
493 	spareDiskPtr = &raidPtr->Disks[col];
494 	spareDiskPtr->status = rf_ds_used_spare;
495 
496 	printf("raid%d: initiating in-place reconstruction on column %d\n",
497 	       raidPtr->raidid, col);
498 
499 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 				       numDisksDone, col);
501 	raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 	reconDesc->hsStallCount = 0;
504 	reconDesc->numReconExecDelays = 0;
505 	reconDesc->numReconEventWaits = 0;
506 #endif				/* RF_RECON_STATS > 0 */
507 	reconDesc->reconExecTimerRunning = 0;
508 	reconDesc->reconExecTicks = 0;
509 	reconDesc->maxReconExecTicks = 0;
510 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
511 
512 	if (!rc) {
513 		RF_LOCK_MUTEX(raidPtr->mutex);
514 		/* Need to set these here, as at this point it'll be claiming
515 		   that the disk is in rf_ds_spared!  But we know better :-) */
516 
517 		raidPtr->Disks[col].status = rf_ds_optimal;
518 		raidPtr->status = rf_rs_optimal;
519 		RF_UNLOCK_MUTEX(raidPtr->mutex);
520 
521 		/* fix up the component label */
522 		/* Don't actually need the read here.. */
523 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
524 					 raidPtr->raid_cinfo[col].ci_vp,
525 					 &c_label);
526 
527 		RF_LOCK_MUTEX(raidPtr->mutex);
528 		raid_init_component_label(raidPtr, &c_label);
529 
530 		c_label.row = 0;
531 		c_label.column = col;
532 
533 		/* We've just done a rebuild based on all the other
534 		   disks, so at this point the parity is known to be
535 		   clean, even if it wasn't before. */
536 
537 		/* XXX doesn't hold for RAID 6!!*/
538 
539 		raidPtr->parity_good = RF_RAID_CLEAN;
540 		RF_UNLOCK_MUTEX(raidPtr->mutex);
541 
542 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
543 					  raidPtr->raid_cinfo[col].ci_vp,
544 					  &c_label);
545 
546 	} else {
547 		/* Reconstruct-in-place failed.  Disk goes back to
548 		   "failed" status, regardless of what it was before.  */
549 		RF_LOCK_MUTEX(raidPtr->mutex);
550 		raidPtr->Disks[col].status = rf_ds_failed;
551 		RF_UNLOCK_MUTEX(raidPtr->mutex);
552 	}
553 
554 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
555 
556 	RF_LOCK_MUTEX(raidPtr->mutex);
557 	raidPtr->reconInProgress--;
558 	RF_UNLOCK_MUTEX(raidPtr->mutex);
559 
560 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 	return (rc);
562 }
563 
564 
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 	RF_RowCol_t col = reconDesc->col;
570 	RF_RowCol_t scol = reconDesc->scol;
571 	RF_ReconMap_t *mapPtr;
572 	RF_ReconCtrl_t *tmp_reconctrl;
573 	RF_ReconEvent_t *event;
574 	RF_CallbackDesc_t *p;
575 	struct timeval etime, elpsd;
576 	unsigned long xor_s, xor_resid_us;
577 	int     i, ds;
578 	int status;
579 	int recon_error, write_error;
580 
581 	raidPtr->accumXorTimeUs = 0;
582 #if RF_ACC_TRACE > 0
583 	/* create one trace record per physical disk */
584 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
585 #endif
586 
587 	/* quiesce the array prior to starting recon.  this is needed
588 	 * to assure no nasty interactions with pending user writes.
589 	 * We need to do this before we change the disk or row status. */
590 
591 	Dprintf("RECON: begin request suspend\n");
592 	rf_SuspendNewRequestsAndWait(raidPtr);
593 	Dprintf("RECON: end request suspend\n");
594 
595 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
596 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
597 
598 	RF_LOCK_MUTEX(raidPtr->mutex);
599 
600 	/* create the reconstruction control pointer and install it in
601 	 * the right slot */
602 	raidPtr->reconControl = tmp_reconctrl;
603 	mapPtr = raidPtr->reconControl->reconMap;
604 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
605 	raidPtr->reconControl->numRUsComplete =	0;
606 	raidPtr->status = rf_rs_reconstructing;
607 	raidPtr->Disks[col].status = rf_ds_reconstructing;
608 	raidPtr->Disks[col].spareCol = scol;
609 
610 	RF_UNLOCK_MUTEX(raidPtr->mutex);
611 
612 	RF_GETTIME(raidPtr->reconControl->starttime);
613 
614 	/* now start up the actual reconstruction: issue a read for
615 	 * each surviving disk */
616 
617 	reconDesc->numDisksDone = 0;
618 	for (i = 0; i < raidPtr->numCol; i++) {
619 		if (i != col) {
620 			/* find and issue the next I/O on the
621 			 * indicated disk */
622 			if (IssueNextReadRequest(raidPtr, i)) {
623 				Dprintf1("RECON: done issuing for c%d\n", i);
624 				reconDesc->numDisksDone++;
625 			}
626 		}
627 	}
628 
629 	Dprintf("RECON: resume requests\n");
630 	rf_ResumeNewRequests(raidPtr);
631 
632 	/* process reconstruction events until all disks report that
633 	 * they've completed all work */
634 
635 	mapPtr = raidPtr->reconControl->reconMap;
636 	recon_error = 0;
637 	write_error = 0;
638 
639 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640 
641 		event = rf_GetNextReconEvent(reconDesc);
642 		status = ProcessReconEvent(raidPtr, event);
643 
644 		/* the normal case is that a read completes, and all is well. */
645 		if (status == RF_RECON_DONE_READS) {
646 			reconDesc->numDisksDone++;
647 		} else if ((status == RF_RECON_READ_ERROR) ||
648 			   (status == RF_RECON_WRITE_ERROR)) {
649 			/* an error was encountered while reconstructing...
650 			   Pretend we've finished this disk.
651 			*/
652 			recon_error = 1;
653 			raidPtr->reconControl->error = 1;
654 
655 			/* bump the numDisksDone count for reads,
656 			   but not for writes */
657 			if (status == RF_RECON_READ_ERROR)
658 				reconDesc->numDisksDone++;
659 
660 			/* write errors are special -- when we are
661 			   done dealing with the reads that are
662 			   finished, we don't want to wait for any
663 			   writes */
664 			if (status == RF_RECON_WRITE_ERROR)
665 				write_error = 1;
666 
667 		} else if (status == RF_RECON_READ_STOPPED) {
668 			/* count this component as being "done" */
669 			reconDesc->numDisksDone++;
670 		}
671 
672 		if (recon_error) {
673 
674 			/* make sure any stragglers are woken up so that
675 			   their theads will complete, and we can get out
676 			   of here with all IO processed */
677 
678 			while (raidPtr->reconControl->headSepCBList) {
679 				p = raidPtr->reconControl->headSepCBList;
680 				raidPtr->reconControl->headSepCBList = p->next;
681 				p->next = NULL;
682 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
683 				rf_FreeCallbackDesc(p);
684 			}
685 		}
686 
687 		raidPtr->reconControl->numRUsTotal =
688 			mapPtr->totalRUs;
689 		raidPtr->reconControl->numRUsComplete =
690 			mapPtr->totalRUs -
691 			rf_UnitsLeftToReconstruct(mapPtr);
692 
693 #if RF_DEBUG_RECON
694 		raidPtr->reconControl->percentComplete =
695 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
696 		if (rf_prReconSched) {
697 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
698 		}
699 #endif
700 	}
701 
702 	mapPtr = raidPtr->reconControl->reconMap;
703 	if (rf_reconDebug) {
704 		printf("RECON: all reads completed\n");
705 	}
706 	/* at this point all the reads have completed.  We now wait
707 	 * for any pending writes to complete, and then we're done */
708 
709 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
710 
711 		event = rf_GetNextReconEvent(reconDesc);
712 		status = ProcessReconEvent(raidPtr, event);
713 
714 		if (status == RF_RECON_WRITE_ERROR) {
715 			recon_error = 1;
716 			raidPtr->reconControl->error = 1;
717 			/* an error was encountered at the very end... bail */
718 		} else {
719 #if RF_DEBUG_RECON
720 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
721 			if (rf_prReconSched) {
722 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
723 			}
724 #endif
725 		}
726 	}
727 
728 	if (recon_error) {
729 		/* we've encountered an error in reconstructing. */
730 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
731 
732 		/* we start by blocking IO to the RAID set. */
733 		rf_SuspendNewRequestsAndWait(raidPtr);
734 
735 		RF_LOCK_MUTEX(raidPtr->mutex);
736 		/* mark set as being degraded, rather than
737 		   rf_rs_reconstructing as we were before the problem.
738 		   After this is done we can update status of the
739 		   component disks without worrying about someone
740 		   trying to read from a failed component.
741 		*/
742 		raidPtr->status = rf_rs_degraded;
743 		RF_UNLOCK_MUTEX(raidPtr->mutex);
744 
745 		/* resume IO */
746 		rf_ResumeNewRequests(raidPtr);
747 
748 		/* At this point there are two cases:
749 		   1) If we've experienced a read error, then we've
750 		   already waited for all the reads we're going to get,
751 		   and we just need to wait for the writes.
752 
753 		   2) If we've experienced a write error, we've also
754 		   already waited for all the reads to complete,
755 		   but there is little point in waiting for the writes --
756 		   when they do complete, they will just be ignored.
757 
758 		   So we just wait for writes to complete if we didn't have a
759 		   write error.
760 		*/
761 
762 		if (!write_error) {
763 			/* wait for writes to complete */
764 			while (raidPtr->reconControl->pending_writes > 0) {
765 
766 				event = rf_GetNextReconEvent(reconDesc);
767 				status = ProcessReconEvent(raidPtr, event);
768 
769 				if (status == RF_RECON_WRITE_ERROR) {
770 					raidPtr->reconControl->error = 1;
771 					/* an error was encountered at the very end... bail.
772 					   This will be very bad news for the user, since
773 					   at this point there will have been a read error
774 					   on one component, and a write error on another!
775 					*/
776 					break;
777 				}
778 			}
779 		}
780 
781 
782 		/* cleanup */
783 
784 		/* drain the event queue - after waiting for the writes above,
785 		   there shouldn't be much (if anything!) left in the queue. */
786 
787 		rf_DrainReconEventQueue(reconDesc);
788 
789 		/* XXX  As much as we'd like to free the recon control structure
790 		   and the reconDesc, we have no way of knowing if/when those will
791 		   be touched by IO that has yet to occur.  It is rather poor to be
792 		   basically causing a 'memory leak' here, but there doesn't seem to be
793 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
794 		   gets a makeover this problem will go away.
795 		*/
796 #if 0
797 		rf_FreeReconControl(raidPtr);
798 #endif
799 
800 #if RF_ACC_TRACE > 0
801 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
802 #endif
803 		/* XXX see comment above */
804 #if 0
805 		FreeReconDesc(reconDesc);
806 #endif
807 
808 		return (1);
809 	}
810 
811 	/* Success:  mark the dead disk as reconstructed.  We quiesce
812 	 * the array here to assure no nasty interactions with pending
813 	 * user accesses when we free up the psstatus structure as
814 	 * part of FreeReconControl() */
815 
816 	rf_SuspendNewRequestsAndWait(raidPtr);
817 
818 	RF_LOCK_MUTEX(raidPtr->mutex);
819 	raidPtr->numFailures--;
820 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
821 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
822 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
823 	RF_UNLOCK_MUTEX(raidPtr->mutex);
824 	RF_GETTIME(etime);
825 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
826 
827 	rf_ResumeNewRequests(raidPtr);
828 
829 	printf("raid%d: Reconstruction of disk at col %d completed\n",
830 	       raidPtr->raidid, col);
831 	xor_s = raidPtr->accumXorTimeUs / 1000000;
832 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
833 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
834 	       raidPtr->raidid,
835 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
836 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
837 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
838 	       raidPtr->raidid,
839 	       (int) raidPtr->reconControl->starttime.tv_sec,
840 	       (int) raidPtr->reconControl->starttime.tv_usec,
841 	       (int) etime.tv_sec, (int) etime.tv_usec);
842 #if RF_RECON_STATS > 0
843 	printf("raid%d: Total head-sep stall count was %d\n",
844 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
845 #endif				/* RF_RECON_STATS > 0 */
846 	rf_FreeReconControl(raidPtr);
847 #if RF_ACC_TRACE > 0
848 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
849 #endif
850 	FreeReconDesc(reconDesc);
851 
852 	return (0);
853 
854 }
855 /*****************************************************************************
856  * do the right thing upon each reconstruction event.
857  *****************************************************************************/
858 static int
859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
860 {
861 	int     retcode = 0, submitblocked;
862 	RF_ReconBuffer_t *rbuf;
863 	RF_SectorCount_t sectorsPerRU;
864 
865 	retcode = RF_RECON_READ_STOPPED;
866 
867 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
868 	switch (event->type) {
869 
870 		/* a read I/O has completed */
871 	case RF_REVENT_READDONE:
872 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
873 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
874 		    event->col, rbuf->parityStripeID);
875 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
876 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
877 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
878 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 		if (!raidPtr->reconControl->error) {
880 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
881 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
882 			if (!submitblocked)
883 				retcode = IssueNextReadRequest(raidPtr, event->col);
884 		}
885 		break;
886 
887 		/* a write I/O has completed */
888 	case RF_REVENT_WRITEDONE:
889 #if RF_DEBUG_RECON
890 		if (rf_floatingRbufDebug) {
891 			rf_CheckFloatingRbufCount(raidPtr, 1);
892 		}
893 #endif
894 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
895 		rbuf = (RF_ReconBuffer_t *) event->arg;
896 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
897 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
898 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
899 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
900 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
901 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
902 
903 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
904 		raidPtr->reconControl->pending_writes--;
905 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
906 
907 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
908 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
909 			while(raidPtr->reconControl->rb_lock) {
910 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
911 					&raidPtr->reconControl->rb_mutex);
912 			}
913 			raidPtr->reconControl->rb_lock = 1;
914 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
915 
916 			raidPtr->numFullReconBuffers--;
917 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
918 
919 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
920 			raidPtr->reconControl->rb_lock = 0;
921 			wakeup(&raidPtr->reconControl->rb_lock);
922 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
923 		} else
924 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
925 				rf_FreeReconBuffer(rbuf);
926 			else
927 				RF_ASSERT(0);
928 		retcode = 0;
929 		break;
930 
931 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
932 					 * cleared */
933 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
934 		if (!raidPtr->reconControl->error) {
935 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
936 							     0, (int) (long) event->arg);
937 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
938 							 * BUFCLEAR event if we
939 							 * couldn't submit */
940 			retcode = IssueNextReadRequest(raidPtr, event->col);
941 		}
942 		break;
943 
944 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
945 					 * blockage has been cleared */
946 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
947 		if (!raidPtr->reconControl->error) {
948 			retcode = TryToRead(raidPtr, event->col);
949 		}
950 		break;
951 
952 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
953 					 * reconstruction blockage has been
954 					 * cleared */
955 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
956 		if (!raidPtr->reconControl->error) {
957 			retcode = TryToRead(raidPtr, event->col);
958 		}
959 		break;
960 
961 		/* a buffer has become ready to write */
962 	case RF_REVENT_BUFREADY:
963 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
964 		if (!raidPtr->reconControl->error) {
965 			retcode = IssueNextWriteRequest(raidPtr);
966 #if RF_DEBUG_RECON
967 			if (rf_floatingRbufDebug) {
968 				rf_CheckFloatingRbufCount(raidPtr, 1);
969 			}
970 #endif
971 		}
972 		break;
973 
974 		/* we need to skip the current RU entirely because it got
975 		 * recon'd while we were waiting for something else to happen */
976 	case RF_REVENT_SKIP:
977 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
978 		if (!raidPtr->reconControl->error) {
979 			retcode = IssueNextReadRequest(raidPtr, event->col);
980 		}
981 		break;
982 
983 		/* a forced-reconstruction read access has completed.  Just
984 		 * submit the buffer */
985 	case RF_REVENT_FORCEDREADDONE:
986 		rbuf = (RF_ReconBuffer_t *) event->arg;
987 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
988 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
989 		if (!raidPtr->reconControl->error) {
990 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
991 			RF_ASSERT(!submitblocked);
992 		}
993 		break;
994 
995 		/* A read I/O failed to complete */
996 	case RF_REVENT_READ_FAILED:
997 		retcode = RF_RECON_READ_ERROR;
998 		break;
999 
1000 		/* A write I/O failed to complete */
1001 	case RF_REVENT_WRITE_FAILED:
1002 		retcode = RF_RECON_WRITE_ERROR;
1003 
1004 		rbuf = (RF_ReconBuffer_t *) event->arg;
1005 
1006 		/* cleanup the disk queue data */
1007 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1008 
1009 		/* At this point we're erroring out, badly, and floatingRbufs
1010 		   may not even be valid.  Rather than putting this back onto
1011 		   the floatingRbufs list, just arrange for its immediate
1012 		   destruction.
1013 		*/
1014 		rf_FreeReconBuffer(rbuf);
1015 		break;
1016 
1017 		/* a forced read I/O failed to complete */
1018 	case RF_REVENT_FORCEDREAD_FAILED:
1019 		retcode = RF_RECON_READ_ERROR;
1020 		break;
1021 
1022 	default:
1023 		RF_PANIC();
1024 	}
1025 	rf_FreeReconEventDesc(event);
1026 	return (retcode);
1027 }
1028 /*****************************************************************************
1029  *
1030  * find the next thing that's needed on the indicated disk, and issue
1031  * a read request for it.  We assume that the reconstruction buffer
1032  * associated with this process is free to receive the data.  If
1033  * reconstruction is blocked on the indicated RU, we issue a
1034  * blockage-release request instead of a physical disk read request.
1035  * If the current disk gets too far ahead of the others, we issue a
1036  * head-separation wait request and return.
1037  *
1038  * ctrl->{ru_count, curPSID, diskOffset} and
1039  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1040  * we're currently accessing.  Note that this deviates from the
1041  * standard C idiom of having counters point to the next thing to be
1042  * accessed.  This allows us to easily retry when we're blocked by
1043  * head separation or reconstruction-blockage events.
1044  *
1045  *****************************************************************************/
1046 static int
1047 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1048 {
1049 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1050 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1051 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1052 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1053 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1054 	int     do_new_check = 0, retcode = 0, status;
1055 
1056 	/* if we are currently the slowest disk, mark that we have to do a new
1057 	 * check */
1058 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1059 		do_new_check = 1;
1060 
1061 	while (1) {
1062 
1063 		ctrl->ru_count++;
1064 		if (ctrl->ru_count < RUsPerPU) {
1065 			ctrl->diskOffset += sectorsPerRU;
1066 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1067 		} else {
1068 			ctrl->curPSID++;
1069 			ctrl->ru_count = 0;
1070 			/* code left over from when head-sep was based on
1071 			 * parity stripe id */
1072 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1073 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1074 				return (RF_RECON_DONE_READS);	/* finito! */
1075 			}
1076 			/* find the disk offsets of the start of the parity
1077 			 * stripe on both the current disk and the failed
1078 			 * disk. skip this entire parity stripe if either disk
1079 			 * does not appear in the indicated PS */
1080 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1081 			    &rbuf->spCol, &rbuf->spOffset);
1082 			if (status) {
1083 				ctrl->ru_count = RUsPerPU - 1;
1084 				continue;
1085 			}
1086 		}
1087 		rbuf->which_ru = ctrl->ru_count;
1088 
1089 		/* skip this RU if it's already been reconstructed */
1090 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1091 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1092 			continue;
1093 		}
1094 		break;
1095 	}
1096 	ctrl->headSepCounter++;
1097 	if (do_new_check)
1098 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1099 
1100 
1101 	/* at this point, we have definitely decided what to do, and we have
1102 	 * only to see if we can actually do it now */
1103 	rbuf->parityStripeID = ctrl->curPSID;
1104 	rbuf->which_ru = ctrl->ru_count;
1105 #if RF_ACC_TRACE > 0
1106 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1107 	    sizeof(raidPtr->recon_tracerecs[col]));
1108 	raidPtr->recon_tracerecs[col].reconacc = 1;
1109 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1110 #endif
1111 	retcode = TryToRead(raidPtr, col);
1112 	return (retcode);
1113 }
1114 
1115 /*
1116  * tries to issue the next read on the indicated disk.  We may be
1117  * blocked by (a) the heads being too far apart, or (b) recon on the
1118  * indicated RU being blocked due to a write by a user thread.  In
1119  * this case, we issue a head-sep or blockage wait request, which will
1120  * cause this same routine to be invoked again later when the blockage
1121  * has cleared.
1122  */
1123 
1124 static int
1125 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1126 {
1127 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1128 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1129 	RF_StripeNum_t psid = ctrl->curPSID;
1130 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1131 	RF_DiskQueueData_t *req;
1132 	int     status;
1133 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1134 
1135 	/* if the current disk is too far ahead of the others, issue a
1136 	 * head-separation wait and return */
1137 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1138 		return (0);
1139 
1140 	/* allocate a new PSS in case we need it */
1141 	newpssPtr = rf_AllocPSStatus(raidPtr);
1142 
1143 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1144 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1145 
1146 	if (pssPtr != newpssPtr) {
1147 		rf_FreePSStatus(raidPtr, newpssPtr);
1148 	}
1149 
1150 	/* if recon is blocked on the indicated parity stripe, issue a
1151 	 * block-wait request and return. this also must mark the indicated RU
1152 	 * in the stripe as under reconstruction if not blocked. */
1153 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1154 	if (status == RF_PSS_RECON_BLOCKED) {
1155 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1156 		goto out;
1157 	} else
1158 		if (status == RF_PSS_FORCED_ON_WRITE) {
1159 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1160 			goto out;
1161 		}
1162 	/* make one last check to be sure that the indicated RU didn't get
1163 	 * reconstructed while we were waiting for something else to happen.
1164 	 * This is unfortunate in that it causes us to make this check twice
1165 	 * in the normal case.  Might want to make some attempt to re-work
1166 	 * this so that we only do this check if we've definitely blocked on
1167 	 * one of the above checks.  When this condition is detected, we may
1168 	 * have just created a bogus status entry, which we need to delete. */
1169 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1170 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1171 		if (pssPtr == newpssPtr)
1172 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1173 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1174 		goto out;
1175 	}
1176 	/* found something to read.  issue the I/O */
1177 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1178 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1179 #if RF_ACC_TRACE > 0
1180 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1181 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1182 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1183 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1184 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1185 #endif
1186 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1187 	 * should be in kernel space */
1188 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1189 	    ReconReadDoneProc, (void *) ctrl,
1190 #if RF_ACC_TRACE > 0
1191 				     &raidPtr->recon_tracerecs[col],
1192 #else
1193 				     NULL,
1194 #endif
1195 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1196 
1197 	ctrl->rbuf->arg = (void *) req;
1198 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1199 	pssPtr->issued[col] = 1;
1200 
1201 out:
1202 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1203 	return (0);
1204 }
1205 
1206 
1207 /*
1208  * given a parity stripe ID, we want to find out whether both the
1209  * current disk and the failed disk exist in that parity stripe.  If
1210  * not, we want to skip this whole PS.  If so, we want to find the
1211  * disk offset of the start of the PS on both the current disk and the
1212  * failed disk.
1213  *
1214  * this works by getting a list of disks comprising the indicated
1215  * parity stripe, and searching the list for the current and failed
1216  * disks.  Once we've decided they both exist in the parity stripe, we
1217  * need to decide whether each is data or parity, so that we'll know
1218  * which mapping function to call to get the corresponding disk
1219  * offsets.
1220  *
1221  * this is kind of unpleasant, but doing it this way allows the
1222  * reconstruction code to use parity stripe IDs rather than physical
1223  * disks address to march through the failed disk, which greatly
1224  * simplifies a lot of code, as well as eliminating the need for a
1225  * reverse-mapping function.  I also think it will execute faster,
1226  * since the calls to the mapping module are kept to a minimum.
1227  *
1228  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1229  * THE STRIPE IN THE CORRECT ORDER
1230  *
1231  * raidPtr          - raid descriptor
1232  * psid             - parity stripe identifier
1233  * col              - column of disk to find the offsets for
1234  * spCol            - out: col of spare unit for failed unit
1235  * spOffset         - out: offset into disk containing spare unit
1236  *
1237  */
1238 
1239 
1240 static int
1241 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1242 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1243 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1244 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1245 {
1246 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1247 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1248 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1249 	RF_RowCol_t *diskids;
1250 	u_int   i, j, k, i_offset, j_offset;
1251 	RF_RowCol_t pcol;
1252 	int     testcol;
1253 	RF_SectorNum_t poffset;
1254 	char    i_is_parity = 0, j_is_parity = 0;
1255 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1256 
1257 	/* get a listing of the disks comprising that stripe */
1258 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1259 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1260 	RF_ASSERT(diskids);
1261 
1262 	/* reject this entire parity stripe if it does not contain the
1263 	 * indicated disk or it does not contain the failed disk */
1264 
1265 	for (i = 0; i < stripeWidth; i++) {
1266 		if (col == diskids[i])
1267 			break;
1268 	}
1269 	if (i == stripeWidth)
1270 		goto skipit;
1271 	for (j = 0; j < stripeWidth; j++) {
1272 		if (fcol == diskids[j])
1273 			break;
1274 	}
1275 	if (j == stripeWidth) {
1276 		goto skipit;
1277 	}
1278 	/* find out which disk the parity is on */
1279 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1280 
1281 	/* find out if either the current RU or the failed RU is parity */
1282 	/* also, if the parity occurs in this stripe prior to the data and/or
1283 	 * failed col, we need to decrement i and/or j */
1284 	for (k = 0; k < stripeWidth; k++)
1285 		if (diskids[k] == pcol)
1286 			break;
1287 	RF_ASSERT(k < stripeWidth);
1288 	i_offset = i;
1289 	j_offset = j;
1290 	if (k < i)
1291 		i_offset--;
1292 	else
1293 		if (k == i) {
1294 			i_is_parity = 1;
1295 			i_offset = 0;
1296 		}		/* set offsets to zero to disable multiply
1297 				 * below */
1298 	if (k < j)
1299 		j_offset--;
1300 	else
1301 		if (k == j) {
1302 			j_is_parity = 1;
1303 			j_offset = 0;
1304 		}
1305 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1306 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1307 	 * tells us how far into the stripe the [current,failed] disk is. */
1308 
1309 	/* call the mapping routine to get the offset into the current disk,
1310 	 * repeat for failed disk. */
1311 	if (i_is_parity)
1312 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1313 	else
1314 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1315 
1316 	RF_ASSERT(col == testcol);
1317 
1318 	if (j_is_parity)
1319 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1320 	else
1321 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1322 	RF_ASSERT(fcol == testcol);
1323 
1324 	/* now locate the spare unit for the failed unit */
1325 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1326 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1327 		if (j_is_parity)
1328 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1329 		else
1330 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1331 	} else {
1332 #endif
1333 		*spCol = raidPtr->reconControl->spareCol;
1334 		*spOffset = *outFailedDiskSectorOffset;
1335 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1336 	}
1337 #endif
1338 	return (0);
1339 
1340 skipit:
1341 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1342 	    psid, col);
1343 	return (1);
1344 }
1345 /* this is called when a buffer has become ready to write to the replacement disk */
1346 static int
1347 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1348 {
1349 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1350 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1351 #if RF_ACC_TRACE > 0
1352 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1353 #endif
1354 	RF_ReconBuffer_t *rbuf;
1355 	RF_DiskQueueData_t *req;
1356 
1357 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1358 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1359 				 * have gotten the event that sent us here */
1360 	RF_ASSERT(rbuf->pssPtr);
1361 
1362 	rbuf->pssPtr->writeRbuf = rbuf;
1363 	rbuf->pssPtr = NULL;
1364 
1365 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1366 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1367 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1368 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1369 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1370 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1371 
1372 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1373 	 * kernel space */
1374 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1375 	    sectorsPerRU, rbuf->buffer,
1376 	    rbuf->parityStripeID, rbuf->which_ru,
1377 	    ReconWriteDoneProc, (void *) rbuf,
1378 #if RF_ACC_TRACE > 0
1379 	    &raidPtr->recon_tracerecs[fcol],
1380 #else
1381 				     NULL,
1382 #endif
1383 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1384 
1385 	rbuf->arg = (void *) req;
1386 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1387 	raidPtr->reconControl->pending_writes++;
1388 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1389 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1390 
1391 	return (0);
1392 }
1393 
1394 /*
1395  * this gets called upon the completion of a reconstruction read
1396  * operation the arg is a pointer to the per-disk reconstruction
1397  * control structure for the process that just finished a read.
1398  *
1399  * called at interrupt context in the kernel, so don't do anything
1400  * illegal here.
1401  */
1402 static int
1403 ReconReadDoneProc(void *arg, int status)
1404 {
1405 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1406 	RF_Raid_t *raidPtr;
1407 
1408 	/* Detect that reconCtrl is no longer valid, and if that
1409 	   is the case, bail without calling rf_CauseReconEvent().
1410 	   There won't be anyone listening for this event anyway */
1411 
1412 	if (ctrl->reconCtrl == NULL)
1413 		return(0);
1414 
1415 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1416 
1417 	if (status) {
1418 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1419 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1420 		return(0);
1421 	}
1422 #if RF_ACC_TRACE > 0
1423 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1424 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1425 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1426 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1427 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1428 #endif
1429 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1430 	return (0);
1431 }
1432 /* this gets called upon the completion of a reconstruction write operation.
1433  * the arg is a pointer to the rbuf that was just written
1434  *
1435  * called at interrupt context in the kernel, so don't do anything illegal here.
1436  */
1437 static int
1438 ReconWriteDoneProc(void *arg, int status)
1439 {
1440 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1441 
1442 	/* Detect that reconControl is no longer valid, and if that
1443 	   is the case, bail without calling rf_CauseReconEvent().
1444 	   There won't be anyone listening for this event anyway */
1445 
1446 	if (rbuf->raidPtr->reconControl == NULL)
1447 		return(0);
1448 
1449 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1450 	if (status) {
1451 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1452 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1453 		return(0);
1454 	}
1455 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1456 	return (0);
1457 }
1458 
1459 
1460 /*
1461  * computes a new minimum head sep, and wakes up anyone who needs to
1462  * be woken as a result
1463  */
1464 static void
1465 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1466 {
1467 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1468 	RF_HeadSepLimit_t new_min;
1469 	RF_RowCol_t i;
1470 	RF_CallbackDesc_t *p;
1471 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1472 								 * of a minimum */
1473 
1474 
1475 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1476 	while(reconCtrlPtr->rb_lock) {
1477 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1478 	}
1479 	reconCtrlPtr->rb_lock = 1;
1480 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1481 
1482 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1483 	for (i = 0; i < raidPtr->numCol; i++)
1484 		if (i != reconCtrlPtr->fcol) {
1485 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1486 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1487 		}
1488 	/* set the new minimum and wake up anyone who can now run again */
1489 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1490 		reconCtrlPtr->minHeadSepCounter = new_min;
1491 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1492 		while (reconCtrlPtr->headSepCBList) {
1493 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1494 				break;
1495 			p = reconCtrlPtr->headSepCBList;
1496 			reconCtrlPtr->headSepCBList = p->next;
1497 			p->next = NULL;
1498 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1499 			rf_FreeCallbackDesc(p);
1500 		}
1501 
1502 	}
1503 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1504 	reconCtrlPtr->rb_lock = 0;
1505 	wakeup(&reconCtrlPtr->rb_lock);
1506 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1507 }
1508 
1509 /*
1510  * checks to see that the maximum head separation will not be violated
1511  * if we initiate a reconstruction I/O on the indicated disk.
1512  * Limiting the maximum head separation between two disks eliminates
1513  * the nasty buffer-stall conditions that occur when one disk races
1514  * ahead of the others and consumes all of the floating recon buffers.
1515  * This code is complex and unpleasant but it's necessary to avoid
1516  * some very nasty, albeit fairly rare, reconstruction behavior.
1517  *
1518  * returns non-zero if and only if we have to stop working on the
1519  * indicated disk due to a head-separation delay.
1520  */
1521 static int
1522 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1523 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1524 		    RF_ReconUnitNum_t which_ru)
1525 {
1526 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1527 	RF_CallbackDesc_t *cb, *p, *pt;
1528 	int     retval = 0;
1529 
1530 	/* if we're too far ahead of the slowest disk, stop working on this
1531 	 * disk until the slower ones catch up.  We do this by scheduling a
1532 	 * wakeup callback for the time when the slowest disk has caught up.
1533 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1534 	 * must have fallen to at most 80% of the max allowable head
1535 	 * separation before we'll wake up.
1536 	 *
1537 	 */
1538 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1539 	while(reconCtrlPtr->rb_lock) {
1540 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1541 	}
1542 	reconCtrlPtr->rb_lock = 1;
1543 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1544 	if ((raidPtr->headSepLimit >= 0) &&
1545 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1546 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1547 			 raidPtr->raidid, col, ctrl->headSepCounter,
1548 			 reconCtrlPtr->minHeadSepCounter,
1549 			 raidPtr->headSepLimit);
1550 		cb = rf_AllocCallbackDesc();
1551 		/* the minHeadSepCounter value we have to get to before we'll
1552 		 * wake up.  build in 20% hysteresis. */
1553 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1554 		cb->col = col;
1555 		cb->next = NULL;
1556 
1557 		/* insert this callback descriptor into the sorted list of
1558 		 * pending head-sep callbacks */
1559 		p = reconCtrlPtr->headSepCBList;
1560 		if (!p)
1561 			reconCtrlPtr->headSepCBList = cb;
1562 		else
1563 			if (cb->callbackArg.v < p->callbackArg.v) {
1564 				cb->next = reconCtrlPtr->headSepCBList;
1565 				reconCtrlPtr->headSepCBList = cb;
1566 			} else {
1567 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1568 				cb->next = p;
1569 				pt->next = cb;
1570 			}
1571 		retval = 1;
1572 #if RF_RECON_STATS > 0
1573 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1574 #endif				/* RF_RECON_STATS > 0 */
1575 	}
1576 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1577 	reconCtrlPtr->rb_lock = 0;
1578 	wakeup(&reconCtrlPtr->rb_lock);
1579 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1580 
1581 	return (retval);
1582 }
1583 /*
1584  * checks to see if reconstruction has been either forced or blocked
1585  * by a user operation.  if forced, we skip this RU entirely.  else if
1586  * blocked, put ourselves on the wait list.  else return 0.
1587  *
1588  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1589  */
1590 static int
1591 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1592 				   RF_ReconParityStripeStatus_t *pssPtr,
1593 				   RF_PerDiskReconCtrl_t *ctrl,
1594 				   RF_RowCol_t col, RF_StripeNum_t psid,
1595 				   RF_ReconUnitNum_t which_ru)
1596 {
1597 	RF_CallbackDesc_t *cb;
1598 	int     retcode = 0;
1599 
1600 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1601 		retcode = RF_PSS_FORCED_ON_WRITE;
1602 	else
1603 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1604 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1605 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1606 							 * the blockage-wait
1607 							 * list */
1608 			cb->col = col;
1609 			cb->next = pssPtr->blockWaitList;
1610 			pssPtr->blockWaitList = cb;
1611 			retcode = RF_PSS_RECON_BLOCKED;
1612 		}
1613 	if (!retcode)
1614 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1615 							 * reconstruction */
1616 
1617 	return (retcode);
1618 }
1619 /*
1620  * if reconstruction is currently ongoing for the indicated stripeID,
1621  * reconstruction is forced to completion and we return non-zero to
1622  * indicate that the caller must wait.  If not, then reconstruction is
1623  * blocked on the indicated stripe and the routine returns zero.  If
1624  * and only if we return non-zero, we'll cause the cbFunc to get
1625  * invoked with the cbArg when the reconstruction has completed.
1626  */
1627 int
1628 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1629 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1630 {
1631 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1632 							 * forcing recon on */
1633 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1634 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1635 						 * stripe status structure */
1636 	RF_StripeNum_t psid;	/* parity stripe id */
1637 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1638 						 * offset */
1639 	RF_RowCol_t *diskids;
1640 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1641 	RF_RowCol_t fcol, diskno, i;
1642 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1643 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1644 	RF_CallbackDesc_t *cb;
1645 	int     nPromoted;
1646 
1647 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1648 
1649 	/* allocate a new PSS in case we need it */
1650         newpssPtr = rf_AllocPSStatus(raidPtr);
1651 
1652 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1653 
1654 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1655 
1656         if (pssPtr != newpssPtr) {
1657                 rf_FreePSStatus(raidPtr, newpssPtr);
1658         }
1659 
1660 	/* if recon is not ongoing on this PS, just return */
1661 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1662 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1663 		return (0);
1664 	}
1665 	/* otherwise, we have to wait for reconstruction to complete on this
1666 	 * RU. */
1667 	/* In order to avoid waiting for a potentially large number of
1668 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1669 	 * not low-priority) reconstruction on this RU. */
1670 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1671 		DDprintf1("Forcing recon on psid %ld\n", psid);
1672 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1673 								 * forced recon */
1674 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1675 							 * that we just set */
1676 		fcol = raidPtr->reconControl->fcol;
1677 
1678 		/* get a listing of the disks comprising the indicated stripe */
1679 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1680 
1681 		/* For previously issued reads, elevate them to normal
1682 		 * priority.  If the I/O has already completed, it won't be
1683 		 * found in the queue, and hence this will be a no-op. For
1684 		 * unissued reads, allocate buffers and issue new reads.  The
1685 		 * fact that we've set the FORCED bit means that the regular
1686 		 * recon procs will not re-issue these reqs */
1687 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1688 			if ((diskno = diskids[i]) != fcol) {
1689 				if (pssPtr->issued[diskno]) {
1690 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1691 					if (rf_reconDebug && nPromoted)
1692 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1693 				} else {
1694 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1695 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1696 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1697 													 * location */
1698 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1699 					new_rbuf->which_ru = which_ru;
1700 					new_rbuf->failedDiskSectorOffset = fd_offset;
1701 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1702 
1703 					/* use NULL b_proc b/c all addrs
1704 					 * should be in kernel space */
1705 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1706 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1707 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1708 
1709 					new_rbuf->arg = req;
1710 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1711 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1712 				}
1713 			}
1714 		/* if the write is sitting in the disk queue, elevate its
1715 		 * priority */
1716 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1717 			printf("raid%d: promoted write to col %d\n",
1718 			       raidPtr->raidid, fcol);
1719 	}
1720 	/* install a callback descriptor to be invoked when recon completes on
1721 	 * this parity stripe. */
1722 	cb = rf_AllocCallbackDesc();
1723 	/* XXX the following is bogus.. These functions don't really match!!
1724 	 * GO */
1725 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1726 	cb->callbackArg.p = (void *) cbArg;
1727 	cb->next = pssPtr->procWaitList;
1728 	pssPtr->procWaitList = cb;
1729 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1730 		  raidPtr->raidid, psid);
1731 
1732 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1733 	return (1);
1734 }
1735 /* called upon the completion of a forced reconstruction read.
1736  * all we do is schedule the FORCEDREADONE event.
1737  * called at interrupt context in the kernel, so don't do anything illegal here.
1738  */
1739 static void
1740 ForceReconReadDoneProc(void *arg, int status)
1741 {
1742 	RF_ReconBuffer_t *rbuf = arg;
1743 
1744 	/* Detect that reconControl is no longer valid, and if that
1745 	   is the case, bail without calling rf_CauseReconEvent().
1746 	   There won't be anyone listening for this event anyway */
1747 
1748 	if (rbuf->raidPtr->reconControl == NULL)
1749 		return;
1750 
1751 	if (status) {
1752 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1753 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1754 		return;
1755 	}
1756 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1757 }
1758 /* releases a block on the reconstruction of the indicated stripe */
1759 int
1760 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1761 {
1762 	RF_StripeNum_t stripeID = asmap->stripeID;
1763 	RF_ReconParityStripeStatus_t *pssPtr;
1764 	RF_ReconUnitNum_t which_ru;
1765 	RF_StripeNum_t psid;
1766 	RF_CallbackDesc_t *cb;
1767 
1768 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1769 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1770 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1771 
1772 	/* When recon is forced, the pss desc can get deleted before we get
1773 	 * back to unblock recon. But, this can _only_ happen when recon is
1774 	 * forced. It would be good to put some kind of sanity check here, but
1775 	 * how to decide if recon was just forced or not? */
1776 	if (!pssPtr) {
1777 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1778 		 * RU %d\n",psid,which_ru); */
1779 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1780 		if (rf_reconDebug || rf_pssDebug)
1781 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1782 #endif
1783 		goto out;
1784 	}
1785 	pssPtr->blockCount--;
1786 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1787 		 raidPtr->raidid, psid, pssPtr->blockCount);
1788 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1789 
1790 		/* unblock recon before calling CauseReconEvent in case
1791 		 * CauseReconEvent causes us to try to issue a new read before
1792 		 * returning here. */
1793 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1794 
1795 
1796 		while (pssPtr->blockWaitList) {
1797 			/* spin through the block-wait list and
1798 			   release all the waiters */
1799 			cb = pssPtr->blockWaitList;
1800 			pssPtr->blockWaitList = cb->next;
1801 			cb->next = NULL;
1802 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1803 			rf_FreeCallbackDesc(cb);
1804 		}
1805 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1806 			/* if no recon was requested while recon was blocked */
1807 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1808 		}
1809 	}
1810 out:
1811 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1812 	return (0);
1813 }
1814