1 /* $NetBSD: rf_reconstruct.c,v 1.88 2005/06/08 02:00:53 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.88 2005/06/08 02:00:53 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 #if (RF_RECON_STATS > 0) || defined(KERNEL) 194 printf("\n"); 195 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 197 } 198 199 200 /***************************************************************************** 201 * 202 * primary routine to reconstruct a failed disk. This should be called from 203 * within its own thread. It won't return until reconstruction completes, 204 * fails, or is aborted. 205 *****************************************************************************/ 206 int 207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 208 { 209 const RF_LayoutSW_t *lp; 210 int rc; 211 212 lp = raidPtr->Layout.map; 213 if (lp->SubmitReconBuffer) { 214 /* 215 * The current infrastructure only supports reconstructing one 216 * disk at a time for each array. 217 */ 218 RF_LOCK_MUTEX(raidPtr->mutex); 219 while (raidPtr->reconInProgress) { 220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 221 } 222 raidPtr->reconInProgress++; 223 RF_UNLOCK_MUTEX(raidPtr->mutex); 224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 225 RF_LOCK_MUTEX(raidPtr->mutex); 226 raidPtr->reconInProgress--; 227 RF_UNLOCK_MUTEX(raidPtr->mutex); 228 } else { 229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 230 lp->parityConfig); 231 rc = EIO; 232 } 233 RF_SIGNAL_COND(raidPtr->waitForReconCond); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 RF_LOCK_MUTEX(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 RF_UNLOCK_MUTEX(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_used_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 RF_UNLOCK_MUTEX(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 raidread_component_label( 296 raidPtr->raid_cinfo[scol].ci_dev, 297 raidPtr->raid_cinfo[scol].ci_vp, 298 &c_label); 299 300 raid_init_component_label( raidPtr, &c_label); 301 c_label.row = 0; 302 c_label.column = col; 303 c_label.clean = RF_RAID_DIRTY; 304 c_label.status = rf_ds_optimal; 305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 306 307 /* We've just done a rebuild based on all the other 308 disks, so at this point the parity is known to be 309 clean, even if it wasn't before. */ 310 311 /* XXX doesn't hold for RAID 6!!*/ 312 313 RF_LOCK_MUTEX(raidPtr->mutex); 314 raidPtr->parity_good = RF_RAID_CLEAN; 315 RF_UNLOCK_MUTEX(raidPtr->mutex); 316 317 /* XXXX MORE NEEDED HERE */ 318 319 raidwrite_component_label( 320 raidPtr->raid_cinfo[scol].ci_dev, 321 raidPtr->raid_cinfo[scol].ci_vp, 322 &c_label); 323 324 } else { 325 /* Reconstruct failed. */ 326 327 RF_LOCK_MUTEX(raidPtr->mutex); 328 /* Failed disk goes back to "failed" status */ 329 raidPtr->Disks[col].status = rf_ds_failed; 330 331 /* Spare disk goes back to "spare" status. */ 332 spareDiskPtr->status = rf_ds_spare; 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 335 } 336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 337 return (rc); 338 } 339 340 /* 341 342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 343 and you don't get a spare until the next Monday. With this function 344 (and hot-swappable drives) you can now put your new disk containing 345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 346 rebuild the data "on the spot". 347 348 */ 349 350 int 351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 352 { 353 RF_RaidDisk_t *spareDiskPtr = NULL; 354 RF_RaidReconDesc_t *reconDesc; 355 const RF_LayoutSW_t *lp; 356 RF_ComponentLabel_t c_label; 357 int numDisksDone = 0, rc; 358 struct partinfo dpart; 359 struct vnode *vp; 360 struct vattr va; 361 struct proc *proc; 362 int retcode; 363 int ac; 364 365 lp = raidPtr->Layout.map; 366 if (!lp->SubmitReconBuffer) { 367 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 368 lp->parityConfig); 369 /* wakeup anyone who might be waiting to do a reconstruct */ 370 RF_SIGNAL_COND(raidPtr->waitForReconCond); 371 return(EIO); 372 } 373 374 /* 375 * The current infrastructure only supports reconstructing one 376 * disk at a time for each array. 377 */ 378 RF_LOCK_MUTEX(raidPtr->mutex); 379 380 if (raidPtr->Disks[col].status != rf_ds_failed) { 381 /* "It's gone..." */ 382 raidPtr->numFailures++; 383 raidPtr->Disks[col].status = rf_ds_failed; 384 raidPtr->status = rf_rs_degraded; 385 RF_UNLOCK_MUTEX(raidPtr->mutex); 386 rf_update_component_labels(raidPtr, 387 RF_NORMAL_COMPONENT_UPDATE); 388 RF_LOCK_MUTEX(raidPtr->mutex); 389 } 390 391 while (raidPtr->reconInProgress) { 392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 393 } 394 395 raidPtr->reconInProgress++; 396 397 /* first look for a spare drive onto which to reconstruct the 398 data. spare disk descriptors are stored in row 0. This 399 may have to change eventually */ 400 401 /* Actually, we don't care if it's failed or not... On a RAID 402 set with correct parity, this function should be callable 403 on any component without ill affects. */ 404 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 405 406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 409 410 raidPtr->reconInProgress--; 411 RF_UNLOCK_MUTEX(raidPtr->mutex); 412 RF_SIGNAL_COND(raidPtr->waitForReconCond); 413 return (EINVAL); 414 } 415 #endif 416 proc = raidPtr->engine_thread; 417 418 /* This device may have been opened successfully the 419 first time. Close it before trying to open it again.. */ 420 421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 422 #if 0 423 printf("Closed the open device: %s\n", 424 raidPtr->Disks[col].devname); 425 #endif 426 vp = raidPtr->raid_cinfo[col].ci_vp; 427 ac = raidPtr->Disks[col].auto_configured; 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 rf_close_component(raidPtr, vp, ac); 430 RF_LOCK_MUTEX(raidPtr->mutex); 431 raidPtr->raid_cinfo[col].ci_vp = NULL; 432 } 433 /* note that this disk was *not* auto_configured (any longer)*/ 434 raidPtr->Disks[col].auto_configured = 0; 435 436 #if 0 437 printf("About to (re-)open the device for rebuilding: %s\n", 438 raidPtr->Disks[col].devname); 439 #endif 440 RF_UNLOCK_MUTEX(raidPtr->mutex); 441 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 442 443 if (retcode) { 444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 445 raidPtr->Disks[col].devname, retcode); 446 447 /* the component isn't responding properly... 448 must be still dead :-( */ 449 RF_LOCK_MUTEX(raidPtr->mutex); 450 raidPtr->reconInProgress--; 451 RF_UNLOCK_MUTEX(raidPtr->mutex); 452 RF_SIGNAL_COND(raidPtr->waitForReconCond); 453 return(retcode); 454 } 455 456 /* Ok, so we can at least do a lookup... 457 How about actually getting a vp for it? */ 458 459 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 460 RF_LOCK_MUTEX(raidPtr->mutex); 461 raidPtr->reconInProgress--; 462 RF_UNLOCK_MUTEX(raidPtr->mutex); 463 RF_SIGNAL_COND(raidPtr->waitForReconCond); 464 return(retcode); 465 } 466 467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 468 if (retcode) { 469 RF_LOCK_MUTEX(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 RF_UNLOCK_MUTEX(raidPtr->mutex); 472 RF_SIGNAL_COND(raidPtr->waitForReconCond); 473 return(retcode); 474 } 475 RF_LOCK_MUTEX(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 477 478 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 479 rf_protectedSectors; 480 481 raidPtr->raid_cinfo[col].ci_vp = vp; 482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 483 484 raidPtr->Disks[col].dev = va.va_rdev; 485 486 /* we allow the user to specify that only a fraction 487 of the disks should be used this is just for debug: 488 it speeds up * the parity scan */ 489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 490 rf_sizePercentage / 100; 491 RF_UNLOCK_MUTEX(raidPtr->mutex); 492 493 spareDiskPtr = &raidPtr->Disks[col]; 494 spareDiskPtr->status = rf_ds_used_spare; 495 496 printf("raid%d: initiating in-place reconstruction on column %d\n", 497 raidPtr->raidid, col); 498 499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 500 numDisksDone, col); 501 raidPtr->reconDesc = (void *) reconDesc; 502 #if RF_RECON_STATS > 0 503 reconDesc->hsStallCount = 0; 504 reconDesc->numReconExecDelays = 0; 505 reconDesc->numReconEventWaits = 0; 506 #endif /* RF_RECON_STATS > 0 */ 507 reconDesc->reconExecTimerRunning = 0; 508 reconDesc->reconExecTicks = 0; 509 reconDesc->maxReconExecTicks = 0; 510 rc = rf_ContinueReconstructFailedDisk(reconDesc); 511 512 if (!rc) { 513 RF_LOCK_MUTEX(raidPtr->mutex); 514 /* Need to set these here, as at this point it'll be claiming 515 that the disk is in rf_ds_spared! But we know better :-) */ 516 517 raidPtr->Disks[col].status = rf_ds_optimal; 518 raidPtr->status = rf_rs_optimal; 519 RF_UNLOCK_MUTEX(raidPtr->mutex); 520 521 /* fix up the component label */ 522 /* Don't actually need the read here.. */ 523 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 524 raidPtr->raid_cinfo[col].ci_vp, 525 &c_label); 526 527 RF_LOCK_MUTEX(raidPtr->mutex); 528 raid_init_component_label(raidPtr, &c_label); 529 530 c_label.row = 0; 531 c_label.column = col; 532 533 /* We've just done a rebuild based on all the other 534 disks, so at this point the parity is known to be 535 clean, even if it wasn't before. */ 536 537 /* XXX doesn't hold for RAID 6!!*/ 538 539 raidPtr->parity_good = RF_RAID_CLEAN; 540 RF_UNLOCK_MUTEX(raidPtr->mutex); 541 542 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 543 raidPtr->raid_cinfo[col].ci_vp, 544 &c_label); 545 546 } else { 547 /* Reconstruct-in-place failed. Disk goes back to 548 "failed" status, regardless of what it was before. */ 549 RF_LOCK_MUTEX(raidPtr->mutex); 550 raidPtr->Disks[col].status = rf_ds_failed; 551 RF_UNLOCK_MUTEX(raidPtr->mutex); 552 } 553 554 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 555 556 RF_LOCK_MUTEX(raidPtr->mutex); 557 raidPtr->reconInProgress--; 558 RF_UNLOCK_MUTEX(raidPtr->mutex); 559 560 RF_SIGNAL_COND(raidPtr->waitForReconCond); 561 return (rc); 562 } 563 564 565 int 566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 567 { 568 RF_Raid_t *raidPtr = reconDesc->raidPtr; 569 RF_RowCol_t col = reconDesc->col; 570 RF_RowCol_t scol = reconDesc->scol; 571 RF_ReconMap_t *mapPtr; 572 RF_ReconCtrl_t *tmp_reconctrl; 573 RF_ReconEvent_t *event; 574 RF_CallbackDesc_t *p; 575 struct timeval etime, elpsd; 576 unsigned long xor_s, xor_resid_us; 577 int i, ds; 578 int status; 579 int recon_error, write_error; 580 581 raidPtr->accumXorTimeUs = 0; 582 #if RF_ACC_TRACE > 0 583 /* create one trace record per physical disk */ 584 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 585 #endif 586 587 /* quiesce the array prior to starting recon. this is needed 588 * to assure no nasty interactions with pending user writes. 589 * We need to do this before we change the disk or row status. */ 590 591 Dprintf("RECON: begin request suspend\n"); 592 rf_SuspendNewRequestsAndWait(raidPtr); 593 Dprintf("RECON: end request suspend\n"); 594 595 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 596 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 597 598 RF_LOCK_MUTEX(raidPtr->mutex); 599 600 /* create the reconstruction control pointer and install it in 601 * the right slot */ 602 raidPtr->reconControl = tmp_reconctrl; 603 mapPtr = raidPtr->reconControl->reconMap; 604 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 605 raidPtr->reconControl->numRUsComplete = 0; 606 raidPtr->status = rf_rs_reconstructing; 607 raidPtr->Disks[col].status = rf_ds_reconstructing; 608 raidPtr->Disks[col].spareCol = scol; 609 610 RF_UNLOCK_MUTEX(raidPtr->mutex); 611 612 RF_GETTIME(raidPtr->reconControl->starttime); 613 614 /* now start up the actual reconstruction: issue a read for 615 * each surviving disk */ 616 617 reconDesc->numDisksDone = 0; 618 for (i = 0; i < raidPtr->numCol; i++) { 619 if (i != col) { 620 /* find and issue the next I/O on the 621 * indicated disk */ 622 if (IssueNextReadRequest(raidPtr, i)) { 623 Dprintf1("RECON: done issuing for c%d\n", i); 624 reconDesc->numDisksDone++; 625 } 626 } 627 } 628 629 Dprintf("RECON: resume requests\n"); 630 rf_ResumeNewRequests(raidPtr); 631 632 /* process reconstruction events until all disks report that 633 * they've completed all work */ 634 635 mapPtr = raidPtr->reconControl->reconMap; 636 recon_error = 0; 637 write_error = 0; 638 639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 640 641 event = rf_GetNextReconEvent(reconDesc); 642 status = ProcessReconEvent(raidPtr, event); 643 644 /* the normal case is that a read completes, and all is well. */ 645 if (status == RF_RECON_DONE_READS) { 646 reconDesc->numDisksDone++; 647 } else if ((status == RF_RECON_READ_ERROR) || 648 (status == RF_RECON_WRITE_ERROR)) { 649 /* an error was encountered while reconstructing... 650 Pretend we've finished this disk. 651 */ 652 recon_error = 1; 653 raidPtr->reconControl->error = 1; 654 655 /* bump the numDisksDone count for reads, 656 but not for writes */ 657 if (status == RF_RECON_READ_ERROR) 658 reconDesc->numDisksDone++; 659 660 /* write errors are special -- when we are 661 done dealing with the reads that are 662 finished, we don't want to wait for any 663 writes */ 664 if (status == RF_RECON_WRITE_ERROR) 665 write_error = 1; 666 667 } else if (status == RF_RECON_READ_STOPPED) { 668 /* count this component as being "done" */ 669 reconDesc->numDisksDone++; 670 } 671 672 if (recon_error) { 673 674 /* make sure any stragglers are woken up so that 675 their theads will complete, and we can get out 676 of here with all IO processed */ 677 678 while (raidPtr->reconControl->headSepCBList) { 679 p = raidPtr->reconControl->headSepCBList; 680 raidPtr->reconControl->headSepCBList = p->next; 681 p->next = NULL; 682 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 683 rf_FreeCallbackDesc(p); 684 } 685 } 686 687 raidPtr->reconControl->numRUsTotal = 688 mapPtr->totalRUs; 689 raidPtr->reconControl->numRUsComplete = 690 mapPtr->totalRUs - 691 rf_UnitsLeftToReconstruct(mapPtr); 692 693 #if RF_DEBUG_RECON 694 raidPtr->reconControl->percentComplete = 695 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 696 if (rf_prReconSched) { 697 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 698 } 699 #endif 700 } 701 702 mapPtr = raidPtr->reconControl->reconMap; 703 if (rf_reconDebug) { 704 printf("RECON: all reads completed\n"); 705 } 706 /* at this point all the reads have completed. We now wait 707 * for any pending writes to complete, and then we're done */ 708 709 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 710 711 event = rf_GetNextReconEvent(reconDesc); 712 status = ProcessReconEvent(raidPtr, event); 713 714 if (status == RF_RECON_WRITE_ERROR) { 715 recon_error = 1; 716 raidPtr->reconControl->error = 1; 717 /* an error was encountered at the very end... bail */ 718 } else { 719 #if RF_DEBUG_RECON 720 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 721 if (rf_prReconSched) { 722 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 723 } 724 #endif 725 } 726 } 727 728 if (recon_error) { 729 /* we've encountered an error in reconstructing. */ 730 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 731 732 /* we start by blocking IO to the RAID set. */ 733 rf_SuspendNewRequestsAndWait(raidPtr); 734 735 RF_LOCK_MUTEX(raidPtr->mutex); 736 /* mark set as being degraded, rather than 737 rf_rs_reconstructing as we were before the problem. 738 After this is done we can update status of the 739 component disks without worrying about someone 740 trying to read from a failed component. 741 */ 742 raidPtr->status = rf_rs_degraded; 743 RF_UNLOCK_MUTEX(raidPtr->mutex); 744 745 /* resume IO */ 746 rf_ResumeNewRequests(raidPtr); 747 748 /* At this point there are two cases: 749 1) If we've experienced a read error, then we've 750 already waited for all the reads we're going to get, 751 and we just need to wait for the writes. 752 753 2) If we've experienced a write error, we've also 754 already waited for all the reads to complete, 755 but there is little point in waiting for the writes -- 756 when they do complete, they will just be ignored. 757 758 So we just wait for writes to complete if we didn't have a 759 write error. 760 */ 761 762 if (!write_error) { 763 /* wait for writes to complete */ 764 while (raidPtr->reconControl->pending_writes > 0) { 765 766 event = rf_GetNextReconEvent(reconDesc); 767 status = ProcessReconEvent(raidPtr, event); 768 769 if (status == RF_RECON_WRITE_ERROR) { 770 raidPtr->reconControl->error = 1; 771 /* an error was encountered at the very end... bail. 772 This will be very bad news for the user, since 773 at this point there will have been a read error 774 on one component, and a write error on another! 775 */ 776 break; 777 } 778 } 779 } 780 781 782 /* cleanup */ 783 784 /* drain the event queue - after waiting for the writes above, 785 there shouldn't be much (if anything!) left in the queue. */ 786 787 rf_DrainReconEventQueue(reconDesc); 788 789 /* XXX As much as we'd like to free the recon control structure 790 and the reconDesc, we have no way of knowing if/when those will 791 be touched by IO that has yet to occur. It is rather poor to be 792 basically causing a 'memory leak' here, but there doesn't seem to be 793 a cleaner alternative at this time. Perhaps when the reconstruct code 794 gets a makeover this problem will go away. 795 */ 796 #if 0 797 rf_FreeReconControl(raidPtr); 798 #endif 799 800 #if RF_ACC_TRACE > 0 801 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 802 #endif 803 /* XXX see comment above */ 804 #if 0 805 FreeReconDesc(reconDesc); 806 #endif 807 808 return (1); 809 } 810 811 /* Success: mark the dead disk as reconstructed. We quiesce 812 * the array here to assure no nasty interactions with pending 813 * user accesses when we free up the psstatus structure as 814 * part of FreeReconControl() */ 815 816 rf_SuspendNewRequestsAndWait(raidPtr); 817 818 RF_LOCK_MUTEX(raidPtr->mutex); 819 raidPtr->numFailures--; 820 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 821 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 822 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 823 RF_UNLOCK_MUTEX(raidPtr->mutex); 824 RF_GETTIME(etime); 825 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 826 827 rf_ResumeNewRequests(raidPtr); 828 829 printf("raid%d: Reconstruction of disk at col %d completed\n", 830 raidPtr->raidid, col); 831 xor_s = raidPtr->accumXorTimeUs / 1000000; 832 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 833 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 834 raidPtr->raidid, 835 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 836 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 837 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 838 raidPtr->raidid, 839 (int) raidPtr->reconControl->starttime.tv_sec, 840 (int) raidPtr->reconControl->starttime.tv_usec, 841 (int) etime.tv_sec, (int) etime.tv_usec); 842 #if RF_RECON_STATS > 0 843 printf("raid%d: Total head-sep stall count was %d\n", 844 raidPtr->raidid, (int) reconDesc->hsStallCount); 845 #endif /* RF_RECON_STATS > 0 */ 846 rf_FreeReconControl(raidPtr); 847 #if RF_ACC_TRACE > 0 848 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 849 #endif 850 FreeReconDesc(reconDesc); 851 852 return (0); 853 854 } 855 /***************************************************************************** 856 * do the right thing upon each reconstruction event. 857 *****************************************************************************/ 858 static int 859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 860 { 861 int retcode = 0, submitblocked; 862 RF_ReconBuffer_t *rbuf; 863 RF_SectorCount_t sectorsPerRU; 864 865 retcode = RF_RECON_READ_STOPPED; 866 867 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 868 switch (event->type) { 869 870 /* a read I/O has completed */ 871 case RF_REVENT_READDONE: 872 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 873 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 874 event->col, rbuf->parityStripeID); 875 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 876 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 877 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 879 if (!raidPtr->reconControl->error) { 880 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 881 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 882 if (!submitblocked) 883 retcode = IssueNextReadRequest(raidPtr, event->col); 884 } 885 break; 886 887 /* a write I/O has completed */ 888 case RF_REVENT_WRITEDONE: 889 #if RF_DEBUG_RECON 890 if (rf_floatingRbufDebug) { 891 rf_CheckFloatingRbufCount(raidPtr, 1); 892 } 893 #endif 894 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 895 rbuf = (RF_ReconBuffer_t *) event->arg; 896 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 897 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 898 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 899 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 900 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 901 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 902 903 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 904 raidPtr->reconControl->pending_writes--; 905 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 906 907 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 908 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 909 while(raidPtr->reconControl->rb_lock) { 910 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 911 &raidPtr->reconControl->rb_mutex); 912 } 913 raidPtr->reconControl->rb_lock = 1; 914 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 915 916 raidPtr->numFullReconBuffers--; 917 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 918 919 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 920 raidPtr->reconControl->rb_lock = 0; 921 wakeup(&raidPtr->reconControl->rb_lock); 922 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 923 } else 924 if (rbuf->type == RF_RBUF_TYPE_FORCED) 925 rf_FreeReconBuffer(rbuf); 926 else 927 RF_ASSERT(0); 928 retcode = 0; 929 break; 930 931 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 932 * cleared */ 933 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 934 if (!raidPtr->reconControl->error) { 935 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 936 0, (int) (long) event->arg); 937 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 938 * BUFCLEAR event if we 939 * couldn't submit */ 940 retcode = IssueNextReadRequest(raidPtr, event->col); 941 } 942 break; 943 944 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 945 * blockage has been cleared */ 946 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 947 if (!raidPtr->reconControl->error) { 948 retcode = TryToRead(raidPtr, event->col); 949 } 950 break; 951 952 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 953 * reconstruction blockage has been 954 * cleared */ 955 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 956 if (!raidPtr->reconControl->error) { 957 retcode = TryToRead(raidPtr, event->col); 958 } 959 break; 960 961 /* a buffer has become ready to write */ 962 case RF_REVENT_BUFREADY: 963 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 964 if (!raidPtr->reconControl->error) { 965 retcode = IssueNextWriteRequest(raidPtr); 966 #if RF_DEBUG_RECON 967 if (rf_floatingRbufDebug) { 968 rf_CheckFloatingRbufCount(raidPtr, 1); 969 } 970 #endif 971 } 972 break; 973 974 /* we need to skip the current RU entirely because it got 975 * recon'd while we were waiting for something else to happen */ 976 case RF_REVENT_SKIP: 977 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 978 if (!raidPtr->reconControl->error) { 979 retcode = IssueNextReadRequest(raidPtr, event->col); 980 } 981 break; 982 983 /* a forced-reconstruction read access has completed. Just 984 * submit the buffer */ 985 case RF_REVENT_FORCEDREADDONE: 986 rbuf = (RF_ReconBuffer_t *) event->arg; 987 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 988 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 989 if (!raidPtr->reconControl->error) { 990 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 991 RF_ASSERT(!submitblocked); 992 } 993 break; 994 995 /* A read I/O failed to complete */ 996 case RF_REVENT_READ_FAILED: 997 retcode = RF_RECON_READ_ERROR; 998 break; 999 1000 /* A write I/O failed to complete */ 1001 case RF_REVENT_WRITE_FAILED: 1002 retcode = RF_RECON_WRITE_ERROR; 1003 1004 rbuf = (RF_ReconBuffer_t *) event->arg; 1005 1006 /* cleanup the disk queue data */ 1007 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1008 1009 /* At this point we're erroring out, badly, and floatingRbufs 1010 may not even be valid. Rather than putting this back onto 1011 the floatingRbufs list, just arrange for its immediate 1012 destruction. 1013 */ 1014 rf_FreeReconBuffer(rbuf); 1015 break; 1016 1017 /* a forced read I/O failed to complete */ 1018 case RF_REVENT_FORCEDREAD_FAILED: 1019 retcode = RF_RECON_READ_ERROR; 1020 break; 1021 1022 default: 1023 RF_PANIC(); 1024 } 1025 rf_FreeReconEventDesc(event); 1026 return (retcode); 1027 } 1028 /***************************************************************************** 1029 * 1030 * find the next thing that's needed on the indicated disk, and issue 1031 * a read request for it. We assume that the reconstruction buffer 1032 * associated with this process is free to receive the data. If 1033 * reconstruction is blocked on the indicated RU, we issue a 1034 * blockage-release request instead of a physical disk read request. 1035 * If the current disk gets too far ahead of the others, we issue a 1036 * head-separation wait request and return. 1037 * 1038 * ctrl->{ru_count, curPSID, diskOffset} and 1039 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1040 * we're currently accessing. Note that this deviates from the 1041 * standard C idiom of having counters point to the next thing to be 1042 * accessed. This allows us to easily retry when we're blocked by 1043 * head separation or reconstruction-blockage events. 1044 * 1045 *****************************************************************************/ 1046 static int 1047 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1048 { 1049 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1050 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1051 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1052 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1053 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1054 int do_new_check = 0, retcode = 0, status; 1055 1056 /* if we are currently the slowest disk, mark that we have to do a new 1057 * check */ 1058 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1059 do_new_check = 1; 1060 1061 while (1) { 1062 1063 ctrl->ru_count++; 1064 if (ctrl->ru_count < RUsPerPU) { 1065 ctrl->diskOffset += sectorsPerRU; 1066 rbuf->failedDiskSectorOffset += sectorsPerRU; 1067 } else { 1068 ctrl->curPSID++; 1069 ctrl->ru_count = 0; 1070 /* code left over from when head-sep was based on 1071 * parity stripe id */ 1072 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1073 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1074 return (RF_RECON_DONE_READS); /* finito! */ 1075 } 1076 /* find the disk offsets of the start of the parity 1077 * stripe on both the current disk and the failed 1078 * disk. skip this entire parity stripe if either disk 1079 * does not appear in the indicated PS */ 1080 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1081 &rbuf->spCol, &rbuf->spOffset); 1082 if (status) { 1083 ctrl->ru_count = RUsPerPU - 1; 1084 continue; 1085 } 1086 } 1087 rbuf->which_ru = ctrl->ru_count; 1088 1089 /* skip this RU if it's already been reconstructed */ 1090 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1091 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1092 continue; 1093 } 1094 break; 1095 } 1096 ctrl->headSepCounter++; 1097 if (do_new_check) 1098 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1099 1100 1101 /* at this point, we have definitely decided what to do, and we have 1102 * only to see if we can actually do it now */ 1103 rbuf->parityStripeID = ctrl->curPSID; 1104 rbuf->which_ru = ctrl->ru_count; 1105 #if RF_ACC_TRACE > 0 1106 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1107 sizeof(raidPtr->recon_tracerecs[col])); 1108 raidPtr->recon_tracerecs[col].reconacc = 1; 1109 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1110 #endif 1111 retcode = TryToRead(raidPtr, col); 1112 return (retcode); 1113 } 1114 1115 /* 1116 * tries to issue the next read on the indicated disk. We may be 1117 * blocked by (a) the heads being too far apart, or (b) recon on the 1118 * indicated RU being blocked due to a write by a user thread. In 1119 * this case, we issue a head-sep or blockage wait request, which will 1120 * cause this same routine to be invoked again later when the blockage 1121 * has cleared. 1122 */ 1123 1124 static int 1125 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1126 { 1127 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1128 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1129 RF_StripeNum_t psid = ctrl->curPSID; 1130 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1131 RF_DiskQueueData_t *req; 1132 int status; 1133 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1134 1135 /* if the current disk is too far ahead of the others, issue a 1136 * head-separation wait and return */ 1137 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1138 return (0); 1139 1140 /* allocate a new PSS in case we need it */ 1141 newpssPtr = rf_AllocPSStatus(raidPtr); 1142 1143 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1144 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1145 1146 if (pssPtr != newpssPtr) { 1147 rf_FreePSStatus(raidPtr, newpssPtr); 1148 } 1149 1150 /* if recon is blocked on the indicated parity stripe, issue a 1151 * block-wait request and return. this also must mark the indicated RU 1152 * in the stripe as under reconstruction if not blocked. */ 1153 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1154 if (status == RF_PSS_RECON_BLOCKED) { 1155 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1156 goto out; 1157 } else 1158 if (status == RF_PSS_FORCED_ON_WRITE) { 1159 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1160 goto out; 1161 } 1162 /* make one last check to be sure that the indicated RU didn't get 1163 * reconstructed while we were waiting for something else to happen. 1164 * This is unfortunate in that it causes us to make this check twice 1165 * in the normal case. Might want to make some attempt to re-work 1166 * this so that we only do this check if we've definitely blocked on 1167 * one of the above checks. When this condition is detected, we may 1168 * have just created a bogus status entry, which we need to delete. */ 1169 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1170 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1171 if (pssPtr == newpssPtr) 1172 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1173 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1174 goto out; 1175 } 1176 /* found something to read. issue the I/O */ 1177 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1178 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1179 #if RF_ACC_TRACE > 0 1180 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1181 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1182 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1183 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1184 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1185 #endif 1186 /* should be ok to use a NULL proc pointer here, all the bufs we use 1187 * should be in kernel space */ 1188 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1189 ReconReadDoneProc, (void *) ctrl, 1190 #if RF_ACC_TRACE > 0 1191 &raidPtr->recon_tracerecs[col], 1192 #else 1193 NULL, 1194 #endif 1195 (void *) raidPtr, 0, NULL, PR_WAITOK); 1196 1197 ctrl->rbuf->arg = (void *) req; 1198 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1199 pssPtr->issued[col] = 1; 1200 1201 out: 1202 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1203 return (0); 1204 } 1205 1206 1207 /* 1208 * given a parity stripe ID, we want to find out whether both the 1209 * current disk and the failed disk exist in that parity stripe. If 1210 * not, we want to skip this whole PS. If so, we want to find the 1211 * disk offset of the start of the PS on both the current disk and the 1212 * failed disk. 1213 * 1214 * this works by getting a list of disks comprising the indicated 1215 * parity stripe, and searching the list for the current and failed 1216 * disks. Once we've decided they both exist in the parity stripe, we 1217 * need to decide whether each is data or parity, so that we'll know 1218 * which mapping function to call to get the corresponding disk 1219 * offsets. 1220 * 1221 * this is kind of unpleasant, but doing it this way allows the 1222 * reconstruction code to use parity stripe IDs rather than physical 1223 * disks address to march through the failed disk, which greatly 1224 * simplifies a lot of code, as well as eliminating the need for a 1225 * reverse-mapping function. I also think it will execute faster, 1226 * since the calls to the mapping module are kept to a minimum. 1227 * 1228 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1229 * THE STRIPE IN THE CORRECT ORDER 1230 * 1231 * raidPtr - raid descriptor 1232 * psid - parity stripe identifier 1233 * col - column of disk to find the offsets for 1234 * spCol - out: col of spare unit for failed unit 1235 * spOffset - out: offset into disk containing spare unit 1236 * 1237 */ 1238 1239 1240 static int 1241 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1242 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1243 RF_SectorNum_t *outFailedDiskSectorOffset, 1244 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1245 { 1246 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1247 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1248 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1249 RF_RowCol_t *diskids; 1250 u_int i, j, k, i_offset, j_offset; 1251 RF_RowCol_t pcol; 1252 int testcol; 1253 RF_SectorNum_t poffset; 1254 char i_is_parity = 0, j_is_parity = 0; 1255 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1256 1257 /* get a listing of the disks comprising that stripe */ 1258 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1259 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1260 RF_ASSERT(diskids); 1261 1262 /* reject this entire parity stripe if it does not contain the 1263 * indicated disk or it does not contain the failed disk */ 1264 1265 for (i = 0; i < stripeWidth; i++) { 1266 if (col == diskids[i]) 1267 break; 1268 } 1269 if (i == stripeWidth) 1270 goto skipit; 1271 for (j = 0; j < stripeWidth; j++) { 1272 if (fcol == diskids[j]) 1273 break; 1274 } 1275 if (j == stripeWidth) { 1276 goto skipit; 1277 } 1278 /* find out which disk the parity is on */ 1279 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1280 1281 /* find out if either the current RU or the failed RU is parity */ 1282 /* also, if the parity occurs in this stripe prior to the data and/or 1283 * failed col, we need to decrement i and/or j */ 1284 for (k = 0; k < stripeWidth; k++) 1285 if (diskids[k] == pcol) 1286 break; 1287 RF_ASSERT(k < stripeWidth); 1288 i_offset = i; 1289 j_offset = j; 1290 if (k < i) 1291 i_offset--; 1292 else 1293 if (k == i) { 1294 i_is_parity = 1; 1295 i_offset = 0; 1296 } /* set offsets to zero to disable multiply 1297 * below */ 1298 if (k < j) 1299 j_offset--; 1300 else 1301 if (k == j) { 1302 j_is_parity = 1; 1303 j_offset = 0; 1304 } 1305 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1306 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1307 * tells us how far into the stripe the [current,failed] disk is. */ 1308 1309 /* call the mapping routine to get the offset into the current disk, 1310 * repeat for failed disk. */ 1311 if (i_is_parity) 1312 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1313 else 1314 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1315 1316 RF_ASSERT(col == testcol); 1317 1318 if (j_is_parity) 1319 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1320 else 1321 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1322 RF_ASSERT(fcol == testcol); 1323 1324 /* now locate the spare unit for the failed unit */ 1325 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1326 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1327 if (j_is_parity) 1328 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1329 else 1330 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1331 } else { 1332 #endif 1333 *spCol = raidPtr->reconControl->spareCol; 1334 *spOffset = *outFailedDiskSectorOffset; 1335 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1336 } 1337 #endif 1338 return (0); 1339 1340 skipit: 1341 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1342 psid, col); 1343 return (1); 1344 } 1345 /* this is called when a buffer has become ready to write to the replacement disk */ 1346 static int 1347 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1348 { 1349 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1350 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1351 #if RF_ACC_TRACE > 0 1352 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1353 #endif 1354 RF_ReconBuffer_t *rbuf; 1355 RF_DiskQueueData_t *req; 1356 1357 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1358 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1359 * have gotten the event that sent us here */ 1360 RF_ASSERT(rbuf->pssPtr); 1361 1362 rbuf->pssPtr->writeRbuf = rbuf; 1363 rbuf->pssPtr = NULL; 1364 1365 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1366 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1367 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1368 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1369 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1370 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1371 1372 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1373 * kernel space */ 1374 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1375 sectorsPerRU, rbuf->buffer, 1376 rbuf->parityStripeID, rbuf->which_ru, 1377 ReconWriteDoneProc, (void *) rbuf, 1378 #if RF_ACC_TRACE > 0 1379 &raidPtr->recon_tracerecs[fcol], 1380 #else 1381 NULL, 1382 #endif 1383 (void *) raidPtr, 0, NULL, PR_WAITOK); 1384 1385 rbuf->arg = (void *) req; 1386 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1387 raidPtr->reconControl->pending_writes++; 1388 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1389 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * this gets called upon the completion of a reconstruction read 1396 * operation the arg is a pointer to the per-disk reconstruction 1397 * control structure for the process that just finished a read. 1398 * 1399 * called at interrupt context in the kernel, so don't do anything 1400 * illegal here. 1401 */ 1402 static int 1403 ReconReadDoneProc(void *arg, int status) 1404 { 1405 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1406 RF_Raid_t *raidPtr; 1407 1408 /* Detect that reconCtrl is no longer valid, and if that 1409 is the case, bail without calling rf_CauseReconEvent(). 1410 There won't be anyone listening for this event anyway */ 1411 1412 if (ctrl->reconCtrl == NULL) 1413 return(0); 1414 1415 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1416 1417 if (status) { 1418 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1419 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1420 return(0); 1421 } 1422 #if RF_ACC_TRACE > 0 1423 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1424 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1425 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1426 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1427 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1428 #endif 1429 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1430 return (0); 1431 } 1432 /* this gets called upon the completion of a reconstruction write operation. 1433 * the arg is a pointer to the rbuf that was just written 1434 * 1435 * called at interrupt context in the kernel, so don't do anything illegal here. 1436 */ 1437 static int 1438 ReconWriteDoneProc(void *arg, int status) 1439 { 1440 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1441 1442 /* Detect that reconControl is no longer valid, and if that 1443 is the case, bail without calling rf_CauseReconEvent(). 1444 There won't be anyone listening for this event anyway */ 1445 1446 if (rbuf->raidPtr->reconControl == NULL) 1447 return(0); 1448 1449 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1450 if (status) { 1451 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1452 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1453 return(0); 1454 } 1455 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1456 return (0); 1457 } 1458 1459 1460 /* 1461 * computes a new minimum head sep, and wakes up anyone who needs to 1462 * be woken as a result 1463 */ 1464 static void 1465 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1466 { 1467 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1468 RF_HeadSepLimit_t new_min; 1469 RF_RowCol_t i; 1470 RF_CallbackDesc_t *p; 1471 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1472 * of a minimum */ 1473 1474 1475 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1476 while(reconCtrlPtr->rb_lock) { 1477 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1478 } 1479 reconCtrlPtr->rb_lock = 1; 1480 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1481 1482 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1483 for (i = 0; i < raidPtr->numCol; i++) 1484 if (i != reconCtrlPtr->fcol) { 1485 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1486 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1487 } 1488 /* set the new minimum and wake up anyone who can now run again */ 1489 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1490 reconCtrlPtr->minHeadSepCounter = new_min; 1491 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1492 while (reconCtrlPtr->headSepCBList) { 1493 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1494 break; 1495 p = reconCtrlPtr->headSepCBList; 1496 reconCtrlPtr->headSepCBList = p->next; 1497 p->next = NULL; 1498 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1499 rf_FreeCallbackDesc(p); 1500 } 1501 1502 } 1503 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1504 reconCtrlPtr->rb_lock = 0; 1505 wakeup(&reconCtrlPtr->rb_lock); 1506 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1507 } 1508 1509 /* 1510 * checks to see that the maximum head separation will not be violated 1511 * if we initiate a reconstruction I/O on the indicated disk. 1512 * Limiting the maximum head separation between two disks eliminates 1513 * the nasty buffer-stall conditions that occur when one disk races 1514 * ahead of the others and consumes all of the floating recon buffers. 1515 * This code is complex and unpleasant but it's necessary to avoid 1516 * some very nasty, albeit fairly rare, reconstruction behavior. 1517 * 1518 * returns non-zero if and only if we have to stop working on the 1519 * indicated disk due to a head-separation delay. 1520 */ 1521 static int 1522 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1523 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1524 RF_ReconUnitNum_t which_ru) 1525 { 1526 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1527 RF_CallbackDesc_t *cb, *p, *pt; 1528 int retval = 0; 1529 1530 /* if we're too far ahead of the slowest disk, stop working on this 1531 * disk until the slower ones catch up. We do this by scheduling a 1532 * wakeup callback for the time when the slowest disk has caught up. 1533 * We define "caught up" with 20% hysteresis, i.e. the head separation 1534 * must have fallen to at most 80% of the max allowable head 1535 * separation before we'll wake up. 1536 * 1537 */ 1538 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1539 while(reconCtrlPtr->rb_lock) { 1540 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1541 } 1542 reconCtrlPtr->rb_lock = 1; 1543 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1544 if ((raidPtr->headSepLimit >= 0) && 1545 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1546 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1547 raidPtr->raidid, col, ctrl->headSepCounter, 1548 reconCtrlPtr->minHeadSepCounter, 1549 raidPtr->headSepLimit); 1550 cb = rf_AllocCallbackDesc(); 1551 /* the minHeadSepCounter value we have to get to before we'll 1552 * wake up. build in 20% hysteresis. */ 1553 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1554 cb->col = col; 1555 cb->next = NULL; 1556 1557 /* insert this callback descriptor into the sorted list of 1558 * pending head-sep callbacks */ 1559 p = reconCtrlPtr->headSepCBList; 1560 if (!p) 1561 reconCtrlPtr->headSepCBList = cb; 1562 else 1563 if (cb->callbackArg.v < p->callbackArg.v) { 1564 cb->next = reconCtrlPtr->headSepCBList; 1565 reconCtrlPtr->headSepCBList = cb; 1566 } else { 1567 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1568 cb->next = p; 1569 pt->next = cb; 1570 } 1571 retval = 1; 1572 #if RF_RECON_STATS > 0 1573 ctrl->reconCtrl->reconDesc->hsStallCount++; 1574 #endif /* RF_RECON_STATS > 0 */ 1575 } 1576 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1577 reconCtrlPtr->rb_lock = 0; 1578 wakeup(&reconCtrlPtr->rb_lock); 1579 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1580 1581 return (retval); 1582 } 1583 /* 1584 * checks to see if reconstruction has been either forced or blocked 1585 * by a user operation. if forced, we skip this RU entirely. else if 1586 * blocked, put ourselves on the wait list. else return 0. 1587 * 1588 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1589 */ 1590 static int 1591 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1592 RF_ReconParityStripeStatus_t *pssPtr, 1593 RF_PerDiskReconCtrl_t *ctrl, 1594 RF_RowCol_t col, RF_StripeNum_t psid, 1595 RF_ReconUnitNum_t which_ru) 1596 { 1597 RF_CallbackDesc_t *cb; 1598 int retcode = 0; 1599 1600 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1601 retcode = RF_PSS_FORCED_ON_WRITE; 1602 else 1603 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1604 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1605 cb = rf_AllocCallbackDesc(); /* append ourselves to 1606 * the blockage-wait 1607 * list */ 1608 cb->col = col; 1609 cb->next = pssPtr->blockWaitList; 1610 pssPtr->blockWaitList = cb; 1611 retcode = RF_PSS_RECON_BLOCKED; 1612 } 1613 if (!retcode) 1614 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1615 * reconstruction */ 1616 1617 return (retcode); 1618 } 1619 /* 1620 * if reconstruction is currently ongoing for the indicated stripeID, 1621 * reconstruction is forced to completion and we return non-zero to 1622 * indicate that the caller must wait. If not, then reconstruction is 1623 * blocked on the indicated stripe and the routine returns zero. If 1624 * and only if we return non-zero, we'll cause the cbFunc to get 1625 * invoked with the cbArg when the reconstruction has completed. 1626 */ 1627 int 1628 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1629 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1630 { 1631 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1632 * forcing recon on */ 1633 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1634 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1635 * stripe status structure */ 1636 RF_StripeNum_t psid; /* parity stripe id */ 1637 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1638 * offset */ 1639 RF_RowCol_t *diskids; 1640 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1641 RF_RowCol_t fcol, diskno, i; 1642 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1643 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1644 RF_CallbackDesc_t *cb; 1645 int nPromoted; 1646 1647 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1648 1649 /* allocate a new PSS in case we need it */ 1650 newpssPtr = rf_AllocPSStatus(raidPtr); 1651 1652 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1653 1654 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1655 1656 if (pssPtr != newpssPtr) { 1657 rf_FreePSStatus(raidPtr, newpssPtr); 1658 } 1659 1660 /* if recon is not ongoing on this PS, just return */ 1661 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1662 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1663 return (0); 1664 } 1665 /* otherwise, we have to wait for reconstruction to complete on this 1666 * RU. */ 1667 /* In order to avoid waiting for a potentially large number of 1668 * low-priority accesses to complete, we force a normal-priority (i.e. 1669 * not low-priority) reconstruction on this RU. */ 1670 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1671 DDprintf1("Forcing recon on psid %ld\n", psid); 1672 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1673 * forced recon */ 1674 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1675 * that we just set */ 1676 fcol = raidPtr->reconControl->fcol; 1677 1678 /* get a listing of the disks comprising the indicated stripe */ 1679 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1680 1681 /* For previously issued reads, elevate them to normal 1682 * priority. If the I/O has already completed, it won't be 1683 * found in the queue, and hence this will be a no-op. For 1684 * unissued reads, allocate buffers and issue new reads. The 1685 * fact that we've set the FORCED bit means that the regular 1686 * recon procs will not re-issue these reqs */ 1687 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1688 if ((diskno = diskids[i]) != fcol) { 1689 if (pssPtr->issued[diskno]) { 1690 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1691 if (rf_reconDebug && nPromoted) 1692 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1693 } else { 1694 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1695 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1696 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1697 * location */ 1698 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1699 new_rbuf->which_ru = which_ru; 1700 new_rbuf->failedDiskSectorOffset = fd_offset; 1701 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1702 1703 /* use NULL b_proc b/c all addrs 1704 * should be in kernel space */ 1705 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1706 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1707 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1708 1709 new_rbuf->arg = req; 1710 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1711 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1712 } 1713 } 1714 /* if the write is sitting in the disk queue, elevate its 1715 * priority */ 1716 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1717 printf("raid%d: promoted write to col %d\n", 1718 raidPtr->raidid, fcol); 1719 } 1720 /* install a callback descriptor to be invoked when recon completes on 1721 * this parity stripe. */ 1722 cb = rf_AllocCallbackDesc(); 1723 /* XXX the following is bogus.. These functions don't really match!! 1724 * GO */ 1725 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1726 cb->callbackArg.p = (void *) cbArg; 1727 cb->next = pssPtr->procWaitList; 1728 pssPtr->procWaitList = cb; 1729 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1730 raidPtr->raidid, psid); 1731 1732 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1733 return (1); 1734 } 1735 /* called upon the completion of a forced reconstruction read. 1736 * all we do is schedule the FORCEDREADONE event. 1737 * called at interrupt context in the kernel, so don't do anything illegal here. 1738 */ 1739 static void 1740 ForceReconReadDoneProc(void *arg, int status) 1741 { 1742 RF_ReconBuffer_t *rbuf = arg; 1743 1744 /* Detect that reconControl is no longer valid, and if that 1745 is the case, bail without calling rf_CauseReconEvent(). 1746 There won't be anyone listening for this event anyway */ 1747 1748 if (rbuf->raidPtr->reconControl == NULL) 1749 return; 1750 1751 if (status) { 1752 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1753 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1754 return; 1755 } 1756 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1757 } 1758 /* releases a block on the reconstruction of the indicated stripe */ 1759 int 1760 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1761 { 1762 RF_StripeNum_t stripeID = asmap->stripeID; 1763 RF_ReconParityStripeStatus_t *pssPtr; 1764 RF_ReconUnitNum_t which_ru; 1765 RF_StripeNum_t psid; 1766 RF_CallbackDesc_t *cb; 1767 1768 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1769 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1770 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1771 1772 /* When recon is forced, the pss desc can get deleted before we get 1773 * back to unblock recon. But, this can _only_ happen when recon is 1774 * forced. It would be good to put some kind of sanity check here, but 1775 * how to decide if recon was just forced or not? */ 1776 if (!pssPtr) { 1777 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1778 * RU %d\n",psid,which_ru); */ 1779 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1780 if (rf_reconDebug || rf_pssDebug) 1781 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1782 #endif 1783 goto out; 1784 } 1785 pssPtr->blockCount--; 1786 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1787 raidPtr->raidid, psid, pssPtr->blockCount); 1788 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1789 1790 /* unblock recon before calling CauseReconEvent in case 1791 * CauseReconEvent causes us to try to issue a new read before 1792 * returning here. */ 1793 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1794 1795 1796 while (pssPtr->blockWaitList) { 1797 /* spin through the block-wait list and 1798 release all the waiters */ 1799 cb = pssPtr->blockWaitList; 1800 pssPtr->blockWaitList = cb->next; 1801 cb->next = NULL; 1802 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1803 rf_FreeCallbackDesc(cb); 1804 } 1805 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1806 /* if no recon was requested while recon was blocked */ 1807 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1808 } 1809 } 1810 out: 1811 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1812 return (0); 1813 } 1814