1 /* $NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 98 #define RF_MAX_FREE_RECOND 10 99 #define RF_MIN_FREE_RECOND 4 100 101 #define RF_MAX_FREE_RECONBUFFER 32 102 #define RF_MIN_FREE_RECONBUFFER 16 103 104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 105 RF_RaidDisk_t *, int, RF_RowCol_t); 106 static void FreeReconDesc(RF_RaidReconDesc_t *); 107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 109 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 111 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 112 RF_SectorNum_t *); 113 static int IssueNextWriteRequest(RF_Raid_t *); 114 static int ReconReadDoneProc(void *, int); 115 static int ReconWriteDoneProc(void *, int); 116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 118 RF_RowCol_t, RF_HeadSepLimit_t, 119 RF_ReconUnitNum_t); 120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 121 RF_ReconParityStripeStatus_t *, 122 RF_PerDiskReconCtrl_t *, 123 RF_RowCol_t, RF_StripeNum_t, 124 RF_ReconUnitNum_t); 125 static void ForceReconReadDoneProc(void *, int); 126 static void rf_ShutdownReconstruction(void *); 127 128 struct RF_ReconDoneProc_s { 129 void (*proc) (RF_Raid_t *, void *); 130 void *arg; 131 RF_ReconDoneProc_t *next; 132 }; 133 134 /************************************************************************** 135 * 136 * sets up the parameters that will be used by the reconstruction process 137 * currently there are none, except for those that the layout-specific 138 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 139 * 140 * in the kernel, we fire off the recon thread. 141 * 142 **************************************************************************/ 143 static void 144 rf_ShutdownReconstruction(void *ignored) 145 { 146 pool_destroy(&rf_pools.recond); 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t), 155 "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND); 156 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 157 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 158 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 159 160 return (0); 161 } 162 163 static RF_RaidReconDesc_t * 164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 165 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 166 RF_RowCol_t scol) 167 { 168 169 RF_RaidReconDesc_t *reconDesc; 170 171 reconDesc = pool_get(&rf_pools.recond, PR_WAITOK); 172 reconDesc->raidPtr = raidPtr; 173 reconDesc->col = col; 174 reconDesc->spareDiskPtr = spareDiskPtr; 175 reconDesc->numDisksDone = numDisksDone; 176 reconDesc->scol = scol; 177 reconDesc->next = NULL; 178 179 return (reconDesc); 180 } 181 182 static void 183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 184 { 185 #if RF_RECON_STATS > 0 186 printf("raid%d: %lu recon event waits, %lu recon delays\n", 187 reconDesc->raidPtr->raidid, 188 (long) reconDesc->numReconEventWaits, 189 (long) reconDesc->numReconExecDelays); 190 #endif /* RF_RECON_STATS > 0 */ 191 printf("raid%d: %lu max exec ticks\n", 192 reconDesc->raidPtr->raidid, 193 (long) reconDesc->maxReconExecTicks); 194 #if (RF_RECON_STATS > 0) || defined(KERNEL) 195 printf("\n"); 196 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 197 pool_put(&rf_pools.recond, reconDesc); 198 } 199 200 201 /***************************************************************************** 202 * 203 * primary routine to reconstruct a failed disk. This should be called from 204 * within its own thread. It won't return until reconstruction completes, 205 * fails, or is aborted. 206 *****************************************************************************/ 207 int 208 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 209 { 210 const RF_LayoutSW_t *lp; 211 int rc; 212 213 lp = raidPtr->Layout.map; 214 if (lp->SubmitReconBuffer) { 215 /* 216 * The current infrastructure only supports reconstructing one 217 * disk at a time for each array. 218 */ 219 RF_LOCK_MUTEX(raidPtr->mutex); 220 while (raidPtr->reconInProgress) { 221 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 222 } 223 raidPtr->reconInProgress++; 224 RF_UNLOCK_MUTEX(raidPtr->mutex); 225 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 226 RF_LOCK_MUTEX(raidPtr->mutex); 227 raidPtr->reconInProgress--; 228 RF_UNLOCK_MUTEX(raidPtr->mutex); 229 } else { 230 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 231 lp->parityConfig); 232 rc = EIO; 233 } 234 RF_SIGNAL_COND(raidPtr->waitForReconCond); 235 return (rc); 236 } 237 238 int 239 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 240 { 241 RF_ComponentLabel_t c_label; 242 RF_RaidDisk_t *spareDiskPtr = NULL; 243 RF_RaidReconDesc_t *reconDesc; 244 RF_RowCol_t scol; 245 int numDisksDone = 0, rc; 246 247 /* first look for a spare drive onto which to reconstruct the data */ 248 /* spare disk descriptors are stored in row 0. This may have to 249 * change eventually */ 250 251 RF_LOCK_MUTEX(raidPtr->mutex); 252 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 253 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 254 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 255 if (raidPtr->status != rf_rs_degraded) { 256 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 257 RF_UNLOCK_MUTEX(raidPtr->mutex); 258 return (EINVAL); 259 } 260 scol = (-1); 261 } else { 262 #endif 263 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 264 if (raidPtr->Disks[scol].status == rf_ds_spare) { 265 spareDiskPtr = &raidPtr->Disks[scol]; 266 spareDiskPtr->status = rf_ds_used_spare; 267 break; 268 } 269 } 270 if (!spareDiskPtr) { 271 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 272 RF_UNLOCK_MUTEX(raidPtr->mutex); 273 return (ENOSPC); 274 } 275 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 276 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 277 } 278 #endif 279 RF_UNLOCK_MUTEX(raidPtr->mutex); 280 281 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 282 raidPtr->reconDesc = (void *) reconDesc; 283 #if RF_RECON_STATS > 0 284 reconDesc->hsStallCount = 0; 285 reconDesc->numReconExecDelays = 0; 286 reconDesc->numReconEventWaits = 0; 287 #endif /* RF_RECON_STATS > 0 */ 288 reconDesc->reconExecTimerRunning = 0; 289 reconDesc->reconExecTicks = 0; 290 reconDesc->maxReconExecTicks = 0; 291 rc = rf_ContinueReconstructFailedDisk(reconDesc); 292 293 if (!rc) { 294 /* fix up the component label */ 295 /* Don't actually need the read here.. */ 296 raidread_component_label( 297 raidPtr->raid_cinfo[scol].ci_dev, 298 raidPtr->raid_cinfo[scol].ci_vp, 299 &c_label); 300 301 raid_init_component_label( raidPtr, &c_label); 302 c_label.row = 0; 303 c_label.column = col; 304 c_label.clean = RF_RAID_DIRTY; 305 c_label.status = rf_ds_optimal; 306 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 307 308 /* We've just done a rebuild based on all the other 309 disks, so at this point the parity is known to be 310 clean, even if it wasn't before. */ 311 312 /* XXX doesn't hold for RAID 6!!*/ 313 314 RF_LOCK_MUTEX(raidPtr->mutex); 315 raidPtr->parity_good = RF_RAID_CLEAN; 316 RF_UNLOCK_MUTEX(raidPtr->mutex); 317 318 /* XXXX MORE NEEDED HERE */ 319 320 raidwrite_component_label( 321 raidPtr->raid_cinfo[scol].ci_dev, 322 raidPtr->raid_cinfo[scol].ci_vp, 323 &c_label); 324 325 326 rf_update_component_labels(raidPtr, 327 RF_NORMAL_COMPONENT_UPDATE); 328 329 } 330 return (rc); 331 } 332 333 /* 334 335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 336 and you don't get a spare until the next Monday. With this function 337 (and hot-swappable drives) you can now put your new disk containing 338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 339 rebuild the data "on the spot". 340 341 */ 342 343 int 344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 345 { 346 RF_RaidDisk_t *spareDiskPtr = NULL; 347 RF_RaidReconDesc_t *reconDesc; 348 const RF_LayoutSW_t *lp; 349 RF_ComponentLabel_t c_label; 350 int numDisksDone = 0, rc; 351 struct partinfo dpart; 352 struct vnode *vp; 353 struct vattr va; 354 struct proc *proc; 355 int retcode; 356 int ac; 357 358 lp = raidPtr->Layout.map; 359 if (!lp->SubmitReconBuffer) { 360 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 361 lp->parityConfig); 362 /* wakeup anyone who might be waiting to do a reconstruct */ 363 RF_SIGNAL_COND(raidPtr->waitForReconCond); 364 return(EIO); 365 } 366 367 /* 368 * The current infrastructure only supports reconstructing one 369 * disk at a time for each array. 370 */ 371 RF_LOCK_MUTEX(raidPtr->mutex); 372 373 if (raidPtr->Disks[col].status != rf_ds_failed) { 374 /* "It's gone..." */ 375 raidPtr->numFailures++; 376 raidPtr->Disks[col].status = rf_ds_failed; 377 raidPtr->status = rf_rs_degraded; 378 RF_UNLOCK_MUTEX(raidPtr->mutex); 379 rf_update_component_labels(raidPtr, 380 RF_NORMAL_COMPONENT_UPDATE); 381 RF_LOCK_MUTEX(raidPtr->mutex); 382 } 383 384 while (raidPtr->reconInProgress) { 385 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 386 } 387 388 raidPtr->reconInProgress++; 389 390 /* first look for a spare drive onto which to reconstruct the 391 data. spare disk descriptors are stored in row 0. This 392 may have to change eventually */ 393 394 /* Actually, we don't care if it's failed or not... On a RAID 395 set with correct parity, this function should be callable 396 on any component without ill affects. */ 397 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 398 399 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 400 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 401 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 402 403 raidPtr->reconInProgress--; 404 RF_UNLOCK_MUTEX(raidPtr->mutex); 405 RF_SIGNAL_COND(raidPtr->waitForReconCond); 406 return (EINVAL); 407 } 408 #endif 409 proc = raidPtr->engine_thread; 410 411 /* This device may have been opened successfully the 412 first time. Close it before trying to open it again.. */ 413 414 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 415 #if 0 416 printf("Closed the open device: %s\n", 417 raidPtr->Disks[col].devname); 418 #endif 419 vp = raidPtr->raid_cinfo[col].ci_vp; 420 ac = raidPtr->Disks[col].auto_configured; 421 RF_UNLOCK_MUTEX(raidPtr->mutex); 422 rf_close_component(raidPtr, vp, ac); 423 RF_LOCK_MUTEX(raidPtr->mutex); 424 raidPtr->raid_cinfo[col].ci_vp = NULL; 425 } 426 /* note that this disk was *not* auto_configured (any longer)*/ 427 raidPtr->Disks[col].auto_configured = 0; 428 429 #if 0 430 printf("About to (re-)open the device for rebuilding: %s\n", 431 raidPtr->Disks[col].devname); 432 #endif 433 RF_UNLOCK_MUTEX(raidPtr->mutex); 434 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 435 436 if (retcode) { 437 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 438 raidPtr->Disks[col].devname, retcode); 439 440 /* the component isn't responding properly... 441 must be still dead :-( */ 442 RF_LOCK_MUTEX(raidPtr->mutex); 443 raidPtr->reconInProgress--; 444 RF_UNLOCK_MUTEX(raidPtr->mutex); 445 RF_SIGNAL_COND(raidPtr->waitForReconCond); 446 return(retcode); 447 } 448 449 /* Ok, so we can at least do a lookup... 450 How about actually getting a vp for it? */ 451 452 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 453 RF_LOCK_MUTEX(raidPtr->mutex); 454 raidPtr->reconInProgress--; 455 RF_UNLOCK_MUTEX(raidPtr->mutex); 456 RF_SIGNAL_COND(raidPtr->waitForReconCond); 457 return(retcode); 458 } 459 460 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 461 if (retcode) { 462 RF_LOCK_MUTEX(raidPtr->mutex); 463 raidPtr->reconInProgress--; 464 RF_UNLOCK_MUTEX(raidPtr->mutex); 465 RF_SIGNAL_COND(raidPtr->waitForReconCond); 466 return(retcode); 467 } 468 RF_LOCK_MUTEX(raidPtr->mutex); 469 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 470 471 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 472 rf_protectedSectors; 473 474 raidPtr->raid_cinfo[col].ci_vp = vp; 475 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 476 477 raidPtr->Disks[col].dev = va.va_rdev; 478 479 /* we allow the user to specify that only a fraction 480 of the disks should be used this is just for debug: 481 it speeds up * the parity scan */ 482 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 483 rf_sizePercentage / 100; 484 RF_UNLOCK_MUTEX(raidPtr->mutex); 485 486 spareDiskPtr = &raidPtr->Disks[col]; 487 spareDiskPtr->status = rf_ds_used_spare; 488 489 printf("raid%d: initiating in-place reconstruction on column %d\n", 490 raidPtr->raidid, col); 491 492 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 493 numDisksDone, col); 494 raidPtr->reconDesc = (void *) reconDesc; 495 #if RF_RECON_STATS > 0 496 reconDesc->hsStallCount = 0; 497 reconDesc->numReconExecDelays = 0; 498 reconDesc->numReconEventWaits = 0; 499 #endif /* RF_RECON_STATS > 0 */ 500 reconDesc->reconExecTimerRunning = 0; 501 reconDesc->reconExecTicks = 0; 502 reconDesc->maxReconExecTicks = 0; 503 rc = rf_ContinueReconstructFailedDisk(reconDesc); 504 505 RF_LOCK_MUTEX(raidPtr->mutex); 506 raidPtr->reconInProgress--; 507 RF_UNLOCK_MUTEX(raidPtr->mutex); 508 509 if (!rc) { 510 RF_LOCK_MUTEX(raidPtr->mutex); 511 /* Need to set these here, as at this point it'll be claiming 512 that the disk is in rf_ds_spared! But we know better :-) */ 513 514 raidPtr->Disks[col].status = rf_ds_optimal; 515 raidPtr->status = rf_rs_optimal; 516 RF_UNLOCK_MUTEX(raidPtr->mutex); 517 518 /* fix up the component label */ 519 /* Don't actually need the read here.. */ 520 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 521 raidPtr->raid_cinfo[col].ci_vp, 522 &c_label); 523 524 RF_LOCK_MUTEX(raidPtr->mutex); 525 raid_init_component_label(raidPtr, &c_label); 526 527 c_label.row = 0; 528 c_label.column = col; 529 530 /* We've just done a rebuild based on all the other 531 disks, so at this point the parity is known to be 532 clean, even if it wasn't before. */ 533 534 /* XXX doesn't hold for RAID 6!!*/ 535 536 raidPtr->parity_good = RF_RAID_CLEAN; 537 RF_UNLOCK_MUTEX(raidPtr->mutex); 538 539 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 540 raidPtr->raid_cinfo[col].ci_vp, 541 &c_label); 542 543 rf_update_component_labels(raidPtr, 544 RF_NORMAL_COMPONENT_UPDATE); 545 546 } 547 RF_SIGNAL_COND(raidPtr->waitForReconCond); 548 return (rc); 549 } 550 551 552 int 553 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 554 { 555 RF_Raid_t *raidPtr = reconDesc->raidPtr; 556 RF_RowCol_t col = reconDesc->col; 557 RF_RowCol_t scol = reconDesc->scol; 558 RF_ReconMap_t *mapPtr; 559 RF_ReconCtrl_t *tmp_reconctrl; 560 RF_ReconEvent_t *event; 561 struct timeval etime, elpsd; 562 unsigned long xor_s, xor_resid_us; 563 int i, ds; 564 565 raidPtr->accumXorTimeUs = 0; 566 #if RF_ACC_TRACE > 0 567 /* create one trace record per physical disk */ 568 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 569 #endif 570 571 /* quiesce the array prior to starting recon. this is needed 572 * to assure no nasty interactions with pending user writes. 573 * We need to do this before we change the disk or row status. */ 574 575 Dprintf("RECON: begin request suspend\n"); 576 rf_SuspendNewRequestsAndWait(raidPtr); 577 Dprintf("RECON: end request suspend\n"); 578 579 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 580 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 581 582 RF_LOCK_MUTEX(raidPtr->mutex); 583 584 /* create the reconstruction control pointer and install it in 585 * the right slot */ 586 raidPtr->reconControl = tmp_reconctrl; 587 mapPtr = raidPtr->reconControl->reconMap; 588 raidPtr->status = rf_rs_reconstructing; 589 raidPtr->Disks[col].status = rf_ds_reconstructing; 590 raidPtr->Disks[col].spareCol = scol; 591 592 RF_UNLOCK_MUTEX(raidPtr->mutex); 593 594 RF_GETTIME(raidPtr->reconControl->starttime); 595 596 /* now start up the actual reconstruction: issue a read for 597 * each surviving disk */ 598 599 reconDesc->numDisksDone = 0; 600 for (i = 0; i < raidPtr->numCol; i++) { 601 if (i != col) { 602 /* find and issue the next I/O on the 603 * indicated disk */ 604 if (IssueNextReadRequest(raidPtr, i)) { 605 Dprintf1("RECON: done issuing for c%d\n", i); 606 reconDesc->numDisksDone++; 607 } 608 } 609 } 610 611 Dprintf("RECON: resume requests\n"); 612 rf_ResumeNewRequests(raidPtr); 613 614 /* process reconstruction events until all disks report that 615 * they've completed all work */ 616 617 mapPtr = raidPtr->reconControl->reconMap; 618 619 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 620 621 event = rf_GetNextReconEvent(reconDesc); 622 RF_ASSERT(event); 623 624 if (ProcessReconEvent(raidPtr, event)) 625 reconDesc->numDisksDone++; 626 raidPtr->reconControl->numRUsTotal = 627 mapPtr->totalRUs; 628 raidPtr->reconControl->numRUsComplete = 629 mapPtr->totalRUs - 630 rf_UnitsLeftToReconstruct(mapPtr); 631 #if RF_DEBUG_RECON 632 raidPtr->reconControl->percentComplete = 633 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 634 if (rf_prReconSched) { 635 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 636 } 637 #endif 638 } 639 640 mapPtr = raidPtr->reconControl->reconMap; 641 if (rf_reconDebug) { 642 printf("RECON: all reads completed\n"); 643 } 644 /* at this point all the reads have completed. We now wait 645 * for any pending writes to complete, and then we're done */ 646 647 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 648 649 event = rf_GetNextReconEvent(reconDesc); 650 RF_ASSERT(event); 651 652 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */ 653 #if RF_DEBUG_RECON 654 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 655 if (rf_prReconSched) { 656 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 657 } 658 #endif 659 } 660 661 /* Success: mark the dead disk as reconstructed. We quiesce 662 * the array here to assure no nasty interactions with pending 663 * user accesses when we free up the psstatus structure as 664 * part of FreeReconControl() */ 665 666 rf_SuspendNewRequestsAndWait(raidPtr); 667 668 RF_LOCK_MUTEX(raidPtr->mutex); 669 raidPtr->numFailures--; 670 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 671 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 672 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 673 RF_UNLOCK_MUTEX(raidPtr->mutex); 674 RF_GETTIME(etime); 675 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 676 677 rf_ResumeNewRequests(raidPtr); 678 679 printf("raid%d: Reconstruction of disk at col %d completed\n", 680 raidPtr->raidid, col); 681 xor_s = raidPtr->accumXorTimeUs / 1000000; 682 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 683 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 684 raidPtr->raidid, 685 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 686 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 687 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 688 raidPtr->raidid, 689 (int) raidPtr->reconControl->starttime.tv_sec, 690 (int) raidPtr->reconControl->starttime.tv_usec, 691 (int) etime.tv_sec, (int) etime.tv_usec); 692 693 #if RF_RECON_STATS > 0 694 printf("raid%d: Total head-sep stall count was %d\n", 695 raidPtr->raidid, (int) reconDesc->hsStallCount); 696 #endif /* RF_RECON_STATS > 0 */ 697 rf_FreeReconControl(raidPtr); 698 #if RF_ACC_TRACE > 0 699 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 700 #endif 701 FreeReconDesc(reconDesc); 702 703 return (0); 704 } 705 /***************************************************************************** 706 * do the right thing upon each reconstruction event. 707 * returns nonzero if and only if there is nothing left unread on the 708 * indicated disk 709 *****************************************************************************/ 710 static int 711 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 712 { 713 int retcode = 0, submitblocked; 714 RF_ReconBuffer_t *rbuf; 715 RF_SectorCount_t sectorsPerRU; 716 717 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 718 switch (event->type) { 719 720 /* a read I/O has completed */ 721 case RF_REVENT_READDONE: 722 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 723 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 724 event->col, rbuf->parityStripeID); 725 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 726 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 727 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 728 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 729 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 730 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 731 if (!submitblocked) 732 retcode = IssueNextReadRequest(raidPtr, event->col); 733 break; 734 735 /* a write I/O has completed */ 736 case RF_REVENT_WRITEDONE: 737 #if RF_DEBUG_RECON 738 if (rf_floatingRbufDebug) { 739 rf_CheckFloatingRbufCount(raidPtr, 1); 740 } 741 #endif 742 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 743 rbuf = (RF_ReconBuffer_t *) event->arg; 744 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 745 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 746 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 747 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 748 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 749 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 750 751 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 752 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 753 while(raidPtr->reconControl->rb_lock) { 754 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 755 &raidPtr->reconControl->rb_mutex); 756 } 757 raidPtr->reconControl->rb_lock = 1; 758 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 759 760 raidPtr->numFullReconBuffers--; 761 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 762 763 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 764 raidPtr->reconControl->rb_lock = 0; 765 wakeup(&raidPtr->reconControl->rb_lock); 766 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 767 } else 768 if (rbuf->type == RF_RBUF_TYPE_FORCED) 769 rf_FreeReconBuffer(rbuf); 770 else 771 RF_ASSERT(0); 772 break; 773 774 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 775 * cleared */ 776 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 777 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 778 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 779 * BUFCLEAR event if we 780 * couldn't submit */ 781 retcode = IssueNextReadRequest(raidPtr, event->col); 782 break; 783 784 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 785 * blockage has been cleared */ 786 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 787 retcode = TryToRead(raidPtr, event->col); 788 break; 789 790 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 791 * reconstruction blockage has been 792 * cleared */ 793 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 794 retcode = TryToRead(raidPtr, event->col); 795 break; 796 797 /* a buffer has become ready to write */ 798 case RF_REVENT_BUFREADY: 799 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 800 retcode = IssueNextWriteRequest(raidPtr); 801 #if RF_DEBUG_RECON 802 if (rf_floatingRbufDebug) { 803 rf_CheckFloatingRbufCount(raidPtr, 1); 804 } 805 #endif 806 break; 807 808 /* we need to skip the current RU entirely because it got 809 * recon'd while we were waiting for something else to happen */ 810 case RF_REVENT_SKIP: 811 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 812 retcode = IssueNextReadRequest(raidPtr, event->col); 813 break; 814 815 /* a forced-reconstruction read access has completed. Just 816 * submit the buffer */ 817 case RF_REVENT_FORCEDREADDONE: 818 rbuf = (RF_ReconBuffer_t *) event->arg; 819 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 820 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 821 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 822 RF_ASSERT(!submitblocked); 823 break; 824 825 /* A read I/O failed to complete */ 826 case RF_REVENT_READ_FAILED: 827 /* fallthru to panic... */ 828 829 /* A write I/O failed to complete */ 830 case RF_REVENT_WRITE_FAILED: 831 /* fallthru to panic... */ 832 833 /* a forced read I/O failed to complete */ 834 case RF_REVENT_FORCEDREAD_FAILED: 835 /* fallthru to panic... */ 836 837 default: 838 RF_PANIC(); 839 } 840 rf_FreeReconEventDesc(event); 841 return (retcode); 842 } 843 /***************************************************************************** 844 * 845 * find the next thing that's needed on the indicated disk, and issue 846 * a read request for it. We assume that the reconstruction buffer 847 * associated with this process is free to receive the data. If 848 * reconstruction is blocked on the indicated RU, we issue a 849 * blockage-release request instead of a physical disk read request. 850 * If the current disk gets too far ahead of the others, we issue a 851 * head-separation wait request and return. 852 * 853 * ctrl->{ru_count, curPSID, diskOffset} and 854 * rbuf->failedDiskSectorOffset are maintained to point to the unit 855 * we're currently accessing. Note that this deviates from the 856 * standard C idiom of having counters point to the next thing to be 857 * accessed. This allows us to easily retry when we're blocked by 858 * head separation or reconstruction-blockage events. 859 * 860 * returns nonzero if and only if there is nothing left unread on the 861 * indicated disk 862 * 863 *****************************************************************************/ 864 static int 865 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 866 { 867 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 868 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 869 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 870 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 871 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 872 int do_new_check = 0, retcode = 0, status; 873 874 /* if we are currently the slowest disk, mark that we have to do a new 875 * check */ 876 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 877 do_new_check = 1; 878 879 while (1) { 880 881 ctrl->ru_count++; 882 if (ctrl->ru_count < RUsPerPU) { 883 ctrl->diskOffset += sectorsPerRU; 884 rbuf->failedDiskSectorOffset += sectorsPerRU; 885 } else { 886 ctrl->curPSID++; 887 ctrl->ru_count = 0; 888 /* code left over from when head-sep was based on 889 * parity stripe id */ 890 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 891 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 892 return (1); /* finito! */ 893 } 894 /* find the disk offsets of the start of the parity 895 * stripe on both the current disk and the failed 896 * disk. skip this entire parity stripe if either disk 897 * does not appear in the indicated PS */ 898 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 899 &rbuf->spCol, &rbuf->spOffset); 900 if (status) { 901 ctrl->ru_count = RUsPerPU - 1; 902 continue; 903 } 904 } 905 rbuf->which_ru = ctrl->ru_count; 906 907 /* skip this RU if it's already been reconstructed */ 908 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 909 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 910 continue; 911 } 912 break; 913 } 914 ctrl->headSepCounter++; 915 if (do_new_check) 916 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 917 918 919 /* at this point, we have definitely decided what to do, and we have 920 * only to see if we can actually do it now */ 921 rbuf->parityStripeID = ctrl->curPSID; 922 rbuf->which_ru = ctrl->ru_count; 923 #if RF_ACC_TRACE > 0 924 memset((char *) &raidPtr->recon_tracerecs[col], 0, 925 sizeof(raidPtr->recon_tracerecs[col])); 926 raidPtr->recon_tracerecs[col].reconacc = 1; 927 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 928 #endif 929 retcode = TryToRead(raidPtr, col); 930 return (retcode); 931 } 932 933 /* 934 * tries to issue the next read on the indicated disk. We may be 935 * blocked by (a) the heads being too far apart, or (b) recon on the 936 * indicated RU being blocked due to a write by a user thread. In 937 * this case, we issue a head-sep or blockage wait request, which will 938 * cause this same routine to be invoked again later when the blockage 939 * has cleared. 940 */ 941 942 static int 943 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 944 { 945 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 946 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 947 RF_StripeNum_t psid = ctrl->curPSID; 948 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 949 RF_DiskQueueData_t *req; 950 int status; 951 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 952 953 /* if the current disk is too far ahead of the others, issue a 954 * head-separation wait and return */ 955 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 956 return (0); 957 958 /* allocate a new PSS in case we need it */ 959 newpssPtr = rf_AllocPSStatus(raidPtr); 960 961 RF_LOCK_PSS_MUTEX(raidPtr, psid); 962 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 963 964 if (pssPtr != newpssPtr) { 965 rf_FreePSStatus(raidPtr, newpssPtr); 966 } 967 968 /* if recon is blocked on the indicated parity stripe, issue a 969 * block-wait request and return. this also must mark the indicated RU 970 * in the stripe as under reconstruction if not blocked. */ 971 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 972 if (status == RF_PSS_RECON_BLOCKED) { 973 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 974 goto out; 975 } else 976 if (status == RF_PSS_FORCED_ON_WRITE) { 977 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 978 goto out; 979 } 980 /* make one last check to be sure that the indicated RU didn't get 981 * reconstructed while we were waiting for something else to happen. 982 * This is unfortunate in that it causes us to make this check twice 983 * in the normal case. Might want to make some attempt to re-work 984 * this so that we only do this check if we've definitely blocked on 985 * one of the above checks. When this condition is detected, we may 986 * have just created a bogus status entry, which we need to delete. */ 987 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 988 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 989 if (pssPtr == newpssPtr) 990 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 991 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 992 goto out; 993 } 994 /* found something to read. issue the I/O */ 995 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 996 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 997 #if RF_ACC_TRACE > 0 998 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 999 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1000 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1001 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1002 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1003 #endif 1004 /* should be ok to use a NULL proc pointer here, all the bufs we use 1005 * should be in kernel space */ 1006 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1007 ReconReadDoneProc, (void *) ctrl, NULL, 1008 #if RF_ACC_TRACE > 0 1009 &raidPtr->recon_tracerecs[col], 1010 #else 1011 NULL, 1012 #endif 1013 (void *) raidPtr, 0, NULL); 1014 1015 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1016 1017 ctrl->rbuf->arg = (void *) req; 1018 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1019 pssPtr->issued[col] = 1; 1020 1021 out: 1022 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1023 return (0); 1024 } 1025 1026 1027 /* 1028 * given a parity stripe ID, we want to find out whether both the 1029 * current disk and the failed disk exist in that parity stripe. If 1030 * not, we want to skip this whole PS. If so, we want to find the 1031 * disk offset of the start of the PS on both the current disk and the 1032 * failed disk. 1033 * 1034 * this works by getting a list of disks comprising the indicated 1035 * parity stripe, and searching the list for the current and failed 1036 * disks. Once we've decided they both exist in the parity stripe, we 1037 * need to decide whether each is data or parity, so that we'll know 1038 * which mapping function to call to get the corresponding disk 1039 * offsets. 1040 * 1041 * this is kind of unpleasant, but doing it this way allows the 1042 * reconstruction code to use parity stripe IDs rather than physical 1043 * disks address to march through the failed disk, which greatly 1044 * simplifies a lot of code, as well as eliminating the need for a 1045 * reverse-mapping function. I also think it will execute faster, 1046 * since the calls to the mapping module are kept to a minimum. 1047 * 1048 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1049 * THE STRIPE IN THE CORRECT ORDER 1050 * 1051 * raidPtr - raid descriptor 1052 * psid - parity stripe identifier 1053 * col - column of disk to find the offsets for 1054 * spCol - out: col of spare unit for failed unit 1055 * spOffset - out: offset into disk containing spare unit 1056 * 1057 */ 1058 1059 1060 static int 1061 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1062 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1063 RF_SectorNum_t *outFailedDiskSectorOffset, 1064 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1065 { 1066 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1067 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1068 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1069 RF_RowCol_t *diskids; 1070 u_int i, j, k, i_offset, j_offset; 1071 RF_RowCol_t pcol; 1072 int testcol; 1073 RF_SectorNum_t poffset; 1074 char i_is_parity = 0, j_is_parity = 0; 1075 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1076 1077 /* get a listing of the disks comprising that stripe */ 1078 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1079 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1080 RF_ASSERT(diskids); 1081 1082 /* reject this entire parity stripe if it does not contain the 1083 * indicated disk or it does not contain the failed disk */ 1084 1085 for (i = 0; i < stripeWidth; i++) { 1086 if (col == diskids[i]) 1087 break; 1088 } 1089 if (i == stripeWidth) 1090 goto skipit; 1091 for (j = 0; j < stripeWidth; j++) { 1092 if (fcol == diskids[j]) 1093 break; 1094 } 1095 if (j == stripeWidth) { 1096 goto skipit; 1097 } 1098 /* find out which disk the parity is on */ 1099 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1100 1101 /* find out if either the current RU or the failed RU is parity */ 1102 /* also, if the parity occurs in this stripe prior to the data and/or 1103 * failed col, we need to decrement i and/or j */ 1104 for (k = 0; k < stripeWidth; k++) 1105 if (diskids[k] == pcol) 1106 break; 1107 RF_ASSERT(k < stripeWidth); 1108 i_offset = i; 1109 j_offset = j; 1110 if (k < i) 1111 i_offset--; 1112 else 1113 if (k == i) { 1114 i_is_parity = 1; 1115 i_offset = 0; 1116 } /* set offsets to zero to disable multiply 1117 * below */ 1118 if (k < j) 1119 j_offset--; 1120 else 1121 if (k == j) { 1122 j_is_parity = 1; 1123 j_offset = 0; 1124 } 1125 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1126 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1127 * tells us how far into the stripe the [current,failed] disk is. */ 1128 1129 /* call the mapping routine to get the offset into the current disk, 1130 * repeat for failed disk. */ 1131 if (i_is_parity) 1132 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1133 else 1134 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1135 1136 RF_ASSERT(col == testcol); 1137 1138 if (j_is_parity) 1139 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1140 else 1141 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1142 RF_ASSERT(fcol == testcol); 1143 1144 /* now locate the spare unit for the failed unit */ 1145 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1146 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1147 if (j_is_parity) 1148 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1149 else 1150 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1151 } else { 1152 #endif 1153 *spCol = raidPtr->reconControl->spareCol; 1154 *spOffset = *outFailedDiskSectorOffset; 1155 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1156 } 1157 #endif 1158 return (0); 1159 1160 skipit: 1161 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1162 psid, col); 1163 return (1); 1164 } 1165 /* this is called when a buffer has become ready to write to the replacement disk */ 1166 static int 1167 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1168 { 1169 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1170 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1171 #if RF_ACC_TRACE > 0 1172 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1173 #endif 1174 RF_ReconBuffer_t *rbuf; 1175 RF_DiskQueueData_t *req; 1176 1177 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1178 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1179 * have gotten the event that sent us here */ 1180 RF_ASSERT(rbuf->pssPtr); 1181 1182 rbuf->pssPtr->writeRbuf = rbuf; 1183 rbuf->pssPtr = NULL; 1184 1185 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1186 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1187 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1188 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1189 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1190 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1191 1192 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1193 * kernel space */ 1194 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1195 sectorsPerRU, rbuf->buffer, 1196 rbuf->parityStripeID, rbuf->which_ru, 1197 ReconWriteDoneProc, (void *) rbuf, NULL, 1198 #if RF_ACC_TRACE > 0 1199 &raidPtr->recon_tracerecs[fcol], 1200 #else 1201 NULL, 1202 #endif 1203 (void *) raidPtr, 0, NULL); 1204 1205 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1206 1207 rbuf->arg = (void *) req; 1208 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1209 1210 return (0); 1211 } 1212 1213 /* 1214 * this gets called upon the completion of a reconstruction read 1215 * operation the arg is a pointer to the per-disk reconstruction 1216 * control structure for the process that just finished a read. 1217 * 1218 * called at interrupt context in the kernel, so don't do anything 1219 * illegal here. 1220 */ 1221 static int 1222 ReconReadDoneProc(void *arg, int status) 1223 { 1224 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1225 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1226 1227 if (status) { 1228 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1229 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1230 return(0); 1231 } 1232 #if RF_ACC_TRACE > 0 1233 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1234 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1235 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1236 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1237 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1238 #endif 1239 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1240 return (0); 1241 } 1242 /* this gets called upon the completion of a reconstruction write operation. 1243 * the arg is a pointer to the rbuf that was just written 1244 * 1245 * called at interrupt context in the kernel, so don't do anything illegal here. 1246 */ 1247 static int 1248 ReconWriteDoneProc(void *arg, int status) 1249 { 1250 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1251 1252 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1253 if (status) { 1254 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1255 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1256 return(0); 1257 } 1258 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1259 return (0); 1260 } 1261 1262 1263 /* 1264 * computes a new minimum head sep, and wakes up anyone who needs to 1265 * be woken as a result 1266 */ 1267 static void 1268 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1269 { 1270 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1271 RF_HeadSepLimit_t new_min; 1272 RF_RowCol_t i; 1273 RF_CallbackDesc_t *p; 1274 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1275 * of a minimum */ 1276 1277 1278 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1279 while(reconCtrlPtr->rb_lock) { 1280 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1281 } 1282 reconCtrlPtr->rb_lock = 1; 1283 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1284 1285 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1286 for (i = 0; i < raidPtr->numCol; i++) 1287 if (i != reconCtrlPtr->fcol) { 1288 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1289 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1290 } 1291 /* set the new minimum and wake up anyone who can now run again */ 1292 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1293 reconCtrlPtr->minHeadSepCounter = new_min; 1294 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1295 while (reconCtrlPtr->headSepCBList) { 1296 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1297 break; 1298 p = reconCtrlPtr->headSepCBList; 1299 reconCtrlPtr->headSepCBList = p->next; 1300 p->next = NULL; 1301 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1302 rf_FreeCallbackDesc(p); 1303 } 1304 1305 } 1306 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1307 reconCtrlPtr->rb_lock = 0; 1308 wakeup(&reconCtrlPtr->rb_lock); 1309 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1310 } 1311 1312 /* 1313 * checks to see that the maximum head separation will not be violated 1314 * if we initiate a reconstruction I/O on the indicated disk. 1315 * Limiting the maximum head separation between two disks eliminates 1316 * the nasty buffer-stall conditions that occur when one disk races 1317 * ahead of the others and consumes all of the floating recon buffers. 1318 * This code is complex and unpleasant but it's necessary to avoid 1319 * some very nasty, albeit fairly rare, reconstruction behavior. 1320 * 1321 * returns non-zero if and only if we have to stop working on the 1322 * indicated disk due to a head-separation delay. 1323 */ 1324 static int 1325 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1326 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1327 RF_ReconUnitNum_t which_ru) 1328 { 1329 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1330 RF_CallbackDesc_t *cb, *p, *pt; 1331 int retval = 0; 1332 1333 /* if we're too far ahead of the slowest disk, stop working on this 1334 * disk until the slower ones catch up. We do this by scheduling a 1335 * wakeup callback for the time when the slowest disk has caught up. 1336 * We define "caught up" with 20% hysteresis, i.e. the head separation 1337 * must have fallen to at most 80% of the max allowable head 1338 * separation before we'll wake up. 1339 * 1340 */ 1341 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1342 while(reconCtrlPtr->rb_lock) { 1343 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1344 } 1345 reconCtrlPtr->rb_lock = 1; 1346 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1347 if ((raidPtr->headSepLimit >= 0) && 1348 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1349 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1350 raidPtr->raidid, col, ctrl->headSepCounter, 1351 reconCtrlPtr->minHeadSepCounter, 1352 raidPtr->headSepLimit); 1353 cb = rf_AllocCallbackDesc(); 1354 /* the minHeadSepCounter value we have to get to before we'll 1355 * wake up. build in 20% hysteresis. */ 1356 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1357 cb->col = col; 1358 cb->next = NULL; 1359 1360 /* insert this callback descriptor into the sorted list of 1361 * pending head-sep callbacks */ 1362 p = reconCtrlPtr->headSepCBList; 1363 if (!p) 1364 reconCtrlPtr->headSepCBList = cb; 1365 else 1366 if (cb->callbackArg.v < p->callbackArg.v) { 1367 cb->next = reconCtrlPtr->headSepCBList; 1368 reconCtrlPtr->headSepCBList = cb; 1369 } else { 1370 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1371 cb->next = p; 1372 pt->next = cb; 1373 } 1374 retval = 1; 1375 #if RF_RECON_STATS > 0 1376 ctrl->reconCtrl->reconDesc->hsStallCount++; 1377 #endif /* RF_RECON_STATS > 0 */ 1378 } 1379 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1380 reconCtrlPtr->rb_lock = 0; 1381 wakeup(&reconCtrlPtr->rb_lock); 1382 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1383 1384 return (retval); 1385 } 1386 /* 1387 * checks to see if reconstruction has been either forced or blocked 1388 * by a user operation. if forced, we skip this RU entirely. else if 1389 * blocked, put ourselves on the wait list. else return 0. 1390 * 1391 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1392 */ 1393 static int 1394 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1395 RF_ReconParityStripeStatus_t *pssPtr, 1396 RF_PerDiskReconCtrl_t *ctrl, 1397 RF_RowCol_t col, RF_StripeNum_t psid, 1398 RF_ReconUnitNum_t which_ru) 1399 { 1400 RF_CallbackDesc_t *cb; 1401 int retcode = 0; 1402 1403 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1404 retcode = RF_PSS_FORCED_ON_WRITE; 1405 else 1406 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1407 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1408 cb = rf_AllocCallbackDesc(); /* append ourselves to 1409 * the blockage-wait 1410 * list */ 1411 cb->col = col; 1412 cb->next = pssPtr->blockWaitList; 1413 pssPtr->blockWaitList = cb; 1414 retcode = RF_PSS_RECON_BLOCKED; 1415 } 1416 if (!retcode) 1417 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1418 * reconstruction */ 1419 1420 return (retcode); 1421 } 1422 /* 1423 * if reconstruction is currently ongoing for the indicated stripeID, 1424 * reconstruction is forced to completion and we return non-zero to 1425 * indicate that the caller must wait. If not, then reconstruction is 1426 * blocked on the indicated stripe and the routine returns zero. If 1427 * and only if we return non-zero, we'll cause the cbFunc to get 1428 * invoked with the cbArg when the reconstruction has completed. 1429 */ 1430 int 1431 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1432 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1433 { 1434 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1435 * forcing recon on */ 1436 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1437 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1438 * stripe status structure */ 1439 RF_StripeNum_t psid; /* parity stripe id */ 1440 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1441 * offset */ 1442 RF_RowCol_t *diskids; 1443 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1444 RF_RowCol_t fcol, diskno, i; 1445 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1446 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1447 RF_CallbackDesc_t *cb; 1448 int nPromoted; 1449 1450 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1451 1452 /* allocate a new PSS in case we need it */ 1453 newpssPtr = rf_AllocPSStatus(raidPtr); 1454 1455 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1456 1457 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1458 1459 if (pssPtr != newpssPtr) { 1460 rf_FreePSStatus(raidPtr, newpssPtr); 1461 } 1462 1463 /* if recon is not ongoing on this PS, just return */ 1464 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1465 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1466 return (0); 1467 } 1468 /* otherwise, we have to wait for reconstruction to complete on this 1469 * RU. */ 1470 /* In order to avoid waiting for a potentially large number of 1471 * low-priority accesses to complete, we force a normal-priority (i.e. 1472 * not low-priority) reconstruction on this RU. */ 1473 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1474 DDprintf1("Forcing recon on psid %ld\n", psid); 1475 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1476 * forced recon */ 1477 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1478 * that we just set */ 1479 fcol = raidPtr->reconControl->fcol; 1480 1481 /* get a listing of the disks comprising the indicated stripe */ 1482 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1483 1484 /* For previously issued reads, elevate them to normal 1485 * priority. If the I/O has already completed, it won't be 1486 * found in the queue, and hence this will be a no-op. For 1487 * unissued reads, allocate buffers and issue new reads. The 1488 * fact that we've set the FORCED bit means that the regular 1489 * recon procs will not re-issue these reqs */ 1490 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1491 if ((diskno = diskids[i]) != fcol) { 1492 if (pssPtr->issued[diskno]) { 1493 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1494 if (rf_reconDebug && nPromoted) 1495 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1496 } else { 1497 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1498 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1499 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1500 * location */ 1501 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1502 new_rbuf->which_ru = which_ru; 1503 new_rbuf->failedDiskSectorOffset = fd_offset; 1504 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1505 1506 /* use NULL b_proc b/c all addrs 1507 * should be in kernel space */ 1508 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1509 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1510 NULL, (void *) raidPtr, 0, NULL); 1511 1512 RF_ASSERT(req); /* XXX -- fix this -- 1513 * XXX */ 1514 1515 new_rbuf->arg = req; 1516 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1517 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1518 } 1519 } 1520 /* if the write is sitting in the disk queue, elevate its 1521 * priority */ 1522 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1523 printf("raid%d: promoted write to col %d\n", 1524 raidPtr->raidid, fcol); 1525 } 1526 /* install a callback descriptor to be invoked when recon completes on 1527 * this parity stripe. */ 1528 cb = rf_AllocCallbackDesc(); 1529 /* XXX the following is bogus.. These functions don't really match!! 1530 * GO */ 1531 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1532 cb->callbackArg.p = (void *) cbArg; 1533 cb->next = pssPtr->procWaitList; 1534 pssPtr->procWaitList = cb; 1535 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1536 raidPtr->raidid, psid); 1537 1538 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1539 return (1); 1540 } 1541 /* called upon the completion of a forced reconstruction read. 1542 * all we do is schedule the FORCEDREADONE event. 1543 * called at interrupt context in the kernel, so don't do anything illegal here. 1544 */ 1545 static void 1546 ForceReconReadDoneProc(void *arg, int status) 1547 { 1548 RF_ReconBuffer_t *rbuf = arg; 1549 1550 if (status) { 1551 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1552 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1553 } 1554 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1555 } 1556 /* releases a block on the reconstruction of the indicated stripe */ 1557 int 1558 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1559 { 1560 RF_StripeNum_t stripeID = asmap->stripeID; 1561 RF_ReconParityStripeStatus_t *pssPtr; 1562 RF_ReconUnitNum_t which_ru; 1563 RF_StripeNum_t psid; 1564 RF_CallbackDesc_t *cb; 1565 1566 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1567 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1568 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1569 1570 /* When recon is forced, the pss desc can get deleted before we get 1571 * back to unblock recon. But, this can _only_ happen when recon is 1572 * forced. It would be good to put some kind of sanity check here, but 1573 * how to decide if recon was just forced or not? */ 1574 if (!pssPtr) { 1575 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1576 * RU %d\n",psid,which_ru); */ 1577 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1578 if (rf_reconDebug || rf_pssDebug) 1579 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1580 #endif 1581 goto out; 1582 } 1583 pssPtr->blockCount--; 1584 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1585 raidPtr->raidid, psid, pssPtr->blockCount); 1586 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1587 1588 /* unblock recon before calling CauseReconEvent in case 1589 * CauseReconEvent causes us to try to issue a new read before 1590 * returning here. */ 1591 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1592 1593 1594 while (pssPtr->blockWaitList) { 1595 /* spin through the block-wait list and 1596 release all the waiters */ 1597 cb = pssPtr->blockWaitList; 1598 pssPtr->blockWaitList = cb->next; 1599 cb->next = NULL; 1600 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1601 rf_FreeCallbackDesc(cb); 1602 } 1603 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1604 /* if no recon was requested while recon was blocked */ 1605 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1606 } 1607 } 1608 out: 1609 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1610 return (0); 1611 } 1612