xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision db6316d1518382eecd2fdbe55a1205e0620a1b35)
1 /*	$NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #if RF_DEBUG_RECON
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 #else /* RF_DEBUG_RECON */
82 
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94 
95 #endif /* RF_DEBUG_RECON */
96 
97 
98 #define RF_MAX_FREE_RECOND  10
99 #define RF_MIN_FREE_RECOND  4
100 
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103 
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 					      RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 				RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 			       RF_RowCol_t, RF_HeadSepLimit_t,
119 			       RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 					      RF_ReconParityStripeStatus_t *,
122 					      RF_PerDiskReconCtrl_t *,
123 					      RF_RowCol_t, RF_StripeNum_t,
124 					      RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127 
128 struct RF_ReconDoneProc_s {
129 	void    (*proc) (RF_Raid_t *, void *);
130 	void   *arg;
131 	RF_ReconDoneProc_t *next;
132 };
133 
134 /**************************************************************************
135  *
136  * sets up the parameters that will be used by the reconstruction process
137  * currently there are none, except for those that the layout-specific
138  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139  *
140  * in the kernel, we fire off the recon thread.
141  *
142  **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 	pool_destroy(&rf_pools.recond);
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t),
155 		     "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND);
156 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
157 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
158 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
159 
160 	return (0);
161 }
162 
163 static RF_RaidReconDesc_t *
164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
165 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
166 		   RF_RowCol_t scol)
167 {
168 
169 	RF_RaidReconDesc_t *reconDesc;
170 
171 	reconDesc = pool_get(&rf_pools.recond, PR_WAITOK);
172 	reconDesc->raidPtr = raidPtr;
173 	reconDesc->col = col;
174 	reconDesc->spareDiskPtr = spareDiskPtr;
175 	reconDesc->numDisksDone = numDisksDone;
176 	reconDesc->scol = scol;
177 	reconDesc->next = NULL;
178 
179 	return (reconDesc);
180 }
181 
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 	       reconDesc->raidPtr->raidid,
188 	       (long) reconDesc->numReconEventWaits,
189 	       (long) reconDesc->numReconExecDelays);
190 #endif				/* RF_RECON_STATS > 0 */
191 	printf("raid%d: %lu max exec ticks\n",
192 	       reconDesc->raidPtr->raidid,
193 	       (long) reconDesc->maxReconExecTicks);
194 #if (RF_RECON_STATS > 0) || defined(KERNEL)
195 	printf("\n");
196 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
197 	pool_put(&rf_pools.recond, reconDesc);
198 }
199 
200 
201 /*****************************************************************************
202  *
203  * primary routine to reconstruct a failed disk.  This should be called from
204  * within its own thread.  It won't return until reconstruction completes,
205  * fails, or is aborted.
206  *****************************************************************************/
207 int
208 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
209 {
210 	const RF_LayoutSW_t *lp;
211 	int     rc;
212 
213 	lp = raidPtr->Layout.map;
214 	if (lp->SubmitReconBuffer) {
215 		/*
216 	         * The current infrastructure only supports reconstructing one
217 	         * disk at a time for each array.
218 	         */
219 		RF_LOCK_MUTEX(raidPtr->mutex);
220 		while (raidPtr->reconInProgress) {
221 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
222 		}
223 		raidPtr->reconInProgress++;
224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
225 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
226 		RF_LOCK_MUTEX(raidPtr->mutex);
227 		raidPtr->reconInProgress--;
228 		RF_UNLOCK_MUTEX(raidPtr->mutex);
229 	} else {
230 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
231 		    lp->parityConfig);
232 		rc = EIO;
233 	}
234 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
235 	return (rc);
236 }
237 
238 int
239 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
240 {
241 	RF_ComponentLabel_t c_label;
242 	RF_RaidDisk_t *spareDiskPtr = NULL;
243 	RF_RaidReconDesc_t *reconDesc;
244 	RF_RowCol_t scol;
245 	int     numDisksDone = 0, rc;
246 
247 	/* first look for a spare drive onto which to reconstruct the data */
248 	/* spare disk descriptors are stored in row 0.  This may have to
249 	 * change eventually */
250 
251 	RF_LOCK_MUTEX(raidPtr->mutex);
252 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
253 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
254 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
255 		if (raidPtr->status != rf_rs_degraded) {
256 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
257 			RF_UNLOCK_MUTEX(raidPtr->mutex);
258 			return (EINVAL);
259 		}
260 		scol = (-1);
261 	} else {
262 #endif
263 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
264 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
265 				spareDiskPtr = &raidPtr->Disks[scol];
266 				spareDiskPtr->status = rf_ds_used_spare;
267 				break;
268 			}
269 		}
270 		if (!spareDiskPtr) {
271 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
272 			RF_UNLOCK_MUTEX(raidPtr->mutex);
273 			return (ENOSPC);
274 		}
275 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
276 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
277 	}
278 #endif
279 	RF_UNLOCK_MUTEX(raidPtr->mutex);
280 
281 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
282 	raidPtr->reconDesc = (void *) reconDesc;
283 #if RF_RECON_STATS > 0
284 	reconDesc->hsStallCount = 0;
285 	reconDesc->numReconExecDelays = 0;
286 	reconDesc->numReconEventWaits = 0;
287 #endif				/* RF_RECON_STATS > 0 */
288 	reconDesc->reconExecTimerRunning = 0;
289 	reconDesc->reconExecTicks = 0;
290 	reconDesc->maxReconExecTicks = 0;
291 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
292 
293 	if (!rc) {
294 		/* fix up the component label */
295 		/* Don't actually need the read here.. */
296 		raidread_component_label(
297                         raidPtr->raid_cinfo[scol].ci_dev,
298 			raidPtr->raid_cinfo[scol].ci_vp,
299 			&c_label);
300 
301 		raid_init_component_label( raidPtr, &c_label);
302 		c_label.row = 0;
303 		c_label.column = col;
304 		c_label.clean = RF_RAID_DIRTY;
305 		c_label.status = rf_ds_optimal;
306 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
307 
308 		/* We've just done a rebuild based on all the other
309 		   disks, so at this point the parity is known to be
310 		   clean, even if it wasn't before. */
311 
312 		/* XXX doesn't hold for RAID 6!!*/
313 
314 		RF_LOCK_MUTEX(raidPtr->mutex);
315 		raidPtr->parity_good = RF_RAID_CLEAN;
316 		RF_UNLOCK_MUTEX(raidPtr->mutex);
317 
318 		/* XXXX MORE NEEDED HERE */
319 
320 		raidwrite_component_label(
321                         raidPtr->raid_cinfo[scol].ci_dev,
322 			raidPtr->raid_cinfo[scol].ci_vp,
323 			&c_label);
324 
325 
326 		rf_update_component_labels(raidPtr,
327 					   RF_NORMAL_COMPONENT_UPDATE);
328 
329 	}
330 	return (rc);
331 }
332 
333 /*
334 
335    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
336    and you don't get a spare until the next Monday.  With this function
337    (and hot-swappable drives) you can now put your new disk containing
338    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
339    rebuild the data "on the spot".
340 
341 */
342 
343 int
344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
345 {
346 	RF_RaidDisk_t *spareDiskPtr = NULL;
347 	RF_RaidReconDesc_t *reconDesc;
348 	const RF_LayoutSW_t *lp;
349 	RF_ComponentLabel_t c_label;
350 	int     numDisksDone = 0, rc;
351 	struct partinfo dpart;
352 	struct vnode *vp;
353 	struct vattr va;
354 	struct proc *proc;
355 	int retcode;
356 	int ac;
357 
358 	lp = raidPtr->Layout.map;
359 	if (!lp->SubmitReconBuffer) {
360 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
361 			     lp->parityConfig);
362 		/* wakeup anyone who might be waiting to do a reconstruct */
363 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
364 		return(EIO);
365 	}
366 
367 	/*
368 	 * The current infrastructure only supports reconstructing one
369 	 * disk at a time for each array.
370 	 */
371 	RF_LOCK_MUTEX(raidPtr->mutex);
372 
373 	if (raidPtr->Disks[col].status != rf_ds_failed) {
374 		/* "It's gone..." */
375 		raidPtr->numFailures++;
376 		raidPtr->Disks[col].status = rf_ds_failed;
377 		raidPtr->status = rf_rs_degraded;
378 		RF_UNLOCK_MUTEX(raidPtr->mutex);
379 		rf_update_component_labels(raidPtr,
380 					   RF_NORMAL_COMPONENT_UPDATE);
381 		RF_LOCK_MUTEX(raidPtr->mutex);
382 	}
383 
384 	while (raidPtr->reconInProgress) {
385 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
386 	}
387 
388 	raidPtr->reconInProgress++;
389 
390 	/* first look for a spare drive onto which to reconstruct the
391 	   data.  spare disk descriptors are stored in row 0.  This
392 	   may have to change eventually */
393 
394 	/* Actually, we don't care if it's failed or not...  On a RAID
395 	   set with correct parity, this function should be callable
396 	   on any component without ill affects. */
397 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
398 
399 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
400 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
401 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
402 
403 		raidPtr->reconInProgress--;
404 		RF_UNLOCK_MUTEX(raidPtr->mutex);
405 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
406 		return (EINVAL);
407 	}
408 #endif
409 	proc = raidPtr->engine_thread;
410 
411 	/* This device may have been opened successfully the
412 	   first time. Close it before trying to open it again.. */
413 
414 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
415 #if 0
416 		printf("Closed the open device: %s\n",
417 		       raidPtr->Disks[col].devname);
418 #endif
419 		vp = raidPtr->raid_cinfo[col].ci_vp;
420 		ac = raidPtr->Disks[col].auto_configured;
421 		RF_UNLOCK_MUTEX(raidPtr->mutex);
422 		rf_close_component(raidPtr, vp, ac);
423 		RF_LOCK_MUTEX(raidPtr->mutex);
424 		raidPtr->raid_cinfo[col].ci_vp = NULL;
425 	}
426 	/* note that this disk was *not* auto_configured (any longer)*/
427 	raidPtr->Disks[col].auto_configured = 0;
428 
429 #if 0
430 	printf("About to (re-)open the device for rebuilding: %s\n",
431 	       raidPtr->Disks[col].devname);
432 #endif
433 	RF_UNLOCK_MUTEX(raidPtr->mutex);
434 	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
435 
436 	if (retcode) {
437 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
438 		       raidPtr->Disks[col].devname, retcode);
439 
440 		/* the component isn't responding properly...
441 		   must be still dead :-( */
442 		RF_LOCK_MUTEX(raidPtr->mutex);
443 		raidPtr->reconInProgress--;
444 		RF_UNLOCK_MUTEX(raidPtr->mutex);
445 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
446 		return(retcode);
447 	}
448 
449 	/* Ok, so we can at least do a lookup...
450 	   How about actually getting a vp for it? */
451 
452 	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
453 		RF_LOCK_MUTEX(raidPtr->mutex);
454 		raidPtr->reconInProgress--;
455 		RF_UNLOCK_MUTEX(raidPtr->mutex);
456 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
457 		return(retcode);
458 	}
459 
460 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
461 	if (retcode) {
462 		RF_LOCK_MUTEX(raidPtr->mutex);
463 		raidPtr->reconInProgress--;
464 		RF_UNLOCK_MUTEX(raidPtr->mutex);
465 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
466 		return(retcode);
467 	}
468 	RF_LOCK_MUTEX(raidPtr->mutex);
469 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
470 
471 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
472 		rf_protectedSectors;
473 
474 	raidPtr->raid_cinfo[col].ci_vp = vp;
475 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
476 
477 	raidPtr->Disks[col].dev = va.va_rdev;
478 
479 	/* we allow the user to specify that only a fraction
480 	   of the disks should be used this is just for debug:
481 	   it speeds up * the parity scan */
482 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
483 		rf_sizePercentage / 100;
484 	RF_UNLOCK_MUTEX(raidPtr->mutex);
485 
486 	spareDiskPtr = &raidPtr->Disks[col];
487 	spareDiskPtr->status = rf_ds_used_spare;
488 
489 	printf("raid%d: initiating in-place reconstruction on column %d\n",
490 	       raidPtr->raidid, col);
491 
492 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
493 				       numDisksDone, col);
494 	raidPtr->reconDesc = (void *) reconDesc;
495 #if RF_RECON_STATS > 0
496 	reconDesc->hsStallCount = 0;
497 	reconDesc->numReconExecDelays = 0;
498 	reconDesc->numReconEventWaits = 0;
499 #endif				/* RF_RECON_STATS > 0 */
500 	reconDesc->reconExecTimerRunning = 0;
501 	reconDesc->reconExecTicks = 0;
502 	reconDesc->maxReconExecTicks = 0;
503 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
504 
505 	RF_LOCK_MUTEX(raidPtr->mutex);
506 	raidPtr->reconInProgress--;
507 	RF_UNLOCK_MUTEX(raidPtr->mutex);
508 
509 	if (!rc) {
510 		RF_LOCK_MUTEX(raidPtr->mutex);
511 		/* Need to set these here, as at this point it'll be claiming
512 		   that the disk is in rf_ds_spared!  But we know better :-) */
513 
514 		raidPtr->Disks[col].status = rf_ds_optimal;
515 		raidPtr->status = rf_rs_optimal;
516 		RF_UNLOCK_MUTEX(raidPtr->mutex);
517 
518 		/* fix up the component label */
519 		/* Don't actually need the read here.. */
520 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
521 					 raidPtr->raid_cinfo[col].ci_vp,
522 					 &c_label);
523 
524 		RF_LOCK_MUTEX(raidPtr->mutex);
525 		raid_init_component_label(raidPtr, &c_label);
526 
527 		c_label.row = 0;
528 		c_label.column = col;
529 
530 		/* We've just done a rebuild based on all the other
531 		   disks, so at this point the parity is known to be
532 		   clean, even if it wasn't before. */
533 
534 		/* XXX doesn't hold for RAID 6!!*/
535 
536 		raidPtr->parity_good = RF_RAID_CLEAN;
537 		RF_UNLOCK_MUTEX(raidPtr->mutex);
538 
539 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
540 					  raidPtr->raid_cinfo[col].ci_vp,
541 					  &c_label);
542 
543 		rf_update_component_labels(raidPtr,
544 					   RF_NORMAL_COMPONENT_UPDATE);
545 
546 	}
547 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
548 	return (rc);
549 }
550 
551 
552 int
553 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
554 {
555 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
556 	RF_RowCol_t col = reconDesc->col;
557 	RF_RowCol_t scol = reconDesc->scol;
558 	RF_ReconMap_t *mapPtr;
559 	RF_ReconCtrl_t *tmp_reconctrl;
560 	RF_ReconEvent_t *event;
561 	struct timeval etime, elpsd;
562 	unsigned long xor_s, xor_resid_us;
563 	int     i, ds;
564 
565 	raidPtr->accumXorTimeUs = 0;
566 #if RF_ACC_TRACE > 0
567 	/* create one trace record per physical disk */
568 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
569 #endif
570 
571 	/* quiesce the array prior to starting recon.  this is needed
572 	 * to assure no nasty interactions with pending user writes.
573 	 * We need to do this before we change the disk or row status. */
574 
575 	Dprintf("RECON: begin request suspend\n");
576 	rf_SuspendNewRequestsAndWait(raidPtr);
577 	Dprintf("RECON: end request suspend\n");
578 
579 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
580 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
581 
582 	RF_LOCK_MUTEX(raidPtr->mutex);
583 
584 	/* create the reconstruction control pointer and install it in
585 	 * the right slot */
586 	raidPtr->reconControl = tmp_reconctrl;
587 	mapPtr = raidPtr->reconControl->reconMap;
588 	raidPtr->status = rf_rs_reconstructing;
589 	raidPtr->Disks[col].status = rf_ds_reconstructing;
590 	raidPtr->Disks[col].spareCol = scol;
591 
592 	RF_UNLOCK_MUTEX(raidPtr->mutex);
593 
594 	RF_GETTIME(raidPtr->reconControl->starttime);
595 
596 	/* now start up the actual reconstruction: issue a read for
597 	 * each surviving disk */
598 
599 	reconDesc->numDisksDone = 0;
600 	for (i = 0; i < raidPtr->numCol; i++) {
601 		if (i != col) {
602 			/* find and issue the next I/O on the
603 			 * indicated disk */
604 			if (IssueNextReadRequest(raidPtr, i)) {
605 				Dprintf1("RECON: done issuing for c%d\n", i);
606 				reconDesc->numDisksDone++;
607 			}
608 		}
609 	}
610 
611 	Dprintf("RECON: resume requests\n");
612 	rf_ResumeNewRequests(raidPtr);
613 
614 	/* process reconstruction events until all disks report that
615 	 * they've completed all work */
616 
617 	mapPtr = raidPtr->reconControl->reconMap;
618 
619 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
620 
621 		event = rf_GetNextReconEvent(reconDesc);
622 		RF_ASSERT(event);
623 
624 		if (ProcessReconEvent(raidPtr, event))
625 			reconDesc->numDisksDone++;
626 		raidPtr->reconControl->numRUsTotal =
627 			mapPtr->totalRUs;
628 		raidPtr->reconControl->numRUsComplete =
629 			mapPtr->totalRUs -
630 			rf_UnitsLeftToReconstruct(mapPtr);
631 #if RF_DEBUG_RECON
632 		raidPtr->reconControl->percentComplete =
633 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
634 		if (rf_prReconSched) {
635 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
636 		}
637 #endif
638 	}
639 
640 	mapPtr = raidPtr->reconControl->reconMap;
641 	if (rf_reconDebug) {
642 		printf("RECON: all reads completed\n");
643 	}
644 	/* at this point all the reads have completed.  We now wait
645 	 * for any pending writes to complete, and then we're done */
646 
647 	while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
648 
649 		event = rf_GetNextReconEvent(reconDesc);
650 		RF_ASSERT(event);
651 
652 		(void) ProcessReconEvent(raidPtr, event);	/* ignore return code */
653 #if RF_DEBUG_RECON
654 		raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
655 		if (rf_prReconSched) {
656 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
657 		}
658 #endif
659 	}
660 
661 	/* Success:  mark the dead disk as reconstructed.  We quiesce
662 	 * the array here to assure no nasty interactions with pending
663 	 * user accesses when we free up the psstatus structure as
664 	 * part of FreeReconControl() */
665 
666 	rf_SuspendNewRequestsAndWait(raidPtr);
667 
668 	RF_LOCK_MUTEX(raidPtr->mutex);
669 	raidPtr->numFailures--;
670 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
671 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
672 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
673 	RF_UNLOCK_MUTEX(raidPtr->mutex);
674 	RF_GETTIME(etime);
675 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
676 
677 	rf_ResumeNewRequests(raidPtr);
678 
679 	printf("raid%d: Reconstruction of disk at col %d completed\n",
680 	       raidPtr->raidid, col);
681 	xor_s = raidPtr->accumXorTimeUs / 1000000;
682 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
683 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
684 	       raidPtr->raidid,
685 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
686 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
687 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
688 	       raidPtr->raidid,
689 	       (int) raidPtr->reconControl->starttime.tv_sec,
690 	       (int) raidPtr->reconControl->starttime.tv_usec,
691 	       (int) etime.tv_sec, (int) etime.tv_usec);
692 
693 #if RF_RECON_STATS > 0
694 	printf("raid%d: Total head-sep stall count was %d\n",
695 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
696 #endif				/* RF_RECON_STATS > 0 */
697 	rf_FreeReconControl(raidPtr);
698 #if RF_ACC_TRACE > 0
699 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
700 #endif
701 	FreeReconDesc(reconDesc);
702 
703 	return (0);
704 }
705 /*****************************************************************************
706  * do the right thing upon each reconstruction event.
707  * returns nonzero if and only if there is nothing left unread on the
708  * indicated disk
709  *****************************************************************************/
710 static int
711 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
712 {
713 	int     retcode = 0, submitblocked;
714 	RF_ReconBuffer_t *rbuf;
715 	RF_SectorCount_t sectorsPerRU;
716 
717 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
718 	switch (event->type) {
719 
720 		/* a read I/O has completed */
721 	case RF_REVENT_READDONE:
722 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
723 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
724 		    event->col, rbuf->parityStripeID);
725 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
726 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
727 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
728 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
729 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
730 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
731 		if (!submitblocked)
732 			retcode = IssueNextReadRequest(raidPtr, event->col);
733 		break;
734 
735 		/* a write I/O has completed */
736 	case RF_REVENT_WRITEDONE:
737 #if RF_DEBUG_RECON
738 		if (rf_floatingRbufDebug) {
739 			rf_CheckFloatingRbufCount(raidPtr, 1);
740 		}
741 #endif
742 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
743 		rbuf = (RF_ReconBuffer_t *) event->arg;
744 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
745 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
746 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
747 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
748 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
749 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
750 
751 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
752 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
753 			while(raidPtr->reconControl->rb_lock) {
754 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
755 					&raidPtr->reconControl->rb_mutex);
756 			}
757 			raidPtr->reconControl->rb_lock = 1;
758 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
759 
760 			raidPtr->numFullReconBuffers--;
761 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
762 
763 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
764 			raidPtr->reconControl->rb_lock = 0;
765 			wakeup(&raidPtr->reconControl->rb_lock);
766 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
767 		} else
768 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
769 				rf_FreeReconBuffer(rbuf);
770 			else
771 				RF_ASSERT(0);
772 		break;
773 
774 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
775 					 * cleared */
776 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
777 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
778 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
779 						 * BUFCLEAR event if we
780 						 * couldn't submit */
781 		retcode = IssueNextReadRequest(raidPtr, event->col);
782 		break;
783 
784 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
785 					 * blockage has been cleared */
786 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
787 		retcode = TryToRead(raidPtr, event->col);
788 		break;
789 
790 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
791 					 * reconstruction blockage has been
792 					 * cleared */
793 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
794 		retcode = TryToRead(raidPtr, event->col);
795 		break;
796 
797 		/* a buffer has become ready to write */
798 	case RF_REVENT_BUFREADY:
799 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
800 		retcode = IssueNextWriteRequest(raidPtr);
801 #if RF_DEBUG_RECON
802 		if (rf_floatingRbufDebug) {
803 			rf_CheckFloatingRbufCount(raidPtr, 1);
804 		}
805 #endif
806 		break;
807 
808 		/* we need to skip the current RU entirely because it got
809 		 * recon'd while we were waiting for something else to happen */
810 	case RF_REVENT_SKIP:
811 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
812 		retcode = IssueNextReadRequest(raidPtr, event->col);
813 		break;
814 
815 		/* a forced-reconstruction read access has completed.  Just
816 		 * submit the buffer */
817 	case RF_REVENT_FORCEDREADDONE:
818 		rbuf = (RF_ReconBuffer_t *) event->arg;
819 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
820 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
821 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
822 		RF_ASSERT(!submitblocked);
823 		break;
824 
825 		/* A read I/O failed to complete */
826 	case RF_REVENT_READ_FAILED:
827 		/* fallthru to panic... */
828 
829 		/* A write I/O failed to complete */
830 	case RF_REVENT_WRITE_FAILED:
831 		/* fallthru to panic... */
832 
833 		/* a forced read I/O failed to complete */
834 	case RF_REVENT_FORCEDREAD_FAILED:
835 		/* fallthru to panic... */
836 
837 	default:
838 		RF_PANIC();
839 	}
840 	rf_FreeReconEventDesc(event);
841 	return (retcode);
842 }
843 /*****************************************************************************
844  *
845  * find the next thing that's needed on the indicated disk, and issue
846  * a read request for it.  We assume that the reconstruction buffer
847  * associated with this process is free to receive the data.  If
848  * reconstruction is blocked on the indicated RU, we issue a
849  * blockage-release request instead of a physical disk read request.
850  * If the current disk gets too far ahead of the others, we issue a
851  * head-separation wait request and return.
852  *
853  * ctrl->{ru_count, curPSID, diskOffset} and
854  * rbuf->failedDiskSectorOffset are maintained to point to the unit
855  * we're currently accessing.  Note that this deviates from the
856  * standard C idiom of having counters point to the next thing to be
857  * accessed.  This allows us to easily retry when we're blocked by
858  * head separation or reconstruction-blockage events.
859  *
860  * returns nonzero if and only if there is nothing left unread on the
861  * indicated disk
862  *
863  *****************************************************************************/
864 static int
865 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
866 {
867 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
868 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
869 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
870 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
871 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
872 	int     do_new_check = 0, retcode = 0, status;
873 
874 	/* if we are currently the slowest disk, mark that we have to do a new
875 	 * check */
876 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
877 		do_new_check = 1;
878 
879 	while (1) {
880 
881 		ctrl->ru_count++;
882 		if (ctrl->ru_count < RUsPerPU) {
883 			ctrl->diskOffset += sectorsPerRU;
884 			rbuf->failedDiskSectorOffset += sectorsPerRU;
885 		} else {
886 			ctrl->curPSID++;
887 			ctrl->ru_count = 0;
888 			/* code left over from when head-sep was based on
889 			 * parity stripe id */
890 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
891 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
892 				return (1);	/* finito! */
893 			}
894 			/* find the disk offsets of the start of the parity
895 			 * stripe on both the current disk and the failed
896 			 * disk. skip this entire parity stripe if either disk
897 			 * does not appear in the indicated PS */
898 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
899 			    &rbuf->spCol, &rbuf->spOffset);
900 			if (status) {
901 				ctrl->ru_count = RUsPerPU - 1;
902 				continue;
903 			}
904 		}
905 		rbuf->which_ru = ctrl->ru_count;
906 
907 		/* skip this RU if it's already been reconstructed */
908 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
909 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
910 			continue;
911 		}
912 		break;
913 	}
914 	ctrl->headSepCounter++;
915 	if (do_new_check)
916 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
917 
918 
919 	/* at this point, we have definitely decided what to do, and we have
920 	 * only to see if we can actually do it now */
921 	rbuf->parityStripeID = ctrl->curPSID;
922 	rbuf->which_ru = ctrl->ru_count;
923 #if RF_ACC_TRACE > 0
924 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
925 	    sizeof(raidPtr->recon_tracerecs[col]));
926 	raidPtr->recon_tracerecs[col].reconacc = 1;
927 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
928 #endif
929 	retcode = TryToRead(raidPtr, col);
930 	return (retcode);
931 }
932 
933 /*
934  * tries to issue the next read on the indicated disk.  We may be
935  * blocked by (a) the heads being too far apart, or (b) recon on the
936  * indicated RU being blocked due to a write by a user thread.  In
937  * this case, we issue a head-sep or blockage wait request, which will
938  * cause this same routine to be invoked again later when the blockage
939  * has cleared.
940  */
941 
942 static int
943 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
944 {
945 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
946 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
947 	RF_StripeNum_t psid = ctrl->curPSID;
948 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
949 	RF_DiskQueueData_t *req;
950 	int     status;
951 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
952 
953 	/* if the current disk is too far ahead of the others, issue a
954 	 * head-separation wait and return */
955 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
956 		return (0);
957 
958 	/* allocate a new PSS in case we need it */
959 	newpssPtr = rf_AllocPSStatus(raidPtr);
960 
961 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
962 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
963 
964 	if (pssPtr != newpssPtr) {
965 		rf_FreePSStatus(raidPtr, newpssPtr);
966 	}
967 
968 	/* if recon is blocked on the indicated parity stripe, issue a
969 	 * block-wait request and return. this also must mark the indicated RU
970 	 * in the stripe as under reconstruction if not blocked. */
971 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
972 	if (status == RF_PSS_RECON_BLOCKED) {
973 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
974 		goto out;
975 	} else
976 		if (status == RF_PSS_FORCED_ON_WRITE) {
977 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
978 			goto out;
979 		}
980 	/* make one last check to be sure that the indicated RU didn't get
981 	 * reconstructed while we were waiting for something else to happen.
982 	 * This is unfortunate in that it causes us to make this check twice
983 	 * in the normal case.  Might want to make some attempt to re-work
984 	 * this so that we only do this check if we've definitely blocked on
985 	 * one of the above checks.  When this condition is detected, we may
986 	 * have just created a bogus status entry, which we need to delete. */
987 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
988 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
989 		if (pssPtr == newpssPtr)
990 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
991 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
992 		goto out;
993 	}
994 	/* found something to read.  issue the I/O */
995 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
996 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
997 #if RF_ACC_TRACE > 0
998 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
999 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1000 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1001 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1002 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1003 #endif
1004 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1005 	 * should be in kernel space */
1006 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1007 	    ReconReadDoneProc, (void *) ctrl, NULL,
1008 #if RF_ACC_TRACE > 0
1009 				     &raidPtr->recon_tracerecs[col],
1010 #else
1011 				     NULL,
1012 #endif
1013 				     (void *) raidPtr, 0, NULL);
1014 
1015 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1016 
1017 	ctrl->rbuf->arg = (void *) req;
1018 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1019 	pssPtr->issued[col] = 1;
1020 
1021 out:
1022 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1023 	return (0);
1024 }
1025 
1026 
1027 /*
1028  * given a parity stripe ID, we want to find out whether both the
1029  * current disk and the failed disk exist in that parity stripe.  If
1030  * not, we want to skip this whole PS.  If so, we want to find the
1031  * disk offset of the start of the PS on both the current disk and the
1032  * failed disk.
1033  *
1034  * this works by getting a list of disks comprising the indicated
1035  * parity stripe, and searching the list for the current and failed
1036  * disks.  Once we've decided they both exist in the parity stripe, we
1037  * need to decide whether each is data or parity, so that we'll know
1038  * which mapping function to call to get the corresponding disk
1039  * offsets.
1040  *
1041  * this is kind of unpleasant, but doing it this way allows the
1042  * reconstruction code to use parity stripe IDs rather than physical
1043  * disks address to march through the failed disk, which greatly
1044  * simplifies a lot of code, as well as eliminating the need for a
1045  * reverse-mapping function.  I also think it will execute faster,
1046  * since the calls to the mapping module are kept to a minimum.
1047  *
1048  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1049  * THE STRIPE IN THE CORRECT ORDER
1050  *
1051  * raidPtr          - raid descriptor
1052  * psid             - parity stripe identifier
1053  * col              - column of disk to find the offsets for
1054  * spCol            - out: col of spare unit for failed unit
1055  * spOffset         - out: offset into disk containing spare unit
1056  *
1057  */
1058 
1059 
1060 static int
1061 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1062 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1063 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1064 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1065 {
1066 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1067 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1068 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1069 	RF_RowCol_t *diskids;
1070 	u_int   i, j, k, i_offset, j_offset;
1071 	RF_RowCol_t pcol;
1072 	int     testcol;
1073 	RF_SectorNum_t poffset;
1074 	char    i_is_parity = 0, j_is_parity = 0;
1075 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1076 
1077 	/* get a listing of the disks comprising that stripe */
1078 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1079 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1080 	RF_ASSERT(diskids);
1081 
1082 	/* reject this entire parity stripe if it does not contain the
1083 	 * indicated disk or it does not contain the failed disk */
1084 
1085 	for (i = 0; i < stripeWidth; i++) {
1086 		if (col == diskids[i])
1087 			break;
1088 	}
1089 	if (i == stripeWidth)
1090 		goto skipit;
1091 	for (j = 0; j < stripeWidth; j++) {
1092 		if (fcol == diskids[j])
1093 			break;
1094 	}
1095 	if (j == stripeWidth) {
1096 		goto skipit;
1097 	}
1098 	/* find out which disk the parity is on */
1099 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1100 
1101 	/* find out if either the current RU or the failed RU is parity */
1102 	/* also, if the parity occurs in this stripe prior to the data and/or
1103 	 * failed col, we need to decrement i and/or j */
1104 	for (k = 0; k < stripeWidth; k++)
1105 		if (diskids[k] == pcol)
1106 			break;
1107 	RF_ASSERT(k < stripeWidth);
1108 	i_offset = i;
1109 	j_offset = j;
1110 	if (k < i)
1111 		i_offset--;
1112 	else
1113 		if (k == i) {
1114 			i_is_parity = 1;
1115 			i_offset = 0;
1116 		}		/* set offsets to zero to disable multiply
1117 				 * below */
1118 	if (k < j)
1119 		j_offset--;
1120 	else
1121 		if (k == j) {
1122 			j_is_parity = 1;
1123 			j_offset = 0;
1124 		}
1125 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1126 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1127 	 * tells us how far into the stripe the [current,failed] disk is. */
1128 
1129 	/* call the mapping routine to get the offset into the current disk,
1130 	 * repeat for failed disk. */
1131 	if (i_is_parity)
1132 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1133 	else
1134 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1135 
1136 	RF_ASSERT(col == testcol);
1137 
1138 	if (j_is_parity)
1139 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1140 	else
1141 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1142 	RF_ASSERT(fcol == testcol);
1143 
1144 	/* now locate the spare unit for the failed unit */
1145 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1146 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1147 		if (j_is_parity)
1148 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1149 		else
1150 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1151 	} else {
1152 #endif
1153 		*spCol = raidPtr->reconControl->spareCol;
1154 		*spOffset = *outFailedDiskSectorOffset;
1155 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1156 	}
1157 #endif
1158 	return (0);
1159 
1160 skipit:
1161 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1162 	    psid, col);
1163 	return (1);
1164 }
1165 /* this is called when a buffer has become ready to write to the replacement disk */
1166 static int
1167 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1168 {
1169 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1170 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1171 #if RF_ACC_TRACE > 0
1172 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1173 #endif
1174 	RF_ReconBuffer_t *rbuf;
1175 	RF_DiskQueueData_t *req;
1176 
1177 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1178 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1179 				 * have gotten the event that sent us here */
1180 	RF_ASSERT(rbuf->pssPtr);
1181 
1182 	rbuf->pssPtr->writeRbuf = rbuf;
1183 	rbuf->pssPtr = NULL;
1184 
1185 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1186 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1187 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1188 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1189 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1190 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1191 
1192 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1193 	 * kernel space */
1194 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1195 	    sectorsPerRU, rbuf->buffer,
1196 	    rbuf->parityStripeID, rbuf->which_ru,
1197 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1198 #if RF_ACC_TRACE > 0
1199 	    &raidPtr->recon_tracerecs[fcol],
1200 #else
1201 				     NULL,
1202 #endif
1203 	    (void *) raidPtr, 0, NULL);
1204 
1205 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1206 
1207 	rbuf->arg = (void *) req;
1208 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1209 
1210 	return (0);
1211 }
1212 
1213 /*
1214  * this gets called upon the completion of a reconstruction read
1215  * operation the arg is a pointer to the per-disk reconstruction
1216  * control structure for the process that just finished a read.
1217  *
1218  * called at interrupt context in the kernel, so don't do anything
1219  * illegal here.
1220  */
1221 static int
1222 ReconReadDoneProc(void *arg, int status)
1223 {
1224 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1225 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1226 
1227 	if (status) {
1228 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1229 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1230 		return(0);
1231 	}
1232 #if RF_ACC_TRACE > 0
1233 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1234 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1235 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1236 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1237 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1238 #endif
1239 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1240 	return (0);
1241 }
1242 /* this gets called upon the completion of a reconstruction write operation.
1243  * the arg is a pointer to the rbuf that was just written
1244  *
1245  * called at interrupt context in the kernel, so don't do anything illegal here.
1246  */
1247 static int
1248 ReconWriteDoneProc(void *arg, int status)
1249 {
1250 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1251 
1252 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1253 	if (status) {
1254 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1255 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1256 		return(0);
1257 	}
1258 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1259 	return (0);
1260 }
1261 
1262 
1263 /*
1264  * computes a new minimum head sep, and wakes up anyone who needs to
1265  * be woken as a result
1266  */
1267 static void
1268 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1269 {
1270 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1271 	RF_HeadSepLimit_t new_min;
1272 	RF_RowCol_t i;
1273 	RF_CallbackDesc_t *p;
1274 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1275 								 * of a minimum */
1276 
1277 
1278 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1279 	while(reconCtrlPtr->rb_lock) {
1280 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1281 	}
1282 	reconCtrlPtr->rb_lock = 1;
1283 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1284 
1285 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1286 	for (i = 0; i < raidPtr->numCol; i++)
1287 		if (i != reconCtrlPtr->fcol) {
1288 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1289 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1290 		}
1291 	/* set the new minimum and wake up anyone who can now run again */
1292 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1293 		reconCtrlPtr->minHeadSepCounter = new_min;
1294 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1295 		while (reconCtrlPtr->headSepCBList) {
1296 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1297 				break;
1298 			p = reconCtrlPtr->headSepCBList;
1299 			reconCtrlPtr->headSepCBList = p->next;
1300 			p->next = NULL;
1301 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1302 			rf_FreeCallbackDesc(p);
1303 		}
1304 
1305 	}
1306 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1307 	reconCtrlPtr->rb_lock = 0;
1308 	wakeup(&reconCtrlPtr->rb_lock);
1309 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1310 }
1311 
1312 /*
1313  * checks to see that the maximum head separation will not be violated
1314  * if we initiate a reconstruction I/O on the indicated disk.
1315  * Limiting the maximum head separation between two disks eliminates
1316  * the nasty buffer-stall conditions that occur when one disk races
1317  * ahead of the others and consumes all of the floating recon buffers.
1318  * This code is complex and unpleasant but it's necessary to avoid
1319  * some very nasty, albeit fairly rare, reconstruction behavior.
1320  *
1321  * returns non-zero if and only if we have to stop working on the
1322  * indicated disk due to a head-separation delay.
1323  */
1324 static int
1325 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1326 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1327 		    RF_ReconUnitNum_t which_ru)
1328 {
1329 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1330 	RF_CallbackDesc_t *cb, *p, *pt;
1331 	int     retval = 0;
1332 
1333 	/* if we're too far ahead of the slowest disk, stop working on this
1334 	 * disk until the slower ones catch up.  We do this by scheduling a
1335 	 * wakeup callback for the time when the slowest disk has caught up.
1336 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1337 	 * must have fallen to at most 80% of the max allowable head
1338 	 * separation before we'll wake up.
1339 	 *
1340 	 */
1341 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1342 	while(reconCtrlPtr->rb_lock) {
1343 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1344 	}
1345 	reconCtrlPtr->rb_lock = 1;
1346 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1347 	if ((raidPtr->headSepLimit >= 0) &&
1348 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1349 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1350 			 raidPtr->raidid, col, ctrl->headSepCounter,
1351 			 reconCtrlPtr->minHeadSepCounter,
1352 			 raidPtr->headSepLimit);
1353 		cb = rf_AllocCallbackDesc();
1354 		/* the minHeadSepCounter value we have to get to before we'll
1355 		 * wake up.  build in 20% hysteresis. */
1356 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1357 		cb->col = col;
1358 		cb->next = NULL;
1359 
1360 		/* insert this callback descriptor into the sorted list of
1361 		 * pending head-sep callbacks */
1362 		p = reconCtrlPtr->headSepCBList;
1363 		if (!p)
1364 			reconCtrlPtr->headSepCBList = cb;
1365 		else
1366 			if (cb->callbackArg.v < p->callbackArg.v) {
1367 				cb->next = reconCtrlPtr->headSepCBList;
1368 				reconCtrlPtr->headSepCBList = cb;
1369 			} else {
1370 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1371 				cb->next = p;
1372 				pt->next = cb;
1373 			}
1374 		retval = 1;
1375 #if RF_RECON_STATS > 0
1376 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1377 #endif				/* RF_RECON_STATS > 0 */
1378 	}
1379 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1380 	reconCtrlPtr->rb_lock = 0;
1381 	wakeup(&reconCtrlPtr->rb_lock);
1382 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1383 
1384 	return (retval);
1385 }
1386 /*
1387  * checks to see if reconstruction has been either forced or blocked
1388  * by a user operation.  if forced, we skip this RU entirely.  else if
1389  * blocked, put ourselves on the wait list.  else return 0.
1390  *
1391  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1392  */
1393 static int
1394 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1395 				   RF_ReconParityStripeStatus_t *pssPtr,
1396 				   RF_PerDiskReconCtrl_t *ctrl,
1397 				   RF_RowCol_t col, RF_StripeNum_t psid,
1398 				   RF_ReconUnitNum_t which_ru)
1399 {
1400 	RF_CallbackDesc_t *cb;
1401 	int     retcode = 0;
1402 
1403 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1404 		retcode = RF_PSS_FORCED_ON_WRITE;
1405 	else
1406 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1407 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1408 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1409 							 * the blockage-wait
1410 							 * list */
1411 			cb->col = col;
1412 			cb->next = pssPtr->blockWaitList;
1413 			pssPtr->blockWaitList = cb;
1414 			retcode = RF_PSS_RECON_BLOCKED;
1415 		}
1416 	if (!retcode)
1417 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1418 							 * reconstruction */
1419 
1420 	return (retcode);
1421 }
1422 /*
1423  * if reconstruction is currently ongoing for the indicated stripeID,
1424  * reconstruction is forced to completion and we return non-zero to
1425  * indicate that the caller must wait.  If not, then reconstruction is
1426  * blocked on the indicated stripe and the routine returns zero.  If
1427  * and only if we return non-zero, we'll cause the cbFunc to get
1428  * invoked with the cbArg when the reconstruction has completed.
1429  */
1430 int
1431 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1432 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1433 {
1434 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1435 							 * forcing recon on */
1436 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1437 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1438 						 * stripe status structure */
1439 	RF_StripeNum_t psid;	/* parity stripe id */
1440 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1441 						 * offset */
1442 	RF_RowCol_t *diskids;
1443 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1444 	RF_RowCol_t fcol, diskno, i;
1445 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1446 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1447 	RF_CallbackDesc_t *cb;
1448 	int     nPromoted;
1449 
1450 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1451 
1452 	/* allocate a new PSS in case we need it */
1453         newpssPtr = rf_AllocPSStatus(raidPtr);
1454 
1455 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1456 
1457 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1458 
1459         if (pssPtr != newpssPtr) {
1460                 rf_FreePSStatus(raidPtr, newpssPtr);
1461         }
1462 
1463 	/* if recon is not ongoing on this PS, just return */
1464 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1465 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1466 		return (0);
1467 	}
1468 	/* otherwise, we have to wait for reconstruction to complete on this
1469 	 * RU. */
1470 	/* In order to avoid waiting for a potentially large number of
1471 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1472 	 * not low-priority) reconstruction on this RU. */
1473 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1474 		DDprintf1("Forcing recon on psid %ld\n", psid);
1475 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1476 								 * forced recon */
1477 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1478 							 * that we just set */
1479 		fcol = raidPtr->reconControl->fcol;
1480 
1481 		/* get a listing of the disks comprising the indicated stripe */
1482 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1483 
1484 		/* For previously issued reads, elevate them to normal
1485 		 * priority.  If the I/O has already completed, it won't be
1486 		 * found in the queue, and hence this will be a no-op. For
1487 		 * unissued reads, allocate buffers and issue new reads.  The
1488 		 * fact that we've set the FORCED bit means that the regular
1489 		 * recon procs will not re-issue these reqs */
1490 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1491 			if ((diskno = diskids[i]) != fcol) {
1492 				if (pssPtr->issued[diskno]) {
1493 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1494 					if (rf_reconDebug && nPromoted)
1495 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1496 				} else {
1497 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1498 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1499 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1500 													 * location */
1501 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1502 					new_rbuf->which_ru = which_ru;
1503 					new_rbuf->failedDiskSectorOffset = fd_offset;
1504 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1505 
1506 					/* use NULL b_proc b/c all addrs
1507 					 * should be in kernel space */
1508 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1509 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1510 					    NULL, (void *) raidPtr, 0, NULL);
1511 
1512 					RF_ASSERT(req);	/* XXX -- fix this --
1513 							 * XXX */
1514 
1515 					new_rbuf->arg = req;
1516 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1517 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1518 				}
1519 			}
1520 		/* if the write is sitting in the disk queue, elevate its
1521 		 * priority */
1522 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1523 			printf("raid%d: promoted write to col %d\n",
1524 			       raidPtr->raidid, fcol);
1525 	}
1526 	/* install a callback descriptor to be invoked when recon completes on
1527 	 * this parity stripe. */
1528 	cb = rf_AllocCallbackDesc();
1529 	/* XXX the following is bogus.. These functions don't really match!!
1530 	 * GO */
1531 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1532 	cb->callbackArg.p = (void *) cbArg;
1533 	cb->next = pssPtr->procWaitList;
1534 	pssPtr->procWaitList = cb;
1535 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1536 		  raidPtr->raidid, psid);
1537 
1538 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1539 	return (1);
1540 }
1541 /* called upon the completion of a forced reconstruction read.
1542  * all we do is schedule the FORCEDREADONE event.
1543  * called at interrupt context in the kernel, so don't do anything illegal here.
1544  */
1545 static void
1546 ForceReconReadDoneProc(void *arg, int status)
1547 {
1548 	RF_ReconBuffer_t *rbuf = arg;
1549 
1550 	if (status) {
1551 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1552 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1553 	}
1554 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1555 }
1556 /* releases a block on the reconstruction of the indicated stripe */
1557 int
1558 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1559 {
1560 	RF_StripeNum_t stripeID = asmap->stripeID;
1561 	RF_ReconParityStripeStatus_t *pssPtr;
1562 	RF_ReconUnitNum_t which_ru;
1563 	RF_StripeNum_t psid;
1564 	RF_CallbackDesc_t *cb;
1565 
1566 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1567 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1568 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1569 
1570 	/* When recon is forced, the pss desc can get deleted before we get
1571 	 * back to unblock recon. But, this can _only_ happen when recon is
1572 	 * forced. It would be good to put some kind of sanity check here, but
1573 	 * how to decide if recon was just forced or not? */
1574 	if (!pssPtr) {
1575 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1576 		 * RU %d\n",psid,which_ru); */
1577 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1578 		if (rf_reconDebug || rf_pssDebug)
1579 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1580 #endif
1581 		goto out;
1582 	}
1583 	pssPtr->blockCount--;
1584 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1585 		 raidPtr->raidid, psid, pssPtr->blockCount);
1586 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1587 
1588 		/* unblock recon before calling CauseReconEvent in case
1589 		 * CauseReconEvent causes us to try to issue a new read before
1590 		 * returning here. */
1591 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1592 
1593 
1594 		while (pssPtr->blockWaitList) {
1595 			/* spin through the block-wait list and
1596 			   release all the waiters */
1597 			cb = pssPtr->blockWaitList;
1598 			pssPtr->blockWaitList = cb->next;
1599 			cb->next = NULL;
1600 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1601 			rf_FreeCallbackDesc(cb);
1602 		}
1603 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1604 			/* if no recon was requested while recon was blocked */
1605 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1606 		}
1607 	}
1608 out:
1609 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1610 	return (0);
1611 }
1612