xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: rf_reconstruct.c,v 1.91 2006/05/14 21:45:00 elad Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.91 2006/05/14 21:45:00 elad Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #if RF_DEBUG_RECON
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 #else /* RF_DEBUG_RECON */
82 
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94 
95 #endif /* RF_DEBUG_RECON */
96 
97 #define RF_RECON_DONE_READS   1
98 #define RF_RECON_READ_ERROR   2
99 #define RF_RECON_WRITE_ERROR  3
100 #define RF_RECON_READ_STOPPED 4
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 	printf("\n");
195 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
196 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198 
199 
200 /*****************************************************************************
201  *
202  * primary routine to reconstruct a failed disk.  This should be called from
203  * within its own thread.  It won't return until reconstruction completes,
204  * fails, or is aborted.
205  *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 	const RF_LayoutSW_t *lp;
210 	int     rc;
211 
212 	lp = raidPtr->Layout.map;
213 	if (lp->SubmitReconBuffer) {
214 		/*
215 	         * The current infrastructure only supports reconstructing one
216 	         * disk at a time for each array.
217 	         */
218 		RF_LOCK_MUTEX(raidPtr->mutex);
219 		while (raidPtr->reconInProgress) {
220 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 		}
222 		raidPtr->reconInProgress++;
223 		RF_UNLOCK_MUTEX(raidPtr->mutex);
224 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 		RF_LOCK_MUTEX(raidPtr->mutex);
226 		raidPtr->reconInProgress--;
227 		RF_UNLOCK_MUTEX(raidPtr->mutex);
228 	} else {
229 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 		    lp->parityConfig);
231 		rc = EIO;
232 	}
233 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 	return (rc);
235 }
236 
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 	RF_ComponentLabel_t c_label;
241 	RF_RaidDisk_t *spareDiskPtr = NULL;
242 	RF_RaidReconDesc_t *reconDesc;
243 	RF_RowCol_t scol;
244 	int     numDisksDone = 0, rc;
245 
246 	/* first look for a spare drive onto which to reconstruct the data */
247 	/* spare disk descriptors are stored in row 0.  This may have to
248 	 * change eventually */
249 
250 	RF_LOCK_MUTEX(raidPtr->mutex);
251 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 		if (raidPtr->status != rf_rs_degraded) {
255 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 			RF_UNLOCK_MUTEX(raidPtr->mutex);
257 			return (EINVAL);
258 		}
259 		scol = (-1);
260 	} else {
261 #endif
262 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 				spareDiskPtr = &raidPtr->Disks[scol];
265 				spareDiskPtr->status = rf_ds_used_spare;
266 				break;
267 			}
268 		}
269 		if (!spareDiskPtr) {
270 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 			RF_UNLOCK_MUTEX(raidPtr->mutex);
272 			return (ENOSPC);
273 		}
274 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 	}
277 #endif
278 	RF_UNLOCK_MUTEX(raidPtr->mutex);
279 
280 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 	raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 	reconDesc->hsStallCount = 0;
284 	reconDesc->numReconExecDelays = 0;
285 	reconDesc->numReconEventWaits = 0;
286 #endif				/* RF_RECON_STATS > 0 */
287 	reconDesc->reconExecTimerRunning = 0;
288 	reconDesc->reconExecTicks = 0;
289 	reconDesc->maxReconExecTicks = 0;
290 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
291 
292 	if (!rc) {
293 		/* fix up the component label */
294 		/* Don't actually need the read here.. */
295 		raidread_component_label(
296                         raidPtr->raid_cinfo[scol].ci_dev,
297 			raidPtr->raid_cinfo[scol].ci_vp,
298 			&c_label);
299 
300 		raid_init_component_label( raidPtr, &c_label);
301 		c_label.row = 0;
302 		c_label.column = col;
303 		c_label.clean = RF_RAID_DIRTY;
304 		c_label.status = rf_ds_optimal;
305 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306 
307 		/* We've just done a rebuild based on all the other
308 		   disks, so at this point the parity is known to be
309 		   clean, even if it wasn't before. */
310 
311 		/* XXX doesn't hold for RAID 6!!*/
312 
313 		RF_LOCK_MUTEX(raidPtr->mutex);
314 		raidPtr->parity_good = RF_RAID_CLEAN;
315 		RF_UNLOCK_MUTEX(raidPtr->mutex);
316 
317 		/* XXXX MORE NEEDED HERE */
318 
319 		raidwrite_component_label(
320                         raidPtr->raid_cinfo[scol].ci_dev,
321 			raidPtr->raid_cinfo[scol].ci_vp,
322 			&c_label);
323 
324 	} else {
325 		/* Reconstruct failed. */
326 
327 		RF_LOCK_MUTEX(raidPtr->mutex);
328 		/* Failed disk goes back to "failed" status */
329 		raidPtr->Disks[col].status = rf_ds_failed;
330 
331 		/* Spare disk goes back to "spare" status. */
332 		spareDiskPtr->status = rf_ds_spare;
333 		RF_UNLOCK_MUTEX(raidPtr->mutex);
334 
335 	}
336 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 	return (rc);
338 }
339 
340 /*
341 
342    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343    and you don't get a spare until the next Monday.  With this function
344    (and hot-swappable drives) you can now put your new disk containing
345    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346    rebuild the data "on the spot".
347 
348 */
349 
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 	RF_RaidDisk_t *spareDiskPtr = NULL;
354 	RF_RaidReconDesc_t *reconDesc;
355 	const RF_LayoutSW_t *lp;
356 	RF_ComponentLabel_t c_label;
357 	int     numDisksDone = 0, rc;
358 	struct partinfo dpart;
359 	struct vnode *vp;
360 	struct vattr va;
361 	struct lwp *lwp;
362 	int retcode;
363 	int ac;
364 
365 	lp = raidPtr->Layout.map;
366 	if (!lp->SubmitReconBuffer) {
367 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
368 			     lp->parityConfig);
369 		/* wakeup anyone who might be waiting to do a reconstruct */
370 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
371 		return(EIO);
372 	}
373 
374 	/*
375 	 * The current infrastructure only supports reconstructing one
376 	 * disk at a time for each array.
377 	 */
378 	RF_LOCK_MUTEX(raidPtr->mutex);
379 
380 	if (raidPtr->Disks[col].status != rf_ds_failed) {
381 		/* "It's gone..." */
382 		raidPtr->numFailures++;
383 		raidPtr->Disks[col].status = rf_ds_failed;
384 		raidPtr->status = rf_rs_degraded;
385 		RF_UNLOCK_MUTEX(raidPtr->mutex);
386 		rf_update_component_labels(raidPtr,
387 					   RF_NORMAL_COMPONENT_UPDATE);
388 		RF_LOCK_MUTEX(raidPtr->mutex);
389 	}
390 
391 	while (raidPtr->reconInProgress) {
392 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 	}
394 
395 	raidPtr->reconInProgress++;
396 
397 	/* first look for a spare drive onto which to reconstruct the
398 	   data.  spare disk descriptors are stored in row 0.  This
399 	   may have to change eventually */
400 
401 	/* Actually, we don't care if it's failed or not...  On a RAID
402 	   set with correct parity, this function should be callable
403 	   on any component without ill affects. */
404 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
405 
406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
407 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409 
410 		raidPtr->reconInProgress--;
411 		RF_UNLOCK_MUTEX(raidPtr->mutex);
412 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 		return (EINVAL);
414 	}
415 #endif
416 	lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps);
417 
418 	/* This device may have been opened successfully the
419 	   first time. Close it before trying to open it again.. */
420 
421 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 		printf("Closed the open device: %s\n",
424 		       raidPtr->Disks[col].devname);
425 #endif
426 		vp = raidPtr->raid_cinfo[col].ci_vp;
427 		ac = raidPtr->Disks[col].auto_configured;
428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
429 		rf_close_component(raidPtr, vp, ac);
430 		RF_LOCK_MUTEX(raidPtr->mutex);
431 		raidPtr->raid_cinfo[col].ci_vp = NULL;
432 	}
433 	/* note that this disk was *not* auto_configured (any longer)*/
434 	raidPtr->Disks[col].auto_configured = 0;
435 
436 #if 0
437 	printf("About to (re-)open the device for rebuilding: %s\n",
438 	       raidPtr->Disks[col].devname);
439 #endif
440 	RF_UNLOCK_MUTEX(raidPtr->mutex);
441 	retcode = raidlookup(raidPtr->Disks[col].devname, lwp, &vp);
442 
443 	if (retcode) {
444 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 		       raidPtr->Disks[col].devname, retcode);
446 
447 		/* the component isn't responding properly...
448 		   must be still dead :-( */
449 		RF_LOCK_MUTEX(raidPtr->mutex);
450 		raidPtr->reconInProgress--;
451 		RF_UNLOCK_MUTEX(raidPtr->mutex);
452 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 		return(retcode);
454 	}
455 
456 	/* Ok, so we can at least do a lookup...
457 	   How about actually getting a vp for it? */
458 
459 	if ((retcode = VOP_GETATTR(vp, &va, lwp->l_proc->p_cred, lwp)) != 0) {
460 		RF_LOCK_MUTEX(raidPtr->mutex);
461 		raidPtr->reconInProgress--;
462 		RF_UNLOCK_MUTEX(raidPtr->mutex);
463 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 		return(retcode);
465 	}
466 
467 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_proc->p_cred, lwp);
468 	if (retcode) {
469 		RF_LOCK_MUTEX(raidPtr->mutex);
470 		raidPtr->reconInProgress--;
471 		RF_UNLOCK_MUTEX(raidPtr->mutex);
472 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 		return(retcode);
474 	}
475 	RF_LOCK_MUTEX(raidPtr->mutex);
476 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
477 
478 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 		rf_protectedSectors;
480 
481 	raidPtr->raid_cinfo[col].ci_vp = vp;
482 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483 
484 	raidPtr->Disks[col].dev = va.va_rdev;
485 
486 	/* we allow the user to specify that only a fraction
487 	   of the disks should be used this is just for debug:
488 	   it speeds up * the parity scan */
489 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 		rf_sizePercentage / 100;
491 	RF_UNLOCK_MUTEX(raidPtr->mutex);
492 
493 	spareDiskPtr = &raidPtr->Disks[col];
494 	spareDiskPtr->status = rf_ds_used_spare;
495 
496 	printf("raid%d: initiating in-place reconstruction on column %d\n",
497 	       raidPtr->raidid, col);
498 
499 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 				       numDisksDone, col);
501 	raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 	reconDesc->hsStallCount = 0;
504 	reconDesc->numReconExecDelays = 0;
505 	reconDesc->numReconEventWaits = 0;
506 #endif				/* RF_RECON_STATS > 0 */
507 	reconDesc->reconExecTimerRunning = 0;
508 	reconDesc->reconExecTicks = 0;
509 	reconDesc->maxReconExecTicks = 0;
510 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
511 
512 	if (!rc) {
513 		RF_LOCK_MUTEX(raidPtr->mutex);
514 		/* Need to set these here, as at this point it'll be claiming
515 		   that the disk is in rf_ds_spared!  But we know better :-) */
516 
517 		raidPtr->Disks[col].status = rf_ds_optimal;
518 		raidPtr->status = rf_rs_optimal;
519 		RF_UNLOCK_MUTEX(raidPtr->mutex);
520 
521 		/* fix up the component label */
522 		/* Don't actually need the read here.. */
523 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
524 					 raidPtr->raid_cinfo[col].ci_vp,
525 					 &c_label);
526 
527 		RF_LOCK_MUTEX(raidPtr->mutex);
528 		raid_init_component_label(raidPtr, &c_label);
529 
530 		c_label.row = 0;
531 		c_label.column = col;
532 
533 		/* We've just done a rebuild based on all the other
534 		   disks, so at this point the parity is known to be
535 		   clean, even if it wasn't before. */
536 
537 		/* XXX doesn't hold for RAID 6!!*/
538 
539 		raidPtr->parity_good = RF_RAID_CLEAN;
540 		RF_UNLOCK_MUTEX(raidPtr->mutex);
541 
542 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
543 					  raidPtr->raid_cinfo[col].ci_vp,
544 					  &c_label);
545 
546 	} else {
547 		/* Reconstruct-in-place failed.  Disk goes back to
548 		   "failed" status, regardless of what it was before.  */
549 		RF_LOCK_MUTEX(raidPtr->mutex);
550 		raidPtr->Disks[col].status = rf_ds_failed;
551 		RF_UNLOCK_MUTEX(raidPtr->mutex);
552 	}
553 
554 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
555 
556 	RF_LOCK_MUTEX(raidPtr->mutex);
557 	raidPtr->reconInProgress--;
558 	RF_UNLOCK_MUTEX(raidPtr->mutex);
559 
560 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 	return (rc);
562 }
563 
564 
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 	RF_RowCol_t col = reconDesc->col;
570 	RF_RowCol_t scol = reconDesc->scol;
571 	RF_ReconMap_t *mapPtr;
572 	RF_ReconCtrl_t *tmp_reconctrl;
573 	RF_ReconEvent_t *event;
574 	RF_CallbackDesc_t *p;
575 	struct timeval etime, elpsd;
576 	unsigned long xor_s, xor_resid_us;
577 	int     i, ds;
578 	int status;
579 	int recon_error, write_error;
580 
581 	raidPtr->accumXorTimeUs = 0;
582 #if RF_ACC_TRACE > 0
583 	/* create one trace record per physical disk */
584 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
585 #endif
586 
587 	/* quiesce the array prior to starting recon.  this is needed
588 	 * to assure no nasty interactions with pending user writes.
589 	 * We need to do this before we change the disk or row status. */
590 
591 	Dprintf("RECON: begin request suspend\n");
592 	rf_SuspendNewRequestsAndWait(raidPtr);
593 	Dprintf("RECON: end request suspend\n");
594 
595 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
596 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
597 
598 	RF_LOCK_MUTEX(raidPtr->mutex);
599 
600 	/* create the reconstruction control pointer and install it in
601 	 * the right slot */
602 	raidPtr->reconControl = tmp_reconctrl;
603 	mapPtr = raidPtr->reconControl->reconMap;
604 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
605 	raidPtr->reconControl->numRUsComplete =	0;
606 	raidPtr->status = rf_rs_reconstructing;
607 	raidPtr->Disks[col].status = rf_ds_reconstructing;
608 	raidPtr->Disks[col].spareCol = scol;
609 
610 	RF_UNLOCK_MUTEX(raidPtr->mutex);
611 
612 	RF_GETTIME(raidPtr->reconControl->starttime);
613 
614 	/* now start up the actual reconstruction: issue a read for
615 	 * each surviving disk */
616 
617 	reconDesc->numDisksDone = 0;
618 	for (i = 0; i < raidPtr->numCol; i++) {
619 		if (i != col) {
620 			/* find and issue the next I/O on the
621 			 * indicated disk */
622 			if (IssueNextReadRequest(raidPtr, i)) {
623 				Dprintf1("RECON: done issuing for c%d\n", i);
624 				reconDesc->numDisksDone++;
625 			}
626 		}
627 	}
628 
629 	Dprintf("RECON: resume requests\n");
630 	rf_ResumeNewRequests(raidPtr);
631 
632 	/* process reconstruction events until all disks report that
633 	 * they've completed all work */
634 
635 	mapPtr = raidPtr->reconControl->reconMap;
636 	recon_error = 0;
637 	write_error = 0;
638 
639 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640 
641 		event = rf_GetNextReconEvent(reconDesc);
642 		status = ProcessReconEvent(raidPtr, event);
643 
644 		/* the normal case is that a read completes, and all is well. */
645 		if (status == RF_RECON_DONE_READS) {
646 			reconDesc->numDisksDone++;
647 		} else if ((status == RF_RECON_READ_ERROR) ||
648 			   (status == RF_RECON_WRITE_ERROR)) {
649 			/* an error was encountered while reconstructing...
650 			   Pretend we've finished this disk.
651 			*/
652 			recon_error = 1;
653 			raidPtr->reconControl->error = 1;
654 
655 			/* bump the numDisksDone count for reads,
656 			   but not for writes */
657 			if (status == RF_RECON_READ_ERROR)
658 				reconDesc->numDisksDone++;
659 
660 			/* write errors are special -- when we are
661 			   done dealing with the reads that are
662 			   finished, we don't want to wait for any
663 			   writes */
664 			if (status == RF_RECON_WRITE_ERROR)
665 				write_error = 1;
666 
667 		} else if (status == RF_RECON_READ_STOPPED) {
668 			/* count this component as being "done" */
669 			reconDesc->numDisksDone++;
670 		}
671 
672 		if (recon_error) {
673 
674 			/* make sure any stragglers are woken up so that
675 			   their theads will complete, and we can get out
676 			   of here with all IO processed */
677 
678 			while (raidPtr->reconControl->headSepCBList) {
679 				p = raidPtr->reconControl->headSepCBList;
680 				raidPtr->reconControl->headSepCBList = p->next;
681 				p->next = NULL;
682 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
683 				rf_FreeCallbackDesc(p);
684 			}
685 		}
686 
687 		raidPtr->reconControl->numRUsTotal =
688 			mapPtr->totalRUs;
689 		raidPtr->reconControl->numRUsComplete =
690 			mapPtr->totalRUs -
691 			rf_UnitsLeftToReconstruct(mapPtr);
692 
693 #if RF_DEBUG_RECON
694 		raidPtr->reconControl->percentComplete =
695 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
696 		if (rf_prReconSched) {
697 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
698 		}
699 #endif
700 	}
701 
702 	mapPtr = raidPtr->reconControl->reconMap;
703 	if (rf_reconDebug) {
704 		printf("RECON: all reads completed\n");
705 	}
706 	/* at this point all the reads have completed.  We now wait
707 	 * for any pending writes to complete, and then we're done */
708 
709 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
710 
711 		event = rf_GetNextReconEvent(reconDesc);
712 		status = ProcessReconEvent(raidPtr, event);
713 
714 		if (status == RF_RECON_WRITE_ERROR) {
715 			recon_error = 1;
716 			raidPtr->reconControl->error = 1;
717 			/* an error was encountered at the very end... bail */
718 		} else {
719 #if RF_DEBUG_RECON
720 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
721 			if (rf_prReconSched) {
722 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
723 			}
724 #endif
725 		}
726 	}
727 
728 	if (recon_error) {
729 		/* we've encountered an error in reconstructing. */
730 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
731 
732 		/* we start by blocking IO to the RAID set. */
733 		rf_SuspendNewRequestsAndWait(raidPtr);
734 
735 		RF_LOCK_MUTEX(raidPtr->mutex);
736 		/* mark set as being degraded, rather than
737 		   rf_rs_reconstructing as we were before the problem.
738 		   After this is done we can update status of the
739 		   component disks without worrying about someone
740 		   trying to read from a failed component.
741 		*/
742 		raidPtr->status = rf_rs_degraded;
743 		RF_UNLOCK_MUTEX(raidPtr->mutex);
744 
745 		/* resume IO */
746 		rf_ResumeNewRequests(raidPtr);
747 
748 		/* At this point there are two cases:
749 		   1) If we've experienced a read error, then we've
750 		   already waited for all the reads we're going to get,
751 		   and we just need to wait for the writes.
752 
753 		   2) If we've experienced a write error, we've also
754 		   already waited for all the reads to complete,
755 		   but there is little point in waiting for the writes --
756 		   when they do complete, they will just be ignored.
757 
758 		   So we just wait for writes to complete if we didn't have a
759 		   write error.
760 		*/
761 
762 		if (!write_error) {
763 			/* wait for writes to complete */
764 			while (raidPtr->reconControl->pending_writes > 0) {
765 
766 				event = rf_GetNextReconEvent(reconDesc);
767 				status = ProcessReconEvent(raidPtr, event);
768 
769 				if (status == RF_RECON_WRITE_ERROR) {
770 					raidPtr->reconControl->error = 1;
771 					/* an error was encountered at the very end... bail.
772 					   This will be very bad news for the user, since
773 					   at this point there will have been a read error
774 					   on one component, and a write error on another!
775 					*/
776 					break;
777 				}
778 			}
779 		}
780 
781 
782 		/* cleanup */
783 
784 		/* drain the event queue - after waiting for the writes above,
785 		   there shouldn't be much (if anything!) left in the queue. */
786 
787 		rf_DrainReconEventQueue(reconDesc);
788 
789 		/* XXX  As much as we'd like to free the recon control structure
790 		   and the reconDesc, we have no way of knowing if/when those will
791 		   be touched by IO that has yet to occur.  It is rather poor to be
792 		   basically causing a 'memory leak' here, but there doesn't seem to be
793 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
794 		   gets a makeover this problem will go away.
795 		*/
796 #if 0
797 		rf_FreeReconControl(raidPtr);
798 #endif
799 
800 #if RF_ACC_TRACE > 0
801 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
802 #endif
803 		/* XXX see comment above */
804 #if 0
805 		FreeReconDesc(reconDesc);
806 #endif
807 
808 		return (1);
809 	}
810 
811 	/* Success:  mark the dead disk as reconstructed.  We quiesce
812 	 * the array here to assure no nasty interactions with pending
813 	 * user accesses when we free up the psstatus structure as
814 	 * part of FreeReconControl() */
815 
816 	rf_SuspendNewRequestsAndWait(raidPtr);
817 
818 	RF_LOCK_MUTEX(raidPtr->mutex);
819 	raidPtr->numFailures--;
820 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
821 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
822 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
823 	RF_UNLOCK_MUTEX(raidPtr->mutex);
824 	RF_GETTIME(etime);
825 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
826 
827 	rf_ResumeNewRequests(raidPtr);
828 
829 	printf("raid%d: Reconstruction of disk at col %d completed\n",
830 	       raidPtr->raidid, col);
831 	xor_s = raidPtr->accumXorTimeUs / 1000000;
832 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
833 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
834 	       raidPtr->raidid,
835 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
836 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
837 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
838 	       raidPtr->raidid,
839 	       (int) raidPtr->reconControl->starttime.tv_sec,
840 	       (int) raidPtr->reconControl->starttime.tv_usec,
841 	       (int) etime.tv_sec, (int) etime.tv_usec);
842 #if RF_RECON_STATS > 0
843 	printf("raid%d: Total head-sep stall count was %d\n",
844 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
845 #endif				/* RF_RECON_STATS > 0 */
846 	rf_FreeReconControl(raidPtr);
847 #if RF_ACC_TRACE > 0
848 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
849 #endif
850 	FreeReconDesc(reconDesc);
851 
852 	return (0);
853 
854 }
855 /*****************************************************************************
856  * do the right thing upon each reconstruction event.
857  *****************************************************************************/
858 static int
859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
860 {
861 	int     retcode = 0, submitblocked;
862 	RF_ReconBuffer_t *rbuf;
863 	RF_SectorCount_t sectorsPerRU;
864 
865 	retcode = RF_RECON_READ_STOPPED;
866 
867 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
868 	switch (event->type) {
869 
870 		/* a read I/O has completed */
871 	case RF_REVENT_READDONE:
872 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
873 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
874 		    event->col, rbuf->parityStripeID);
875 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
876 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
877 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
878 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 		if (!raidPtr->reconControl->error) {
880 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
881 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
882 			if (!submitblocked)
883 				retcode = IssueNextReadRequest(raidPtr, event->col);
884 			else
885 				retcode = 0;
886 		}
887 		break;
888 
889 		/* a write I/O has completed */
890 	case RF_REVENT_WRITEDONE:
891 #if RF_DEBUG_RECON
892 		if (rf_floatingRbufDebug) {
893 			rf_CheckFloatingRbufCount(raidPtr, 1);
894 		}
895 #endif
896 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
897 		rbuf = (RF_ReconBuffer_t *) event->arg;
898 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
899 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
900 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
901 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
902 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
903 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
904 
905 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
906 		raidPtr->reconControl->pending_writes--;
907 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
908 
909 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
910 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
911 			while(raidPtr->reconControl->rb_lock) {
912 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
913 					&raidPtr->reconControl->rb_mutex);
914 			}
915 			raidPtr->reconControl->rb_lock = 1;
916 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
917 
918 			raidPtr->numFullReconBuffers--;
919 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
920 
921 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
922 			raidPtr->reconControl->rb_lock = 0;
923 			wakeup(&raidPtr->reconControl->rb_lock);
924 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
925 		} else
926 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
927 				rf_FreeReconBuffer(rbuf);
928 			else
929 				RF_ASSERT(0);
930 		retcode = 0;
931 		break;
932 
933 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
934 					 * cleared */
935 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
936 		if (!raidPtr->reconControl->error) {
937 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
938 							     0, (int) (long) event->arg);
939 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
940 							 * BUFCLEAR event if we
941 							 * couldn't submit */
942 			retcode = IssueNextReadRequest(raidPtr, event->col);
943 		}
944 		break;
945 
946 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
947 					 * blockage has been cleared */
948 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
949 		if (!raidPtr->reconControl->error) {
950 			retcode = TryToRead(raidPtr, event->col);
951 		}
952 		break;
953 
954 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
955 					 * reconstruction blockage has been
956 					 * cleared */
957 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
958 		if (!raidPtr->reconControl->error) {
959 			retcode = TryToRead(raidPtr, event->col);
960 		}
961 		break;
962 
963 		/* a buffer has become ready to write */
964 	case RF_REVENT_BUFREADY:
965 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
966 		if (!raidPtr->reconControl->error) {
967 			retcode = IssueNextWriteRequest(raidPtr);
968 #if RF_DEBUG_RECON
969 			if (rf_floatingRbufDebug) {
970 				rf_CheckFloatingRbufCount(raidPtr, 1);
971 			}
972 #endif
973 		}
974 		break;
975 
976 		/* we need to skip the current RU entirely because it got
977 		 * recon'd while we were waiting for something else to happen */
978 	case RF_REVENT_SKIP:
979 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
980 		if (!raidPtr->reconControl->error) {
981 			retcode = IssueNextReadRequest(raidPtr, event->col);
982 		}
983 		break;
984 
985 		/* a forced-reconstruction read access has completed.  Just
986 		 * submit the buffer */
987 	case RF_REVENT_FORCEDREADDONE:
988 		rbuf = (RF_ReconBuffer_t *) event->arg;
989 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
990 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
991 		if (!raidPtr->reconControl->error) {
992 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
993 			RF_ASSERT(!submitblocked);
994 		}
995 		break;
996 
997 		/* A read I/O failed to complete */
998 	case RF_REVENT_READ_FAILED:
999 		retcode = RF_RECON_READ_ERROR;
1000 		break;
1001 
1002 		/* A write I/O failed to complete */
1003 	case RF_REVENT_WRITE_FAILED:
1004 		retcode = RF_RECON_WRITE_ERROR;
1005 
1006 		rbuf = (RF_ReconBuffer_t *) event->arg;
1007 
1008 		/* cleanup the disk queue data */
1009 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1010 
1011 		/* At this point we're erroring out, badly, and floatingRbufs
1012 		   may not even be valid.  Rather than putting this back onto
1013 		   the floatingRbufs list, just arrange for its immediate
1014 		   destruction.
1015 		*/
1016 		rf_FreeReconBuffer(rbuf);
1017 		break;
1018 
1019 		/* a forced read I/O failed to complete */
1020 	case RF_REVENT_FORCEDREAD_FAILED:
1021 		retcode = RF_RECON_READ_ERROR;
1022 		break;
1023 
1024 	default:
1025 		RF_PANIC();
1026 	}
1027 	rf_FreeReconEventDesc(event);
1028 	return (retcode);
1029 }
1030 /*****************************************************************************
1031  *
1032  * find the next thing that's needed on the indicated disk, and issue
1033  * a read request for it.  We assume that the reconstruction buffer
1034  * associated with this process is free to receive the data.  If
1035  * reconstruction is blocked on the indicated RU, we issue a
1036  * blockage-release request instead of a physical disk read request.
1037  * If the current disk gets too far ahead of the others, we issue a
1038  * head-separation wait request and return.
1039  *
1040  * ctrl->{ru_count, curPSID, diskOffset} and
1041  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1042  * we're currently accessing.  Note that this deviates from the
1043  * standard C idiom of having counters point to the next thing to be
1044  * accessed.  This allows us to easily retry when we're blocked by
1045  * head separation or reconstruction-blockage events.
1046  *
1047  *****************************************************************************/
1048 static int
1049 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1050 {
1051 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1052 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1053 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1054 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1055 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1056 	int     do_new_check = 0, retcode = 0, status;
1057 
1058 	/* if we are currently the slowest disk, mark that we have to do a new
1059 	 * check */
1060 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1061 		do_new_check = 1;
1062 
1063 	while (1) {
1064 
1065 		ctrl->ru_count++;
1066 		if (ctrl->ru_count < RUsPerPU) {
1067 			ctrl->diskOffset += sectorsPerRU;
1068 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1069 		} else {
1070 			ctrl->curPSID++;
1071 			ctrl->ru_count = 0;
1072 			/* code left over from when head-sep was based on
1073 			 * parity stripe id */
1074 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1075 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1076 				return (RF_RECON_DONE_READS);	/* finito! */
1077 			}
1078 			/* find the disk offsets of the start of the parity
1079 			 * stripe on both the current disk and the failed
1080 			 * disk. skip this entire parity stripe if either disk
1081 			 * does not appear in the indicated PS */
1082 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1083 			    &rbuf->spCol, &rbuf->spOffset);
1084 			if (status) {
1085 				ctrl->ru_count = RUsPerPU - 1;
1086 				continue;
1087 			}
1088 		}
1089 		rbuf->which_ru = ctrl->ru_count;
1090 
1091 		/* skip this RU if it's already been reconstructed */
1092 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1093 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1094 			continue;
1095 		}
1096 		break;
1097 	}
1098 	ctrl->headSepCounter++;
1099 	if (do_new_check)
1100 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1101 
1102 
1103 	/* at this point, we have definitely decided what to do, and we have
1104 	 * only to see if we can actually do it now */
1105 	rbuf->parityStripeID = ctrl->curPSID;
1106 	rbuf->which_ru = ctrl->ru_count;
1107 #if RF_ACC_TRACE > 0
1108 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1109 	    sizeof(raidPtr->recon_tracerecs[col]));
1110 	raidPtr->recon_tracerecs[col].reconacc = 1;
1111 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1112 #endif
1113 	retcode = TryToRead(raidPtr, col);
1114 	return (retcode);
1115 }
1116 
1117 /*
1118  * tries to issue the next read on the indicated disk.  We may be
1119  * blocked by (a) the heads being too far apart, or (b) recon on the
1120  * indicated RU being blocked due to a write by a user thread.  In
1121  * this case, we issue a head-sep or blockage wait request, which will
1122  * cause this same routine to be invoked again later when the blockage
1123  * has cleared.
1124  */
1125 
1126 static int
1127 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1128 {
1129 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1130 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1131 	RF_StripeNum_t psid = ctrl->curPSID;
1132 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1133 	RF_DiskQueueData_t *req;
1134 	int     status;
1135 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1136 
1137 	/* if the current disk is too far ahead of the others, issue a
1138 	 * head-separation wait and return */
1139 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1140 		return (0);
1141 
1142 	/* allocate a new PSS in case we need it */
1143 	newpssPtr = rf_AllocPSStatus(raidPtr);
1144 
1145 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1146 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1147 
1148 	if (pssPtr != newpssPtr) {
1149 		rf_FreePSStatus(raidPtr, newpssPtr);
1150 	}
1151 
1152 	/* if recon is blocked on the indicated parity stripe, issue a
1153 	 * block-wait request and return. this also must mark the indicated RU
1154 	 * in the stripe as under reconstruction if not blocked. */
1155 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1156 	if (status == RF_PSS_RECON_BLOCKED) {
1157 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1158 		goto out;
1159 	} else
1160 		if (status == RF_PSS_FORCED_ON_WRITE) {
1161 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1162 			goto out;
1163 		}
1164 	/* make one last check to be sure that the indicated RU didn't get
1165 	 * reconstructed while we were waiting for something else to happen.
1166 	 * This is unfortunate in that it causes us to make this check twice
1167 	 * in the normal case.  Might want to make some attempt to re-work
1168 	 * this so that we only do this check if we've definitely blocked on
1169 	 * one of the above checks.  When this condition is detected, we may
1170 	 * have just created a bogus status entry, which we need to delete. */
1171 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1172 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1173 		if (pssPtr == newpssPtr)
1174 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1175 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1176 		goto out;
1177 	}
1178 	/* found something to read.  issue the I/O */
1179 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1180 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1181 #if RF_ACC_TRACE > 0
1182 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1183 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1184 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1185 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1186 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1187 #endif
1188 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1189 	 * should be in kernel space */
1190 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1191 	    ReconReadDoneProc, (void *) ctrl,
1192 #if RF_ACC_TRACE > 0
1193 				     &raidPtr->recon_tracerecs[col],
1194 #else
1195 				     NULL,
1196 #endif
1197 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1198 
1199 	ctrl->rbuf->arg = (void *) req;
1200 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1201 	pssPtr->issued[col] = 1;
1202 
1203 out:
1204 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1205 	return (0);
1206 }
1207 
1208 
1209 /*
1210  * given a parity stripe ID, we want to find out whether both the
1211  * current disk and the failed disk exist in that parity stripe.  If
1212  * not, we want to skip this whole PS.  If so, we want to find the
1213  * disk offset of the start of the PS on both the current disk and the
1214  * failed disk.
1215  *
1216  * this works by getting a list of disks comprising the indicated
1217  * parity stripe, and searching the list for the current and failed
1218  * disks.  Once we've decided they both exist in the parity stripe, we
1219  * need to decide whether each is data or parity, so that we'll know
1220  * which mapping function to call to get the corresponding disk
1221  * offsets.
1222  *
1223  * this is kind of unpleasant, but doing it this way allows the
1224  * reconstruction code to use parity stripe IDs rather than physical
1225  * disks address to march through the failed disk, which greatly
1226  * simplifies a lot of code, as well as eliminating the need for a
1227  * reverse-mapping function.  I also think it will execute faster,
1228  * since the calls to the mapping module are kept to a minimum.
1229  *
1230  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1231  * THE STRIPE IN THE CORRECT ORDER
1232  *
1233  * raidPtr          - raid descriptor
1234  * psid             - parity stripe identifier
1235  * col              - column of disk to find the offsets for
1236  * spCol            - out: col of spare unit for failed unit
1237  * spOffset         - out: offset into disk containing spare unit
1238  *
1239  */
1240 
1241 
1242 static int
1243 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1244 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1245 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1246 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1247 {
1248 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1249 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1250 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1251 	RF_RowCol_t *diskids;
1252 	u_int   i, j, k, i_offset, j_offset;
1253 	RF_RowCol_t pcol;
1254 	int     testcol;
1255 	RF_SectorNum_t poffset;
1256 	char    i_is_parity = 0, j_is_parity = 0;
1257 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1258 
1259 	/* get a listing of the disks comprising that stripe */
1260 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1261 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1262 	RF_ASSERT(diskids);
1263 
1264 	/* reject this entire parity stripe if it does not contain the
1265 	 * indicated disk or it does not contain the failed disk */
1266 
1267 	for (i = 0; i < stripeWidth; i++) {
1268 		if (col == diskids[i])
1269 			break;
1270 	}
1271 	if (i == stripeWidth)
1272 		goto skipit;
1273 	for (j = 0; j < stripeWidth; j++) {
1274 		if (fcol == diskids[j])
1275 			break;
1276 	}
1277 	if (j == stripeWidth) {
1278 		goto skipit;
1279 	}
1280 	/* find out which disk the parity is on */
1281 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1282 
1283 	/* find out if either the current RU or the failed RU is parity */
1284 	/* also, if the parity occurs in this stripe prior to the data and/or
1285 	 * failed col, we need to decrement i and/or j */
1286 	for (k = 0; k < stripeWidth; k++)
1287 		if (diskids[k] == pcol)
1288 			break;
1289 	RF_ASSERT(k < stripeWidth);
1290 	i_offset = i;
1291 	j_offset = j;
1292 	if (k < i)
1293 		i_offset--;
1294 	else
1295 		if (k == i) {
1296 			i_is_parity = 1;
1297 			i_offset = 0;
1298 		}		/* set offsets to zero to disable multiply
1299 				 * below */
1300 	if (k < j)
1301 		j_offset--;
1302 	else
1303 		if (k == j) {
1304 			j_is_parity = 1;
1305 			j_offset = 0;
1306 		}
1307 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1308 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1309 	 * tells us how far into the stripe the [current,failed] disk is. */
1310 
1311 	/* call the mapping routine to get the offset into the current disk,
1312 	 * repeat for failed disk. */
1313 	if (i_is_parity)
1314 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1315 	else
1316 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1317 
1318 	RF_ASSERT(col == testcol);
1319 
1320 	if (j_is_parity)
1321 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1322 	else
1323 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1324 	RF_ASSERT(fcol == testcol);
1325 
1326 	/* now locate the spare unit for the failed unit */
1327 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1328 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1329 		if (j_is_parity)
1330 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1331 		else
1332 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1333 	} else {
1334 #endif
1335 		*spCol = raidPtr->reconControl->spareCol;
1336 		*spOffset = *outFailedDiskSectorOffset;
1337 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1338 	}
1339 #endif
1340 	return (0);
1341 
1342 skipit:
1343 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1344 	    psid, col);
1345 	return (1);
1346 }
1347 /* this is called when a buffer has become ready to write to the replacement disk */
1348 static int
1349 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1350 {
1351 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1352 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1353 #if RF_ACC_TRACE > 0
1354 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1355 #endif
1356 	RF_ReconBuffer_t *rbuf;
1357 	RF_DiskQueueData_t *req;
1358 
1359 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1360 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1361 				 * have gotten the event that sent us here */
1362 	RF_ASSERT(rbuf->pssPtr);
1363 
1364 	rbuf->pssPtr->writeRbuf = rbuf;
1365 	rbuf->pssPtr = NULL;
1366 
1367 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1368 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1369 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1370 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1371 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1372 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1373 
1374 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1375 	 * kernel space */
1376 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1377 	    sectorsPerRU, rbuf->buffer,
1378 	    rbuf->parityStripeID, rbuf->which_ru,
1379 	    ReconWriteDoneProc, (void *) rbuf,
1380 #if RF_ACC_TRACE > 0
1381 	    &raidPtr->recon_tracerecs[fcol],
1382 #else
1383 				     NULL,
1384 #endif
1385 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1386 
1387 	rbuf->arg = (void *) req;
1388 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1389 	raidPtr->reconControl->pending_writes++;
1390 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1391 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * this gets called upon the completion of a reconstruction read
1398  * operation the arg is a pointer to the per-disk reconstruction
1399  * control structure for the process that just finished a read.
1400  *
1401  * called at interrupt context in the kernel, so don't do anything
1402  * illegal here.
1403  */
1404 static int
1405 ReconReadDoneProc(void *arg, int status)
1406 {
1407 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1408 	RF_Raid_t *raidPtr;
1409 
1410 	/* Detect that reconCtrl is no longer valid, and if that
1411 	   is the case, bail without calling rf_CauseReconEvent().
1412 	   There won't be anyone listening for this event anyway */
1413 
1414 	if (ctrl->reconCtrl == NULL)
1415 		return(0);
1416 
1417 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1418 
1419 	if (status) {
1420 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1421 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1422 		return(0);
1423 	}
1424 #if RF_ACC_TRACE > 0
1425 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1426 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1427 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1428 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1429 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1430 #endif
1431 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1432 	return (0);
1433 }
1434 /* this gets called upon the completion of a reconstruction write operation.
1435  * the arg is a pointer to the rbuf that was just written
1436  *
1437  * called at interrupt context in the kernel, so don't do anything illegal here.
1438  */
1439 static int
1440 ReconWriteDoneProc(void *arg, int status)
1441 {
1442 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1443 
1444 	/* Detect that reconControl is no longer valid, and if that
1445 	   is the case, bail without calling rf_CauseReconEvent().
1446 	   There won't be anyone listening for this event anyway */
1447 
1448 	if (rbuf->raidPtr->reconControl == NULL)
1449 		return(0);
1450 
1451 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1452 	if (status) {
1453 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1454 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1455 		return(0);
1456 	}
1457 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1458 	return (0);
1459 }
1460 
1461 
1462 /*
1463  * computes a new minimum head sep, and wakes up anyone who needs to
1464  * be woken as a result
1465  */
1466 static void
1467 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1468 {
1469 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1470 	RF_HeadSepLimit_t new_min;
1471 	RF_RowCol_t i;
1472 	RF_CallbackDesc_t *p;
1473 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1474 								 * of a minimum */
1475 
1476 
1477 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1478 	while(reconCtrlPtr->rb_lock) {
1479 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1480 	}
1481 	reconCtrlPtr->rb_lock = 1;
1482 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1483 
1484 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1485 	for (i = 0; i < raidPtr->numCol; i++)
1486 		if (i != reconCtrlPtr->fcol) {
1487 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1488 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1489 		}
1490 	/* set the new minimum and wake up anyone who can now run again */
1491 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1492 		reconCtrlPtr->minHeadSepCounter = new_min;
1493 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1494 		while (reconCtrlPtr->headSepCBList) {
1495 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1496 				break;
1497 			p = reconCtrlPtr->headSepCBList;
1498 			reconCtrlPtr->headSepCBList = p->next;
1499 			p->next = NULL;
1500 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1501 			rf_FreeCallbackDesc(p);
1502 		}
1503 
1504 	}
1505 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1506 	reconCtrlPtr->rb_lock = 0;
1507 	wakeup(&reconCtrlPtr->rb_lock);
1508 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1509 }
1510 
1511 /*
1512  * checks to see that the maximum head separation will not be violated
1513  * if we initiate a reconstruction I/O on the indicated disk.
1514  * Limiting the maximum head separation between two disks eliminates
1515  * the nasty buffer-stall conditions that occur when one disk races
1516  * ahead of the others and consumes all of the floating recon buffers.
1517  * This code is complex and unpleasant but it's necessary to avoid
1518  * some very nasty, albeit fairly rare, reconstruction behavior.
1519  *
1520  * returns non-zero if and only if we have to stop working on the
1521  * indicated disk due to a head-separation delay.
1522  */
1523 static int
1524 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1525 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1526 		    RF_ReconUnitNum_t which_ru)
1527 {
1528 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1529 	RF_CallbackDesc_t *cb, *p, *pt;
1530 	int     retval = 0;
1531 
1532 	/* if we're too far ahead of the slowest disk, stop working on this
1533 	 * disk until the slower ones catch up.  We do this by scheduling a
1534 	 * wakeup callback for the time when the slowest disk has caught up.
1535 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1536 	 * must have fallen to at most 80% of the max allowable head
1537 	 * separation before we'll wake up.
1538 	 *
1539 	 */
1540 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1541 	while(reconCtrlPtr->rb_lock) {
1542 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1543 	}
1544 	reconCtrlPtr->rb_lock = 1;
1545 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1546 	if ((raidPtr->headSepLimit >= 0) &&
1547 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1548 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1549 			 raidPtr->raidid, col, ctrl->headSepCounter,
1550 			 reconCtrlPtr->minHeadSepCounter,
1551 			 raidPtr->headSepLimit);
1552 		cb = rf_AllocCallbackDesc();
1553 		/* the minHeadSepCounter value we have to get to before we'll
1554 		 * wake up.  build in 20% hysteresis. */
1555 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1556 		cb->col = col;
1557 		cb->next = NULL;
1558 
1559 		/* insert this callback descriptor into the sorted list of
1560 		 * pending head-sep callbacks */
1561 		p = reconCtrlPtr->headSepCBList;
1562 		if (!p)
1563 			reconCtrlPtr->headSepCBList = cb;
1564 		else
1565 			if (cb->callbackArg.v < p->callbackArg.v) {
1566 				cb->next = reconCtrlPtr->headSepCBList;
1567 				reconCtrlPtr->headSepCBList = cb;
1568 			} else {
1569 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1570 				cb->next = p;
1571 				pt->next = cb;
1572 			}
1573 		retval = 1;
1574 #if RF_RECON_STATS > 0
1575 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1576 #endif				/* RF_RECON_STATS > 0 */
1577 	}
1578 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1579 	reconCtrlPtr->rb_lock = 0;
1580 	wakeup(&reconCtrlPtr->rb_lock);
1581 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1582 
1583 	return (retval);
1584 }
1585 /*
1586  * checks to see if reconstruction has been either forced or blocked
1587  * by a user operation.  if forced, we skip this RU entirely.  else if
1588  * blocked, put ourselves on the wait list.  else return 0.
1589  *
1590  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1591  */
1592 static int
1593 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1594 				   RF_ReconParityStripeStatus_t *pssPtr,
1595 				   RF_PerDiskReconCtrl_t *ctrl,
1596 				   RF_RowCol_t col, RF_StripeNum_t psid,
1597 				   RF_ReconUnitNum_t which_ru)
1598 {
1599 	RF_CallbackDesc_t *cb;
1600 	int     retcode = 0;
1601 
1602 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1603 		retcode = RF_PSS_FORCED_ON_WRITE;
1604 	else
1605 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1606 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1607 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1608 							 * the blockage-wait
1609 							 * list */
1610 			cb->col = col;
1611 			cb->next = pssPtr->blockWaitList;
1612 			pssPtr->blockWaitList = cb;
1613 			retcode = RF_PSS_RECON_BLOCKED;
1614 		}
1615 	if (!retcode)
1616 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1617 							 * reconstruction */
1618 
1619 	return (retcode);
1620 }
1621 /*
1622  * if reconstruction is currently ongoing for the indicated stripeID,
1623  * reconstruction is forced to completion and we return non-zero to
1624  * indicate that the caller must wait.  If not, then reconstruction is
1625  * blocked on the indicated stripe and the routine returns zero.  If
1626  * and only if we return non-zero, we'll cause the cbFunc to get
1627  * invoked with the cbArg when the reconstruction has completed.
1628  */
1629 int
1630 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1631 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1632 {
1633 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1634 							 * forcing recon on */
1635 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1636 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1637 						 * stripe status structure */
1638 	RF_StripeNum_t psid;	/* parity stripe id */
1639 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1640 						 * offset */
1641 	RF_RowCol_t *diskids;
1642 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1643 	RF_RowCol_t fcol, diskno, i;
1644 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1645 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1646 	RF_CallbackDesc_t *cb;
1647 	int     nPromoted;
1648 
1649 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1650 
1651 	/* allocate a new PSS in case we need it */
1652         newpssPtr = rf_AllocPSStatus(raidPtr);
1653 
1654 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1655 
1656 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1657 
1658         if (pssPtr != newpssPtr) {
1659                 rf_FreePSStatus(raidPtr, newpssPtr);
1660         }
1661 
1662 	/* if recon is not ongoing on this PS, just return */
1663 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1664 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1665 		return (0);
1666 	}
1667 	/* otherwise, we have to wait for reconstruction to complete on this
1668 	 * RU. */
1669 	/* In order to avoid waiting for a potentially large number of
1670 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1671 	 * not low-priority) reconstruction on this RU. */
1672 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1673 		DDprintf1("Forcing recon on psid %ld\n", psid);
1674 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1675 								 * forced recon */
1676 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1677 							 * that we just set */
1678 		fcol = raidPtr->reconControl->fcol;
1679 
1680 		/* get a listing of the disks comprising the indicated stripe */
1681 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1682 
1683 		/* For previously issued reads, elevate them to normal
1684 		 * priority.  If the I/O has already completed, it won't be
1685 		 * found in the queue, and hence this will be a no-op. For
1686 		 * unissued reads, allocate buffers and issue new reads.  The
1687 		 * fact that we've set the FORCED bit means that the regular
1688 		 * recon procs will not re-issue these reqs */
1689 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1690 			if ((diskno = diskids[i]) != fcol) {
1691 				if (pssPtr->issued[diskno]) {
1692 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1693 					if (rf_reconDebug && nPromoted)
1694 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1695 				} else {
1696 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1697 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1698 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1699 													 * location */
1700 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1701 					new_rbuf->which_ru = which_ru;
1702 					new_rbuf->failedDiskSectorOffset = fd_offset;
1703 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1704 
1705 					/* use NULL b_proc b/c all addrs
1706 					 * should be in kernel space */
1707 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1708 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1709 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1710 
1711 					new_rbuf->arg = req;
1712 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1713 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1714 				}
1715 			}
1716 		/* if the write is sitting in the disk queue, elevate its
1717 		 * priority */
1718 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1719 			printf("raid%d: promoted write to col %d\n",
1720 			       raidPtr->raidid, fcol);
1721 	}
1722 	/* install a callback descriptor to be invoked when recon completes on
1723 	 * this parity stripe. */
1724 	cb = rf_AllocCallbackDesc();
1725 	/* XXX the following is bogus.. These functions don't really match!!
1726 	 * GO */
1727 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1728 	cb->callbackArg.p = (void *) cbArg;
1729 	cb->next = pssPtr->procWaitList;
1730 	pssPtr->procWaitList = cb;
1731 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1732 		  raidPtr->raidid, psid);
1733 
1734 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1735 	return (1);
1736 }
1737 /* called upon the completion of a forced reconstruction read.
1738  * all we do is schedule the FORCEDREADONE event.
1739  * called at interrupt context in the kernel, so don't do anything illegal here.
1740  */
1741 static void
1742 ForceReconReadDoneProc(void *arg, int status)
1743 {
1744 	RF_ReconBuffer_t *rbuf = arg;
1745 
1746 	/* Detect that reconControl is no longer valid, and if that
1747 	   is the case, bail without calling rf_CauseReconEvent().
1748 	   There won't be anyone listening for this event anyway */
1749 
1750 	if (rbuf->raidPtr->reconControl == NULL)
1751 		return;
1752 
1753 	if (status) {
1754 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1755 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1756 		return;
1757 	}
1758 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1759 }
1760 /* releases a block on the reconstruction of the indicated stripe */
1761 int
1762 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1763 {
1764 	RF_StripeNum_t stripeID = asmap->stripeID;
1765 	RF_ReconParityStripeStatus_t *pssPtr;
1766 	RF_ReconUnitNum_t which_ru;
1767 	RF_StripeNum_t psid;
1768 	RF_CallbackDesc_t *cb;
1769 
1770 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1771 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1772 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1773 
1774 	/* When recon is forced, the pss desc can get deleted before we get
1775 	 * back to unblock recon. But, this can _only_ happen when recon is
1776 	 * forced. It would be good to put some kind of sanity check here, but
1777 	 * how to decide if recon was just forced or not? */
1778 	if (!pssPtr) {
1779 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1780 		 * RU %d\n",psid,which_ru); */
1781 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1782 		if (rf_reconDebug || rf_pssDebug)
1783 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1784 #endif
1785 		goto out;
1786 	}
1787 	pssPtr->blockCount--;
1788 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1789 		 raidPtr->raidid, psid, pssPtr->blockCount);
1790 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1791 
1792 		/* unblock recon before calling CauseReconEvent in case
1793 		 * CauseReconEvent causes us to try to issue a new read before
1794 		 * returning here. */
1795 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1796 
1797 
1798 		while (pssPtr->blockWaitList) {
1799 			/* spin through the block-wait list and
1800 			   release all the waiters */
1801 			cb = pssPtr->blockWaitList;
1802 			pssPtr->blockWaitList = cb->next;
1803 			cb->next = NULL;
1804 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1805 			rf_FreeCallbackDesc(cb);
1806 		}
1807 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1808 			/* if no recon was requested while recon was blocked */
1809 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1810 		}
1811 	}
1812 out:
1813 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1814 	return (0);
1815 }
1816