1 /* $NetBSD: rf_reconstruct.c,v 1.91 2006/05/14 21:45:00 elad Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.91 2006/05/14 21:45:00 elad Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 #if (RF_RECON_STATS > 0) || defined(KERNEL) 194 printf("\n"); 195 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 197 } 198 199 200 /***************************************************************************** 201 * 202 * primary routine to reconstruct a failed disk. This should be called from 203 * within its own thread. It won't return until reconstruction completes, 204 * fails, or is aborted. 205 *****************************************************************************/ 206 int 207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 208 { 209 const RF_LayoutSW_t *lp; 210 int rc; 211 212 lp = raidPtr->Layout.map; 213 if (lp->SubmitReconBuffer) { 214 /* 215 * The current infrastructure only supports reconstructing one 216 * disk at a time for each array. 217 */ 218 RF_LOCK_MUTEX(raidPtr->mutex); 219 while (raidPtr->reconInProgress) { 220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 221 } 222 raidPtr->reconInProgress++; 223 RF_UNLOCK_MUTEX(raidPtr->mutex); 224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 225 RF_LOCK_MUTEX(raidPtr->mutex); 226 raidPtr->reconInProgress--; 227 RF_UNLOCK_MUTEX(raidPtr->mutex); 228 } else { 229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 230 lp->parityConfig); 231 rc = EIO; 232 } 233 RF_SIGNAL_COND(raidPtr->waitForReconCond); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 RF_LOCK_MUTEX(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 RF_UNLOCK_MUTEX(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_used_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 RF_UNLOCK_MUTEX(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 raidread_component_label( 296 raidPtr->raid_cinfo[scol].ci_dev, 297 raidPtr->raid_cinfo[scol].ci_vp, 298 &c_label); 299 300 raid_init_component_label( raidPtr, &c_label); 301 c_label.row = 0; 302 c_label.column = col; 303 c_label.clean = RF_RAID_DIRTY; 304 c_label.status = rf_ds_optimal; 305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 306 307 /* We've just done a rebuild based on all the other 308 disks, so at this point the parity is known to be 309 clean, even if it wasn't before. */ 310 311 /* XXX doesn't hold for RAID 6!!*/ 312 313 RF_LOCK_MUTEX(raidPtr->mutex); 314 raidPtr->parity_good = RF_RAID_CLEAN; 315 RF_UNLOCK_MUTEX(raidPtr->mutex); 316 317 /* XXXX MORE NEEDED HERE */ 318 319 raidwrite_component_label( 320 raidPtr->raid_cinfo[scol].ci_dev, 321 raidPtr->raid_cinfo[scol].ci_vp, 322 &c_label); 323 324 } else { 325 /* Reconstruct failed. */ 326 327 RF_LOCK_MUTEX(raidPtr->mutex); 328 /* Failed disk goes back to "failed" status */ 329 raidPtr->Disks[col].status = rf_ds_failed; 330 331 /* Spare disk goes back to "spare" status. */ 332 spareDiskPtr->status = rf_ds_spare; 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 335 } 336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 337 return (rc); 338 } 339 340 /* 341 342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 343 and you don't get a spare until the next Monday. With this function 344 (and hot-swappable drives) you can now put your new disk containing 345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 346 rebuild the data "on the spot". 347 348 */ 349 350 int 351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 352 { 353 RF_RaidDisk_t *spareDiskPtr = NULL; 354 RF_RaidReconDesc_t *reconDesc; 355 const RF_LayoutSW_t *lp; 356 RF_ComponentLabel_t c_label; 357 int numDisksDone = 0, rc; 358 struct partinfo dpart; 359 struct vnode *vp; 360 struct vattr va; 361 struct lwp *lwp; 362 int retcode; 363 int ac; 364 365 lp = raidPtr->Layout.map; 366 if (!lp->SubmitReconBuffer) { 367 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 368 lp->parityConfig); 369 /* wakeup anyone who might be waiting to do a reconstruct */ 370 RF_SIGNAL_COND(raidPtr->waitForReconCond); 371 return(EIO); 372 } 373 374 /* 375 * The current infrastructure only supports reconstructing one 376 * disk at a time for each array. 377 */ 378 RF_LOCK_MUTEX(raidPtr->mutex); 379 380 if (raidPtr->Disks[col].status != rf_ds_failed) { 381 /* "It's gone..." */ 382 raidPtr->numFailures++; 383 raidPtr->Disks[col].status = rf_ds_failed; 384 raidPtr->status = rf_rs_degraded; 385 RF_UNLOCK_MUTEX(raidPtr->mutex); 386 rf_update_component_labels(raidPtr, 387 RF_NORMAL_COMPONENT_UPDATE); 388 RF_LOCK_MUTEX(raidPtr->mutex); 389 } 390 391 while (raidPtr->reconInProgress) { 392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 393 } 394 395 raidPtr->reconInProgress++; 396 397 /* first look for a spare drive onto which to reconstruct the 398 data. spare disk descriptors are stored in row 0. This 399 may have to change eventually */ 400 401 /* Actually, we don't care if it's failed or not... On a RAID 402 set with correct parity, this function should be callable 403 on any component without ill affects. */ 404 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 405 406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 409 410 raidPtr->reconInProgress--; 411 RF_UNLOCK_MUTEX(raidPtr->mutex); 412 RF_SIGNAL_COND(raidPtr->waitForReconCond); 413 return (EINVAL); 414 } 415 #endif 416 lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps); 417 418 /* This device may have been opened successfully the 419 first time. Close it before trying to open it again.. */ 420 421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 422 #if 0 423 printf("Closed the open device: %s\n", 424 raidPtr->Disks[col].devname); 425 #endif 426 vp = raidPtr->raid_cinfo[col].ci_vp; 427 ac = raidPtr->Disks[col].auto_configured; 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 rf_close_component(raidPtr, vp, ac); 430 RF_LOCK_MUTEX(raidPtr->mutex); 431 raidPtr->raid_cinfo[col].ci_vp = NULL; 432 } 433 /* note that this disk was *not* auto_configured (any longer)*/ 434 raidPtr->Disks[col].auto_configured = 0; 435 436 #if 0 437 printf("About to (re-)open the device for rebuilding: %s\n", 438 raidPtr->Disks[col].devname); 439 #endif 440 RF_UNLOCK_MUTEX(raidPtr->mutex); 441 retcode = raidlookup(raidPtr->Disks[col].devname, lwp, &vp); 442 443 if (retcode) { 444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 445 raidPtr->Disks[col].devname, retcode); 446 447 /* the component isn't responding properly... 448 must be still dead :-( */ 449 RF_LOCK_MUTEX(raidPtr->mutex); 450 raidPtr->reconInProgress--; 451 RF_UNLOCK_MUTEX(raidPtr->mutex); 452 RF_SIGNAL_COND(raidPtr->waitForReconCond); 453 return(retcode); 454 } 455 456 /* Ok, so we can at least do a lookup... 457 How about actually getting a vp for it? */ 458 459 if ((retcode = VOP_GETATTR(vp, &va, lwp->l_proc->p_cred, lwp)) != 0) { 460 RF_LOCK_MUTEX(raidPtr->mutex); 461 raidPtr->reconInProgress--; 462 RF_UNLOCK_MUTEX(raidPtr->mutex); 463 RF_SIGNAL_COND(raidPtr->waitForReconCond); 464 return(retcode); 465 } 466 467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_proc->p_cred, lwp); 468 if (retcode) { 469 RF_LOCK_MUTEX(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 RF_UNLOCK_MUTEX(raidPtr->mutex); 472 RF_SIGNAL_COND(raidPtr->waitForReconCond); 473 return(retcode); 474 } 475 RF_LOCK_MUTEX(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 477 478 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 479 rf_protectedSectors; 480 481 raidPtr->raid_cinfo[col].ci_vp = vp; 482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 483 484 raidPtr->Disks[col].dev = va.va_rdev; 485 486 /* we allow the user to specify that only a fraction 487 of the disks should be used this is just for debug: 488 it speeds up * the parity scan */ 489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 490 rf_sizePercentage / 100; 491 RF_UNLOCK_MUTEX(raidPtr->mutex); 492 493 spareDiskPtr = &raidPtr->Disks[col]; 494 spareDiskPtr->status = rf_ds_used_spare; 495 496 printf("raid%d: initiating in-place reconstruction on column %d\n", 497 raidPtr->raidid, col); 498 499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 500 numDisksDone, col); 501 raidPtr->reconDesc = (void *) reconDesc; 502 #if RF_RECON_STATS > 0 503 reconDesc->hsStallCount = 0; 504 reconDesc->numReconExecDelays = 0; 505 reconDesc->numReconEventWaits = 0; 506 #endif /* RF_RECON_STATS > 0 */ 507 reconDesc->reconExecTimerRunning = 0; 508 reconDesc->reconExecTicks = 0; 509 reconDesc->maxReconExecTicks = 0; 510 rc = rf_ContinueReconstructFailedDisk(reconDesc); 511 512 if (!rc) { 513 RF_LOCK_MUTEX(raidPtr->mutex); 514 /* Need to set these here, as at this point it'll be claiming 515 that the disk is in rf_ds_spared! But we know better :-) */ 516 517 raidPtr->Disks[col].status = rf_ds_optimal; 518 raidPtr->status = rf_rs_optimal; 519 RF_UNLOCK_MUTEX(raidPtr->mutex); 520 521 /* fix up the component label */ 522 /* Don't actually need the read here.. */ 523 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 524 raidPtr->raid_cinfo[col].ci_vp, 525 &c_label); 526 527 RF_LOCK_MUTEX(raidPtr->mutex); 528 raid_init_component_label(raidPtr, &c_label); 529 530 c_label.row = 0; 531 c_label.column = col; 532 533 /* We've just done a rebuild based on all the other 534 disks, so at this point the parity is known to be 535 clean, even if it wasn't before. */ 536 537 /* XXX doesn't hold for RAID 6!!*/ 538 539 raidPtr->parity_good = RF_RAID_CLEAN; 540 RF_UNLOCK_MUTEX(raidPtr->mutex); 541 542 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 543 raidPtr->raid_cinfo[col].ci_vp, 544 &c_label); 545 546 } else { 547 /* Reconstruct-in-place failed. Disk goes back to 548 "failed" status, regardless of what it was before. */ 549 RF_LOCK_MUTEX(raidPtr->mutex); 550 raidPtr->Disks[col].status = rf_ds_failed; 551 RF_UNLOCK_MUTEX(raidPtr->mutex); 552 } 553 554 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 555 556 RF_LOCK_MUTEX(raidPtr->mutex); 557 raidPtr->reconInProgress--; 558 RF_UNLOCK_MUTEX(raidPtr->mutex); 559 560 RF_SIGNAL_COND(raidPtr->waitForReconCond); 561 return (rc); 562 } 563 564 565 int 566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 567 { 568 RF_Raid_t *raidPtr = reconDesc->raidPtr; 569 RF_RowCol_t col = reconDesc->col; 570 RF_RowCol_t scol = reconDesc->scol; 571 RF_ReconMap_t *mapPtr; 572 RF_ReconCtrl_t *tmp_reconctrl; 573 RF_ReconEvent_t *event; 574 RF_CallbackDesc_t *p; 575 struct timeval etime, elpsd; 576 unsigned long xor_s, xor_resid_us; 577 int i, ds; 578 int status; 579 int recon_error, write_error; 580 581 raidPtr->accumXorTimeUs = 0; 582 #if RF_ACC_TRACE > 0 583 /* create one trace record per physical disk */ 584 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 585 #endif 586 587 /* quiesce the array prior to starting recon. this is needed 588 * to assure no nasty interactions with pending user writes. 589 * We need to do this before we change the disk or row status. */ 590 591 Dprintf("RECON: begin request suspend\n"); 592 rf_SuspendNewRequestsAndWait(raidPtr); 593 Dprintf("RECON: end request suspend\n"); 594 595 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 596 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 597 598 RF_LOCK_MUTEX(raidPtr->mutex); 599 600 /* create the reconstruction control pointer and install it in 601 * the right slot */ 602 raidPtr->reconControl = tmp_reconctrl; 603 mapPtr = raidPtr->reconControl->reconMap; 604 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 605 raidPtr->reconControl->numRUsComplete = 0; 606 raidPtr->status = rf_rs_reconstructing; 607 raidPtr->Disks[col].status = rf_ds_reconstructing; 608 raidPtr->Disks[col].spareCol = scol; 609 610 RF_UNLOCK_MUTEX(raidPtr->mutex); 611 612 RF_GETTIME(raidPtr->reconControl->starttime); 613 614 /* now start up the actual reconstruction: issue a read for 615 * each surviving disk */ 616 617 reconDesc->numDisksDone = 0; 618 for (i = 0; i < raidPtr->numCol; i++) { 619 if (i != col) { 620 /* find and issue the next I/O on the 621 * indicated disk */ 622 if (IssueNextReadRequest(raidPtr, i)) { 623 Dprintf1("RECON: done issuing for c%d\n", i); 624 reconDesc->numDisksDone++; 625 } 626 } 627 } 628 629 Dprintf("RECON: resume requests\n"); 630 rf_ResumeNewRequests(raidPtr); 631 632 /* process reconstruction events until all disks report that 633 * they've completed all work */ 634 635 mapPtr = raidPtr->reconControl->reconMap; 636 recon_error = 0; 637 write_error = 0; 638 639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 640 641 event = rf_GetNextReconEvent(reconDesc); 642 status = ProcessReconEvent(raidPtr, event); 643 644 /* the normal case is that a read completes, and all is well. */ 645 if (status == RF_RECON_DONE_READS) { 646 reconDesc->numDisksDone++; 647 } else if ((status == RF_RECON_READ_ERROR) || 648 (status == RF_RECON_WRITE_ERROR)) { 649 /* an error was encountered while reconstructing... 650 Pretend we've finished this disk. 651 */ 652 recon_error = 1; 653 raidPtr->reconControl->error = 1; 654 655 /* bump the numDisksDone count for reads, 656 but not for writes */ 657 if (status == RF_RECON_READ_ERROR) 658 reconDesc->numDisksDone++; 659 660 /* write errors are special -- when we are 661 done dealing with the reads that are 662 finished, we don't want to wait for any 663 writes */ 664 if (status == RF_RECON_WRITE_ERROR) 665 write_error = 1; 666 667 } else if (status == RF_RECON_READ_STOPPED) { 668 /* count this component as being "done" */ 669 reconDesc->numDisksDone++; 670 } 671 672 if (recon_error) { 673 674 /* make sure any stragglers are woken up so that 675 their theads will complete, and we can get out 676 of here with all IO processed */ 677 678 while (raidPtr->reconControl->headSepCBList) { 679 p = raidPtr->reconControl->headSepCBList; 680 raidPtr->reconControl->headSepCBList = p->next; 681 p->next = NULL; 682 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 683 rf_FreeCallbackDesc(p); 684 } 685 } 686 687 raidPtr->reconControl->numRUsTotal = 688 mapPtr->totalRUs; 689 raidPtr->reconControl->numRUsComplete = 690 mapPtr->totalRUs - 691 rf_UnitsLeftToReconstruct(mapPtr); 692 693 #if RF_DEBUG_RECON 694 raidPtr->reconControl->percentComplete = 695 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 696 if (rf_prReconSched) { 697 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 698 } 699 #endif 700 } 701 702 mapPtr = raidPtr->reconControl->reconMap; 703 if (rf_reconDebug) { 704 printf("RECON: all reads completed\n"); 705 } 706 /* at this point all the reads have completed. We now wait 707 * for any pending writes to complete, and then we're done */ 708 709 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 710 711 event = rf_GetNextReconEvent(reconDesc); 712 status = ProcessReconEvent(raidPtr, event); 713 714 if (status == RF_RECON_WRITE_ERROR) { 715 recon_error = 1; 716 raidPtr->reconControl->error = 1; 717 /* an error was encountered at the very end... bail */ 718 } else { 719 #if RF_DEBUG_RECON 720 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 721 if (rf_prReconSched) { 722 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 723 } 724 #endif 725 } 726 } 727 728 if (recon_error) { 729 /* we've encountered an error in reconstructing. */ 730 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 731 732 /* we start by blocking IO to the RAID set. */ 733 rf_SuspendNewRequestsAndWait(raidPtr); 734 735 RF_LOCK_MUTEX(raidPtr->mutex); 736 /* mark set as being degraded, rather than 737 rf_rs_reconstructing as we were before the problem. 738 After this is done we can update status of the 739 component disks without worrying about someone 740 trying to read from a failed component. 741 */ 742 raidPtr->status = rf_rs_degraded; 743 RF_UNLOCK_MUTEX(raidPtr->mutex); 744 745 /* resume IO */ 746 rf_ResumeNewRequests(raidPtr); 747 748 /* At this point there are two cases: 749 1) If we've experienced a read error, then we've 750 already waited for all the reads we're going to get, 751 and we just need to wait for the writes. 752 753 2) If we've experienced a write error, we've also 754 already waited for all the reads to complete, 755 but there is little point in waiting for the writes -- 756 when they do complete, they will just be ignored. 757 758 So we just wait for writes to complete if we didn't have a 759 write error. 760 */ 761 762 if (!write_error) { 763 /* wait for writes to complete */ 764 while (raidPtr->reconControl->pending_writes > 0) { 765 766 event = rf_GetNextReconEvent(reconDesc); 767 status = ProcessReconEvent(raidPtr, event); 768 769 if (status == RF_RECON_WRITE_ERROR) { 770 raidPtr->reconControl->error = 1; 771 /* an error was encountered at the very end... bail. 772 This will be very bad news for the user, since 773 at this point there will have been a read error 774 on one component, and a write error on another! 775 */ 776 break; 777 } 778 } 779 } 780 781 782 /* cleanup */ 783 784 /* drain the event queue - after waiting for the writes above, 785 there shouldn't be much (if anything!) left in the queue. */ 786 787 rf_DrainReconEventQueue(reconDesc); 788 789 /* XXX As much as we'd like to free the recon control structure 790 and the reconDesc, we have no way of knowing if/when those will 791 be touched by IO that has yet to occur. It is rather poor to be 792 basically causing a 'memory leak' here, but there doesn't seem to be 793 a cleaner alternative at this time. Perhaps when the reconstruct code 794 gets a makeover this problem will go away. 795 */ 796 #if 0 797 rf_FreeReconControl(raidPtr); 798 #endif 799 800 #if RF_ACC_TRACE > 0 801 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 802 #endif 803 /* XXX see comment above */ 804 #if 0 805 FreeReconDesc(reconDesc); 806 #endif 807 808 return (1); 809 } 810 811 /* Success: mark the dead disk as reconstructed. We quiesce 812 * the array here to assure no nasty interactions with pending 813 * user accesses when we free up the psstatus structure as 814 * part of FreeReconControl() */ 815 816 rf_SuspendNewRequestsAndWait(raidPtr); 817 818 RF_LOCK_MUTEX(raidPtr->mutex); 819 raidPtr->numFailures--; 820 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 821 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 822 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 823 RF_UNLOCK_MUTEX(raidPtr->mutex); 824 RF_GETTIME(etime); 825 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 826 827 rf_ResumeNewRequests(raidPtr); 828 829 printf("raid%d: Reconstruction of disk at col %d completed\n", 830 raidPtr->raidid, col); 831 xor_s = raidPtr->accumXorTimeUs / 1000000; 832 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 833 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 834 raidPtr->raidid, 835 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 836 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 837 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 838 raidPtr->raidid, 839 (int) raidPtr->reconControl->starttime.tv_sec, 840 (int) raidPtr->reconControl->starttime.tv_usec, 841 (int) etime.tv_sec, (int) etime.tv_usec); 842 #if RF_RECON_STATS > 0 843 printf("raid%d: Total head-sep stall count was %d\n", 844 raidPtr->raidid, (int) reconDesc->hsStallCount); 845 #endif /* RF_RECON_STATS > 0 */ 846 rf_FreeReconControl(raidPtr); 847 #if RF_ACC_TRACE > 0 848 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 849 #endif 850 FreeReconDesc(reconDesc); 851 852 return (0); 853 854 } 855 /***************************************************************************** 856 * do the right thing upon each reconstruction event. 857 *****************************************************************************/ 858 static int 859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 860 { 861 int retcode = 0, submitblocked; 862 RF_ReconBuffer_t *rbuf; 863 RF_SectorCount_t sectorsPerRU; 864 865 retcode = RF_RECON_READ_STOPPED; 866 867 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 868 switch (event->type) { 869 870 /* a read I/O has completed */ 871 case RF_REVENT_READDONE: 872 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 873 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 874 event->col, rbuf->parityStripeID); 875 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 876 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 877 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 879 if (!raidPtr->reconControl->error) { 880 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 881 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 882 if (!submitblocked) 883 retcode = IssueNextReadRequest(raidPtr, event->col); 884 else 885 retcode = 0; 886 } 887 break; 888 889 /* a write I/O has completed */ 890 case RF_REVENT_WRITEDONE: 891 #if RF_DEBUG_RECON 892 if (rf_floatingRbufDebug) { 893 rf_CheckFloatingRbufCount(raidPtr, 1); 894 } 895 #endif 896 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 897 rbuf = (RF_ReconBuffer_t *) event->arg; 898 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 899 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 900 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 901 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 902 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 903 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 904 905 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 906 raidPtr->reconControl->pending_writes--; 907 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 908 909 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 910 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 911 while(raidPtr->reconControl->rb_lock) { 912 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 913 &raidPtr->reconControl->rb_mutex); 914 } 915 raidPtr->reconControl->rb_lock = 1; 916 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 917 918 raidPtr->numFullReconBuffers--; 919 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 920 921 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 922 raidPtr->reconControl->rb_lock = 0; 923 wakeup(&raidPtr->reconControl->rb_lock); 924 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 925 } else 926 if (rbuf->type == RF_RBUF_TYPE_FORCED) 927 rf_FreeReconBuffer(rbuf); 928 else 929 RF_ASSERT(0); 930 retcode = 0; 931 break; 932 933 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 934 * cleared */ 935 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 936 if (!raidPtr->reconControl->error) { 937 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 938 0, (int) (long) event->arg); 939 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 940 * BUFCLEAR event if we 941 * couldn't submit */ 942 retcode = IssueNextReadRequest(raidPtr, event->col); 943 } 944 break; 945 946 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 947 * blockage has been cleared */ 948 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 949 if (!raidPtr->reconControl->error) { 950 retcode = TryToRead(raidPtr, event->col); 951 } 952 break; 953 954 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 955 * reconstruction blockage has been 956 * cleared */ 957 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 958 if (!raidPtr->reconControl->error) { 959 retcode = TryToRead(raidPtr, event->col); 960 } 961 break; 962 963 /* a buffer has become ready to write */ 964 case RF_REVENT_BUFREADY: 965 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 966 if (!raidPtr->reconControl->error) { 967 retcode = IssueNextWriteRequest(raidPtr); 968 #if RF_DEBUG_RECON 969 if (rf_floatingRbufDebug) { 970 rf_CheckFloatingRbufCount(raidPtr, 1); 971 } 972 #endif 973 } 974 break; 975 976 /* we need to skip the current RU entirely because it got 977 * recon'd while we were waiting for something else to happen */ 978 case RF_REVENT_SKIP: 979 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 980 if (!raidPtr->reconControl->error) { 981 retcode = IssueNextReadRequest(raidPtr, event->col); 982 } 983 break; 984 985 /* a forced-reconstruction read access has completed. Just 986 * submit the buffer */ 987 case RF_REVENT_FORCEDREADDONE: 988 rbuf = (RF_ReconBuffer_t *) event->arg; 989 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 990 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 991 if (!raidPtr->reconControl->error) { 992 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 993 RF_ASSERT(!submitblocked); 994 } 995 break; 996 997 /* A read I/O failed to complete */ 998 case RF_REVENT_READ_FAILED: 999 retcode = RF_RECON_READ_ERROR; 1000 break; 1001 1002 /* A write I/O failed to complete */ 1003 case RF_REVENT_WRITE_FAILED: 1004 retcode = RF_RECON_WRITE_ERROR; 1005 1006 rbuf = (RF_ReconBuffer_t *) event->arg; 1007 1008 /* cleanup the disk queue data */ 1009 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1010 1011 /* At this point we're erroring out, badly, and floatingRbufs 1012 may not even be valid. Rather than putting this back onto 1013 the floatingRbufs list, just arrange for its immediate 1014 destruction. 1015 */ 1016 rf_FreeReconBuffer(rbuf); 1017 break; 1018 1019 /* a forced read I/O failed to complete */ 1020 case RF_REVENT_FORCEDREAD_FAILED: 1021 retcode = RF_RECON_READ_ERROR; 1022 break; 1023 1024 default: 1025 RF_PANIC(); 1026 } 1027 rf_FreeReconEventDesc(event); 1028 return (retcode); 1029 } 1030 /***************************************************************************** 1031 * 1032 * find the next thing that's needed on the indicated disk, and issue 1033 * a read request for it. We assume that the reconstruction buffer 1034 * associated with this process is free to receive the data. If 1035 * reconstruction is blocked on the indicated RU, we issue a 1036 * blockage-release request instead of a physical disk read request. 1037 * If the current disk gets too far ahead of the others, we issue a 1038 * head-separation wait request and return. 1039 * 1040 * ctrl->{ru_count, curPSID, diskOffset} and 1041 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1042 * we're currently accessing. Note that this deviates from the 1043 * standard C idiom of having counters point to the next thing to be 1044 * accessed. This allows us to easily retry when we're blocked by 1045 * head separation or reconstruction-blockage events. 1046 * 1047 *****************************************************************************/ 1048 static int 1049 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1050 { 1051 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1052 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1053 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1054 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1055 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1056 int do_new_check = 0, retcode = 0, status; 1057 1058 /* if we are currently the slowest disk, mark that we have to do a new 1059 * check */ 1060 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1061 do_new_check = 1; 1062 1063 while (1) { 1064 1065 ctrl->ru_count++; 1066 if (ctrl->ru_count < RUsPerPU) { 1067 ctrl->diskOffset += sectorsPerRU; 1068 rbuf->failedDiskSectorOffset += sectorsPerRU; 1069 } else { 1070 ctrl->curPSID++; 1071 ctrl->ru_count = 0; 1072 /* code left over from when head-sep was based on 1073 * parity stripe id */ 1074 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1075 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1076 return (RF_RECON_DONE_READS); /* finito! */ 1077 } 1078 /* find the disk offsets of the start of the parity 1079 * stripe on both the current disk and the failed 1080 * disk. skip this entire parity stripe if either disk 1081 * does not appear in the indicated PS */ 1082 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1083 &rbuf->spCol, &rbuf->spOffset); 1084 if (status) { 1085 ctrl->ru_count = RUsPerPU - 1; 1086 continue; 1087 } 1088 } 1089 rbuf->which_ru = ctrl->ru_count; 1090 1091 /* skip this RU if it's already been reconstructed */ 1092 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1093 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1094 continue; 1095 } 1096 break; 1097 } 1098 ctrl->headSepCounter++; 1099 if (do_new_check) 1100 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1101 1102 1103 /* at this point, we have definitely decided what to do, and we have 1104 * only to see if we can actually do it now */ 1105 rbuf->parityStripeID = ctrl->curPSID; 1106 rbuf->which_ru = ctrl->ru_count; 1107 #if RF_ACC_TRACE > 0 1108 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1109 sizeof(raidPtr->recon_tracerecs[col])); 1110 raidPtr->recon_tracerecs[col].reconacc = 1; 1111 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1112 #endif 1113 retcode = TryToRead(raidPtr, col); 1114 return (retcode); 1115 } 1116 1117 /* 1118 * tries to issue the next read on the indicated disk. We may be 1119 * blocked by (a) the heads being too far apart, or (b) recon on the 1120 * indicated RU being blocked due to a write by a user thread. In 1121 * this case, we issue a head-sep or blockage wait request, which will 1122 * cause this same routine to be invoked again later when the blockage 1123 * has cleared. 1124 */ 1125 1126 static int 1127 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1128 { 1129 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1130 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1131 RF_StripeNum_t psid = ctrl->curPSID; 1132 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1133 RF_DiskQueueData_t *req; 1134 int status; 1135 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1136 1137 /* if the current disk is too far ahead of the others, issue a 1138 * head-separation wait and return */ 1139 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1140 return (0); 1141 1142 /* allocate a new PSS in case we need it */ 1143 newpssPtr = rf_AllocPSStatus(raidPtr); 1144 1145 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1146 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1147 1148 if (pssPtr != newpssPtr) { 1149 rf_FreePSStatus(raidPtr, newpssPtr); 1150 } 1151 1152 /* if recon is blocked on the indicated parity stripe, issue a 1153 * block-wait request and return. this also must mark the indicated RU 1154 * in the stripe as under reconstruction if not blocked. */ 1155 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1156 if (status == RF_PSS_RECON_BLOCKED) { 1157 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1158 goto out; 1159 } else 1160 if (status == RF_PSS_FORCED_ON_WRITE) { 1161 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1162 goto out; 1163 } 1164 /* make one last check to be sure that the indicated RU didn't get 1165 * reconstructed while we were waiting for something else to happen. 1166 * This is unfortunate in that it causes us to make this check twice 1167 * in the normal case. Might want to make some attempt to re-work 1168 * this so that we only do this check if we've definitely blocked on 1169 * one of the above checks. When this condition is detected, we may 1170 * have just created a bogus status entry, which we need to delete. */ 1171 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1172 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1173 if (pssPtr == newpssPtr) 1174 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1175 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1176 goto out; 1177 } 1178 /* found something to read. issue the I/O */ 1179 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1180 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1181 #if RF_ACC_TRACE > 0 1182 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1183 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1184 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1185 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1186 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1187 #endif 1188 /* should be ok to use a NULL proc pointer here, all the bufs we use 1189 * should be in kernel space */ 1190 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1191 ReconReadDoneProc, (void *) ctrl, 1192 #if RF_ACC_TRACE > 0 1193 &raidPtr->recon_tracerecs[col], 1194 #else 1195 NULL, 1196 #endif 1197 (void *) raidPtr, 0, NULL, PR_WAITOK); 1198 1199 ctrl->rbuf->arg = (void *) req; 1200 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1201 pssPtr->issued[col] = 1; 1202 1203 out: 1204 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1205 return (0); 1206 } 1207 1208 1209 /* 1210 * given a parity stripe ID, we want to find out whether both the 1211 * current disk and the failed disk exist in that parity stripe. If 1212 * not, we want to skip this whole PS. If so, we want to find the 1213 * disk offset of the start of the PS on both the current disk and the 1214 * failed disk. 1215 * 1216 * this works by getting a list of disks comprising the indicated 1217 * parity stripe, and searching the list for the current and failed 1218 * disks. Once we've decided they both exist in the parity stripe, we 1219 * need to decide whether each is data or parity, so that we'll know 1220 * which mapping function to call to get the corresponding disk 1221 * offsets. 1222 * 1223 * this is kind of unpleasant, but doing it this way allows the 1224 * reconstruction code to use parity stripe IDs rather than physical 1225 * disks address to march through the failed disk, which greatly 1226 * simplifies a lot of code, as well as eliminating the need for a 1227 * reverse-mapping function. I also think it will execute faster, 1228 * since the calls to the mapping module are kept to a minimum. 1229 * 1230 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1231 * THE STRIPE IN THE CORRECT ORDER 1232 * 1233 * raidPtr - raid descriptor 1234 * psid - parity stripe identifier 1235 * col - column of disk to find the offsets for 1236 * spCol - out: col of spare unit for failed unit 1237 * spOffset - out: offset into disk containing spare unit 1238 * 1239 */ 1240 1241 1242 static int 1243 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1244 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1245 RF_SectorNum_t *outFailedDiskSectorOffset, 1246 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1247 { 1248 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1249 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1250 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1251 RF_RowCol_t *diskids; 1252 u_int i, j, k, i_offset, j_offset; 1253 RF_RowCol_t pcol; 1254 int testcol; 1255 RF_SectorNum_t poffset; 1256 char i_is_parity = 0, j_is_parity = 0; 1257 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1258 1259 /* get a listing of the disks comprising that stripe */ 1260 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1261 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1262 RF_ASSERT(diskids); 1263 1264 /* reject this entire parity stripe if it does not contain the 1265 * indicated disk or it does not contain the failed disk */ 1266 1267 for (i = 0; i < stripeWidth; i++) { 1268 if (col == diskids[i]) 1269 break; 1270 } 1271 if (i == stripeWidth) 1272 goto skipit; 1273 for (j = 0; j < stripeWidth; j++) { 1274 if (fcol == diskids[j]) 1275 break; 1276 } 1277 if (j == stripeWidth) { 1278 goto skipit; 1279 } 1280 /* find out which disk the parity is on */ 1281 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1282 1283 /* find out if either the current RU or the failed RU is parity */ 1284 /* also, if the parity occurs in this stripe prior to the data and/or 1285 * failed col, we need to decrement i and/or j */ 1286 for (k = 0; k < stripeWidth; k++) 1287 if (diskids[k] == pcol) 1288 break; 1289 RF_ASSERT(k < stripeWidth); 1290 i_offset = i; 1291 j_offset = j; 1292 if (k < i) 1293 i_offset--; 1294 else 1295 if (k == i) { 1296 i_is_parity = 1; 1297 i_offset = 0; 1298 } /* set offsets to zero to disable multiply 1299 * below */ 1300 if (k < j) 1301 j_offset--; 1302 else 1303 if (k == j) { 1304 j_is_parity = 1; 1305 j_offset = 0; 1306 } 1307 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1308 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1309 * tells us how far into the stripe the [current,failed] disk is. */ 1310 1311 /* call the mapping routine to get the offset into the current disk, 1312 * repeat for failed disk. */ 1313 if (i_is_parity) 1314 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1315 else 1316 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1317 1318 RF_ASSERT(col == testcol); 1319 1320 if (j_is_parity) 1321 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1322 else 1323 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1324 RF_ASSERT(fcol == testcol); 1325 1326 /* now locate the spare unit for the failed unit */ 1327 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1328 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1329 if (j_is_parity) 1330 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1331 else 1332 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1333 } else { 1334 #endif 1335 *spCol = raidPtr->reconControl->spareCol; 1336 *spOffset = *outFailedDiskSectorOffset; 1337 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1338 } 1339 #endif 1340 return (0); 1341 1342 skipit: 1343 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1344 psid, col); 1345 return (1); 1346 } 1347 /* this is called when a buffer has become ready to write to the replacement disk */ 1348 static int 1349 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1350 { 1351 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1352 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1353 #if RF_ACC_TRACE > 0 1354 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1355 #endif 1356 RF_ReconBuffer_t *rbuf; 1357 RF_DiskQueueData_t *req; 1358 1359 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1360 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1361 * have gotten the event that sent us here */ 1362 RF_ASSERT(rbuf->pssPtr); 1363 1364 rbuf->pssPtr->writeRbuf = rbuf; 1365 rbuf->pssPtr = NULL; 1366 1367 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1368 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1369 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1370 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1371 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1372 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1373 1374 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1375 * kernel space */ 1376 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1377 sectorsPerRU, rbuf->buffer, 1378 rbuf->parityStripeID, rbuf->which_ru, 1379 ReconWriteDoneProc, (void *) rbuf, 1380 #if RF_ACC_TRACE > 0 1381 &raidPtr->recon_tracerecs[fcol], 1382 #else 1383 NULL, 1384 #endif 1385 (void *) raidPtr, 0, NULL, PR_WAITOK); 1386 1387 rbuf->arg = (void *) req; 1388 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1389 raidPtr->reconControl->pending_writes++; 1390 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1391 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1392 1393 return (0); 1394 } 1395 1396 /* 1397 * this gets called upon the completion of a reconstruction read 1398 * operation the arg is a pointer to the per-disk reconstruction 1399 * control structure for the process that just finished a read. 1400 * 1401 * called at interrupt context in the kernel, so don't do anything 1402 * illegal here. 1403 */ 1404 static int 1405 ReconReadDoneProc(void *arg, int status) 1406 { 1407 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1408 RF_Raid_t *raidPtr; 1409 1410 /* Detect that reconCtrl is no longer valid, and if that 1411 is the case, bail without calling rf_CauseReconEvent(). 1412 There won't be anyone listening for this event anyway */ 1413 1414 if (ctrl->reconCtrl == NULL) 1415 return(0); 1416 1417 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1418 1419 if (status) { 1420 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1421 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1422 return(0); 1423 } 1424 #if RF_ACC_TRACE > 0 1425 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1426 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1427 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1428 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1429 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1430 #endif 1431 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1432 return (0); 1433 } 1434 /* this gets called upon the completion of a reconstruction write operation. 1435 * the arg is a pointer to the rbuf that was just written 1436 * 1437 * called at interrupt context in the kernel, so don't do anything illegal here. 1438 */ 1439 static int 1440 ReconWriteDoneProc(void *arg, int status) 1441 { 1442 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1443 1444 /* Detect that reconControl is no longer valid, and if that 1445 is the case, bail without calling rf_CauseReconEvent(). 1446 There won't be anyone listening for this event anyway */ 1447 1448 if (rbuf->raidPtr->reconControl == NULL) 1449 return(0); 1450 1451 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1452 if (status) { 1453 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1454 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1455 return(0); 1456 } 1457 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1458 return (0); 1459 } 1460 1461 1462 /* 1463 * computes a new minimum head sep, and wakes up anyone who needs to 1464 * be woken as a result 1465 */ 1466 static void 1467 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1468 { 1469 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1470 RF_HeadSepLimit_t new_min; 1471 RF_RowCol_t i; 1472 RF_CallbackDesc_t *p; 1473 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1474 * of a minimum */ 1475 1476 1477 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1478 while(reconCtrlPtr->rb_lock) { 1479 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1480 } 1481 reconCtrlPtr->rb_lock = 1; 1482 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1483 1484 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1485 for (i = 0; i < raidPtr->numCol; i++) 1486 if (i != reconCtrlPtr->fcol) { 1487 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1488 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1489 } 1490 /* set the new minimum and wake up anyone who can now run again */ 1491 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1492 reconCtrlPtr->minHeadSepCounter = new_min; 1493 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1494 while (reconCtrlPtr->headSepCBList) { 1495 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1496 break; 1497 p = reconCtrlPtr->headSepCBList; 1498 reconCtrlPtr->headSepCBList = p->next; 1499 p->next = NULL; 1500 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1501 rf_FreeCallbackDesc(p); 1502 } 1503 1504 } 1505 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1506 reconCtrlPtr->rb_lock = 0; 1507 wakeup(&reconCtrlPtr->rb_lock); 1508 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1509 } 1510 1511 /* 1512 * checks to see that the maximum head separation will not be violated 1513 * if we initiate a reconstruction I/O on the indicated disk. 1514 * Limiting the maximum head separation between two disks eliminates 1515 * the nasty buffer-stall conditions that occur when one disk races 1516 * ahead of the others and consumes all of the floating recon buffers. 1517 * This code is complex and unpleasant but it's necessary to avoid 1518 * some very nasty, albeit fairly rare, reconstruction behavior. 1519 * 1520 * returns non-zero if and only if we have to stop working on the 1521 * indicated disk due to a head-separation delay. 1522 */ 1523 static int 1524 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1525 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1526 RF_ReconUnitNum_t which_ru) 1527 { 1528 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1529 RF_CallbackDesc_t *cb, *p, *pt; 1530 int retval = 0; 1531 1532 /* if we're too far ahead of the slowest disk, stop working on this 1533 * disk until the slower ones catch up. We do this by scheduling a 1534 * wakeup callback for the time when the slowest disk has caught up. 1535 * We define "caught up" with 20% hysteresis, i.e. the head separation 1536 * must have fallen to at most 80% of the max allowable head 1537 * separation before we'll wake up. 1538 * 1539 */ 1540 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1541 while(reconCtrlPtr->rb_lock) { 1542 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1543 } 1544 reconCtrlPtr->rb_lock = 1; 1545 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1546 if ((raidPtr->headSepLimit >= 0) && 1547 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1548 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1549 raidPtr->raidid, col, ctrl->headSepCounter, 1550 reconCtrlPtr->minHeadSepCounter, 1551 raidPtr->headSepLimit); 1552 cb = rf_AllocCallbackDesc(); 1553 /* the minHeadSepCounter value we have to get to before we'll 1554 * wake up. build in 20% hysteresis. */ 1555 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1556 cb->col = col; 1557 cb->next = NULL; 1558 1559 /* insert this callback descriptor into the sorted list of 1560 * pending head-sep callbacks */ 1561 p = reconCtrlPtr->headSepCBList; 1562 if (!p) 1563 reconCtrlPtr->headSepCBList = cb; 1564 else 1565 if (cb->callbackArg.v < p->callbackArg.v) { 1566 cb->next = reconCtrlPtr->headSepCBList; 1567 reconCtrlPtr->headSepCBList = cb; 1568 } else { 1569 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1570 cb->next = p; 1571 pt->next = cb; 1572 } 1573 retval = 1; 1574 #if RF_RECON_STATS > 0 1575 ctrl->reconCtrl->reconDesc->hsStallCount++; 1576 #endif /* RF_RECON_STATS > 0 */ 1577 } 1578 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1579 reconCtrlPtr->rb_lock = 0; 1580 wakeup(&reconCtrlPtr->rb_lock); 1581 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1582 1583 return (retval); 1584 } 1585 /* 1586 * checks to see if reconstruction has been either forced or blocked 1587 * by a user operation. if forced, we skip this RU entirely. else if 1588 * blocked, put ourselves on the wait list. else return 0. 1589 * 1590 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1591 */ 1592 static int 1593 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1594 RF_ReconParityStripeStatus_t *pssPtr, 1595 RF_PerDiskReconCtrl_t *ctrl, 1596 RF_RowCol_t col, RF_StripeNum_t psid, 1597 RF_ReconUnitNum_t which_ru) 1598 { 1599 RF_CallbackDesc_t *cb; 1600 int retcode = 0; 1601 1602 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1603 retcode = RF_PSS_FORCED_ON_WRITE; 1604 else 1605 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1606 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1607 cb = rf_AllocCallbackDesc(); /* append ourselves to 1608 * the blockage-wait 1609 * list */ 1610 cb->col = col; 1611 cb->next = pssPtr->blockWaitList; 1612 pssPtr->blockWaitList = cb; 1613 retcode = RF_PSS_RECON_BLOCKED; 1614 } 1615 if (!retcode) 1616 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1617 * reconstruction */ 1618 1619 return (retcode); 1620 } 1621 /* 1622 * if reconstruction is currently ongoing for the indicated stripeID, 1623 * reconstruction is forced to completion and we return non-zero to 1624 * indicate that the caller must wait. If not, then reconstruction is 1625 * blocked on the indicated stripe and the routine returns zero. If 1626 * and only if we return non-zero, we'll cause the cbFunc to get 1627 * invoked with the cbArg when the reconstruction has completed. 1628 */ 1629 int 1630 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1631 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1632 { 1633 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1634 * forcing recon on */ 1635 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1636 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1637 * stripe status structure */ 1638 RF_StripeNum_t psid; /* parity stripe id */ 1639 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1640 * offset */ 1641 RF_RowCol_t *diskids; 1642 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1643 RF_RowCol_t fcol, diskno, i; 1644 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1645 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1646 RF_CallbackDesc_t *cb; 1647 int nPromoted; 1648 1649 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1650 1651 /* allocate a new PSS in case we need it */ 1652 newpssPtr = rf_AllocPSStatus(raidPtr); 1653 1654 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1655 1656 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1657 1658 if (pssPtr != newpssPtr) { 1659 rf_FreePSStatus(raidPtr, newpssPtr); 1660 } 1661 1662 /* if recon is not ongoing on this PS, just return */ 1663 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1664 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1665 return (0); 1666 } 1667 /* otherwise, we have to wait for reconstruction to complete on this 1668 * RU. */ 1669 /* In order to avoid waiting for a potentially large number of 1670 * low-priority accesses to complete, we force a normal-priority (i.e. 1671 * not low-priority) reconstruction on this RU. */ 1672 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1673 DDprintf1("Forcing recon on psid %ld\n", psid); 1674 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1675 * forced recon */ 1676 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1677 * that we just set */ 1678 fcol = raidPtr->reconControl->fcol; 1679 1680 /* get a listing of the disks comprising the indicated stripe */ 1681 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1682 1683 /* For previously issued reads, elevate them to normal 1684 * priority. If the I/O has already completed, it won't be 1685 * found in the queue, and hence this will be a no-op. For 1686 * unissued reads, allocate buffers and issue new reads. The 1687 * fact that we've set the FORCED bit means that the regular 1688 * recon procs will not re-issue these reqs */ 1689 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1690 if ((diskno = diskids[i]) != fcol) { 1691 if (pssPtr->issued[diskno]) { 1692 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1693 if (rf_reconDebug && nPromoted) 1694 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1695 } else { 1696 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1697 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1698 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1699 * location */ 1700 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1701 new_rbuf->which_ru = which_ru; 1702 new_rbuf->failedDiskSectorOffset = fd_offset; 1703 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1704 1705 /* use NULL b_proc b/c all addrs 1706 * should be in kernel space */ 1707 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1708 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1709 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1710 1711 new_rbuf->arg = req; 1712 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1713 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1714 } 1715 } 1716 /* if the write is sitting in the disk queue, elevate its 1717 * priority */ 1718 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1719 printf("raid%d: promoted write to col %d\n", 1720 raidPtr->raidid, fcol); 1721 } 1722 /* install a callback descriptor to be invoked when recon completes on 1723 * this parity stripe. */ 1724 cb = rf_AllocCallbackDesc(); 1725 /* XXX the following is bogus.. These functions don't really match!! 1726 * GO */ 1727 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1728 cb->callbackArg.p = (void *) cbArg; 1729 cb->next = pssPtr->procWaitList; 1730 pssPtr->procWaitList = cb; 1731 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1732 raidPtr->raidid, psid); 1733 1734 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1735 return (1); 1736 } 1737 /* called upon the completion of a forced reconstruction read. 1738 * all we do is schedule the FORCEDREADONE event. 1739 * called at interrupt context in the kernel, so don't do anything illegal here. 1740 */ 1741 static void 1742 ForceReconReadDoneProc(void *arg, int status) 1743 { 1744 RF_ReconBuffer_t *rbuf = arg; 1745 1746 /* Detect that reconControl is no longer valid, and if that 1747 is the case, bail without calling rf_CauseReconEvent(). 1748 There won't be anyone listening for this event anyway */ 1749 1750 if (rbuf->raidPtr->reconControl == NULL) 1751 return; 1752 1753 if (status) { 1754 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1755 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1756 return; 1757 } 1758 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1759 } 1760 /* releases a block on the reconstruction of the indicated stripe */ 1761 int 1762 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1763 { 1764 RF_StripeNum_t stripeID = asmap->stripeID; 1765 RF_ReconParityStripeStatus_t *pssPtr; 1766 RF_ReconUnitNum_t which_ru; 1767 RF_StripeNum_t psid; 1768 RF_CallbackDesc_t *cb; 1769 1770 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1771 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1772 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1773 1774 /* When recon is forced, the pss desc can get deleted before we get 1775 * back to unblock recon. But, this can _only_ happen when recon is 1776 * forced. It would be good to put some kind of sanity check here, but 1777 * how to decide if recon was just forced or not? */ 1778 if (!pssPtr) { 1779 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1780 * RU %d\n",psid,which_ru); */ 1781 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1782 if (rf_reconDebug || rf_pssDebug) 1783 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1784 #endif 1785 goto out; 1786 } 1787 pssPtr->blockCount--; 1788 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1789 raidPtr->raidid, psid, pssPtr->blockCount); 1790 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1791 1792 /* unblock recon before calling CauseReconEvent in case 1793 * CauseReconEvent causes us to try to issue a new read before 1794 * returning here. */ 1795 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1796 1797 1798 while (pssPtr->blockWaitList) { 1799 /* spin through the block-wait list and 1800 release all the waiters */ 1801 cb = pssPtr->blockWaitList; 1802 pssPtr->blockWaitList = cb->next; 1803 cb->next = NULL; 1804 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1805 rf_FreeCallbackDesc(cb); 1806 } 1807 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1808 /* if no recon was requested while recon was blocked */ 1809 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1810 } 1811 } 1812 out: 1813 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1814 return (0); 1815 } 1816