1 /* $NetBSD: rf_reconstruct.c,v 1.31 2001/11/13 07:11:16 lukem Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.31 2001/11/13 07:11:16 lukem Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/proc.h> 46 #include <sys/ioctl.h> 47 #include <sys/fcntl.h> 48 #include <sys/vnode.h> 49 #include <dev/raidframe/raidframevar.h> 50 51 #include "rf_raid.h" 52 #include "rf_reconutil.h" 53 #include "rf_revent.h" 54 #include "rf_reconbuffer.h" 55 #include "rf_acctrace.h" 56 #include "rf_etimer.h" 57 #include "rf_dag.h" 58 #include "rf_desc.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_debugprint.h" 62 #include "rf_driver.h" 63 #include "rf_utils.h" 64 #include "rf_shutdown.h" 65 66 #include "rf_kintf.h" 67 68 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 69 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 static RF_FreeList_t *rf_recond_freelist; 83 #define RF_MAX_FREE_RECOND 4 84 #define RF_RECOND_INC 1 85 86 static RF_RaidReconDesc_t * 87 AllocRaidReconDesc(RF_Raid_t * raidPtr, 88 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 89 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 90 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 91 static int 92 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 93 RF_ReconEvent_t * event); 94 static int 95 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 96 RF_RowCol_t col); 97 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 98 static int 99 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 100 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 101 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 102 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 103 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 104 static int ReconReadDoneProc(void *arg, int status); 105 static int ReconWriteDoneProc(void *arg, int status); 106 static void 107 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 108 RF_HeadSepLimit_t hsCtr); 109 static int 110 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 111 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 112 RF_ReconUnitNum_t which_ru); 113 static int 114 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 115 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 116 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 117 RF_ReconUnitNum_t which_ru); 118 static void ForceReconReadDoneProc(void *arg, int status); 119 120 static void rf_ShutdownReconstruction(void *); 121 122 struct RF_ReconDoneProc_s { 123 void (*proc) (RF_Raid_t *, void *); 124 void *arg; 125 RF_ReconDoneProc_t *next; 126 }; 127 128 static RF_FreeList_t *rf_rdp_freelist; 129 #define RF_MAX_FREE_RDP 4 130 #define RF_RDP_INC 1 131 132 static void 133 SignalReconDone(RF_Raid_t * raidPtr) 134 { 135 RF_ReconDoneProc_t *p; 136 137 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 138 for (p = raidPtr->recon_done_procs; p; p = p->next) { 139 p->proc(raidPtr, p->arg); 140 } 141 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 142 } 143 144 int 145 rf_RegisterReconDoneProc( 146 RF_Raid_t * raidPtr, 147 void (*proc) (RF_Raid_t *, void *), 148 void *arg, 149 RF_ReconDoneProc_t ** handlep) 150 { 151 RF_ReconDoneProc_t *p; 152 153 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 154 if (p == NULL) 155 return (ENOMEM); 156 p->proc = proc; 157 p->arg = arg; 158 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 p->next = raidPtr->recon_done_procs; 160 raidPtr->recon_done_procs = p; 161 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 162 if (handlep) 163 *handlep = p; 164 return (0); 165 } 166 /************************************************************************** 167 * 168 * sets up the parameters that will be used by the reconstruction process 169 * currently there are none, except for those that the layout-specific 170 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 171 * 172 * in the kernel, we fire off the recon thread. 173 * 174 **************************************************************************/ 175 static void 176 rf_ShutdownReconstruction(ignored) 177 void *ignored; 178 { 179 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 180 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 181 } 182 183 int 184 rf_ConfigureReconstruction(listp) 185 RF_ShutdownList_t **listp; 186 { 187 int rc; 188 189 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 190 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 191 if (rf_recond_freelist == NULL) 192 return (ENOMEM); 193 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 194 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 195 if (rf_rdp_freelist == NULL) { 196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 197 return (ENOMEM); 198 } 199 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 200 if (rc) { 201 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 202 __FILE__, __LINE__, rc); 203 rf_ShutdownReconstruction(NULL); 204 return (rc); 205 } 206 return (0); 207 } 208 209 static RF_RaidReconDesc_t * 210 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 211 RF_Raid_t *raidPtr; 212 RF_RowCol_t row; 213 RF_RowCol_t col; 214 RF_RaidDisk_t *spareDiskPtr; 215 int numDisksDone; 216 RF_RowCol_t srow; 217 RF_RowCol_t scol; 218 { 219 220 RF_RaidReconDesc_t *reconDesc; 221 222 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 223 224 reconDesc->raidPtr = raidPtr; 225 reconDesc->row = row; 226 reconDesc->col = col; 227 reconDesc->spareDiskPtr = spareDiskPtr; 228 reconDesc->numDisksDone = numDisksDone; 229 reconDesc->srow = srow; 230 reconDesc->scol = scol; 231 reconDesc->state = 0; 232 reconDesc->next = NULL; 233 234 return (reconDesc); 235 } 236 237 static void 238 FreeReconDesc(reconDesc) 239 RF_RaidReconDesc_t *reconDesc; 240 { 241 #if RF_RECON_STATS > 0 242 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 243 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 244 #endif /* RF_RECON_STATS > 0 */ 245 printf("RAIDframe: %lu max exec ticks\n", 246 (long) reconDesc->maxReconExecTicks); 247 #if (RF_RECON_STATS > 0) || defined(KERNEL) 248 printf("\n"); 249 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 250 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 251 } 252 253 254 /***************************************************************************** 255 * 256 * primary routine to reconstruct a failed disk. This should be called from 257 * within its own thread. It won't return until reconstruction completes, 258 * fails, or is aborted. 259 *****************************************************************************/ 260 int 261 rf_ReconstructFailedDisk(raidPtr, row, col) 262 RF_Raid_t *raidPtr; 263 RF_RowCol_t row; 264 RF_RowCol_t col; 265 { 266 RF_LayoutSW_t *lp; 267 int rc; 268 269 lp = raidPtr->Layout.map; 270 if (lp->SubmitReconBuffer) { 271 /* 272 * The current infrastructure only supports reconstructing one 273 * disk at a time for each array. 274 */ 275 RF_LOCK_MUTEX(raidPtr->mutex); 276 while (raidPtr->reconInProgress) { 277 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 278 } 279 raidPtr->reconInProgress++; 280 RF_UNLOCK_MUTEX(raidPtr->mutex); 281 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 282 RF_LOCK_MUTEX(raidPtr->mutex); 283 raidPtr->reconInProgress--; 284 RF_UNLOCK_MUTEX(raidPtr->mutex); 285 } else { 286 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 287 lp->parityConfig); 288 rc = EIO; 289 } 290 RF_SIGNAL_COND(raidPtr->waitForReconCond); 291 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 292 * needed at some point... GO */ 293 return (rc); 294 } 295 296 int 297 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 298 RF_Raid_t *raidPtr; 299 RF_RowCol_t row; 300 RF_RowCol_t col; 301 { 302 RF_ComponentLabel_t c_label; 303 RF_RaidDisk_t *spareDiskPtr = NULL; 304 RF_RaidReconDesc_t *reconDesc; 305 RF_RowCol_t srow, scol; 306 int numDisksDone = 0, rc; 307 308 /* first look for a spare drive onto which to reconstruct the data */ 309 /* spare disk descriptors are stored in row 0. This may have to 310 * change eventually */ 311 312 RF_LOCK_MUTEX(raidPtr->mutex); 313 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 314 315 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 316 if (raidPtr->status[row] != rf_rs_degraded) { 317 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 318 RF_UNLOCK_MUTEX(raidPtr->mutex); 319 return (EINVAL); 320 } 321 srow = row; 322 scol = (-1); 323 } else { 324 srow = 0; 325 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 326 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 327 spareDiskPtr = &raidPtr->Disks[srow][scol]; 328 spareDiskPtr->status = rf_ds_used_spare; 329 break; 330 } 331 } 332 if (!spareDiskPtr) { 333 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 334 RF_UNLOCK_MUTEX(raidPtr->mutex); 335 return (ENOSPC); 336 } 337 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 338 } 339 RF_UNLOCK_MUTEX(raidPtr->mutex); 340 341 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 342 raidPtr->reconDesc = (void *) reconDesc; 343 #if RF_RECON_STATS > 0 344 reconDesc->hsStallCount = 0; 345 reconDesc->numReconExecDelays = 0; 346 reconDesc->numReconEventWaits = 0; 347 #endif /* RF_RECON_STATS > 0 */ 348 reconDesc->reconExecTimerRunning = 0; 349 reconDesc->reconExecTicks = 0; 350 reconDesc->maxReconExecTicks = 0; 351 rc = rf_ContinueReconstructFailedDisk(reconDesc); 352 353 if (!rc) { 354 /* fix up the component label */ 355 /* Don't actually need the read here.. */ 356 raidread_component_label( 357 raidPtr->raid_cinfo[srow][scol].ci_dev, 358 raidPtr->raid_cinfo[srow][scol].ci_vp, 359 &c_label); 360 361 raid_init_component_label( raidPtr, &c_label); 362 c_label.row = row; 363 c_label.column = col; 364 c_label.clean = RF_RAID_DIRTY; 365 c_label.status = rf_ds_optimal; 366 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 367 368 /* We've just done a rebuild based on all the other 369 disks, so at this point the parity is known to be 370 clean, even if it wasn't before. */ 371 372 /* XXX doesn't hold for RAID 6!!*/ 373 374 raidPtr->parity_good = RF_RAID_CLEAN; 375 376 /* XXXX MORE NEEDED HERE */ 377 378 raidwrite_component_label( 379 raidPtr->raid_cinfo[srow][scol].ci_dev, 380 raidPtr->raid_cinfo[srow][scol].ci_vp, 381 &c_label); 382 383 } 384 return (rc); 385 } 386 387 /* 388 389 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 390 and you don't get a spare until the next Monday. With this function 391 (and hot-swappable drives) you can now put your new disk containing 392 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 393 rebuild the data "on the spot". 394 395 */ 396 397 int 398 rf_ReconstructInPlace(raidPtr, row, col) 399 RF_Raid_t *raidPtr; 400 RF_RowCol_t row; 401 RF_RowCol_t col; 402 { 403 RF_RaidDisk_t *spareDiskPtr = NULL; 404 RF_RaidReconDesc_t *reconDesc; 405 RF_LayoutSW_t *lp; 406 RF_RaidDisk_t *badDisk; 407 RF_ComponentLabel_t c_label; 408 int numDisksDone = 0, rc; 409 struct partinfo dpart; 410 struct vnode *vp; 411 struct vattr va; 412 struct proc *proc; 413 int retcode; 414 int ac; 415 416 lp = raidPtr->Layout.map; 417 if (lp->SubmitReconBuffer) { 418 /* 419 * The current infrastructure only supports reconstructing one 420 * disk at a time for each array. 421 */ 422 RF_LOCK_MUTEX(raidPtr->mutex); 423 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 424 (raidPtr->numFailures > 0)) { 425 /* XXX 0 above shouldn't be constant!!! */ 426 /* some component other than this has failed. 427 Let's not make things worse than they already 428 are... */ 429 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 430 printf(" Row: %d Col: %d Too many failures.\n", 431 row, col); 432 RF_UNLOCK_MUTEX(raidPtr->mutex); 433 return (EINVAL); 434 } 435 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 436 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 437 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 438 439 RF_UNLOCK_MUTEX(raidPtr->mutex); 440 return (EINVAL); 441 } 442 443 444 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 445 /* "It's gone..." */ 446 raidPtr->numFailures++; 447 raidPtr->Disks[row][col].status = rf_ds_failed; 448 raidPtr->status[row] = rf_rs_degraded; 449 rf_update_component_labels(raidPtr, 450 RF_NORMAL_COMPONENT_UPDATE); 451 } 452 453 while (raidPtr->reconInProgress) { 454 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 455 } 456 457 raidPtr->reconInProgress++; 458 459 460 /* first look for a spare drive onto which to reconstruct 461 the data. spare disk descriptors are stored in row 0. 462 This may have to change eventually */ 463 464 /* Actually, we don't care if it's failed or not... 465 On a RAID set with correct parity, this function 466 should be callable on any component without ill affects. */ 467 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 468 */ 469 470 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 471 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 472 473 raidPtr->reconInProgress--; 474 RF_UNLOCK_MUTEX(raidPtr->mutex); 475 return (EINVAL); 476 } 477 478 /* XXX need goop here to see if the disk is alive, 479 and, if not, make it so... */ 480 481 482 483 badDisk = &raidPtr->Disks[row][col]; 484 485 proc = raidPtr->engine_thread; 486 487 /* This device may have been opened successfully the 488 first time. Close it before trying to open it again.. */ 489 490 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 491 printf("Closed the open device: %s\n", 492 raidPtr->Disks[row][col].devname); 493 vp = raidPtr->raid_cinfo[row][col].ci_vp; 494 ac = raidPtr->Disks[row][col].auto_configured; 495 rf_close_component(raidPtr, vp, ac); 496 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 497 } 498 /* note that this disk was *not* auto_configured (any longer)*/ 499 raidPtr->Disks[row][col].auto_configured = 0; 500 501 printf("About to (re-)open the device for rebuilding: %s\n", 502 raidPtr->Disks[row][col].devname); 503 504 retcode = raidlookup(raidPtr->Disks[row][col].devname, 505 proc, &vp); 506 507 if (retcode) { 508 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 509 raidPtr->Disks[row][col].devname, retcode); 510 511 /* XXX the component isn't responding properly... 512 must be still dead :-( */ 513 raidPtr->reconInProgress--; 514 RF_UNLOCK_MUTEX(raidPtr->mutex); 515 return(retcode); 516 517 } else { 518 519 /* Ok, so we can at least do a lookup... 520 How about actually getting a vp for it? */ 521 522 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 523 proc)) != 0) { 524 raidPtr->reconInProgress--; 525 RF_UNLOCK_MUTEX(raidPtr->mutex); 526 return(retcode); 527 } 528 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 529 FREAD, proc->p_ucred, proc); 530 if (retcode) { 531 raidPtr->reconInProgress--; 532 RF_UNLOCK_MUTEX(raidPtr->mutex); 533 return(retcode); 534 } 535 raidPtr->Disks[row][col].blockSize = 536 dpart.disklab->d_secsize; 537 538 raidPtr->Disks[row][col].numBlocks = 539 dpart.part->p_size - rf_protectedSectors; 540 541 raidPtr->raid_cinfo[row][col].ci_vp = vp; 542 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 543 544 raidPtr->Disks[row][col].dev = va.va_rdev; 545 546 /* we allow the user to specify that only a 547 fraction of the disks should be used this is 548 just for debug: it speeds up 549 * the parity scan */ 550 raidPtr->Disks[row][col].numBlocks = 551 raidPtr->Disks[row][col].numBlocks * 552 rf_sizePercentage / 100; 553 } 554 555 556 557 spareDiskPtr = &raidPtr->Disks[row][col]; 558 spareDiskPtr->status = rf_ds_used_spare; 559 560 printf("RECON: initiating in-place reconstruction on\n"); 561 printf(" row %d col %d -> spare at row %d col %d\n", 562 row, col, row, col); 563 564 RF_UNLOCK_MUTEX(raidPtr->mutex); 565 566 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 567 spareDiskPtr, numDisksDone, 568 row, col); 569 raidPtr->reconDesc = (void *) reconDesc; 570 #if RF_RECON_STATS > 0 571 reconDesc->hsStallCount = 0; 572 reconDesc->numReconExecDelays = 0; 573 reconDesc->numReconEventWaits = 0; 574 #endif /* RF_RECON_STATS > 0 */ 575 reconDesc->reconExecTimerRunning = 0; 576 reconDesc->reconExecTicks = 0; 577 reconDesc->maxReconExecTicks = 0; 578 rc = rf_ContinueReconstructFailedDisk(reconDesc); 579 580 RF_LOCK_MUTEX(raidPtr->mutex); 581 raidPtr->reconInProgress--; 582 RF_UNLOCK_MUTEX(raidPtr->mutex); 583 584 } else { 585 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 586 lp->parityConfig); 587 rc = EIO; 588 } 589 RF_LOCK_MUTEX(raidPtr->mutex); 590 591 if (!rc) { 592 /* Need to set these here, as at this point it'll be claiming 593 that the disk is in rf_ds_spared! But we know better :-) */ 594 595 raidPtr->Disks[row][col].status = rf_ds_optimal; 596 raidPtr->status[row] = rf_rs_optimal; 597 598 /* fix up the component label */ 599 /* Don't actually need the read here.. */ 600 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 601 raidPtr->raid_cinfo[row][col].ci_vp, 602 &c_label); 603 604 raid_init_component_label(raidPtr, &c_label); 605 606 c_label.row = row; 607 c_label.column = col; 608 609 /* We've just done a rebuild based on all the other 610 disks, so at this point the parity is known to be 611 clean, even if it wasn't before. */ 612 613 /* XXX doesn't hold for RAID 6!!*/ 614 615 raidPtr->parity_good = RF_RAID_CLEAN; 616 617 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 618 raidPtr->raid_cinfo[row][col].ci_vp, 619 &c_label); 620 621 } 622 RF_UNLOCK_MUTEX(raidPtr->mutex); 623 RF_SIGNAL_COND(raidPtr->waitForReconCond); 624 wakeup(&raidPtr->waitForReconCond); 625 return (rc); 626 } 627 628 629 int 630 rf_ContinueReconstructFailedDisk(reconDesc) 631 RF_RaidReconDesc_t *reconDesc; 632 { 633 RF_Raid_t *raidPtr = reconDesc->raidPtr; 634 RF_RowCol_t row = reconDesc->row; 635 RF_RowCol_t col = reconDesc->col; 636 RF_RowCol_t srow = reconDesc->srow; 637 RF_RowCol_t scol = reconDesc->scol; 638 RF_ReconMap_t *mapPtr; 639 640 RF_ReconEvent_t *event; 641 struct timeval etime, elpsd; 642 unsigned long xor_s, xor_resid_us; 643 int retcode, i, ds; 644 645 switch (reconDesc->state) { 646 647 648 case 0: 649 650 raidPtr->accumXorTimeUs = 0; 651 652 /* create one trace record per physical disk */ 653 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 654 655 /* quiesce the array prior to starting recon. this is needed 656 * to assure no nasty interactions with pending user writes. 657 * We need to do this before we change the disk or row status. */ 658 reconDesc->state = 1; 659 660 Dprintf("RECON: begin request suspend\n"); 661 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 662 Dprintf("RECON: end request suspend\n"); 663 rf_StartUserStats(raidPtr); /* zero out the stats kept on 664 * user accs */ 665 666 /* fall through to state 1 */ 667 668 case 1: 669 670 RF_LOCK_MUTEX(raidPtr->mutex); 671 672 /* create the reconstruction control pointer and install it in 673 * the right slot */ 674 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 675 mapPtr = raidPtr->reconControl[row]->reconMap; 676 raidPtr->status[row] = rf_rs_reconstructing; 677 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 678 raidPtr->Disks[row][col].spareRow = srow; 679 raidPtr->Disks[row][col].spareCol = scol; 680 681 RF_UNLOCK_MUTEX(raidPtr->mutex); 682 683 RF_GETTIME(raidPtr->reconControl[row]->starttime); 684 685 /* now start up the actual reconstruction: issue a read for 686 * each surviving disk */ 687 688 reconDesc->numDisksDone = 0; 689 for (i = 0; i < raidPtr->numCol; i++) { 690 if (i != col) { 691 /* find and issue the next I/O on the 692 * indicated disk */ 693 if (IssueNextReadRequest(raidPtr, row, i)) { 694 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 695 reconDesc->numDisksDone++; 696 } 697 } 698 } 699 700 case 2: 701 Dprintf("RECON: resume requests\n"); 702 rf_ResumeNewRequests(raidPtr); 703 704 705 reconDesc->state = 3; 706 707 case 3: 708 709 /* process reconstruction events until all disks report that 710 * they've completed all work */ 711 mapPtr = raidPtr->reconControl[row]->reconMap; 712 713 714 715 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 716 717 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 718 RF_ASSERT(event); 719 720 if (ProcessReconEvent(raidPtr, row, event)) 721 reconDesc->numDisksDone++; 722 raidPtr->reconControl[row]->numRUsTotal = 723 mapPtr->totalRUs; 724 raidPtr->reconControl[row]->numRUsComplete = 725 mapPtr->totalRUs - 726 rf_UnitsLeftToReconstruct(mapPtr); 727 728 raidPtr->reconControl[row]->percentComplete = 729 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 730 if (rf_prReconSched) { 731 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 732 } 733 } 734 735 736 737 reconDesc->state = 4; 738 739 740 case 4: 741 mapPtr = raidPtr->reconControl[row]->reconMap; 742 if (rf_reconDebug) { 743 printf("RECON: all reads completed\n"); 744 } 745 /* at this point all the reads have completed. We now wait 746 * for any pending writes to complete, and then we're done */ 747 748 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 749 750 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 751 RF_ASSERT(event); 752 753 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 754 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 755 if (rf_prReconSched) { 756 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 757 } 758 } 759 reconDesc->state = 5; 760 761 case 5: 762 /* Success: mark the dead disk as reconstructed. We quiesce 763 * the array here to assure no nasty interactions with pending 764 * user accesses when we free up the psstatus structure as 765 * part of FreeReconControl() */ 766 767 reconDesc->state = 6; 768 769 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 770 rf_StopUserStats(raidPtr); 771 rf_PrintUserStats(raidPtr); /* print out the stats on user 772 * accs accumulated during 773 * recon */ 774 775 /* fall through to state 6 */ 776 case 6: 777 778 779 780 RF_LOCK_MUTEX(raidPtr->mutex); 781 raidPtr->numFailures--; 782 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 783 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 784 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 785 RF_UNLOCK_MUTEX(raidPtr->mutex); 786 RF_GETTIME(etime); 787 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 788 789 /* XXX -- why is state 7 different from state 6 if there is no 790 * return() here? -- XXX Note that I set elpsd above & use it 791 * below, so if you put a return here you'll have to fix this. 792 * (also, FreeReconControl is called below) */ 793 794 case 7: 795 796 rf_ResumeNewRequests(raidPtr); 797 798 printf("Reconstruction of disk at row %d col %d completed\n", 799 row, col); 800 xor_s = raidPtr->accumXorTimeUs / 1000000; 801 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 802 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 803 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 804 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 805 (int) raidPtr->reconControl[row]->starttime.tv_sec, 806 (int) raidPtr->reconControl[row]->starttime.tv_usec, 807 (int) etime.tv_sec, (int) etime.tv_usec); 808 809 #if RF_RECON_STATS > 0 810 printf("Total head-sep stall count was %d\n", 811 (int) reconDesc->hsStallCount); 812 #endif /* RF_RECON_STATS > 0 */ 813 rf_FreeReconControl(raidPtr, row); 814 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 815 FreeReconDesc(reconDesc); 816 817 } 818 819 SignalReconDone(raidPtr); 820 return (0); 821 } 822 /***************************************************************************** 823 * do the right thing upon each reconstruction event. 824 * returns nonzero if and only if there is nothing left unread on the 825 * indicated disk 826 *****************************************************************************/ 827 static int 828 ProcessReconEvent(raidPtr, frow, event) 829 RF_Raid_t *raidPtr; 830 RF_RowCol_t frow; 831 RF_ReconEvent_t *event; 832 { 833 int retcode = 0, submitblocked; 834 RF_ReconBuffer_t *rbuf; 835 RF_SectorCount_t sectorsPerRU; 836 837 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 838 switch (event->type) { 839 840 /* a read I/O has completed */ 841 case RF_REVENT_READDONE: 842 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 843 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 844 frow, event->col, rbuf->parityStripeID); 845 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 846 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 847 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 848 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 849 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 850 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 851 if (!submitblocked) 852 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 853 break; 854 855 /* a write I/O has completed */ 856 case RF_REVENT_WRITEDONE: 857 if (rf_floatingRbufDebug) { 858 rf_CheckFloatingRbufCount(raidPtr, 1); 859 } 860 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 861 rbuf = (RF_ReconBuffer_t *) event->arg; 862 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 863 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 864 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 865 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 866 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 867 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 868 869 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 870 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 871 raidPtr->numFullReconBuffers--; 872 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 873 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 874 } else 875 if (rbuf->type == RF_RBUF_TYPE_FORCED) 876 rf_FreeReconBuffer(rbuf); 877 else 878 RF_ASSERT(0); 879 break; 880 881 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 882 * cleared */ 883 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 884 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 885 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 886 * BUFCLEAR event if we 887 * couldn't submit */ 888 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 889 break; 890 891 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 892 * blockage has been cleared */ 893 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 894 retcode = TryToRead(raidPtr, frow, event->col); 895 break; 896 897 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 898 * reconstruction blockage has been 899 * cleared */ 900 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 901 retcode = TryToRead(raidPtr, frow, event->col); 902 break; 903 904 /* a buffer has become ready to write */ 905 case RF_REVENT_BUFREADY: 906 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 907 retcode = IssueNextWriteRequest(raidPtr, frow); 908 if (rf_floatingRbufDebug) { 909 rf_CheckFloatingRbufCount(raidPtr, 1); 910 } 911 break; 912 913 /* we need to skip the current RU entirely because it got 914 * recon'd while we were waiting for something else to happen */ 915 case RF_REVENT_SKIP: 916 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 917 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 918 break; 919 920 /* a forced-reconstruction read access has completed. Just 921 * submit the buffer */ 922 case RF_REVENT_FORCEDREADDONE: 923 rbuf = (RF_ReconBuffer_t *) event->arg; 924 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 925 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 926 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 927 RF_ASSERT(!submitblocked); 928 break; 929 930 default: 931 RF_PANIC(); 932 } 933 rf_FreeReconEventDesc(event); 934 return (retcode); 935 } 936 /***************************************************************************** 937 * 938 * find the next thing that's needed on the indicated disk, and issue 939 * a read request for it. We assume that the reconstruction buffer 940 * associated with this process is free to receive the data. If 941 * reconstruction is blocked on the indicated RU, we issue a 942 * blockage-release request instead of a physical disk read request. 943 * If the current disk gets too far ahead of the others, we issue a 944 * head-separation wait request and return. 945 * 946 * ctrl->{ru_count, curPSID, diskOffset} and 947 * rbuf->failedDiskSectorOffset are maintained to point to the unit 948 * we're currently accessing. Note that this deviates from the 949 * standard C idiom of having counters point to the next thing to be 950 * accessed. This allows us to easily retry when we're blocked by 951 * head separation or reconstruction-blockage events. 952 * 953 * returns nonzero if and only if there is nothing left unread on the 954 * indicated disk 955 * 956 *****************************************************************************/ 957 static int 958 IssueNextReadRequest(raidPtr, row, col) 959 RF_Raid_t *raidPtr; 960 RF_RowCol_t row; 961 RF_RowCol_t col; 962 { 963 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 964 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 965 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 966 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 967 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 968 int do_new_check = 0, retcode = 0, status; 969 970 /* if we are currently the slowest disk, mark that we have to do a new 971 * check */ 972 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 973 do_new_check = 1; 974 975 while (1) { 976 977 ctrl->ru_count++; 978 if (ctrl->ru_count < RUsPerPU) { 979 ctrl->diskOffset += sectorsPerRU; 980 rbuf->failedDiskSectorOffset += sectorsPerRU; 981 } else { 982 ctrl->curPSID++; 983 ctrl->ru_count = 0; 984 /* code left over from when head-sep was based on 985 * parity stripe id */ 986 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 987 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 988 return (1); /* finito! */ 989 } 990 /* find the disk offsets of the start of the parity 991 * stripe on both the current disk and the failed 992 * disk. skip this entire parity stripe if either disk 993 * does not appear in the indicated PS */ 994 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 995 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 996 if (status) { 997 ctrl->ru_count = RUsPerPU - 1; 998 continue; 999 } 1000 } 1001 rbuf->which_ru = ctrl->ru_count; 1002 1003 /* skip this RU if it's already been reconstructed */ 1004 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1005 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1006 continue; 1007 } 1008 break; 1009 } 1010 ctrl->headSepCounter++; 1011 if (do_new_check) 1012 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1013 1014 1015 /* at this point, we have definitely decided what to do, and we have 1016 * only to see if we can actually do it now */ 1017 rbuf->parityStripeID = ctrl->curPSID; 1018 rbuf->which_ru = ctrl->ru_count; 1019 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1020 sizeof(raidPtr->recon_tracerecs[col])); 1021 raidPtr->recon_tracerecs[col].reconacc = 1; 1022 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1023 retcode = TryToRead(raidPtr, row, col); 1024 return (retcode); 1025 } 1026 1027 /* 1028 * tries to issue the next read on the indicated disk. We may be 1029 * blocked by (a) the heads being too far apart, or (b) recon on the 1030 * indicated RU being blocked due to a write by a user thread. In 1031 * this case, we issue a head-sep or blockage wait request, which will 1032 * cause this same routine to be invoked again later when the blockage 1033 * has cleared. 1034 */ 1035 1036 static int 1037 TryToRead(raidPtr, row, col) 1038 RF_Raid_t *raidPtr; 1039 RF_RowCol_t row; 1040 RF_RowCol_t col; 1041 { 1042 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1043 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1044 RF_StripeNum_t psid = ctrl->curPSID; 1045 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1046 RF_DiskQueueData_t *req; 1047 int status, created = 0; 1048 RF_ReconParityStripeStatus_t *pssPtr; 1049 1050 /* if the current disk is too far ahead of the others, issue a 1051 * head-separation wait and return */ 1052 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1053 return (0); 1054 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1055 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1056 1057 /* if recon is blocked on the indicated parity stripe, issue a 1058 * block-wait request and return. this also must mark the indicated RU 1059 * in the stripe as under reconstruction if not blocked. */ 1060 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1061 if (status == RF_PSS_RECON_BLOCKED) { 1062 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1063 goto out; 1064 } else 1065 if (status == RF_PSS_FORCED_ON_WRITE) { 1066 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1067 goto out; 1068 } 1069 /* make one last check to be sure that the indicated RU didn't get 1070 * reconstructed while we were waiting for something else to happen. 1071 * This is unfortunate in that it causes us to make this check twice 1072 * in the normal case. Might want to make some attempt to re-work 1073 * this so that we only do this check if we've definitely blocked on 1074 * one of the above checks. When this condition is detected, we may 1075 * have just created a bogus status entry, which we need to delete. */ 1076 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1077 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1078 if (created) 1079 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1080 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1081 goto out; 1082 } 1083 /* found something to read. issue the I/O */ 1084 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1085 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1086 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1087 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1088 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1089 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1090 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1091 1092 /* should be ok to use a NULL proc pointer here, all the bufs we use 1093 * should be in kernel space */ 1094 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1095 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1096 1097 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1098 1099 ctrl->rbuf->arg = (void *) req; 1100 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1101 pssPtr->issued[col] = 1; 1102 1103 out: 1104 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1105 return (0); 1106 } 1107 1108 1109 /* 1110 * given a parity stripe ID, we want to find out whether both the 1111 * current disk and the failed disk exist in that parity stripe. If 1112 * not, we want to skip this whole PS. If so, we want to find the 1113 * disk offset of the start of the PS on both the current disk and the 1114 * failed disk. 1115 * 1116 * this works by getting a list of disks comprising the indicated 1117 * parity stripe, and searching the list for the current and failed 1118 * disks. Once we've decided they both exist in the parity stripe, we 1119 * need to decide whether each is data or parity, so that we'll know 1120 * which mapping function to call to get the corresponding disk 1121 * offsets. 1122 * 1123 * this is kind of unpleasant, but doing it this way allows the 1124 * reconstruction code to use parity stripe IDs rather than physical 1125 * disks address to march through the failed disk, which greatly 1126 * simplifies a lot of code, as well as eliminating the need for a 1127 * reverse-mapping function. I also think it will execute faster, 1128 * since the calls to the mapping module are kept to a minimum. 1129 * 1130 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1131 * THE STRIPE IN THE CORRECT ORDER */ 1132 1133 1134 static int 1135 ComputePSDiskOffsets( 1136 RF_Raid_t * raidPtr, /* raid descriptor */ 1137 RF_StripeNum_t psid, /* parity stripe identifier */ 1138 RF_RowCol_t row, /* row and column of disk to find the offsets 1139 * for */ 1140 RF_RowCol_t col, 1141 RF_SectorNum_t * outDiskOffset, 1142 RF_SectorNum_t * outFailedDiskSectorOffset, 1143 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1144 RF_RowCol_t * spCol, 1145 RF_SectorNum_t * spOffset) 1146 { /* OUT: offset into disk containing spare unit */ 1147 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1148 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1149 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1150 RF_RowCol_t *diskids; 1151 u_int i, j, k, i_offset, j_offset; 1152 RF_RowCol_t prow, pcol; 1153 int testcol, testrow; 1154 RF_RowCol_t stripe; 1155 RF_SectorNum_t poffset; 1156 char i_is_parity = 0, j_is_parity = 0; 1157 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1158 1159 /* get a listing of the disks comprising that stripe */ 1160 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1161 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1162 RF_ASSERT(diskids); 1163 1164 /* reject this entire parity stripe if it does not contain the 1165 * indicated disk or it does not contain the failed disk */ 1166 if (row != stripe) 1167 goto skipit; 1168 for (i = 0; i < stripeWidth; i++) { 1169 if (col == diskids[i]) 1170 break; 1171 } 1172 if (i == stripeWidth) 1173 goto skipit; 1174 for (j = 0; j < stripeWidth; j++) { 1175 if (fcol == diskids[j]) 1176 break; 1177 } 1178 if (j == stripeWidth) { 1179 goto skipit; 1180 } 1181 /* find out which disk the parity is on */ 1182 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1183 1184 /* find out if either the current RU or the failed RU is parity */ 1185 /* also, if the parity occurs in this stripe prior to the data and/or 1186 * failed col, we need to decrement i and/or j */ 1187 for (k = 0; k < stripeWidth; k++) 1188 if (diskids[k] == pcol) 1189 break; 1190 RF_ASSERT(k < stripeWidth); 1191 i_offset = i; 1192 j_offset = j; 1193 if (k < i) 1194 i_offset--; 1195 else 1196 if (k == i) { 1197 i_is_parity = 1; 1198 i_offset = 0; 1199 } /* set offsets to zero to disable multiply 1200 * below */ 1201 if (k < j) 1202 j_offset--; 1203 else 1204 if (k == j) { 1205 j_is_parity = 1; 1206 j_offset = 0; 1207 } 1208 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1209 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1210 * tells us how far into the stripe the [current,failed] disk is. */ 1211 1212 /* call the mapping routine to get the offset into the current disk, 1213 * repeat for failed disk. */ 1214 if (i_is_parity) 1215 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1216 else 1217 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1218 1219 RF_ASSERT(row == testrow && col == testcol); 1220 1221 if (j_is_parity) 1222 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1223 else 1224 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1225 RF_ASSERT(row == testrow && fcol == testcol); 1226 1227 /* now locate the spare unit for the failed unit */ 1228 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1229 if (j_is_parity) 1230 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1231 else 1232 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1233 } else { 1234 *spRow = raidPtr->reconControl[row]->spareRow; 1235 *spCol = raidPtr->reconControl[row]->spareCol; 1236 *spOffset = *outFailedDiskSectorOffset; 1237 } 1238 1239 return (0); 1240 1241 skipit: 1242 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1243 psid, row, col); 1244 return (1); 1245 } 1246 /* this is called when a buffer has become ready to write to the replacement disk */ 1247 static int 1248 IssueNextWriteRequest(raidPtr, row) 1249 RF_Raid_t *raidPtr; 1250 RF_RowCol_t row; 1251 { 1252 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1253 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1254 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1255 RF_ReconBuffer_t *rbuf; 1256 RF_DiskQueueData_t *req; 1257 1258 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1259 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1260 * have gotten the event that sent us here */ 1261 RF_ASSERT(rbuf->pssPtr); 1262 1263 rbuf->pssPtr->writeRbuf = rbuf; 1264 rbuf->pssPtr = NULL; 1265 1266 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1267 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1268 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1269 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1270 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1271 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1272 1273 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1274 * kernel space */ 1275 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1276 sectorsPerRU, rbuf->buffer, 1277 rbuf->parityStripeID, rbuf->which_ru, 1278 ReconWriteDoneProc, (void *) rbuf, NULL, 1279 &raidPtr->recon_tracerecs[fcol], 1280 (void *) raidPtr, 0, NULL); 1281 1282 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1283 1284 rbuf->arg = (void *) req; 1285 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1286 1287 return (0); 1288 } 1289 1290 /* 1291 * this gets called upon the completion of a reconstruction read 1292 * operation the arg is a pointer to the per-disk reconstruction 1293 * control structure for the process that just finished a read. 1294 * 1295 * called at interrupt context in the kernel, so don't do anything 1296 * illegal here. 1297 */ 1298 static int 1299 ReconReadDoneProc(arg, status) 1300 void *arg; 1301 int status; 1302 { 1303 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1304 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1305 1306 if (status) { 1307 /* 1308 * XXX 1309 */ 1310 printf("Recon read failed!\n"); 1311 RF_PANIC(); 1312 } 1313 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1314 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1315 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1316 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1317 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1318 1319 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1320 return (0); 1321 } 1322 /* this gets called upon the completion of a reconstruction write operation. 1323 * the arg is a pointer to the rbuf that was just written 1324 * 1325 * called at interrupt context in the kernel, so don't do anything illegal here. 1326 */ 1327 static int 1328 ReconWriteDoneProc(arg, status) 1329 void *arg; 1330 int status; 1331 { 1332 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1333 1334 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1335 if (status) { 1336 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1337 * write failed!\n"); */ 1338 RF_PANIC(); 1339 } 1340 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1341 return (0); 1342 } 1343 1344 1345 /* 1346 * computes a new minimum head sep, and wakes up anyone who needs to 1347 * be woken as a result 1348 */ 1349 static void 1350 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1351 RF_Raid_t *raidPtr; 1352 RF_RowCol_t row; 1353 RF_HeadSepLimit_t hsCtr; 1354 { 1355 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1356 RF_HeadSepLimit_t new_min; 1357 RF_RowCol_t i; 1358 RF_CallbackDesc_t *p; 1359 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1360 * of a minimum */ 1361 1362 1363 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1364 1365 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1366 for (i = 0; i < raidPtr->numCol; i++) 1367 if (i != reconCtrlPtr->fcol) { 1368 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1369 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1370 } 1371 /* set the new minimum and wake up anyone who can now run again */ 1372 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1373 reconCtrlPtr->minHeadSepCounter = new_min; 1374 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1375 while (reconCtrlPtr->headSepCBList) { 1376 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1377 break; 1378 p = reconCtrlPtr->headSepCBList; 1379 reconCtrlPtr->headSepCBList = p->next; 1380 p->next = NULL; 1381 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1382 rf_FreeCallbackDesc(p); 1383 } 1384 1385 } 1386 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1387 } 1388 1389 /* 1390 * checks to see that the maximum head separation will not be violated 1391 * if we initiate a reconstruction I/O on the indicated disk. 1392 * Limiting the maximum head separation between two disks eliminates 1393 * the nasty buffer-stall conditions that occur when one disk races 1394 * ahead of the others and consumes all of the floating recon buffers. 1395 * This code is complex and unpleasant but it's necessary to avoid 1396 * some very nasty, albeit fairly rare, reconstruction behavior. 1397 * 1398 * returns non-zero if and only if we have to stop working on the 1399 * indicated disk due to a head-separation delay. 1400 */ 1401 static int 1402 CheckHeadSeparation( 1403 RF_Raid_t * raidPtr, 1404 RF_PerDiskReconCtrl_t * ctrl, 1405 RF_RowCol_t row, 1406 RF_RowCol_t col, 1407 RF_HeadSepLimit_t hsCtr, 1408 RF_ReconUnitNum_t which_ru) 1409 { 1410 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1411 RF_CallbackDesc_t *cb, *p, *pt; 1412 int retval = 0; 1413 1414 /* if we're too far ahead of the slowest disk, stop working on this 1415 * disk until the slower ones catch up. We do this by scheduling a 1416 * wakeup callback for the time when the slowest disk has caught up. 1417 * We define "caught up" with 20% hysteresis, i.e. the head separation 1418 * must have fallen to at most 80% of the max allowable head 1419 * separation before we'll wake up. 1420 * 1421 */ 1422 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1423 if ((raidPtr->headSepLimit >= 0) && 1424 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1425 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1426 raidPtr->raidid, row, col, ctrl->headSepCounter, 1427 reconCtrlPtr->minHeadSepCounter, 1428 raidPtr->headSepLimit); 1429 cb = rf_AllocCallbackDesc(); 1430 /* the minHeadSepCounter value we have to get to before we'll 1431 * wake up. build in 20% hysteresis. */ 1432 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1433 cb->row = row; 1434 cb->col = col; 1435 cb->next = NULL; 1436 1437 /* insert this callback descriptor into the sorted list of 1438 * pending head-sep callbacks */ 1439 p = reconCtrlPtr->headSepCBList; 1440 if (!p) 1441 reconCtrlPtr->headSepCBList = cb; 1442 else 1443 if (cb->callbackArg.v < p->callbackArg.v) { 1444 cb->next = reconCtrlPtr->headSepCBList; 1445 reconCtrlPtr->headSepCBList = cb; 1446 } else { 1447 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1448 cb->next = p; 1449 pt->next = cb; 1450 } 1451 retval = 1; 1452 #if RF_RECON_STATS > 0 1453 ctrl->reconCtrl->reconDesc->hsStallCount++; 1454 #endif /* RF_RECON_STATS > 0 */ 1455 } 1456 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1457 1458 return (retval); 1459 } 1460 /* 1461 * checks to see if reconstruction has been either forced or blocked 1462 * by a user operation. if forced, we skip this RU entirely. else if 1463 * blocked, put ourselves on the wait list. else return 0. 1464 * 1465 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1466 */ 1467 static int 1468 CheckForcedOrBlockedReconstruction( 1469 RF_Raid_t * raidPtr, 1470 RF_ReconParityStripeStatus_t * pssPtr, 1471 RF_PerDiskReconCtrl_t * ctrl, 1472 RF_RowCol_t row, 1473 RF_RowCol_t col, 1474 RF_StripeNum_t psid, 1475 RF_ReconUnitNum_t which_ru) 1476 { 1477 RF_CallbackDesc_t *cb; 1478 int retcode = 0; 1479 1480 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1481 retcode = RF_PSS_FORCED_ON_WRITE; 1482 else 1483 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1484 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1485 cb = rf_AllocCallbackDesc(); /* append ourselves to 1486 * the blockage-wait 1487 * list */ 1488 cb->row = row; 1489 cb->col = col; 1490 cb->next = pssPtr->blockWaitList; 1491 pssPtr->blockWaitList = cb; 1492 retcode = RF_PSS_RECON_BLOCKED; 1493 } 1494 if (!retcode) 1495 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1496 * reconstruction */ 1497 1498 return (retcode); 1499 } 1500 /* 1501 * if reconstruction is currently ongoing for the indicated stripeID, 1502 * reconstruction is forced to completion and we return non-zero to 1503 * indicate that the caller must wait. If not, then reconstruction is 1504 * blocked on the indicated stripe and the routine returns zero. If 1505 * and only if we return non-zero, we'll cause the cbFunc to get 1506 * invoked with the cbArg when the reconstruction has completed. 1507 */ 1508 int 1509 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1510 RF_Raid_t *raidPtr; 1511 RF_AccessStripeMap_t *asmap; 1512 void (*cbFunc) (RF_Raid_t *, void *); 1513 void *cbArg; 1514 { 1515 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1516 * we're working on */ 1517 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1518 * forcing recon on */ 1519 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1520 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1521 * stripe status structure */ 1522 RF_StripeNum_t psid; /* parity stripe id */ 1523 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1524 * offset */ 1525 RF_RowCol_t *diskids; 1526 RF_RowCol_t stripe; 1527 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1528 RF_RowCol_t fcol, diskno, i; 1529 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1530 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1531 RF_CallbackDesc_t *cb; 1532 int created = 0, nPromoted; 1533 1534 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1535 1536 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1537 1538 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1539 1540 /* if recon is not ongoing on this PS, just return */ 1541 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1542 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1543 return (0); 1544 } 1545 /* otherwise, we have to wait for reconstruction to complete on this 1546 * RU. */ 1547 /* In order to avoid waiting for a potentially large number of 1548 * low-priority accesses to complete, we force a normal-priority (i.e. 1549 * not low-priority) reconstruction on this RU. */ 1550 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1551 DDprintf1("Forcing recon on psid %ld\n", psid); 1552 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1553 * forced recon */ 1554 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1555 * that we just set */ 1556 fcol = raidPtr->reconControl[row]->fcol; 1557 1558 /* get a listing of the disks comprising the indicated stripe */ 1559 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1560 RF_ASSERT(row == stripe); 1561 1562 /* For previously issued reads, elevate them to normal 1563 * priority. If the I/O has already completed, it won't be 1564 * found in the queue, and hence this will be a no-op. For 1565 * unissued reads, allocate buffers and issue new reads. The 1566 * fact that we've set the FORCED bit means that the regular 1567 * recon procs will not re-issue these reqs */ 1568 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1569 if ((diskno = diskids[i]) != fcol) { 1570 if (pssPtr->issued[diskno]) { 1571 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1572 if (rf_reconDebug && nPromoted) 1573 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1574 } else { 1575 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1576 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1577 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1578 * location */ 1579 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1580 new_rbuf->which_ru = which_ru; 1581 new_rbuf->failedDiskSectorOffset = fd_offset; 1582 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1583 1584 /* use NULL b_proc b/c all addrs 1585 * should be in kernel space */ 1586 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1587 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1588 NULL, (void *) raidPtr, 0, NULL); 1589 1590 RF_ASSERT(req); /* XXX -- fix this -- 1591 * XXX */ 1592 1593 new_rbuf->arg = req; 1594 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1595 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1596 } 1597 } 1598 /* if the write is sitting in the disk queue, elevate its 1599 * priority */ 1600 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1601 printf("raid%d: promoted write to row %d col %d\n", 1602 raidPtr->raidid, row, fcol); 1603 } 1604 /* install a callback descriptor to be invoked when recon completes on 1605 * this parity stripe. */ 1606 cb = rf_AllocCallbackDesc(); 1607 /* XXX the following is bogus.. These functions don't really match!! 1608 * GO */ 1609 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1610 cb->callbackArg.p = (void *) cbArg; 1611 cb->next = pssPtr->procWaitList; 1612 pssPtr->procWaitList = cb; 1613 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1614 raidPtr->raidid, psid); 1615 1616 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1617 return (1); 1618 } 1619 /* called upon the completion of a forced reconstruction read. 1620 * all we do is schedule the FORCEDREADONE event. 1621 * called at interrupt context in the kernel, so don't do anything illegal here. 1622 */ 1623 static void 1624 ForceReconReadDoneProc(arg, status) 1625 void *arg; 1626 int status; 1627 { 1628 RF_ReconBuffer_t *rbuf = arg; 1629 1630 if (status) { 1631 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1632 * recon read 1633 * failed!\n"); */ 1634 RF_PANIC(); 1635 } 1636 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1637 } 1638 /* releases a block on the reconstruction of the indicated stripe */ 1639 int 1640 rf_UnblockRecon(raidPtr, asmap) 1641 RF_Raid_t *raidPtr; 1642 RF_AccessStripeMap_t *asmap; 1643 { 1644 RF_RowCol_t row = asmap->origRow; 1645 RF_StripeNum_t stripeID = asmap->stripeID; 1646 RF_ReconParityStripeStatus_t *pssPtr; 1647 RF_ReconUnitNum_t which_ru; 1648 RF_StripeNum_t psid; 1649 int created = 0; 1650 RF_CallbackDesc_t *cb; 1651 1652 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1653 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1654 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1655 1656 /* When recon is forced, the pss desc can get deleted before we get 1657 * back to unblock recon. But, this can _only_ happen when recon is 1658 * forced. It would be good to put some kind of sanity check here, but 1659 * how to decide if recon was just forced or not? */ 1660 if (!pssPtr) { 1661 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1662 * RU %d\n",psid,which_ru); */ 1663 if (rf_reconDebug || rf_pssDebug) 1664 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1665 goto out; 1666 } 1667 pssPtr->blockCount--; 1668 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1669 raidPtr->raidid, psid, pssPtr->blockCount); 1670 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1671 1672 /* unblock recon before calling CauseReconEvent in case 1673 * CauseReconEvent causes us to try to issue a new read before 1674 * returning here. */ 1675 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1676 1677 1678 while (pssPtr->blockWaitList) { 1679 /* spin through the block-wait list and 1680 release all the waiters */ 1681 cb = pssPtr->blockWaitList; 1682 pssPtr->blockWaitList = cb->next; 1683 cb->next = NULL; 1684 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1685 rf_FreeCallbackDesc(cb); 1686 } 1687 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1688 /* if no recon was requested while recon was blocked */ 1689 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1690 } 1691 } 1692 out: 1693 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1694 return (0); 1695 } 1696