1 /* $NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 98 static struct pool rf_recond_pool; 99 #define RF_MAX_FREE_RECOND 4 100 #define RF_RECOND_INC 1 101 102 static RF_RaidReconDesc_t * 103 AllocRaidReconDesc(RF_Raid_t * raidPtr, 104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 105 int numDisksDone, RF_RowCol_t scol); 106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 107 static int 108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event); 109 static int 110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col); 111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col); 112 static int 113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 115 RF_SectorNum_t * outFailedDiskSectorOffset, 116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr); 118 static int ReconReadDoneProc(void *arg, int status); 119 static int ReconWriteDoneProc(void *arg, int status); 120 static void 121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr); 122 static int 123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 125 RF_ReconUnitNum_t which_ru); 126 static int 127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 129 RF_RowCol_t col, RF_StripeNum_t psid, 130 RF_ReconUnitNum_t which_ru); 131 static void ForceReconReadDoneProc(void *arg, int status); 132 133 static void rf_ShutdownReconstruction(void *); 134 135 struct RF_ReconDoneProc_s { 136 void (*proc) (RF_Raid_t *, void *); 137 void *arg; 138 RF_ReconDoneProc_t *next; 139 }; 140 141 /************************************************************************** 142 * 143 * sets up the parameters that will be used by the reconstruction process 144 * currently there are none, except for those that the layout-specific 145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 146 * 147 * in the kernel, we fire off the recon thread. 148 * 149 **************************************************************************/ 150 static void 151 rf_ShutdownReconstruction(void *ignored) 152 { 153 pool_destroy(&rf_recond_pool); 154 } 155 156 int 157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 158 { 159 int rc; 160 161 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0, 162 "rf_recond_pl", NULL); 163 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 164 if (rc) { 165 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 166 rf_ShutdownReconstruction(NULL); 167 return (rc); 168 } 169 return (0); 170 } 171 172 static RF_RaidReconDesc_t * 173 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 174 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 175 RF_RowCol_t scol) 176 { 177 178 RF_RaidReconDesc_t *reconDesc; 179 180 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */ 181 182 reconDesc->raidPtr = raidPtr; 183 reconDesc->col = col; 184 reconDesc->spareDiskPtr = spareDiskPtr; 185 reconDesc->numDisksDone = numDisksDone; 186 reconDesc->scol = scol; 187 reconDesc->state = 0; 188 reconDesc->next = NULL; 189 190 return (reconDesc); 191 } 192 193 static void 194 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 195 { 196 #if RF_RECON_STATS > 0 197 printf("raid%d: %lu recon event waits, %lu recon delays\n", 198 reconDesc->raidPtr->raidid, 199 (long) reconDesc->numReconEventWaits, 200 (long) reconDesc->numReconExecDelays); 201 #endif /* RF_RECON_STATS > 0 */ 202 printf("raid%d: %lu max exec ticks\n", 203 reconDesc->raidPtr->raidid, 204 (long) reconDesc->maxReconExecTicks); 205 #if (RF_RECON_STATS > 0) || defined(KERNEL) 206 printf("\n"); 207 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 208 pool_put(&rf_recond_pool, reconDesc); 209 } 210 211 212 /***************************************************************************** 213 * 214 * primary routine to reconstruct a failed disk. This should be called from 215 * within its own thread. It won't return until reconstruction completes, 216 * fails, or is aborted. 217 *****************************************************************************/ 218 int 219 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 220 { 221 const RF_LayoutSW_t *lp; 222 int rc; 223 224 lp = raidPtr->Layout.map; 225 if (lp->SubmitReconBuffer) { 226 /* 227 * The current infrastructure only supports reconstructing one 228 * disk at a time for each array. 229 */ 230 RF_LOCK_MUTEX(raidPtr->mutex); 231 while (raidPtr->reconInProgress) { 232 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 233 } 234 raidPtr->reconInProgress++; 235 RF_UNLOCK_MUTEX(raidPtr->mutex); 236 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 237 RF_LOCK_MUTEX(raidPtr->mutex); 238 raidPtr->reconInProgress--; 239 RF_UNLOCK_MUTEX(raidPtr->mutex); 240 } else { 241 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 242 lp->parityConfig); 243 rc = EIO; 244 } 245 RF_SIGNAL_COND(raidPtr->waitForReconCond); 246 return (rc); 247 } 248 249 int 250 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 251 { 252 RF_ComponentLabel_t c_label; 253 RF_RaidDisk_t *spareDiskPtr = NULL; 254 RF_RaidReconDesc_t *reconDesc; 255 RF_RowCol_t scol; 256 int numDisksDone = 0, rc; 257 258 /* first look for a spare drive onto which to reconstruct the data */ 259 /* spare disk descriptors are stored in row 0. This may have to 260 * change eventually */ 261 262 RF_LOCK_MUTEX(raidPtr->mutex); 263 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 264 265 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 266 if (raidPtr->status != rf_rs_degraded) { 267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 268 RF_UNLOCK_MUTEX(raidPtr->mutex); 269 return (EINVAL); 270 } 271 scol = (-1); 272 } else { 273 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 274 if (raidPtr->Disks[scol].status == rf_ds_spare) { 275 spareDiskPtr = &raidPtr->Disks[scol]; 276 spareDiskPtr->status = rf_ds_used_spare; 277 break; 278 } 279 } 280 if (!spareDiskPtr) { 281 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 282 RF_UNLOCK_MUTEX(raidPtr->mutex); 283 return (ENOSPC); 284 } 285 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 286 } 287 RF_UNLOCK_MUTEX(raidPtr->mutex); 288 289 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 290 raidPtr->reconDesc = (void *) reconDesc; 291 #if RF_RECON_STATS > 0 292 reconDesc->hsStallCount = 0; 293 reconDesc->numReconExecDelays = 0; 294 reconDesc->numReconEventWaits = 0; 295 #endif /* RF_RECON_STATS > 0 */ 296 reconDesc->reconExecTimerRunning = 0; 297 reconDesc->reconExecTicks = 0; 298 reconDesc->maxReconExecTicks = 0; 299 rc = rf_ContinueReconstructFailedDisk(reconDesc); 300 301 if (!rc) { 302 /* fix up the component label */ 303 /* Don't actually need the read here.. */ 304 raidread_component_label( 305 raidPtr->raid_cinfo[scol].ci_dev, 306 raidPtr->raid_cinfo[scol].ci_vp, 307 &c_label); 308 309 raid_init_component_label( raidPtr, &c_label); 310 c_label.row = 0; 311 c_label.column = col; 312 c_label.clean = RF_RAID_DIRTY; 313 c_label.status = rf_ds_optimal; 314 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 315 316 /* We've just done a rebuild based on all the other 317 disks, so at this point the parity is known to be 318 clean, even if it wasn't before. */ 319 320 /* XXX doesn't hold for RAID 6!!*/ 321 322 RF_LOCK_MUTEX(raidPtr->mutex); 323 raidPtr->parity_good = RF_RAID_CLEAN; 324 RF_UNLOCK_MUTEX(raidPtr->mutex); 325 326 /* XXXX MORE NEEDED HERE */ 327 328 raidwrite_component_label( 329 raidPtr->raid_cinfo[scol].ci_dev, 330 raidPtr->raid_cinfo[scol].ci_vp, 331 &c_label); 332 333 334 rf_update_component_labels(raidPtr, 335 RF_NORMAL_COMPONENT_UPDATE); 336 337 } 338 return (rc); 339 } 340 341 /* 342 343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 344 and you don't get a spare until the next Monday. With this function 345 (and hot-swappable drives) you can now put your new disk containing 346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 347 rebuild the data "on the spot". 348 349 */ 350 351 int 352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 353 { 354 RF_RaidDisk_t *spareDiskPtr = NULL; 355 RF_RaidReconDesc_t *reconDesc; 356 const RF_LayoutSW_t *lp; 357 RF_ComponentLabel_t c_label; 358 int numDisksDone = 0, rc; 359 struct partinfo dpart; 360 struct vnode *vp; 361 struct vattr va; 362 struct proc *proc; 363 int retcode; 364 int ac; 365 366 lp = raidPtr->Layout.map; 367 if (!lp->SubmitReconBuffer) { 368 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 369 lp->parityConfig); 370 /* wakeup anyone who might be waiting to do a reconstruct */ 371 RF_SIGNAL_COND(raidPtr->waitForReconCond); 372 return(EIO); 373 } 374 375 /* 376 * The current infrastructure only supports reconstructing one 377 * disk at a time for each array. 378 */ 379 RF_LOCK_MUTEX(raidPtr->mutex); 380 381 if (raidPtr->Disks[col].status != rf_ds_failed) { 382 /* "It's gone..." */ 383 raidPtr->numFailures++; 384 raidPtr->Disks[col].status = rf_ds_failed; 385 raidPtr->status = rf_rs_degraded; 386 RF_UNLOCK_MUTEX(raidPtr->mutex); 387 rf_update_component_labels(raidPtr, 388 RF_NORMAL_COMPONENT_UPDATE); 389 RF_LOCK_MUTEX(raidPtr->mutex); 390 } 391 392 while (raidPtr->reconInProgress) { 393 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 394 } 395 396 raidPtr->reconInProgress++; 397 398 /* first look for a spare drive onto which to reconstruct the 399 data. spare disk descriptors are stored in row 0. This 400 may have to change eventually */ 401 402 /* Actually, we don't care if it's failed or not... On a RAID 403 set with correct parity, this function should be callable 404 on any component without ill affects. */ 405 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 406 407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 409 410 raidPtr->reconInProgress--; 411 RF_UNLOCK_MUTEX(raidPtr->mutex); 412 RF_SIGNAL_COND(raidPtr->waitForReconCond); 413 return (EINVAL); 414 } 415 416 proc = raidPtr->engine_thread; 417 418 /* This device may have been opened successfully the 419 first time. Close it before trying to open it again.. */ 420 421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 422 #if 0 423 printf("Closed the open device: %s\n", 424 raidPtr->Disks[col].devname); 425 #endif 426 vp = raidPtr->raid_cinfo[col].ci_vp; 427 ac = raidPtr->Disks[col].auto_configured; 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 rf_close_component(raidPtr, vp, ac); 430 RF_LOCK_MUTEX(raidPtr->mutex); 431 raidPtr->raid_cinfo[col].ci_vp = NULL; 432 } 433 /* note that this disk was *not* auto_configured (any longer)*/ 434 raidPtr->Disks[col].auto_configured = 0; 435 436 #if 0 437 printf("About to (re-)open the device for rebuilding: %s\n", 438 raidPtr->Disks[col].devname); 439 #endif 440 RF_UNLOCK_MUTEX(raidPtr->mutex); 441 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 442 443 if (retcode) { 444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 445 raidPtr->Disks[col].devname, retcode); 446 447 /* the component isn't responding properly... 448 must be still dead :-( */ 449 RF_LOCK_MUTEX(raidPtr->mutex); 450 raidPtr->reconInProgress--; 451 RF_UNLOCK_MUTEX(raidPtr->mutex); 452 RF_SIGNAL_COND(raidPtr->waitForReconCond); 453 return(retcode); 454 } 455 456 /* Ok, so we can at least do a lookup... 457 How about actually getting a vp for it? */ 458 459 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 460 RF_LOCK_MUTEX(raidPtr->mutex); 461 raidPtr->reconInProgress--; 462 RF_UNLOCK_MUTEX(raidPtr->mutex); 463 RF_SIGNAL_COND(raidPtr->waitForReconCond); 464 return(retcode); 465 } 466 467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 468 if (retcode) { 469 RF_LOCK_MUTEX(raidPtr->mutex); 470 raidPtr->reconInProgress--; 471 RF_UNLOCK_MUTEX(raidPtr->mutex); 472 RF_SIGNAL_COND(raidPtr->waitForReconCond); 473 return(retcode); 474 } 475 RF_LOCK_MUTEX(raidPtr->mutex); 476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 477 478 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 479 rf_protectedSectors; 480 481 raidPtr->raid_cinfo[col].ci_vp = vp; 482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 483 484 raidPtr->Disks[col].dev = va.va_rdev; 485 486 /* we allow the user to specify that only a fraction 487 of the disks should be used this is just for debug: 488 it speeds up * the parity scan */ 489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 490 rf_sizePercentage / 100; 491 RF_UNLOCK_MUTEX(raidPtr->mutex); 492 493 spareDiskPtr = &raidPtr->Disks[col]; 494 spareDiskPtr->status = rf_ds_used_spare; 495 496 printf("raid%d: initiating in-place reconstruction on column %d\n", 497 raidPtr->raidid, col); 498 499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 500 numDisksDone, col); 501 raidPtr->reconDesc = (void *) reconDesc; 502 #if RF_RECON_STATS > 0 503 reconDesc->hsStallCount = 0; 504 reconDesc->numReconExecDelays = 0; 505 reconDesc->numReconEventWaits = 0; 506 #endif /* RF_RECON_STATS > 0 */ 507 reconDesc->reconExecTimerRunning = 0; 508 reconDesc->reconExecTicks = 0; 509 reconDesc->maxReconExecTicks = 0; 510 rc = rf_ContinueReconstructFailedDisk(reconDesc); 511 512 RF_LOCK_MUTEX(raidPtr->mutex); 513 raidPtr->reconInProgress--; 514 RF_UNLOCK_MUTEX(raidPtr->mutex); 515 516 if (!rc) { 517 RF_LOCK_MUTEX(raidPtr->mutex); 518 /* Need to set these here, as at this point it'll be claiming 519 that the disk is in rf_ds_spared! But we know better :-) */ 520 521 raidPtr->Disks[col].status = rf_ds_optimal; 522 raidPtr->status = rf_rs_optimal; 523 RF_UNLOCK_MUTEX(raidPtr->mutex); 524 525 /* fix up the component label */ 526 /* Don't actually need the read here.. */ 527 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 528 raidPtr->raid_cinfo[col].ci_vp, 529 &c_label); 530 531 RF_LOCK_MUTEX(raidPtr->mutex); 532 raid_init_component_label(raidPtr, &c_label); 533 534 c_label.row = 0; 535 c_label.column = col; 536 537 /* We've just done a rebuild based on all the other 538 disks, so at this point the parity is known to be 539 clean, even if it wasn't before. */ 540 541 /* XXX doesn't hold for RAID 6!!*/ 542 543 raidPtr->parity_good = RF_RAID_CLEAN; 544 RF_UNLOCK_MUTEX(raidPtr->mutex); 545 546 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 547 raidPtr->raid_cinfo[col].ci_vp, 548 &c_label); 549 550 rf_update_component_labels(raidPtr, 551 RF_NORMAL_COMPONENT_UPDATE); 552 553 } 554 RF_SIGNAL_COND(raidPtr->waitForReconCond); 555 return (rc); 556 } 557 558 559 int 560 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 561 { 562 RF_Raid_t *raidPtr = reconDesc->raidPtr; 563 RF_RowCol_t col = reconDesc->col; 564 RF_RowCol_t scol = reconDesc->scol; 565 RF_ReconMap_t *mapPtr; 566 RF_ReconCtrl_t *tmp_reconctrl; 567 RF_ReconEvent_t *event; 568 struct timeval etime, elpsd; 569 unsigned long xor_s, xor_resid_us; 570 int i, ds; 571 572 switch (reconDesc->state) { 573 574 575 case 0: 576 577 raidPtr->accumXorTimeUs = 0; 578 579 /* create one trace record per physical disk */ 580 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 581 582 /* quiesce the array prior to starting recon. this is needed 583 * to assure no nasty interactions with pending user writes. 584 * We need to do this before we change the disk or row status. */ 585 reconDesc->state = 1; 586 587 Dprintf("RECON: begin request suspend\n"); 588 rf_SuspendNewRequestsAndWait(raidPtr); 589 Dprintf("RECON: end request suspend\n"); 590 rf_StartUserStats(raidPtr); /* zero out the stats kept on 591 * user accs */ 592 593 /* fall through to state 1 */ 594 595 case 1: 596 597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 599 600 RF_LOCK_MUTEX(raidPtr->mutex); 601 602 /* create the reconstruction control pointer and install it in 603 * the right slot */ 604 raidPtr->reconControl = tmp_reconctrl; 605 mapPtr = raidPtr->reconControl->reconMap; 606 raidPtr->status = rf_rs_reconstructing; 607 raidPtr->Disks[col].status = rf_ds_reconstructing; 608 raidPtr->Disks[col].spareCol = scol; 609 610 RF_UNLOCK_MUTEX(raidPtr->mutex); 611 612 RF_GETTIME(raidPtr->reconControl->starttime); 613 614 /* now start up the actual reconstruction: issue a read for 615 * each surviving disk */ 616 617 reconDesc->numDisksDone = 0; 618 for (i = 0; i < raidPtr->numCol; i++) { 619 if (i != col) { 620 /* find and issue the next I/O on the 621 * indicated disk */ 622 if (IssueNextReadRequest(raidPtr, i)) { 623 Dprintf1("RECON: done issuing for c%d\n", i); 624 reconDesc->numDisksDone++; 625 } 626 } 627 } 628 629 case 2: 630 Dprintf("RECON: resume requests\n"); 631 rf_ResumeNewRequests(raidPtr); 632 633 634 reconDesc->state = 3; 635 636 case 3: 637 638 /* process reconstruction events until all disks report that 639 * they've completed all work */ 640 mapPtr = raidPtr->reconControl->reconMap; 641 642 643 644 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 645 646 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 647 RF_ASSERT(event); 648 649 if (ProcessReconEvent(raidPtr, event)) 650 reconDesc->numDisksDone++; 651 raidPtr->reconControl->numRUsTotal = 652 mapPtr->totalRUs; 653 raidPtr->reconControl->numRUsComplete = 654 mapPtr->totalRUs - 655 rf_UnitsLeftToReconstruct(mapPtr); 656 #if RF_DEBUG_RECON 657 raidPtr->reconControl->percentComplete = 658 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 659 if (rf_prReconSched) { 660 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 661 } 662 #endif 663 } 664 665 666 667 reconDesc->state = 4; 668 669 670 case 4: 671 mapPtr = raidPtr->reconControl->reconMap; 672 if (rf_reconDebug) { 673 printf("RECON: all reads completed\n"); 674 } 675 /* at this point all the reads have completed. We now wait 676 * for any pending writes to complete, and then we're done */ 677 678 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 679 680 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 681 RF_ASSERT(event); 682 683 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */ 684 #if RF_DEBUG_RECON 685 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 686 if (rf_prReconSched) { 687 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 688 } 689 #endif 690 } 691 reconDesc->state = 5; 692 693 case 5: 694 /* Success: mark the dead disk as reconstructed. We quiesce 695 * the array here to assure no nasty interactions with pending 696 * user accesses when we free up the psstatus structure as 697 * part of FreeReconControl() */ 698 699 reconDesc->state = 6; 700 701 rf_SuspendNewRequestsAndWait(raidPtr); 702 rf_StopUserStats(raidPtr); 703 rf_PrintUserStats(raidPtr); /* print out the stats on user 704 * accs accumulated during 705 * recon */ 706 707 /* fall through to state 6 */ 708 case 6: 709 710 711 712 RF_LOCK_MUTEX(raidPtr->mutex); 713 raidPtr->numFailures--; 714 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 715 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 716 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 717 RF_UNLOCK_MUTEX(raidPtr->mutex); 718 RF_GETTIME(etime); 719 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 720 721 /* XXX -- why is state 7 different from state 6 if there is no 722 * return() here? -- XXX Note that I set elpsd above & use it 723 * below, so if you put a return here you'll have to fix this. 724 * (also, FreeReconControl is called below) */ 725 726 case 7: 727 728 rf_ResumeNewRequests(raidPtr); 729 730 printf("raid%d: Reconstruction of disk at col %d completed\n", 731 raidPtr->raidid, col); 732 xor_s = raidPtr->accumXorTimeUs / 1000000; 733 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 734 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 735 raidPtr->raidid, 736 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 737 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 738 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 739 raidPtr->raidid, 740 (int) raidPtr->reconControl->starttime.tv_sec, 741 (int) raidPtr->reconControl->starttime.tv_usec, 742 (int) etime.tv_sec, (int) etime.tv_usec); 743 744 #if RF_RECON_STATS > 0 745 printf("raid%d: Total head-sep stall count was %d\n", 746 raidPtr->raidid, (int) reconDesc->hsStallCount); 747 #endif /* RF_RECON_STATS > 0 */ 748 rf_FreeReconControl(raidPtr); 749 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 750 FreeReconDesc(reconDesc); 751 752 } 753 754 return (0); 755 } 756 /***************************************************************************** 757 * do the right thing upon each reconstruction event. 758 * returns nonzero if and only if there is nothing left unread on the 759 * indicated disk 760 *****************************************************************************/ 761 static int 762 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 763 { 764 int retcode = 0, submitblocked; 765 RF_ReconBuffer_t *rbuf; 766 RF_SectorCount_t sectorsPerRU; 767 768 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 769 switch (event->type) { 770 771 /* a read I/O has completed */ 772 case RF_REVENT_READDONE: 773 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 774 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 775 event->col, rbuf->parityStripeID); 776 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 777 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 778 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 779 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 780 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 781 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 782 if (!submitblocked) 783 retcode = IssueNextReadRequest(raidPtr, event->col); 784 break; 785 786 /* a write I/O has completed */ 787 case RF_REVENT_WRITEDONE: 788 #if RF_DEBUG_RECON 789 if (rf_floatingRbufDebug) { 790 rf_CheckFloatingRbufCount(raidPtr, 1); 791 } 792 #endif 793 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 794 rbuf = (RF_ReconBuffer_t *) event->arg; 795 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 796 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 797 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 798 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 799 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 800 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 801 802 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 803 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 804 raidPtr->numFullReconBuffers--; 805 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 806 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 807 } else 808 if (rbuf->type == RF_RBUF_TYPE_FORCED) 809 rf_FreeReconBuffer(rbuf); 810 else 811 RF_ASSERT(0); 812 break; 813 814 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 815 * cleared */ 816 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 817 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 818 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 819 * BUFCLEAR event if we 820 * couldn't submit */ 821 retcode = IssueNextReadRequest(raidPtr, event->col); 822 break; 823 824 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 825 * blockage has been cleared */ 826 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 827 retcode = TryToRead(raidPtr, event->col); 828 break; 829 830 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 831 * reconstruction blockage has been 832 * cleared */ 833 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 834 retcode = TryToRead(raidPtr, event->col); 835 break; 836 837 /* a buffer has become ready to write */ 838 case RF_REVENT_BUFREADY: 839 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 840 retcode = IssueNextWriteRequest(raidPtr); 841 #if RF_DEBUG_RECON 842 if (rf_floatingRbufDebug) { 843 rf_CheckFloatingRbufCount(raidPtr, 1); 844 } 845 #endif 846 break; 847 848 /* we need to skip the current RU entirely because it got 849 * recon'd while we were waiting for something else to happen */ 850 case RF_REVENT_SKIP: 851 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 852 retcode = IssueNextReadRequest(raidPtr, event->col); 853 break; 854 855 /* a forced-reconstruction read access has completed. Just 856 * submit the buffer */ 857 case RF_REVENT_FORCEDREADDONE: 858 rbuf = (RF_ReconBuffer_t *) event->arg; 859 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 860 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 861 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 862 RF_ASSERT(!submitblocked); 863 break; 864 865 default: 866 RF_PANIC(); 867 } 868 rf_FreeReconEventDesc(event); 869 return (retcode); 870 } 871 /***************************************************************************** 872 * 873 * find the next thing that's needed on the indicated disk, and issue 874 * a read request for it. We assume that the reconstruction buffer 875 * associated with this process is free to receive the data. If 876 * reconstruction is blocked on the indicated RU, we issue a 877 * blockage-release request instead of a physical disk read request. 878 * If the current disk gets too far ahead of the others, we issue a 879 * head-separation wait request and return. 880 * 881 * ctrl->{ru_count, curPSID, diskOffset} and 882 * rbuf->failedDiskSectorOffset are maintained to point to the unit 883 * we're currently accessing. Note that this deviates from the 884 * standard C idiom of having counters point to the next thing to be 885 * accessed. This allows us to easily retry when we're blocked by 886 * head separation or reconstruction-blockage events. 887 * 888 * returns nonzero if and only if there is nothing left unread on the 889 * indicated disk 890 * 891 *****************************************************************************/ 892 static int 893 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 894 { 895 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 896 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 897 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 898 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 899 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 900 int do_new_check = 0, retcode = 0, status; 901 902 /* if we are currently the slowest disk, mark that we have to do a new 903 * check */ 904 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 905 do_new_check = 1; 906 907 while (1) { 908 909 ctrl->ru_count++; 910 if (ctrl->ru_count < RUsPerPU) { 911 ctrl->diskOffset += sectorsPerRU; 912 rbuf->failedDiskSectorOffset += sectorsPerRU; 913 } else { 914 ctrl->curPSID++; 915 ctrl->ru_count = 0; 916 /* code left over from when head-sep was based on 917 * parity stripe id */ 918 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 919 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 920 return (1); /* finito! */ 921 } 922 /* find the disk offsets of the start of the parity 923 * stripe on both the current disk and the failed 924 * disk. skip this entire parity stripe if either disk 925 * does not appear in the indicated PS */ 926 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 927 &rbuf->spCol, &rbuf->spOffset); 928 if (status) { 929 ctrl->ru_count = RUsPerPU - 1; 930 continue; 931 } 932 } 933 rbuf->which_ru = ctrl->ru_count; 934 935 /* skip this RU if it's already been reconstructed */ 936 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 937 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 938 continue; 939 } 940 break; 941 } 942 ctrl->headSepCounter++; 943 if (do_new_check) 944 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 945 946 947 /* at this point, we have definitely decided what to do, and we have 948 * only to see if we can actually do it now */ 949 rbuf->parityStripeID = ctrl->curPSID; 950 rbuf->which_ru = ctrl->ru_count; 951 memset((char *) &raidPtr->recon_tracerecs[col], 0, 952 sizeof(raidPtr->recon_tracerecs[col])); 953 raidPtr->recon_tracerecs[col].reconacc = 1; 954 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 955 retcode = TryToRead(raidPtr, col); 956 return (retcode); 957 } 958 959 /* 960 * tries to issue the next read on the indicated disk. We may be 961 * blocked by (a) the heads being too far apart, or (b) recon on the 962 * indicated RU being blocked due to a write by a user thread. In 963 * this case, we issue a head-sep or blockage wait request, which will 964 * cause this same routine to be invoked again later when the blockage 965 * has cleared. 966 */ 967 968 static int 969 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 970 { 971 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 972 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 973 RF_StripeNum_t psid = ctrl->curPSID; 974 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 975 RF_DiskQueueData_t *req; 976 int status, created = 0; 977 RF_ReconParityStripeStatus_t *pssPtr; 978 979 /* if the current disk is too far ahead of the others, issue a 980 * head-separation wait and return */ 981 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 982 return (0); 983 RF_LOCK_PSS_MUTEX(raidPtr, psid); 984 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 985 986 /* if recon is blocked on the indicated parity stripe, issue a 987 * block-wait request and return. this also must mark the indicated RU 988 * in the stripe as under reconstruction if not blocked. */ 989 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 990 if (status == RF_PSS_RECON_BLOCKED) { 991 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 992 goto out; 993 } else 994 if (status == RF_PSS_FORCED_ON_WRITE) { 995 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 996 goto out; 997 } 998 /* make one last check to be sure that the indicated RU didn't get 999 * reconstructed while we were waiting for something else to happen. 1000 * This is unfortunate in that it causes us to make this check twice 1001 * in the normal case. Might want to make some attempt to re-work 1002 * this so that we only do this check if we've definitely blocked on 1003 * one of the above checks. When this condition is detected, we may 1004 * have just created a bogus status entry, which we need to delete. */ 1005 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1006 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1007 if (created) 1008 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1009 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1010 goto out; 1011 } 1012 /* found something to read. issue the I/O */ 1013 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1014 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1015 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1016 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1017 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1018 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1019 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1020 1021 /* should be ok to use a NULL proc pointer here, all the bufs we use 1022 * should be in kernel space */ 1023 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1024 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1025 1026 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1027 1028 ctrl->rbuf->arg = (void *) req; 1029 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1030 pssPtr->issued[col] = 1; 1031 1032 out: 1033 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1034 return (0); 1035 } 1036 1037 1038 /* 1039 * given a parity stripe ID, we want to find out whether both the 1040 * current disk and the failed disk exist in that parity stripe. If 1041 * not, we want to skip this whole PS. If so, we want to find the 1042 * disk offset of the start of the PS on both the current disk and the 1043 * failed disk. 1044 * 1045 * this works by getting a list of disks comprising the indicated 1046 * parity stripe, and searching the list for the current and failed 1047 * disks. Once we've decided they both exist in the parity stripe, we 1048 * need to decide whether each is data or parity, so that we'll know 1049 * which mapping function to call to get the corresponding disk 1050 * offsets. 1051 * 1052 * this is kind of unpleasant, but doing it this way allows the 1053 * reconstruction code to use parity stripe IDs rather than physical 1054 * disks address to march through the failed disk, which greatly 1055 * simplifies a lot of code, as well as eliminating the need for a 1056 * reverse-mapping function. I also think it will execute faster, 1057 * since the calls to the mapping module are kept to a minimum. 1058 * 1059 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1060 * THE STRIPE IN THE CORRECT ORDER 1061 * 1062 * raidPtr - raid descriptor 1063 * psid - parity stripe identifier 1064 * col - column of disk to find the offsets for 1065 * spCol - out: col of spare unit for failed unit 1066 * spOffset - out: offset into disk containing spare unit 1067 * 1068 */ 1069 1070 1071 static int 1072 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1073 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1074 RF_SectorNum_t *outFailedDiskSectorOffset, 1075 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1076 { 1077 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1078 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1079 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1080 RF_RowCol_t *diskids; 1081 u_int i, j, k, i_offset, j_offset; 1082 RF_RowCol_t pcol; 1083 int testcol; 1084 RF_SectorNum_t poffset; 1085 char i_is_parity = 0, j_is_parity = 0; 1086 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1087 1088 /* get a listing of the disks comprising that stripe */ 1089 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1090 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1091 RF_ASSERT(diskids); 1092 1093 /* reject this entire parity stripe if it does not contain the 1094 * indicated disk or it does not contain the failed disk */ 1095 1096 for (i = 0; i < stripeWidth; i++) { 1097 if (col == diskids[i]) 1098 break; 1099 } 1100 if (i == stripeWidth) 1101 goto skipit; 1102 for (j = 0; j < stripeWidth; j++) { 1103 if (fcol == diskids[j]) 1104 break; 1105 } 1106 if (j == stripeWidth) { 1107 goto skipit; 1108 } 1109 /* find out which disk the parity is on */ 1110 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1111 1112 /* find out if either the current RU or the failed RU is parity */ 1113 /* also, if the parity occurs in this stripe prior to the data and/or 1114 * failed col, we need to decrement i and/or j */ 1115 for (k = 0; k < stripeWidth; k++) 1116 if (diskids[k] == pcol) 1117 break; 1118 RF_ASSERT(k < stripeWidth); 1119 i_offset = i; 1120 j_offset = j; 1121 if (k < i) 1122 i_offset--; 1123 else 1124 if (k == i) { 1125 i_is_parity = 1; 1126 i_offset = 0; 1127 } /* set offsets to zero to disable multiply 1128 * below */ 1129 if (k < j) 1130 j_offset--; 1131 else 1132 if (k == j) { 1133 j_is_parity = 1; 1134 j_offset = 0; 1135 } 1136 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1137 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1138 * tells us how far into the stripe the [current,failed] disk is. */ 1139 1140 /* call the mapping routine to get the offset into the current disk, 1141 * repeat for failed disk. */ 1142 if (i_is_parity) 1143 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1144 else 1145 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1146 1147 RF_ASSERT(col == testcol); 1148 1149 if (j_is_parity) 1150 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1151 else 1152 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1153 RF_ASSERT(fcol == testcol); 1154 1155 /* now locate the spare unit for the failed unit */ 1156 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1157 if (j_is_parity) 1158 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1159 else 1160 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1161 } else { 1162 *spCol = raidPtr->reconControl->spareCol; 1163 *spOffset = *outFailedDiskSectorOffset; 1164 } 1165 1166 return (0); 1167 1168 skipit: 1169 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1170 psid, col); 1171 return (1); 1172 } 1173 /* this is called when a buffer has become ready to write to the replacement disk */ 1174 static int 1175 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1176 { 1177 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1178 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1179 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1180 RF_ReconBuffer_t *rbuf; 1181 RF_DiskQueueData_t *req; 1182 1183 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1184 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1185 * have gotten the event that sent us here */ 1186 RF_ASSERT(rbuf->pssPtr); 1187 1188 rbuf->pssPtr->writeRbuf = rbuf; 1189 rbuf->pssPtr = NULL; 1190 1191 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1192 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1193 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1194 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1195 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1196 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1197 1198 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1199 * kernel space */ 1200 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1201 sectorsPerRU, rbuf->buffer, 1202 rbuf->parityStripeID, rbuf->which_ru, 1203 ReconWriteDoneProc, (void *) rbuf, NULL, 1204 &raidPtr->recon_tracerecs[fcol], 1205 (void *) raidPtr, 0, NULL); 1206 1207 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1208 1209 rbuf->arg = (void *) req; 1210 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1211 1212 return (0); 1213 } 1214 1215 /* 1216 * this gets called upon the completion of a reconstruction read 1217 * operation the arg is a pointer to the per-disk reconstruction 1218 * control structure for the process that just finished a read. 1219 * 1220 * called at interrupt context in the kernel, so don't do anything 1221 * illegal here. 1222 */ 1223 static int 1224 ReconReadDoneProc(void *arg, int status) 1225 { 1226 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1227 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1228 1229 if (status) { 1230 /* 1231 * XXX 1232 */ 1233 printf("Recon read failed!\n"); 1234 RF_PANIC(); 1235 } 1236 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1237 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1238 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1239 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1240 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1241 1242 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1243 return (0); 1244 } 1245 /* this gets called upon the completion of a reconstruction write operation. 1246 * the arg is a pointer to the rbuf that was just written 1247 * 1248 * called at interrupt context in the kernel, so don't do anything illegal here. 1249 */ 1250 static int 1251 ReconWriteDoneProc(void *arg, int status) 1252 { 1253 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1254 1255 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1256 if (status) { 1257 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1258 * write failed!\n"); */ 1259 RF_PANIC(); 1260 } 1261 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1262 return (0); 1263 } 1264 1265 1266 /* 1267 * computes a new minimum head sep, and wakes up anyone who needs to 1268 * be woken as a result 1269 */ 1270 static void 1271 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1272 { 1273 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1274 RF_HeadSepLimit_t new_min; 1275 RF_RowCol_t i; 1276 RF_CallbackDesc_t *p; 1277 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1278 * of a minimum */ 1279 1280 1281 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1282 1283 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1284 for (i = 0; i < raidPtr->numCol; i++) 1285 if (i != reconCtrlPtr->fcol) { 1286 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1287 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1288 } 1289 /* set the new minimum and wake up anyone who can now run again */ 1290 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1291 reconCtrlPtr->minHeadSepCounter = new_min; 1292 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1293 while (reconCtrlPtr->headSepCBList) { 1294 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1295 break; 1296 p = reconCtrlPtr->headSepCBList; 1297 reconCtrlPtr->headSepCBList = p->next; 1298 p->next = NULL; 1299 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1300 rf_FreeCallbackDesc(p); 1301 } 1302 1303 } 1304 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1305 } 1306 1307 /* 1308 * checks to see that the maximum head separation will not be violated 1309 * if we initiate a reconstruction I/O on the indicated disk. 1310 * Limiting the maximum head separation between two disks eliminates 1311 * the nasty buffer-stall conditions that occur when one disk races 1312 * ahead of the others and consumes all of the floating recon buffers. 1313 * This code is complex and unpleasant but it's necessary to avoid 1314 * some very nasty, albeit fairly rare, reconstruction behavior. 1315 * 1316 * returns non-zero if and only if we have to stop working on the 1317 * indicated disk due to a head-separation delay. 1318 */ 1319 static int 1320 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1321 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1322 RF_ReconUnitNum_t which_ru) 1323 { 1324 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1325 RF_CallbackDesc_t *cb, *p, *pt; 1326 int retval = 0; 1327 1328 /* if we're too far ahead of the slowest disk, stop working on this 1329 * disk until the slower ones catch up. We do this by scheduling a 1330 * wakeup callback for the time when the slowest disk has caught up. 1331 * We define "caught up" with 20% hysteresis, i.e. the head separation 1332 * must have fallen to at most 80% of the max allowable head 1333 * separation before we'll wake up. 1334 * 1335 */ 1336 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1337 if ((raidPtr->headSepLimit >= 0) && 1338 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1339 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1340 raidPtr->raidid, col, ctrl->headSepCounter, 1341 reconCtrlPtr->minHeadSepCounter, 1342 raidPtr->headSepLimit); 1343 cb = rf_AllocCallbackDesc(); 1344 /* the minHeadSepCounter value we have to get to before we'll 1345 * wake up. build in 20% hysteresis. */ 1346 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1347 cb->col = col; 1348 cb->next = NULL; 1349 1350 /* insert this callback descriptor into the sorted list of 1351 * pending head-sep callbacks */ 1352 p = reconCtrlPtr->headSepCBList; 1353 if (!p) 1354 reconCtrlPtr->headSepCBList = cb; 1355 else 1356 if (cb->callbackArg.v < p->callbackArg.v) { 1357 cb->next = reconCtrlPtr->headSepCBList; 1358 reconCtrlPtr->headSepCBList = cb; 1359 } else { 1360 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1361 cb->next = p; 1362 pt->next = cb; 1363 } 1364 retval = 1; 1365 #if RF_RECON_STATS > 0 1366 ctrl->reconCtrl->reconDesc->hsStallCount++; 1367 #endif /* RF_RECON_STATS > 0 */ 1368 } 1369 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1370 1371 return (retval); 1372 } 1373 /* 1374 * checks to see if reconstruction has been either forced or blocked 1375 * by a user operation. if forced, we skip this RU entirely. else if 1376 * blocked, put ourselves on the wait list. else return 0. 1377 * 1378 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1379 */ 1380 static int 1381 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1382 RF_ReconParityStripeStatus_t *pssPtr, 1383 RF_PerDiskReconCtrl_t *ctrl, 1384 RF_RowCol_t col, RF_StripeNum_t psid, 1385 RF_ReconUnitNum_t which_ru) 1386 { 1387 RF_CallbackDesc_t *cb; 1388 int retcode = 0; 1389 1390 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1391 retcode = RF_PSS_FORCED_ON_WRITE; 1392 else 1393 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1394 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1395 cb = rf_AllocCallbackDesc(); /* append ourselves to 1396 * the blockage-wait 1397 * list */ 1398 cb->col = col; 1399 cb->next = pssPtr->blockWaitList; 1400 pssPtr->blockWaitList = cb; 1401 retcode = RF_PSS_RECON_BLOCKED; 1402 } 1403 if (!retcode) 1404 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1405 * reconstruction */ 1406 1407 return (retcode); 1408 } 1409 /* 1410 * if reconstruction is currently ongoing for the indicated stripeID, 1411 * reconstruction is forced to completion and we return non-zero to 1412 * indicate that the caller must wait. If not, then reconstruction is 1413 * blocked on the indicated stripe and the routine returns zero. If 1414 * and only if we return non-zero, we'll cause the cbFunc to get 1415 * invoked with the cbArg when the reconstruction has completed. 1416 */ 1417 int 1418 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1419 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1420 { 1421 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1422 * forcing recon on */ 1423 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1424 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1425 * stripe status structure */ 1426 RF_StripeNum_t psid; /* parity stripe id */ 1427 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1428 * offset */ 1429 RF_RowCol_t *diskids; 1430 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1431 RF_RowCol_t fcol, diskno, i; 1432 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1433 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1434 RF_CallbackDesc_t *cb; 1435 int created = 0, nPromoted; 1436 1437 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1438 1439 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1440 1441 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1442 1443 /* if recon is not ongoing on this PS, just return */ 1444 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1445 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1446 return (0); 1447 } 1448 /* otherwise, we have to wait for reconstruction to complete on this 1449 * RU. */ 1450 /* In order to avoid waiting for a potentially large number of 1451 * low-priority accesses to complete, we force a normal-priority (i.e. 1452 * not low-priority) reconstruction on this RU. */ 1453 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1454 DDprintf1("Forcing recon on psid %ld\n", psid); 1455 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1456 * forced recon */ 1457 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1458 * that we just set */ 1459 fcol = raidPtr->reconControl->fcol; 1460 1461 /* get a listing of the disks comprising the indicated stripe */ 1462 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1463 1464 /* For previously issued reads, elevate them to normal 1465 * priority. If the I/O has already completed, it won't be 1466 * found in the queue, and hence this will be a no-op. For 1467 * unissued reads, allocate buffers and issue new reads. The 1468 * fact that we've set the FORCED bit means that the regular 1469 * recon procs will not re-issue these reqs */ 1470 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1471 if ((diskno = diskids[i]) != fcol) { 1472 if (pssPtr->issued[diskno]) { 1473 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1474 if (rf_reconDebug && nPromoted) 1475 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1476 } else { 1477 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1478 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1479 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1480 * location */ 1481 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1482 new_rbuf->which_ru = which_ru; 1483 new_rbuf->failedDiskSectorOffset = fd_offset; 1484 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1485 1486 /* use NULL b_proc b/c all addrs 1487 * should be in kernel space */ 1488 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1489 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1490 NULL, (void *) raidPtr, 0, NULL); 1491 1492 RF_ASSERT(req); /* XXX -- fix this -- 1493 * XXX */ 1494 1495 new_rbuf->arg = req; 1496 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1497 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1498 } 1499 } 1500 /* if the write is sitting in the disk queue, elevate its 1501 * priority */ 1502 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1503 printf("raid%d: promoted write to col %d\n", 1504 raidPtr->raidid, fcol); 1505 } 1506 /* install a callback descriptor to be invoked when recon completes on 1507 * this parity stripe. */ 1508 cb = rf_AllocCallbackDesc(); 1509 /* XXX the following is bogus.. These functions don't really match!! 1510 * GO */ 1511 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1512 cb->callbackArg.p = (void *) cbArg; 1513 cb->next = pssPtr->procWaitList; 1514 pssPtr->procWaitList = cb; 1515 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1516 raidPtr->raidid, psid); 1517 1518 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1519 return (1); 1520 } 1521 /* called upon the completion of a forced reconstruction read. 1522 * all we do is schedule the FORCEDREADONE event. 1523 * called at interrupt context in the kernel, so don't do anything illegal here. 1524 */ 1525 static void 1526 ForceReconReadDoneProc(void *arg, int status) 1527 { 1528 RF_ReconBuffer_t *rbuf = arg; 1529 1530 if (status) { 1531 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1532 * recon read 1533 * failed!\n"); */ 1534 RF_PANIC(); 1535 } 1536 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1537 } 1538 /* releases a block on the reconstruction of the indicated stripe */ 1539 int 1540 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1541 { 1542 RF_StripeNum_t stripeID = asmap->stripeID; 1543 RF_ReconParityStripeStatus_t *pssPtr; 1544 RF_ReconUnitNum_t which_ru; 1545 RF_StripeNum_t psid; 1546 int created = 0; 1547 RF_CallbackDesc_t *cb; 1548 1549 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1550 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1551 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1552 1553 /* When recon is forced, the pss desc can get deleted before we get 1554 * back to unblock recon. But, this can _only_ happen when recon is 1555 * forced. It would be good to put some kind of sanity check here, but 1556 * how to decide if recon was just forced or not? */ 1557 if (!pssPtr) { 1558 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1559 * RU %d\n",psid,which_ru); */ 1560 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1561 if (rf_reconDebug || rf_pssDebug) 1562 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1563 #endif 1564 goto out; 1565 } 1566 pssPtr->blockCount--; 1567 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1568 raidPtr->raidid, psid, pssPtr->blockCount); 1569 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1570 1571 /* unblock recon before calling CauseReconEvent in case 1572 * CauseReconEvent causes us to try to issue a new read before 1573 * returning here. */ 1574 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1575 1576 1577 while (pssPtr->blockWaitList) { 1578 /* spin through the block-wait list and 1579 release all the waiters */ 1580 cb = pssPtr->blockWaitList; 1581 pssPtr->blockWaitList = cb->next; 1582 cb->next = NULL; 1583 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1584 rf_FreeCallbackDesc(cb); 1585 } 1586 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1587 /* if no recon was requested while recon was blocked */ 1588 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1589 } 1590 } 1591 out: 1592 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1593 return (0); 1594 } 1595