xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #if RF_DEBUG_RECON
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 #else /* RF_DEBUG_RECON */
82 
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91 
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94 
95 #endif /* RF_DEBUG_RECON */
96 
97 
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND  4
100 #define RF_RECOND_INC       1
101 
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104     RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105     int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114     RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115     RF_SectorNum_t * outFailedDiskSectorOffset,
116     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124     RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125     RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129     RF_RowCol_t col, RF_StripeNum_t psid,
130     RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132 
133 static void rf_ShutdownReconstruction(void *);
134 
135 struct RF_ReconDoneProc_s {
136 	void    (*proc) (RF_Raid_t *, void *);
137 	void   *arg;
138 	RF_ReconDoneProc_t *next;
139 };
140 
141 /**************************************************************************
142  *
143  * sets up the parameters that will be used by the reconstruction process
144  * currently there are none, except for those that the layout-specific
145  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146  *
147  * in the kernel, we fire off the recon thread.
148  *
149  **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 	pool_destroy(&rf_recond_pool);
154 }
155 
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159 	int     rc;
160 
161 	pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
162 		  "rf_recond_pl", NULL);
163 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
164 	if (rc) {
165 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
166 		rf_ShutdownReconstruction(NULL);
167 		return (rc);
168 	}
169 	return (0);
170 }
171 
172 static RF_RaidReconDesc_t *
173 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
174 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
175 		   RF_RowCol_t scol)
176 {
177 
178 	RF_RaidReconDesc_t *reconDesc;
179 
180 	reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
181 
182 	reconDesc->raidPtr = raidPtr;
183 	reconDesc->col = col;
184 	reconDesc->spareDiskPtr = spareDiskPtr;
185 	reconDesc->numDisksDone = numDisksDone;
186 	reconDesc->scol = scol;
187 	reconDesc->state = 0;
188 	reconDesc->next = NULL;
189 
190 	return (reconDesc);
191 }
192 
193 static void
194 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
195 {
196 #if RF_RECON_STATS > 0
197 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
198 	       reconDesc->raidPtr->raidid,
199 	       (long) reconDesc->numReconEventWaits,
200 	       (long) reconDesc->numReconExecDelays);
201 #endif				/* RF_RECON_STATS > 0 */
202 	printf("raid%d: %lu max exec ticks\n",
203 	       reconDesc->raidPtr->raidid,
204 	       (long) reconDesc->maxReconExecTicks);
205 #if (RF_RECON_STATS > 0) || defined(KERNEL)
206 	printf("\n");
207 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
208 	pool_put(&rf_recond_pool, reconDesc);
209 }
210 
211 
212 /*****************************************************************************
213  *
214  * primary routine to reconstruct a failed disk.  This should be called from
215  * within its own thread.  It won't return until reconstruction completes,
216  * fails, or is aborted.
217  *****************************************************************************/
218 int
219 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
220 {
221 	const RF_LayoutSW_t *lp;
222 	int     rc;
223 
224 	lp = raidPtr->Layout.map;
225 	if (lp->SubmitReconBuffer) {
226 		/*
227 	         * The current infrastructure only supports reconstructing one
228 	         * disk at a time for each array.
229 	         */
230 		RF_LOCK_MUTEX(raidPtr->mutex);
231 		while (raidPtr->reconInProgress) {
232 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
233 		}
234 		raidPtr->reconInProgress++;
235 		RF_UNLOCK_MUTEX(raidPtr->mutex);
236 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
237 		RF_LOCK_MUTEX(raidPtr->mutex);
238 		raidPtr->reconInProgress--;
239 		RF_UNLOCK_MUTEX(raidPtr->mutex);
240 	} else {
241 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
242 		    lp->parityConfig);
243 		rc = EIO;
244 	}
245 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
246 	return (rc);
247 }
248 
249 int
250 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
251 {
252 	RF_ComponentLabel_t c_label;
253 	RF_RaidDisk_t *spareDiskPtr = NULL;
254 	RF_RaidReconDesc_t *reconDesc;
255 	RF_RowCol_t scol;
256 	int     numDisksDone = 0, rc;
257 
258 	/* first look for a spare drive onto which to reconstruct the data */
259 	/* spare disk descriptors are stored in row 0.  This may have to
260 	 * change eventually */
261 
262 	RF_LOCK_MUTEX(raidPtr->mutex);
263 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
264 
265 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
266 		if (raidPtr->status != rf_rs_degraded) {
267 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
268 			RF_UNLOCK_MUTEX(raidPtr->mutex);
269 			return (EINVAL);
270 		}
271 		scol = (-1);
272 	} else {
273 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
274 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
275 				spareDiskPtr = &raidPtr->Disks[scol];
276 				spareDiskPtr->status = rf_ds_used_spare;
277 				break;
278 			}
279 		}
280 		if (!spareDiskPtr) {
281 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
282 			RF_UNLOCK_MUTEX(raidPtr->mutex);
283 			return (ENOSPC);
284 		}
285 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
286 	}
287 	RF_UNLOCK_MUTEX(raidPtr->mutex);
288 
289 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
290 	raidPtr->reconDesc = (void *) reconDesc;
291 #if RF_RECON_STATS > 0
292 	reconDesc->hsStallCount = 0;
293 	reconDesc->numReconExecDelays = 0;
294 	reconDesc->numReconEventWaits = 0;
295 #endif				/* RF_RECON_STATS > 0 */
296 	reconDesc->reconExecTimerRunning = 0;
297 	reconDesc->reconExecTicks = 0;
298 	reconDesc->maxReconExecTicks = 0;
299 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
300 
301 	if (!rc) {
302 		/* fix up the component label */
303 		/* Don't actually need the read here.. */
304 		raidread_component_label(
305                         raidPtr->raid_cinfo[scol].ci_dev,
306 			raidPtr->raid_cinfo[scol].ci_vp,
307 			&c_label);
308 
309 		raid_init_component_label( raidPtr, &c_label);
310 		c_label.row = 0;
311 		c_label.column = col;
312 		c_label.clean = RF_RAID_DIRTY;
313 		c_label.status = rf_ds_optimal;
314 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
315 
316 		/* We've just done a rebuild based on all the other
317 		   disks, so at this point the parity is known to be
318 		   clean, even if it wasn't before. */
319 
320 		/* XXX doesn't hold for RAID 6!!*/
321 
322 		RF_LOCK_MUTEX(raidPtr->mutex);
323 		raidPtr->parity_good = RF_RAID_CLEAN;
324 		RF_UNLOCK_MUTEX(raidPtr->mutex);
325 
326 		/* XXXX MORE NEEDED HERE */
327 
328 		raidwrite_component_label(
329                         raidPtr->raid_cinfo[scol].ci_dev,
330 			raidPtr->raid_cinfo[scol].ci_vp,
331 			&c_label);
332 
333 
334 		rf_update_component_labels(raidPtr,
335 					   RF_NORMAL_COMPONENT_UPDATE);
336 
337 	}
338 	return (rc);
339 }
340 
341 /*
342 
343    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
344    and you don't get a spare until the next Monday.  With this function
345    (and hot-swappable drives) you can now put your new disk containing
346    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
347    rebuild the data "on the spot".
348 
349 */
350 
351 int
352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
353 {
354 	RF_RaidDisk_t *spareDiskPtr = NULL;
355 	RF_RaidReconDesc_t *reconDesc;
356 	const RF_LayoutSW_t *lp;
357 	RF_ComponentLabel_t c_label;
358 	int     numDisksDone = 0, rc;
359 	struct partinfo dpart;
360 	struct vnode *vp;
361 	struct vattr va;
362 	struct proc *proc;
363 	int retcode;
364 	int ac;
365 
366 	lp = raidPtr->Layout.map;
367 	if (!lp->SubmitReconBuffer) {
368 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
369 			     lp->parityConfig);
370 		/* wakeup anyone who might be waiting to do a reconstruct */
371 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
372 		return(EIO);
373 	}
374 
375 	/*
376 	 * The current infrastructure only supports reconstructing one
377 	 * disk at a time for each array.
378 	 */
379 	RF_LOCK_MUTEX(raidPtr->mutex);
380 
381 	if (raidPtr->Disks[col].status != rf_ds_failed) {
382 		/* "It's gone..." */
383 		raidPtr->numFailures++;
384 		raidPtr->Disks[col].status = rf_ds_failed;
385 		raidPtr->status = rf_rs_degraded;
386 		RF_UNLOCK_MUTEX(raidPtr->mutex);
387 		rf_update_component_labels(raidPtr,
388 					   RF_NORMAL_COMPONENT_UPDATE);
389 		RF_LOCK_MUTEX(raidPtr->mutex);
390 	}
391 
392 	while (raidPtr->reconInProgress) {
393 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
394 	}
395 
396 	raidPtr->reconInProgress++;
397 
398 	/* first look for a spare drive onto which to reconstruct the
399 	   data.  spare disk descriptors are stored in row 0.  This
400 	   may have to change eventually */
401 
402 	/* Actually, we don't care if it's failed or not...  On a RAID
403 	   set with correct parity, this function should be callable
404 	   on any component without ill affects. */
405 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
406 
407 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409 
410 		raidPtr->reconInProgress--;
411 		RF_UNLOCK_MUTEX(raidPtr->mutex);
412 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 		return (EINVAL);
414 	}
415 
416 	proc = raidPtr->engine_thread;
417 
418 	/* This device may have been opened successfully the
419 	   first time. Close it before trying to open it again.. */
420 
421 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 		printf("Closed the open device: %s\n",
424 		       raidPtr->Disks[col].devname);
425 #endif
426 		vp = raidPtr->raid_cinfo[col].ci_vp;
427 		ac = raidPtr->Disks[col].auto_configured;
428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
429 		rf_close_component(raidPtr, vp, ac);
430 		RF_LOCK_MUTEX(raidPtr->mutex);
431 		raidPtr->raid_cinfo[col].ci_vp = NULL;
432 	}
433 	/* note that this disk was *not* auto_configured (any longer)*/
434 	raidPtr->Disks[col].auto_configured = 0;
435 
436 #if 0
437 	printf("About to (re-)open the device for rebuilding: %s\n",
438 	       raidPtr->Disks[col].devname);
439 #endif
440 	RF_UNLOCK_MUTEX(raidPtr->mutex);
441 	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
442 
443 	if (retcode) {
444 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 		       raidPtr->Disks[col].devname, retcode);
446 
447 		/* the component isn't responding properly...
448 		   must be still dead :-( */
449 		RF_LOCK_MUTEX(raidPtr->mutex);
450 		raidPtr->reconInProgress--;
451 		RF_UNLOCK_MUTEX(raidPtr->mutex);
452 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 		return(retcode);
454 	}
455 
456 	/* Ok, so we can at least do a lookup...
457 	   How about actually getting a vp for it? */
458 
459 	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
460 		RF_LOCK_MUTEX(raidPtr->mutex);
461 		raidPtr->reconInProgress--;
462 		RF_UNLOCK_MUTEX(raidPtr->mutex);
463 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 		return(retcode);
465 	}
466 
467 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
468 	if (retcode) {
469 		RF_LOCK_MUTEX(raidPtr->mutex);
470 		raidPtr->reconInProgress--;
471 		RF_UNLOCK_MUTEX(raidPtr->mutex);
472 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 		return(retcode);
474 	}
475 	RF_LOCK_MUTEX(raidPtr->mutex);
476 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
477 
478 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 		rf_protectedSectors;
480 
481 	raidPtr->raid_cinfo[col].ci_vp = vp;
482 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483 
484 	raidPtr->Disks[col].dev = va.va_rdev;
485 
486 	/* we allow the user to specify that only a fraction
487 	   of the disks should be used this is just for debug:
488 	   it speeds up * the parity scan */
489 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 		rf_sizePercentage / 100;
491 	RF_UNLOCK_MUTEX(raidPtr->mutex);
492 
493 	spareDiskPtr = &raidPtr->Disks[col];
494 	spareDiskPtr->status = rf_ds_used_spare;
495 
496 	printf("raid%d: initiating in-place reconstruction on column %d\n",
497 	       raidPtr->raidid, col);
498 
499 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 				       numDisksDone, col);
501 	raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 	reconDesc->hsStallCount = 0;
504 	reconDesc->numReconExecDelays = 0;
505 	reconDesc->numReconEventWaits = 0;
506 #endif				/* RF_RECON_STATS > 0 */
507 	reconDesc->reconExecTimerRunning = 0;
508 	reconDesc->reconExecTicks = 0;
509 	reconDesc->maxReconExecTicks = 0;
510 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
511 
512 	RF_LOCK_MUTEX(raidPtr->mutex);
513 	raidPtr->reconInProgress--;
514 	RF_UNLOCK_MUTEX(raidPtr->mutex);
515 
516 	if (!rc) {
517 		RF_LOCK_MUTEX(raidPtr->mutex);
518 		/* Need to set these here, as at this point it'll be claiming
519 		   that the disk is in rf_ds_spared!  But we know better :-) */
520 
521 		raidPtr->Disks[col].status = rf_ds_optimal;
522 		raidPtr->status = rf_rs_optimal;
523 		RF_UNLOCK_MUTEX(raidPtr->mutex);
524 
525 		/* fix up the component label */
526 		/* Don't actually need the read here.. */
527 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
528 					 raidPtr->raid_cinfo[col].ci_vp,
529 					 &c_label);
530 
531 		RF_LOCK_MUTEX(raidPtr->mutex);
532 		raid_init_component_label(raidPtr, &c_label);
533 
534 		c_label.row = 0;
535 		c_label.column = col;
536 
537 		/* We've just done a rebuild based on all the other
538 		   disks, so at this point the parity is known to be
539 		   clean, even if it wasn't before. */
540 
541 		/* XXX doesn't hold for RAID 6!!*/
542 
543 		raidPtr->parity_good = RF_RAID_CLEAN;
544 		RF_UNLOCK_MUTEX(raidPtr->mutex);
545 
546 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
547 					  raidPtr->raid_cinfo[col].ci_vp,
548 					  &c_label);
549 
550 		rf_update_component_labels(raidPtr,
551 					   RF_NORMAL_COMPONENT_UPDATE);
552 
553 	}
554 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
555 	return (rc);
556 }
557 
558 
559 int
560 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
561 {
562 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
563 	RF_RowCol_t col = reconDesc->col;
564 	RF_RowCol_t scol = reconDesc->scol;
565 	RF_ReconMap_t *mapPtr;
566 	RF_ReconCtrl_t *tmp_reconctrl;
567 	RF_ReconEvent_t *event;
568 	struct timeval etime, elpsd;
569 	unsigned long xor_s, xor_resid_us;
570 	int     i, ds;
571 
572 	switch (reconDesc->state) {
573 
574 
575 	case 0:
576 
577 		raidPtr->accumXorTimeUs = 0;
578 
579 		/* create one trace record per physical disk */
580 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581 
582 		/* quiesce the array prior to starting recon.  this is needed
583 		 * to assure no nasty interactions with pending user writes.
584 		 * We need to do this before we change the disk or row status. */
585 		reconDesc->state = 1;
586 
587 		Dprintf("RECON: begin request suspend\n");
588 		rf_SuspendNewRequestsAndWait(raidPtr);
589 		Dprintf("RECON: end request suspend\n");
590 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
591 						 * user accs */
592 
593 		/* fall through to state 1 */
594 
595 	case 1:
596 
597 		/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
598 		tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
599 
600 		RF_LOCK_MUTEX(raidPtr->mutex);
601 
602 		/* create the reconstruction control pointer and install it in
603 		 * the right slot */
604 		raidPtr->reconControl = tmp_reconctrl;
605 		mapPtr = raidPtr->reconControl->reconMap;
606 		raidPtr->status = rf_rs_reconstructing;
607 		raidPtr->Disks[col].status = rf_ds_reconstructing;
608 		raidPtr->Disks[col].spareCol = scol;
609 
610 		RF_UNLOCK_MUTEX(raidPtr->mutex);
611 
612 		RF_GETTIME(raidPtr->reconControl->starttime);
613 
614 		/* now start up the actual reconstruction: issue a read for
615 		 * each surviving disk */
616 
617 		reconDesc->numDisksDone = 0;
618 		for (i = 0; i < raidPtr->numCol; i++) {
619 			if (i != col) {
620 				/* find and issue the next I/O on the
621 				 * indicated disk */
622 				if (IssueNextReadRequest(raidPtr, i)) {
623 					Dprintf1("RECON: done issuing for c%d\n", i);
624 					reconDesc->numDisksDone++;
625 				}
626 			}
627 		}
628 
629 	case 2:
630 		Dprintf("RECON: resume requests\n");
631 		rf_ResumeNewRequests(raidPtr);
632 
633 
634 		reconDesc->state = 3;
635 
636 	case 3:
637 
638 		/* process reconstruction events until all disks report that
639 		 * they've completed all work */
640 		mapPtr = raidPtr->reconControl->reconMap;
641 
642 
643 
644 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
645 
646 			event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
647 			RF_ASSERT(event);
648 
649 			if (ProcessReconEvent(raidPtr, event))
650 				reconDesc->numDisksDone++;
651 			raidPtr->reconControl->numRUsTotal =
652 				mapPtr->totalRUs;
653 			raidPtr->reconControl->numRUsComplete =
654 				mapPtr->totalRUs -
655 				rf_UnitsLeftToReconstruct(mapPtr);
656 #if RF_DEBUG_RECON
657 			raidPtr->reconControl->percentComplete =
658 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
659 			if (rf_prReconSched) {
660 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
661 			}
662 #endif
663 		}
664 
665 
666 
667 		reconDesc->state = 4;
668 
669 
670 	case 4:
671 		mapPtr = raidPtr->reconControl->reconMap;
672 		if (rf_reconDebug) {
673 			printf("RECON: all reads completed\n");
674 		}
675 		/* at this point all the reads have completed.  We now wait
676 		 * for any pending writes to complete, and then we're done */
677 
678 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
679 
680 			event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
681 			RF_ASSERT(event);
682 
683 			(void) ProcessReconEvent(raidPtr, event);	/* ignore return code */
684 #if RF_DEBUG_RECON
685 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
686 			if (rf_prReconSched) {
687 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
688 			}
689 #endif
690 		}
691 		reconDesc->state = 5;
692 
693 	case 5:
694 		/* Success:  mark the dead disk as reconstructed.  We quiesce
695 		 * the array here to assure no nasty interactions with pending
696 		 * user accesses when we free up the psstatus structure as
697 		 * part of FreeReconControl() */
698 
699 		reconDesc->state = 6;
700 
701 		rf_SuspendNewRequestsAndWait(raidPtr);
702 		rf_StopUserStats(raidPtr);
703 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
704 						 * accs accumulated during
705 						 * recon */
706 
707 		/* fall through to state 6 */
708 	case 6:
709 
710 
711 
712 		RF_LOCK_MUTEX(raidPtr->mutex);
713 		raidPtr->numFailures--;
714 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
715 		raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
716 		raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
717 		RF_UNLOCK_MUTEX(raidPtr->mutex);
718 		RF_GETTIME(etime);
719 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
720 
721 		/* XXX -- why is state 7 different from state 6 if there is no
722 		 * return() here? -- XXX Note that I set elpsd above & use it
723 		 * below, so if you put a return here you'll have to fix this.
724 		 * (also, FreeReconControl is called below) */
725 
726 	case 7:
727 
728 		rf_ResumeNewRequests(raidPtr);
729 
730 		printf("raid%d: Reconstruction of disk at col %d completed\n",
731 		       raidPtr->raidid, col);
732 		xor_s = raidPtr->accumXorTimeUs / 1000000;
733 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
734 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
735 		       raidPtr->raidid,
736 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
737 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
738 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
739 		       raidPtr->raidid,
740 		       (int) raidPtr->reconControl->starttime.tv_sec,
741 		       (int) raidPtr->reconControl->starttime.tv_usec,
742 		       (int) etime.tv_sec, (int) etime.tv_usec);
743 
744 #if RF_RECON_STATS > 0
745 		printf("raid%d: Total head-sep stall count was %d\n",
746 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
747 #endif				/* RF_RECON_STATS > 0 */
748 		rf_FreeReconControl(raidPtr);
749 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
750 		FreeReconDesc(reconDesc);
751 
752 	}
753 
754 	return (0);
755 }
756 /*****************************************************************************
757  * do the right thing upon each reconstruction event.
758  * returns nonzero if and only if there is nothing left unread on the
759  * indicated disk
760  *****************************************************************************/
761 static int
762 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
763 {
764 	int     retcode = 0, submitblocked;
765 	RF_ReconBuffer_t *rbuf;
766 	RF_SectorCount_t sectorsPerRU;
767 
768 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
769 	switch (event->type) {
770 
771 		/* a read I/O has completed */
772 	case RF_REVENT_READDONE:
773 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
774 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
775 		    event->col, rbuf->parityStripeID);
776 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
777 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
778 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
779 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
780 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
781 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
782 		if (!submitblocked)
783 			retcode = IssueNextReadRequest(raidPtr, event->col);
784 		break;
785 
786 		/* a write I/O has completed */
787 	case RF_REVENT_WRITEDONE:
788 #if RF_DEBUG_RECON
789 		if (rf_floatingRbufDebug) {
790 			rf_CheckFloatingRbufCount(raidPtr, 1);
791 		}
792 #endif
793 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
794 		rbuf = (RF_ReconBuffer_t *) event->arg;
795 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
796 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
797 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
798 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
799 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
800 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
801 
802 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
803 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
804 			raidPtr->numFullReconBuffers--;
805 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
806 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
807 		} else
808 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
809 				rf_FreeReconBuffer(rbuf);
810 			else
811 				RF_ASSERT(0);
812 		break;
813 
814 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
815 					 * cleared */
816 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
817 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
818 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
819 						 * BUFCLEAR event if we
820 						 * couldn't submit */
821 		retcode = IssueNextReadRequest(raidPtr, event->col);
822 		break;
823 
824 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
825 					 * blockage has been cleared */
826 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
827 		retcode = TryToRead(raidPtr, event->col);
828 		break;
829 
830 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
831 					 * reconstruction blockage has been
832 					 * cleared */
833 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
834 		retcode = TryToRead(raidPtr, event->col);
835 		break;
836 
837 		/* a buffer has become ready to write */
838 	case RF_REVENT_BUFREADY:
839 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
840 		retcode = IssueNextWriteRequest(raidPtr);
841 #if RF_DEBUG_RECON
842 		if (rf_floatingRbufDebug) {
843 			rf_CheckFloatingRbufCount(raidPtr, 1);
844 		}
845 #endif
846 		break;
847 
848 		/* we need to skip the current RU entirely because it got
849 		 * recon'd while we were waiting for something else to happen */
850 	case RF_REVENT_SKIP:
851 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
852 		retcode = IssueNextReadRequest(raidPtr, event->col);
853 		break;
854 
855 		/* a forced-reconstruction read access has completed.  Just
856 		 * submit the buffer */
857 	case RF_REVENT_FORCEDREADDONE:
858 		rbuf = (RF_ReconBuffer_t *) event->arg;
859 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
860 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
861 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
862 		RF_ASSERT(!submitblocked);
863 		break;
864 
865 	default:
866 		RF_PANIC();
867 	}
868 	rf_FreeReconEventDesc(event);
869 	return (retcode);
870 }
871 /*****************************************************************************
872  *
873  * find the next thing that's needed on the indicated disk, and issue
874  * a read request for it.  We assume that the reconstruction buffer
875  * associated with this process is free to receive the data.  If
876  * reconstruction is blocked on the indicated RU, we issue a
877  * blockage-release request instead of a physical disk read request.
878  * If the current disk gets too far ahead of the others, we issue a
879  * head-separation wait request and return.
880  *
881  * ctrl->{ru_count, curPSID, diskOffset} and
882  * rbuf->failedDiskSectorOffset are maintained to point to the unit
883  * we're currently accessing.  Note that this deviates from the
884  * standard C idiom of having counters point to the next thing to be
885  * accessed.  This allows us to easily retry when we're blocked by
886  * head separation or reconstruction-blockage events.
887  *
888  * returns nonzero if and only if there is nothing left unread on the
889  * indicated disk
890  *
891  *****************************************************************************/
892 static int
893 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
894 {
895 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
896 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
897 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
898 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
899 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
900 	int     do_new_check = 0, retcode = 0, status;
901 
902 	/* if we are currently the slowest disk, mark that we have to do a new
903 	 * check */
904 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
905 		do_new_check = 1;
906 
907 	while (1) {
908 
909 		ctrl->ru_count++;
910 		if (ctrl->ru_count < RUsPerPU) {
911 			ctrl->diskOffset += sectorsPerRU;
912 			rbuf->failedDiskSectorOffset += sectorsPerRU;
913 		} else {
914 			ctrl->curPSID++;
915 			ctrl->ru_count = 0;
916 			/* code left over from when head-sep was based on
917 			 * parity stripe id */
918 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
919 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
920 				return (1);	/* finito! */
921 			}
922 			/* find the disk offsets of the start of the parity
923 			 * stripe on both the current disk and the failed
924 			 * disk. skip this entire parity stripe if either disk
925 			 * does not appear in the indicated PS */
926 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
927 			    &rbuf->spCol, &rbuf->spOffset);
928 			if (status) {
929 				ctrl->ru_count = RUsPerPU - 1;
930 				continue;
931 			}
932 		}
933 		rbuf->which_ru = ctrl->ru_count;
934 
935 		/* skip this RU if it's already been reconstructed */
936 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
937 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
938 			continue;
939 		}
940 		break;
941 	}
942 	ctrl->headSepCounter++;
943 	if (do_new_check)
944 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
945 
946 
947 	/* at this point, we have definitely decided what to do, and we have
948 	 * only to see if we can actually do it now */
949 	rbuf->parityStripeID = ctrl->curPSID;
950 	rbuf->which_ru = ctrl->ru_count;
951 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
952 	    sizeof(raidPtr->recon_tracerecs[col]));
953 	raidPtr->recon_tracerecs[col].reconacc = 1;
954 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
955 	retcode = TryToRead(raidPtr, col);
956 	return (retcode);
957 }
958 
959 /*
960  * tries to issue the next read on the indicated disk.  We may be
961  * blocked by (a) the heads being too far apart, or (b) recon on the
962  * indicated RU being blocked due to a write by a user thread.  In
963  * this case, we issue a head-sep or blockage wait request, which will
964  * cause this same routine to be invoked again later when the blockage
965  * has cleared.
966  */
967 
968 static int
969 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
970 {
971 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
972 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
973 	RF_StripeNum_t psid = ctrl->curPSID;
974 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
975 	RF_DiskQueueData_t *req;
976 	int     status, created = 0;
977 	RF_ReconParityStripeStatus_t *pssPtr;
978 
979 	/* if the current disk is too far ahead of the others, issue a
980 	 * head-separation wait and return */
981 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
982 		return (0);
983 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
984 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
985 
986 	/* if recon is blocked on the indicated parity stripe, issue a
987 	 * block-wait request and return. this also must mark the indicated RU
988 	 * in the stripe as under reconstruction if not blocked. */
989 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
990 	if (status == RF_PSS_RECON_BLOCKED) {
991 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
992 		goto out;
993 	} else
994 		if (status == RF_PSS_FORCED_ON_WRITE) {
995 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
996 			goto out;
997 		}
998 	/* make one last check to be sure that the indicated RU didn't get
999 	 * reconstructed while we were waiting for something else to happen.
1000 	 * This is unfortunate in that it causes us to make this check twice
1001 	 * in the normal case.  Might want to make some attempt to re-work
1002 	 * this so that we only do this check if we've definitely blocked on
1003 	 * one of the above checks.  When this condition is detected, we may
1004 	 * have just created a bogus status entry, which we need to delete. */
1005 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1006 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1007 		if (created)
1008 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1009 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1010 		goto out;
1011 	}
1012 	/* found something to read.  issue the I/O */
1013 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1014 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1015 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1016 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1017 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1018 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1019 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1020 
1021 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1022 	 * should be in kernel space */
1023 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1024 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1025 
1026 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1027 
1028 	ctrl->rbuf->arg = (void *) req;
1029 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1030 	pssPtr->issued[col] = 1;
1031 
1032 out:
1033 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1034 	return (0);
1035 }
1036 
1037 
1038 /*
1039  * given a parity stripe ID, we want to find out whether both the
1040  * current disk and the failed disk exist in that parity stripe.  If
1041  * not, we want to skip this whole PS.  If so, we want to find the
1042  * disk offset of the start of the PS on both the current disk and the
1043  * failed disk.
1044  *
1045  * this works by getting a list of disks comprising the indicated
1046  * parity stripe, and searching the list for the current and failed
1047  * disks.  Once we've decided they both exist in the parity stripe, we
1048  * need to decide whether each is data or parity, so that we'll know
1049  * which mapping function to call to get the corresponding disk
1050  * offsets.
1051  *
1052  * this is kind of unpleasant, but doing it this way allows the
1053  * reconstruction code to use parity stripe IDs rather than physical
1054  * disks address to march through the failed disk, which greatly
1055  * simplifies a lot of code, as well as eliminating the need for a
1056  * reverse-mapping function.  I also think it will execute faster,
1057  * since the calls to the mapping module are kept to a minimum.
1058  *
1059  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1060  * THE STRIPE IN THE CORRECT ORDER
1061  *
1062  * raidPtr          - raid descriptor
1063  * psid             - parity stripe identifier
1064  * col              - column of disk to find the offsets for
1065  * spCol            - out: col of spare unit for failed unit
1066  * spOffset         - out: offset into disk containing spare unit
1067  *
1068  */
1069 
1070 
1071 static int
1072 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1073 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1074 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1075 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1076 {
1077 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1078 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1079 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1080 	RF_RowCol_t *diskids;
1081 	u_int   i, j, k, i_offset, j_offset;
1082 	RF_RowCol_t pcol;
1083 	int     testcol;
1084 	RF_SectorNum_t poffset;
1085 	char    i_is_parity = 0, j_is_parity = 0;
1086 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1087 
1088 	/* get a listing of the disks comprising that stripe */
1089 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1090 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1091 	RF_ASSERT(diskids);
1092 
1093 	/* reject this entire parity stripe if it does not contain the
1094 	 * indicated disk or it does not contain the failed disk */
1095 
1096 	for (i = 0; i < stripeWidth; i++) {
1097 		if (col == diskids[i])
1098 			break;
1099 	}
1100 	if (i == stripeWidth)
1101 		goto skipit;
1102 	for (j = 0; j < stripeWidth; j++) {
1103 		if (fcol == diskids[j])
1104 			break;
1105 	}
1106 	if (j == stripeWidth) {
1107 		goto skipit;
1108 	}
1109 	/* find out which disk the parity is on */
1110 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1111 
1112 	/* find out if either the current RU or the failed RU is parity */
1113 	/* also, if the parity occurs in this stripe prior to the data and/or
1114 	 * failed col, we need to decrement i and/or j */
1115 	for (k = 0; k < stripeWidth; k++)
1116 		if (diskids[k] == pcol)
1117 			break;
1118 	RF_ASSERT(k < stripeWidth);
1119 	i_offset = i;
1120 	j_offset = j;
1121 	if (k < i)
1122 		i_offset--;
1123 	else
1124 		if (k == i) {
1125 			i_is_parity = 1;
1126 			i_offset = 0;
1127 		}		/* set offsets to zero to disable multiply
1128 				 * below */
1129 	if (k < j)
1130 		j_offset--;
1131 	else
1132 		if (k == j) {
1133 			j_is_parity = 1;
1134 			j_offset = 0;
1135 		}
1136 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1137 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1138 	 * tells us how far into the stripe the [current,failed] disk is. */
1139 
1140 	/* call the mapping routine to get the offset into the current disk,
1141 	 * repeat for failed disk. */
1142 	if (i_is_parity)
1143 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1144 	else
1145 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1146 
1147 	RF_ASSERT(col == testcol);
1148 
1149 	if (j_is_parity)
1150 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1151 	else
1152 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1153 	RF_ASSERT(fcol == testcol);
1154 
1155 	/* now locate the spare unit for the failed unit */
1156 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1157 		if (j_is_parity)
1158 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1159 		else
1160 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1161 	} else {
1162 		*spCol = raidPtr->reconControl->spareCol;
1163 		*spOffset = *outFailedDiskSectorOffset;
1164 	}
1165 
1166 	return (0);
1167 
1168 skipit:
1169 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1170 	    psid, col);
1171 	return (1);
1172 }
1173 /* this is called when a buffer has become ready to write to the replacement disk */
1174 static int
1175 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1176 {
1177 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1178 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1179 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1180 	RF_ReconBuffer_t *rbuf;
1181 	RF_DiskQueueData_t *req;
1182 
1183 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1184 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1185 				 * have gotten the event that sent us here */
1186 	RF_ASSERT(rbuf->pssPtr);
1187 
1188 	rbuf->pssPtr->writeRbuf = rbuf;
1189 	rbuf->pssPtr = NULL;
1190 
1191 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1192 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1193 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1194 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1195 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1196 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1197 
1198 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1199 	 * kernel space */
1200 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1201 	    sectorsPerRU, rbuf->buffer,
1202 	    rbuf->parityStripeID, rbuf->which_ru,
1203 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1204 	    &raidPtr->recon_tracerecs[fcol],
1205 	    (void *) raidPtr, 0, NULL);
1206 
1207 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1208 
1209 	rbuf->arg = (void *) req;
1210 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1211 
1212 	return (0);
1213 }
1214 
1215 /*
1216  * this gets called upon the completion of a reconstruction read
1217  * operation the arg is a pointer to the per-disk reconstruction
1218  * control structure for the process that just finished a read.
1219  *
1220  * called at interrupt context in the kernel, so don't do anything
1221  * illegal here.
1222  */
1223 static int
1224 ReconReadDoneProc(void *arg, int status)
1225 {
1226 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1227 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1228 
1229 	if (status) {
1230 		/*
1231 	         * XXX
1232 	         */
1233 		printf("Recon read failed!\n");
1234 		RF_PANIC();
1235 	}
1236 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1237 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1238 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1239 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1240 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1241 
1242 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1243 	return (0);
1244 }
1245 /* this gets called upon the completion of a reconstruction write operation.
1246  * the arg is a pointer to the rbuf that was just written
1247  *
1248  * called at interrupt context in the kernel, so don't do anything illegal here.
1249  */
1250 static int
1251 ReconWriteDoneProc(void *arg, int status)
1252 {
1253 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1254 
1255 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1256 	if (status) {
1257 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1258 							 * write failed!\n"); */
1259 		RF_PANIC();
1260 	}
1261 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1262 	return (0);
1263 }
1264 
1265 
1266 /*
1267  * computes a new minimum head sep, and wakes up anyone who needs to
1268  * be woken as a result
1269  */
1270 static void
1271 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1272 {
1273 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1274 	RF_HeadSepLimit_t new_min;
1275 	RF_RowCol_t i;
1276 	RF_CallbackDesc_t *p;
1277 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1278 								 * of a minimum */
1279 
1280 
1281 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1282 
1283 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1284 	for (i = 0; i < raidPtr->numCol; i++)
1285 		if (i != reconCtrlPtr->fcol) {
1286 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1287 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1288 		}
1289 	/* set the new minimum and wake up anyone who can now run again */
1290 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1291 		reconCtrlPtr->minHeadSepCounter = new_min;
1292 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1293 		while (reconCtrlPtr->headSepCBList) {
1294 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1295 				break;
1296 			p = reconCtrlPtr->headSepCBList;
1297 			reconCtrlPtr->headSepCBList = p->next;
1298 			p->next = NULL;
1299 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1300 			rf_FreeCallbackDesc(p);
1301 		}
1302 
1303 	}
1304 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1305 }
1306 
1307 /*
1308  * checks to see that the maximum head separation will not be violated
1309  * if we initiate a reconstruction I/O on the indicated disk.
1310  * Limiting the maximum head separation between two disks eliminates
1311  * the nasty buffer-stall conditions that occur when one disk races
1312  * ahead of the others and consumes all of the floating recon buffers.
1313  * This code is complex and unpleasant but it's necessary to avoid
1314  * some very nasty, albeit fairly rare, reconstruction behavior.
1315  *
1316  * returns non-zero if and only if we have to stop working on the
1317  * indicated disk due to a head-separation delay.
1318  */
1319 static int
1320 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1321 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1322 		    RF_ReconUnitNum_t which_ru)
1323 {
1324 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1325 	RF_CallbackDesc_t *cb, *p, *pt;
1326 	int     retval = 0;
1327 
1328 	/* if we're too far ahead of the slowest disk, stop working on this
1329 	 * disk until the slower ones catch up.  We do this by scheduling a
1330 	 * wakeup callback for the time when the slowest disk has caught up.
1331 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1332 	 * must have fallen to at most 80% of the max allowable head
1333 	 * separation before we'll wake up.
1334 	 *
1335 	 */
1336 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1337 	if ((raidPtr->headSepLimit >= 0) &&
1338 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1339 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1340 			 raidPtr->raidid, col, ctrl->headSepCounter,
1341 			 reconCtrlPtr->minHeadSepCounter,
1342 			 raidPtr->headSepLimit);
1343 		cb = rf_AllocCallbackDesc();
1344 		/* the minHeadSepCounter value we have to get to before we'll
1345 		 * wake up.  build in 20% hysteresis. */
1346 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1347 		cb->col = col;
1348 		cb->next = NULL;
1349 
1350 		/* insert this callback descriptor into the sorted list of
1351 		 * pending head-sep callbacks */
1352 		p = reconCtrlPtr->headSepCBList;
1353 		if (!p)
1354 			reconCtrlPtr->headSepCBList = cb;
1355 		else
1356 			if (cb->callbackArg.v < p->callbackArg.v) {
1357 				cb->next = reconCtrlPtr->headSepCBList;
1358 				reconCtrlPtr->headSepCBList = cb;
1359 			} else {
1360 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1361 				cb->next = p;
1362 				pt->next = cb;
1363 			}
1364 		retval = 1;
1365 #if RF_RECON_STATS > 0
1366 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1367 #endif				/* RF_RECON_STATS > 0 */
1368 	}
1369 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1370 
1371 	return (retval);
1372 }
1373 /*
1374  * checks to see if reconstruction has been either forced or blocked
1375  * by a user operation.  if forced, we skip this RU entirely.  else if
1376  * blocked, put ourselves on the wait list.  else return 0.
1377  *
1378  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1379  */
1380 static int
1381 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1382 				   RF_ReconParityStripeStatus_t *pssPtr,
1383 				   RF_PerDiskReconCtrl_t *ctrl,
1384 				   RF_RowCol_t col, RF_StripeNum_t psid,
1385 				   RF_ReconUnitNum_t which_ru)
1386 {
1387 	RF_CallbackDesc_t *cb;
1388 	int     retcode = 0;
1389 
1390 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1391 		retcode = RF_PSS_FORCED_ON_WRITE;
1392 	else
1393 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1394 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1395 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1396 							 * the blockage-wait
1397 							 * list */
1398 			cb->col = col;
1399 			cb->next = pssPtr->blockWaitList;
1400 			pssPtr->blockWaitList = cb;
1401 			retcode = RF_PSS_RECON_BLOCKED;
1402 		}
1403 	if (!retcode)
1404 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1405 							 * reconstruction */
1406 
1407 	return (retcode);
1408 }
1409 /*
1410  * if reconstruction is currently ongoing for the indicated stripeID,
1411  * reconstruction is forced to completion and we return non-zero to
1412  * indicate that the caller must wait.  If not, then reconstruction is
1413  * blocked on the indicated stripe and the routine returns zero.  If
1414  * and only if we return non-zero, we'll cause the cbFunc to get
1415  * invoked with the cbArg when the reconstruction has completed.
1416  */
1417 int
1418 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1419 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1420 {
1421 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1422 							 * forcing recon on */
1423 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1424 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1425 						 * stripe status structure */
1426 	RF_StripeNum_t psid;	/* parity stripe id */
1427 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1428 						 * offset */
1429 	RF_RowCol_t *diskids;
1430 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1431 	RF_RowCol_t fcol, diskno, i;
1432 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1433 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1434 	RF_CallbackDesc_t *cb;
1435 	int     created = 0, nPromoted;
1436 
1437 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1438 
1439 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1440 
1441 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1442 
1443 	/* if recon is not ongoing on this PS, just return */
1444 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1445 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1446 		return (0);
1447 	}
1448 	/* otherwise, we have to wait for reconstruction to complete on this
1449 	 * RU. */
1450 	/* In order to avoid waiting for a potentially large number of
1451 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1452 	 * not low-priority) reconstruction on this RU. */
1453 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1454 		DDprintf1("Forcing recon on psid %ld\n", psid);
1455 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1456 								 * forced recon */
1457 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1458 							 * that we just set */
1459 		fcol = raidPtr->reconControl->fcol;
1460 
1461 		/* get a listing of the disks comprising the indicated stripe */
1462 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1463 
1464 		/* For previously issued reads, elevate them to normal
1465 		 * priority.  If the I/O has already completed, it won't be
1466 		 * found in the queue, and hence this will be a no-op. For
1467 		 * unissued reads, allocate buffers and issue new reads.  The
1468 		 * fact that we've set the FORCED bit means that the regular
1469 		 * recon procs will not re-issue these reqs */
1470 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1471 			if ((diskno = diskids[i]) != fcol) {
1472 				if (pssPtr->issued[diskno]) {
1473 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1474 					if (rf_reconDebug && nPromoted)
1475 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1476 				} else {
1477 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1478 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1479 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1480 													 * location */
1481 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1482 					new_rbuf->which_ru = which_ru;
1483 					new_rbuf->failedDiskSectorOffset = fd_offset;
1484 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1485 
1486 					/* use NULL b_proc b/c all addrs
1487 					 * should be in kernel space */
1488 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1489 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1490 					    NULL, (void *) raidPtr, 0, NULL);
1491 
1492 					RF_ASSERT(req);	/* XXX -- fix this --
1493 							 * XXX */
1494 
1495 					new_rbuf->arg = req;
1496 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1497 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1498 				}
1499 			}
1500 		/* if the write is sitting in the disk queue, elevate its
1501 		 * priority */
1502 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1503 			printf("raid%d: promoted write to col %d\n",
1504 			       raidPtr->raidid, fcol);
1505 	}
1506 	/* install a callback descriptor to be invoked when recon completes on
1507 	 * this parity stripe. */
1508 	cb = rf_AllocCallbackDesc();
1509 	/* XXX the following is bogus.. These functions don't really match!!
1510 	 * GO */
1511 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1512 	cb->callbackArg.p = (void *) cbArg;
1513 	cb->next = pssPtr->procWaitList;
1514 	pssPtr->procWaitList = cb;
1515 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1516 		  raidPtr->raidid, psid);
1517 
1518 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1519 	return (1);
1520 }
1521 /* called upon the completion of a forced reconstruction read.
1522  * all we do is schedule the FORCEDREADONE event.
1523  * called at interrupt context in the kernel, so don't do anything illegal here.
1524  */
1525 static void
1526 ForceReconReadDoneProc(void *arg, int status)
1527 {
1528 	RF_ReconBuffer_t *rbuf = arg;
1529 
1530 	if (status) {
1531 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1532 							 *  recon read
1533 							 * failed!\n"); */
1534 		RF_PANIC();
1535 	}
1536 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1537 }
1538 /* releases a block on the reconstruction of the indicated stripe */
1539 int
1540 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1541 {
1542 	RF_StripeNum_t stripeID = asmap->stripeID;
1543 	RF_ReconParityStripeStatus_t *pssPtr;
1544 	RF_ReconUnitNum_t which_ru;
1545 	RF_StripeNum_t psid;
1546 	int     created = 0;
1547 	RF_CallbackDesc_t *cb;
1548 
1549 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1550 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1551 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1552 
1553 	/* When recon is forced, the pss desc can get deleted before we get
1554 	 * back to unblock recon. But, this can _only_ happen when recon is
1555 	 * forced. It would be good to put some kind of sanity check here, but
1556 	 * how to decide if recon was just forced or not? */
1557 	if (!pssPtr) {
1558 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1559 		 * RU %d\n",psid,which_ru); */
1560 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1561 		if (rf_reconDebug || rf_pssDebug)
1562 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1563 #endif
1564 		goto out;
1565 	}
1566 	pssPtr->blockCount--;
1567 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1568 		 raidPtr->raidid, psid, pssPtr->blockCount);
1569 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1570 
1571 		/* unblock recon before calling CauseReconEvent in case
1572 		 * CauseReconEvent causes us to try to issue a new read before
1573 		 * returning here. */
1574 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1575 
1576 
1577 		while (pssPtr->blockWaitList) {
1578 			/* spin through the block-wait list and
1579 			   release all the waiters */
1580 			cb = pssPtr->blockWaitList;
1581 			pssPtr->blockWaitList = cb->next;
1582 			cb->next = NULL;
1583 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1584 			rf_FreeCallbackDesc(cb);
1585 		}
1586 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1587 			/* if no recon was requested while recon was blocked */
1588 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1589 		}
1590 	}
1591 out:
1592 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1593 	return (0);
1594 }
1595