1 /* $NetBSD: rf_reconstruct.c,v 1.82 2005/02/05 23:32:43 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.82 2005/02/05 23:32:43 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 #if (RF_RECON_STATS > 0) || defined(KERNEL) 194 printf("\n"); 195 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 197 } 198 199 200 /***************************************************************************** 201 * 202 * primary routine to reconstruct a failed disk. This should be called from 203 * within its own thread. It won't return until reconstruction completes, 204 * fails, or is aborted. 205 *****************************************************************************/ 206 int 207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 208 { 209 const RF_LayoutSW_t *lp; 210 int rc; 211 212 lp = raidPtr->Layout.map; 213 if (lp->SubmitReconBuffer) { 214 /* 215 * The current infrastructure only supports reconstructing one 216 * disk at a time for each array. 217 */ 218 RF_LOCK_MUTEX(raidPtr->mutex); 219 while (raidPtr->reconInProgress) { 220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 221 } 222 raidPtr->reconInProgress++; 223 RF_UNLOCK_MUTEX(raidPtr->mutex); 224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 225 RF_LOCK_MUTEX(raidPtr->mutex); 226 raidPtr->reconInProgress--; 227 RF_UNLOCK_MUTEX(raidPtr->mutex); 228 } else { 229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 230 lp->parityConfig); 231 rc = EIO; 232 } 233 RF_SIGNAL_COND(raidPtr->waitForReconCond); 234 return (rc); 235 } 236 237 int 238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 239 { 240 RF_ComponentLabel_t c_label; 241 RF_RaidDisk_t *spareDiskPtr = NULL; 242 RF_RaidReconDesc_t *reconDesc; 243 RF_RowCol_t scol; 244 int numDisksDone = 0, rc; 245 246 /* first look for a spare drive onto which to reconstruct the data */ 247 /* spare disk descriptors are stored in row 0. This may have to 248 * change eventually */ 249 250 RF_LOCK_MUTEX(raidPtr->mutex); 251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 254 if (raidPtr->status != rf_rs_degraded) { 255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 256 RF_UNLOCK_MUTEX(raidPtr->mutex); 257 return (EINVAL); 258 } 259 scol = (-1); 260 } else { 261 #endif 262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 263 if (raidPtr->Disks[scol].status == rf_ds_spare) { 264 spareDiskPtr = &raidPtr->Disks[scol]; 265 spareDiskPtr->status = rf_ds_used_spare; 266 break; 267 } 268 } 269 if (!spareDiskPtr) { 270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 271 RF_UNLOCK_MUTEX(raidPtr->mutex); 272 return (ENOSPC); 273 } 274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 276 } 277 #endif 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 281 raidPtr->reconDesc = (void *) reconDesc; 282 #if RF_RECON_STATS > 0 283 reconDesc->hsStallCount = 0; 284 reconDesc->numReconExecDelays = 0; 285 reconDesc->numReconEventWaits = 0; 286 #endif /* RF_RECON_STATS > 0 */ 287 reconDesc->reconExecTimerRunning = 0; 288 reconDesc->reconExecTicks = 0; 289 reconDesc->maxReconExecTicks = 0; 290 rc = rf_ContinueReconstructFailedDisk(reconDesc); 291 292 if (!rc) { 293 /* fix up the component label */ 294 /* Don't actually need the read here.. */ 295 raidread_component_label( 296 raidPtr->raid_cinfo[scol].ci_dev, 297 raidPtr->raid_cinfo[scol].ci_vp, 298 &c_label); 299 300 raid_init_component_label( raidPtr, &c_label); 301 c_label.row = 0; 302 c_label.column = col; 303 c_label.clean = RF_RAID_DIRTY; 304 c_label.status = rf_ds_optimal; 305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 306 307 /* We've just done a rebuild based on all the other 308 disks, so at this point the parity is known to be 309 clean, even if it wasn't before. */ 310 311 /* XXX doesn't hold for RAID 6!!*/ 312 313 RF_LOCK_MUTEX(raidPtr->mutex); 314 raidPtr->parity_good = RF_RAID_CLEAN; 315 RF_UNLOCK_MUTEX(raidPtr->mutex); 316 317 /* XXXX MORE NEEDED HERE */ 318 319 raidwrite_component_label( 320 raidPtr->raid_cinfo[scol].ci_dev, 321 raidPtr->raid_cinfo[scol].ci_vp, 322 &c_label); 323 324 325 rf_update_component_labels(raidPtr, 326 RF_NORMAL_COMPONENT_UPDATE); 327 328 } else { 329 /* Reconstruct failed. */ 330 331 RF_LOCK_MUTEX(raidPtr->mutex); 332 /* Failed disk goes back to "failed" status */ 333 raidPtr->Disks[col].status = rf_ds_failed; 334 335 /* Spare disk goes back to "spare" status. */ 336 spareDiskPtr->status = rf_ds_spare; 337 RF_UNLOCK_MUTEX(raidPtr->mutex); 338 } 339 return (rc); 340 } 341 342 /* 343 344 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 345 and you don't get a spare until the next Monday. With this function 346 (and hot-swappable drives) you can now put your new disk containing 347 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 348 rebuild the data "on the spot". 349 350 */ 351 352 int 353 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 354 { 355 RF_RaidDisk_t *spareDiskPtr = NULL; 356 RF_RaidReconDesc_t *reconDesc; 357 const RF_LayoutSW_t *lp; 358 RF_ComponentLabel_t c_label; 359 int numDisksDone = 0, rc; 360 struct partinfo dpart; 361 struct vnode *vp; 362 struct vattr va; 363 struct proc *proc; 364 int retcode; 365 int ac; 366 367 lp = raidPtr->Layout.map; 368 if (!lp->SubmitReconBuffer) { 369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 370 lp->parityConfig); 371 /* wakeup anyone who might be waiting to do a reconstruct */ 372 RF_SIGNAL_COND(raidPtr->waitForReconCond); 373 return(EIO); 374 } 375 376 /* 377 * The current infrastructure only supports reconstructing one 378 * disk at a time for each array. 379 */ 380 RF_LOCK_MUTEX(raidPtr->mutex); 381 382 if (raidPtr->Disks[col].status != rf_ds_failed) { 383 /* "It's gone..." */ 384 raidPtr->numFailures++; 385 raidPtr->Disks[col].status = rf_ds_failed; 386 raidPtr->status = rf_rs_degraded; 387 RF_UNLOCK_MUTEX(raidPtr->mutex); 388 rf_update_component_labels(raidPtr, 389 RF_NORMAL_COMPONENT_UPDATE); 390 RF_LOCK_MUTEX(raidPtr->mutex); 391 } 392 393 while (raidPtr->reconInProgress) { 394 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 395 } 396 397 raidPtr->reconInProgress++; 398 399 /* first look for a spare drive onto which to reconstruct the 400 data. spare disk descriptors are stored in row 0. This 401 may have to change eventually */ 402 403 /* Actually, we don't care if it's failed or not... On a RAID 404 set with correct parity, this function should be callable 405 on any component without ill affects. */ 406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 407 408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 411 412 raidPtr->reconInProgress--; 413 RF_UNLOCK_MUTEX(raidPtr->mutex); 414 RF_SIGNAL_COND(raidPtr->waitForReconCond); 415 return (EINVAL); 416 } 417 #endif 418 proc = raidPtr->engine_thread; 419 420 /* This device may have been opened successfully the 421 first time. Close it before trying to open it again.. */ 422 423 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 424 #if 0 425 printf("Closed the open device: %s\n", 426 raidPtr->Disks[col].devname); 427 #endif 428 vp = raidPtr->raid_cinfo[col].ci_vp; 429 ac = raidPtr->Disks[col].auto_configured; 430 RF_UNLOCK_MUTEX(raidPtr->mutex); 431 rf_close_component(raidPtr, vp, ac); 432 RF_LOCK_MUTEX(raidPtr->mutex); 433 raidPtr->raid_cinfo[col].ci_vp = NULL; 434 } 435 /* note that this disk was *not* auto_configured (any longer)*/ 436 raidPtr->Disks[col].auto_configured = 0; 437 438 #if 0 439 printf("About to (re-)open the device for rebuilding: %s\n", 440 raidPtr->Disks[col].devname); 441 #endif 442 RF_UNLOCK_MUTEX(raidPtr->mutex); 443 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); 444 445 if (retcode) { 446 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 447 raidPtr->Disks[col].devname, retcode); 448 449 /* the component isn't responding properly... 450 must be still dead :-( */ 451 RF_LOCK_MUTEX(raidPtr->mutex); 452 raidPtr->reconInProgress--; 453 RF_UNLOCK_MUTEX(raidPtr->mutex); 454 RF_SIGNAL_COND(raidPtr->waitForReconCond); 455 return(retcode); 456 } 457 458 /* Ok, so we can at least do a lookup... 459 How about actually getting a vp for it? */ 460 461 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { 462 RF_LOCK_MUTEX(raidPtr->mutex); 463 raidPtr->reconInProgress--; 464 RF_UNLOCK_MUTEX(raidPtr->mutex); 465 RF_SIGNAL_COND(raidPtr->waitForReconCond); 466 return(retcode); 467 } 468 469 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); 470 if (retcode) { 471 RF_LOCK_MUTEX(raidPtr->mutex); 472 raidPtr->reconInProgress--; 473 RF_UNLOCK_MUTEX(raidPtr->mutex); 474 RF_SIGNAL_COND(raidPtr->waitForReconCond); 475 return(retcode); 476 } 477 RF_LOCK_MUTEX(raidPtr->mutex); 478 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 479 480 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 481 rf_protectedSectors; 482 483 raidPtr->raid_cinfo[col].ci_vp = vp; 484 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 485 486 raidPtr->Disks[col].dev = va.va_rdev; 487 488 /* we allow the user to specify that only a fraction 489 of the disks should be used this is just for debug: 490 it speeds up * the parity scan */ 491 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 492 rf_sizePercentage / 100; 493 RF_UNLOCK_MUTEX(raidPtr->mutex); 494 495 spareDiskPtr = &raidPtr->Disks[col]; 496 spareDiskPtr->status = rf_ds_used_spare; 497 498 printf("raid%d: initiating in-place reconstruction on column %d\n", 499 raidPtr->raidid, col); 500 501 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 502 numDisksDone, col); 503 raidPtr->reconDesc = (void *) reconDesc; 504 #if RF_RECON_STATS > 0 505 reconDesc->hsStallCount = 0; 506 reconDesc->numReconExecDelays = 0; 507 reconDesc->numReconEventWaits = 0; 508 #endif /* RF_RECON_STATS > 0 */ 509 reconDesc->reconExecTimerRunning = 0; 510 reconDesc->reconExecTicks = 0; 511 reconDesc->maxReconExecTicks = 0; 512 rc = rf_ContinueReconstructFailedDisk(reconDesc); 513 514 if (!rc) { 515 RF_LOCK_MUTEX(raidPtr->mutex); 516 /* Need to set these here, as at this point it'll be claiming 517 that the disk is in rf_ds_spared! But we know better :-) */ 518 519 raidPtr->Disks[col].status = rf_ds_optimal; 520 raidPtr->status = rf_rs_optimal; 521 RF_UNLOCK_MUTEX(raidPtr->mutex); 522 523 /* fix up the component label */ 524 /* Don't actually need the read here.. */ 525 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 526 raidPtr->raid_cinfo[col].ci_vp, 527 &c_label); 528 529 RF_LOCK_MUTEX(raidPtr->mutex); 530 raid_init_component_label(raidPtr, &c_label); 531 532 c_label.row = 0; 533 c_label.column = col; 534 535 /* We've just done a rebuild based on all the other 536 disks, so at this point the parity is known to be 537 clean, even if it wasn't before. */ 538 539 /* XXX doesn't hold for RAID 6!!*/ 540 541 raidPtr->parity_good = RF_RAID_CLEAN; 542 RF_UNLOCK_MUTEX(raidPtr->mutex); 543 544 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 545 raidPtr->raid_cinfo[col].ci_vp, 546 &c_label); 547 548 rf_update_component_labels(raidPtr, 549 RF_NORMAL_COMPONENT_UPDATE); 550 } else { 551 /* Reconstruct-in-place failed. Disk goes back to 552 "failed" status, regardless of what it was before. */ 553 RF_LOCK_MUTEX(raidPtr->mutex); 554 raidPtr->Disks[col].status = rf_ds_failed; 555 RF_UNLOCK_MUTEX(raidPtr->mutex); 556 } 557 558 RF_LOCK_MUTEX(raidPtr->mutex); 559 raidPtr->reconInProgress--; 560 RF_UNLOCK_MUTEX(raidPtr->mutex); 561 562 RF_SIGNAL_COND(raidPtr->waitForReconCond); 563 return (rc); 564 } 565 566 567 int 568 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 569 { 570 RF_Raid_t *raidPtr = reconDesc->raidPtr; 571 RF_RowCol_t col = reconDesc->col; 572 RF_RowCol_t scol = reconDesc->scol; 573 RF_ReconMap_t *mapPtr; 574 RF_ReconCtrl_t *tmp_reconctrl; 575 RF_ReconEvent_t *event; 576 RF_CallbackDesc_t *p; 577 struct timeval etime, elpsd; 578 unsigned long xor_s, xor_resid_us; 579 int i, ds; 580 int status; 581 int recon_error, write_error; 582 583 raidPtr->accumXorTimeUs = 0; 584 #if RF_ACC_TRACE > 0 585 /* create one trace record per physical disk */ 586 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 587 #endif 588 589 /* quiesce the array prior to starting recon. this is needed 590 * to assure no nasty interactions with pending user writes. 591 * We need to do this before we change the disk or row status. */ 592 593 Dprintf("RECON: begin request suspend\n"); 594 rf_SuspendNewRequestsAndWait(raidPtr); 595 Dprintf("RECON: end request suspend\n"); 596 597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 599 600 RF_LOCK_MUTEX(raidPtr->mutex); 601 602 /* create the reconstruction control pointer and install it in 603 * the right slot */ 604 raidPtr->reconControl = tmp_reconctrl; 605 mapPtr = raidPtr->reconControl->reconMap; 606 raidPtr->status = rf_rs_reconstructing; 607 raidPtr->Disks[col].status = rf_ds_reconstructing; 608 raidPtr->Disks[col].spareCol = scol; 609 610 RF_UNLOCK_MUTEX(raidPtr->mutex); 611 612 RF_GETTIME(raidPtr->reconControl->starttime); 613 614 /* now start up the actual reconstruction: issue a read for 615 * each surviving disk */ 616 617 reconDesc->numDisksDone = 0; 618 for (i = 0; i < raidPtr->numCol; i++) { 619 if (i != col) { 620 /* find and issue the next I/O on the 621 * indicated disk */ 622 if (IssueNextReadRequest(raidPtr, i)) { 623 Dprintf1("RECON: done issuing for c%d\n", i); 624 reconDesc->numDisksDone++; 625 } 626 } 627 } 628 629 Dprintf("RECON: resume requests\n"); 630 rf_ResumeNewRequests(raidPtr); 631 632 /* process reconstruction events until all disks report that 633 * they've completed all work */ 634 635 mapPtr = raidPtr->reconControl->reconMap; 636 recon_error = 0; 637 write_error = 0; 638 639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 640 641 event = rf_GetNextReconEvent(reconDesc); 642 RF_ASSERT(event); 643 644 status = ProcessReconEvent(raidPtr, event); 645 646 /* the normal case is that a read completes, and all is well. */ 647 if (status == RF_RECON_DONE_READS) { 648 reconDesc->numDisksDone++; 649 } else if ((status == RF_RECON_READ_ERROR) || 650 (status == RF_RECON_WRITE_ERROR)) { 651 /* an error was encountered while reconstructing... 652 Pretend we've finished this disk. 653 */ 654 recon_error = 1; 655 raidPtr->reconControl->error = 1; 656 657 /* bump the numDisksDone count for reads, 658 but not for writes */ 659 if (status == RF_RECON_READ_ERROR) 660 reconDesc->numDisksDone++; 661 662 /* write errors are special -- when we are 663 done dealing with the reads that are 664 finished, we don't want to wait for any 665 writes */ 666 if (status == RF_RECON_WRITE_ERROR) 667 write_error = 1; 668 669 } else if (status == RF_RECON_READ_STOPPED) { 670 /* count this component as being "done" */ 671 reconDesc->numDisksDone++; 672 } 673 674 if (recon_error) { 675 676 /* make sure any stragglers are woken up so that 677 their theads will complete, and we can get out 678 of here with all IO processed */ 679 680 while (raidPtr->reconControl->headSepCBList) { 681 p = raidPtr->reconControl->headSepCBList; 682 raidPtr->reconControl->headSepCBList = p->next; 683 p->next = NULL; 684 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 685 rf_FreeCallbackDesc(p); 686 } 687 } 688 689 raidPtr->reconControl->numRUsTotal = 690 mapPtr->totalRUs; 691 raidPtr->reconControl->numRUsComplete = 692 mapPtr->totalRUs - 693 rf_UnitsLeftToReconstruct(mapPtr); 694 695 #if RF_DEBUG_RECON 696 raidPtr->reconControl->percentComplete = 697 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 698 if (rf_prReconSched) { 699 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 700 } 701 #endif 702 } 703 704 mapPtr = raidPtr->reconControl->reconMap; 705 if (rf_reconDebug) { 706 printf("RECON: all reads completed\n"); 707 } 708 /* at this point all the reads have completed. We now wait 709 * for any pending writes to complete, and then we're done */ 710 711 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 712 713 event = rf_GetNextReconEvent(reconDesc); 714 RF_ASSERT(event); 715 716 status = ProcessReconEvent(raidPtr, event); 717 if (status == RF_RECON_WRITE_ERROR) { 718 recon_error = 1; 719 raidPtr->reconControl->error = 1; 720 /* an error was encountered at the very end... bail */ 721 } else { 722 #if RF_DEBUG_RECON 723 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 724 if (rf_prReconSched) { 725 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 726 } 727 #endif 728 } 729 } 730 731 if (recon_error) { 732 /* we've encountered an error in reconstructing. */ 733 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 734 735 /* we start by blocking IO to the RAID set. */ 736 rf_SuspendNewRequestsAndWait(raidPtr); 737 738 RF_LOCK_MUTEX(raidPtr->mutex); 739 /* mark set as being degraded, rather than 740 rf_rs_reconstructing as we were before the problem. 741 After this is done we can update status of the 742 component disks without worrying about someone 743 trying to read from a failed component. 744 */ 745 raidPtr->status = rf_rs_degraded; 746 RF_UNLOCK_MUTEX(raidPtr->mutex); 747 748 /* resume IO */ 749 rf_ResumeNewRequests(raidPtr); 750 751 /* At this point there are two cases: 752 1) If we've experienced a read error, then we've 753 already waited for all the reads we're going to get, 754 and we just need to wait for the writes. 755 756 2) If we've experienced a write error, we've also 757 already waited for all the reads to complete, 758 but there is little point in waiting for the writes -- 759 when they do complete, they will just be ignored. 760 761 So we just wait for writes to complete if we didn't have a 762 write error. 763 */ 764 765 if (!write_error) { 766 /* wait for writes to complete */ 767 while (raidPtr->reconControl->pending_writes > 0) { 768 event = rf_GetNextReconEvent(reconDesc); 769 status = ProcessReconEvent(raidPtr, event); 770 771 if (status == RF_RECON_WRITE_ERROR) { 772 raidPtr->reconControl->error = 1; 773 /* an error was encountered at the very end... bail. 774 This will be very bad news for the user, since 775 at this point there will have been a read error 776 on one component, and a write error on another! 777 */ 778 break; 779 } 780 } 781 } 782 783 784 /* cleanup */ 785 786 /* drain the event queue - after waiting for the writes above, 787 there shouldn't be much (if anything!) left in the queue. */ 788 789 rf_DrainReconEventQueue(reconDesc); 790 791 /* XXX As much as we'd like to free the recon control structure 792 and the reconDesc, we have no way of knowing if/when those will 793 be touched by IO that has yet to occur. It is rather poor to be 794 basically causing a 'memory leak' here, but there doesn't seem to be 795 a cleaner alternative at this time. Perhaps when the reconstruct code 796 gets a makeover this problem will go away. 797 */ 798 #if 0 799 rf_FreeReconControl(raidPtr); 800 #endif 801 802 #if RF_ACC_TRACE > 0 803 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 804 #endif 805 /* XXX see comment above */ 806 #if 0 807 FreeReconDesc(reconDesc); 808 #endif 809 810 return (1); 811 } 812 813 /* Success: mark the dead disk as reconstructed. We quiesce 814 * the array here to assure no nasty interactions with pending 815 * user accesses when we free up the psstatus structure as 816 * part of FreeReconControl() */ 817 818 rf_SuspendNewRequestsAndWait(raidPtr); 819 820 RF_LOCK_MUTEX(raidPtr->mutex); 821 raidPtr->numFailures--; 822 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 823 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 824 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 825 RF_UNLOCK_MUTEX(raidPtr->mutex); 826 RF_GETTIME(etime); 827 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 828 829 rf_ResumeNewRequests(raidPtr); 830 831 printf("raid%d: Reconstruction of disk at col %d completed\n", 832 raidPtr->raidid, col); 833 xor_s = raidPtr->accumXorTimeUs / 1000000; 834 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 835 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 836 raidPtr->raidid, 837 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 838 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 839 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 840 raidPtr->raidid, 841 (int) raidPtr->reconControl->starttime.tv_sec, 842 (int) raidPtr->reconControl->starttime.tv_usec, 843 (int) etime.tv_sec, (int) etime.tv_usec); 844 #if RF_RECON_STATS > 0 845 printf("raid%d: Total head-sep stall count was %d\n", 846 raidPtr->raidid, (int) reconDesc->hsStallCount); 847 #endif /* RF_RECON_STATS > 0 */ 848 rf_FreeReconControl(raidPtr); 849 #if RF_ACC_TRACE > 0 850 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 851 #endif 852 FreeReconDesc(reconDesc); 853 854 return (0); 855 856 } 857 /***************************************************************************** 858 * do the right thing upon each reconstruction event. 859 *****************************************************************************/ 860 static int 861 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 862 { 863 int retcode = 0, submitblocked; 864 RF_ReconBuffer_t *rbuf; 865 RF_SectorCount_t sectorsPerRU; 866 867 retcode = RF_RECON_READ_STOPPED; 868 869 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 870 switch (event->type) { 871 872 /* a read I/O has completed */ 873 case RF_REVENT_READDONE: 874 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 875 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 876 event->col, rbuf->parityStripeID); 877 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 878 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 879 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 880 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 881 if (!raidPtr->reconControl->error) { 882 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 883 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 884 if (!submitblocked) 885 retcode = IssueNextReadRequest(raidPtr, event->col); 886 } 887 break; 888 889 /* a write I/O has completed */ 890 case RF_REVENT_WRITEDONE: 891 #if RF_DEBUG_RECON 892 if (rf_floatingRbufDebug) { 893 rf_CheckFloatingRbufCount(raidPtr, 1); 894 } 895 #endif 896 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 897 rbuf = (RF_ReconBuffer_t *) event->arg; 898 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 899 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 900 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 901 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 902 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 903 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 904 905 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 906 raidPtr->reconControl->pending_writes--; 907 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 908 909 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 910 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 911 while(raidPtr->reconControl->rb_lock) { 912 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 913 &raidPtr->reconControl->rb_mutex); 914 } 915 raidPtr->reconControl->rb_lock = 1; 916 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 917 918 raidPtr->numFullReconBuffers--; 919 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 920 921 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 922 raidPtr->reconControl->rb_lock = 0; 923 wakeup(&raidPtr->reconControl->rb_lock); 924 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 925 } else 926 if (rbuf->type == RF_RBUF_TYPE_FORCED) 927 rf_FreeReconBuffer(rbuf); 928 else 929 RF_ASSERT(0); 930 retcode = 0; 931 break; 932 933 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 934 * cleared */ 935 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 936 if (!raidPtr->reconControl->error) { 937 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 938 0, (int) (long) event->arg); 939 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 940 * BUFCLEAR event if we 941 * couldn't submit */ 942 retcode = IssueNextReadRequest(raidPtr, event->col); 943 } 944 break; 945 946 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 947 * blockage has been cleared */ 948 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 949 if (!raidPtr->reconControl->error) { 950 retcode = TryToRead(raidPtr, event->col); 951 } 952 break; 953 954 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 955 * reconstruction blockage has been 956 * cleared */ 957 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 958 if (!raidPtr->reconControl->error) { 959 retcode = TryToRead(raidPtr, event->col); 960 } 961 break; 962 963 /* a buffer has become ready to write */ 964 case RF_REVENT_BUFREADY: 965 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 966 if (!raidPtr->reconControl->error) { 967 retcode = IssueNextWriteRequest(raidPtr); 968 #if RF_DEBUG_RECON 969 if (rf_floatingRbufDebug) { 970 rf_CheckFloatingRbufCount(raidPtr, 1); 971 } 972 #endif 973 } 974 break; 975 976 /* we need to skip the current RU entirely because it got 977 * recon'd while we were waiting for something else to happen */ 978 case RF_REVENT_SKIP: 979 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 980 if (!raidPtr->reconControl->error) { 981 retcode = IssueNextReadRequest(raidPtr, event->col); 982 } 983 break; 984 985 /* a forced-reconstruction read access has completed. Just 986 * submit the buffer */ 987 case RF_REVENT_FORCEDREADDONE: 988 rbuf = (RF_ReconBuffer_t *) event->arg; 989 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 990 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 991 if (!raidPtr->reconControl->error) { 992 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 993 RF_ASSERT(!submitblocked); 994 } 995 break; 996 997 /* A read I/O failed to complete */ 998 case RF_REVENT_READ_FAILED: 999 retcode = RF_RECON_READ_ERROR; 1000 break; 1001 1002 /* A write I/O failed to complete */ 1003 case RF_REVENT_WRITE_FAILED: 1004 retcode = RF_RECON_WRITE_ERROR; 1005 1006 rbuf = (RF_ReconBuffer_t *) event->arg; 1007 1008 /* cleanup the disk queue data */ 1009 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1010 1011 /* At this point we're erroring out, badly, and floatingRbufs 1012 may not even be valid. Rather than putting this back onto 1013 the floatingRbufs list, just arrange for its immediate 1014 destruction. 1015 */ 1016 rf_FreeReconBuffer(rbuf); 1017 break; 1018 1019 /* a forced read I/O failed to complete */ 1020 case RF_REVENT_FORCEDREAD_FAILED: 1021 retcode = RF_RECON_READ_ERROR; 1022 break; 1023 1024 default: 1025 RF_PANIC(); 1026 } 1027 rf_FreeReconEventDesc(event); 1028 return (retcode); 1029 } 1030 /***************************************************************************** 1031 * 1032 * find the next thing that's needed on the indicated disk, and issue 1033 * a read request for it. We assume that the reconstruction buffer 1034 * associated with this process is free to receive the data. If 1035 * reconstruction is blocked on the indicated RU, we issue a 1036 * blockage-release request instead of a physical disk read request. 1037 * If the current disk gets too far ahead of the others, we issue a 1038 * head-separation wait request and return. 1039 * 1040 * ctrl->{ru_count, curPSID, diskOffset} and 1041 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1042 * we're currently accessing. Note that this deviates from the 1043 * standard C idiom of having counters point to the next thing to be 1044 * accessed. This allows us to easily retry when we're blocked by 1045 * head separation or reconstruction-blockage events. 1046 * 1047 *****************************************************************************/ 1048 static int 1049 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1050 { 1051 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1052 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1053 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1054 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1055 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1056 int do_new_check = 0, retcode = 0, status; 1057 1058 /* if we are currently the slowest disk, mark that we have to do a new 1059 * check */ 1060 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1061 do_new_check = 1; 1062 1063 while (1) { 1064 1065 ctrl->ru_count++; 1066 if (ctrl->ru_count < RUsPerPU) { 1067 ctrl->diskOffset += sectorsPerRU; 1068 rbuf->failedDiskSectorOffset += sectorsPerRU; 1069 } else { 1070 ctrl->curPSID++; 1071 ctrl->ru_count = 0; 1072 /* code left over from when head-sep was based on 1073 * parity stripe id */ 1074 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1075 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1076 return (RF_RECON_DONE_READS); /* finito! */ 1077 } 1078 /* find the disk offsets of the start of the parity 1079 * stripe on both the current disk and the failed 1080 * disk. skip this entire parity stripe if either disk 1081 * does not appear in the indicated PS */ 1082 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1083 &rbuf->spCol, &rbuf->spOffset); 1084 if (status) { 1085 ctrl->ru_count = RUsPerPU - 1; 1086 continue; 1087 } 1088 } 1089 rbuf->which_ru = ctrl->ru_count; 1090 1091 /* skip this RU if it's already been reconstructed */ 1092 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1093 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1094 continue; 1095 } 1096 break; 1097 } 1098 ctrl->headSepCounter++; 1099 if (do_new_check) 1100 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1101 1102 1103 /* at this point, we have definitely decided what to do, and we have 1104 * only to see if we can actually do it now */ 1105 rbuf->parityStripeID = ctrl->curPSID; 1106 rbuf->which_ru = ctrl->ru_count; 1107 #if RF_ACC_TRACE > 0 1108 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1109 sizeof(raidPtr->recon_tracerecs[col])); 1110 raidPtr->recon_tracerecs[col].reconacc = 1; 1111 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1112 #endif 1113 retcode = TryToRead(raidPtr, col); 1114 return (retcode); 1115 } 1116 1117 /* 1118 * tries to issue the next read on the indicated disk. We may be 1119 * blocked by (a) the heads being too far apart, or (b) recon on the 1120 * indicated RU being blocked due to a write by a user thread. In 1121 * this case, we issue a head-sep or blockage wait request, which will 1122 * cause this same routine to be invoked again later when the blockage 1123 * has cleared. 1124 */ 1125 1126 static int 1127 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1128 { 1129 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1130 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1131 RF_StripeNum_t psid = ctrl->curPSID; 1132 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1133 RF_DiskQueueData_t *req; 1134 int status; 1135 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1136 1137 /* if the current disk is too far ahead of the others, issue a 1138 * head-separation wait and return */ 1139 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1140 return (0); 1141 1142 /* allocate a new PSS in case we need it */ 1143 newpssPtr = rf_AllocPSStatus(raidPtr); 1144 1145 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1146 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1147 1148 if (pssPtr != newpssPtr) { 1149 rf_FreePSStatus(raidPtr, newpssPtr); 1150 } 1151 1152 /* if recon is blocked on the indicated parity stripe, issue a 1153 * block-wait request and return. this also must mark the indicated RU 1154 * in the stripe as under reconstruction if not blocked. */ 1155 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1156 if (status == RF_PSS_RECON_BLOCKED) { 1157 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1158 goto out; 1159 } else 1160 if (status == RF_PSS_FORCED_ON_WRITE) { 1161 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1162 goto out; 1163 } 1164 /* make one last check to be sure that the indicated RU didn't get 1165 * reconstructed while we were waiting for something else to happen. 1166 * This is unfortunate in that it causes us to make this check twice 1167 * in the normal case. Might want to make some attempt to re-work 1168 * this so that we only do this check if we've definitely blocked on 1169 * one of the above checks. When this condition is detected, we may 1170 * have just created a bogus status entry, which we need to delete. */ 1171 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1172 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1173 if (pssPtr == newpssPtr) 1174 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1175 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1176 goto out; 1177 } 1178 /* found something to read. issue the I/O */ 1179 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1180 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1181 #if RF_ACC_TRACE > 0 1182 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1183 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1184 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1185 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1186 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1187 #endif 1188 /* should be ok to use a NULL proc pointer here, all the bufs we use 1189 * should be in kernel space */ 1190 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1191 ReconReadDoneProc, (void *) ctrl, NULL, 1192 #if RF_ACC_TRACE > 0 1193 &raidPtr->recon_tracerecs[col], 1194 #else 1195 NULL, 1196 #endif 1197 (void *) raidPtr, 0, NULL); 1198 1199 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1200 1201 ctrl->rbuf->arg = (void *) req; 1202 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1203 pssPtr->issued[col] = 1; 1204 1205 out: 1206 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1207 return (0); 1208 } 1209 1210 1211 /* 1212 * given a parity stripe ID, we want to find out whether both the 1213 * current disk and the failed disk exist in that parity stripe. If 1214 * not, we want to skip this whole PS. If so, we want to find the 1215 * disk offset of the start of the PS on both the current disk and the 1216 * failed disk. 1217 * 1218 * this works by getting a list of disks comprising the indicated 1219 * parity stripe, and searching the list for the current and failed 1220 * disks. Once we've decided they both exist in the parity stripe, we 1221 * need to decide whether each is data or parity, so that we'll know 1222 * which mapping function to call to get the corresponding disk 1223 * offsets. 1224 * 1225 * this is kind of unpleasant, but doing it this way allows the 1226 * reconstruction code to use parity stripe IDs rather than physical 1227 * disks address to march through the failed disk, which greatly 1228 * simplifies a lot of code, as well as eliminating the need for a 1229 * reverse-mapping function. I also think it will execute faster, 1230 * since the calls to the mapping module are kept to a minimum. 1231 * 1232 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1233 * THE STRIPE IN THE CORRECT ORDER 1234 * 1235 * raidPtr - raid descriptor 1236 * psid - parity stripe identifier 1237 * col - column of disk to find the offsets for 1238 * spCol - out: col of spare unit for failed unit 1239 * spOffset - out: offset into disk containing spare unit 1240 * 1241 */ 1242 1243 1244 static int 1245 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1246 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1247 RF_SectorNum_t *outFailedDiskSectorOffset, 1248 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1249 { 1250 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1251 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1252 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1253 RF_RowCol_t *diskids; 1254 u_int i, j, k, i_offset, j_offset; 1255 RF_RowCol_t pcol; 1256 int testcol; 1257 RF_SectorNum_t poffset; 1258 char i_is_parity = 0, j_is_parity = 0; 1259 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1260 1261 /* get a listing of the disks comprising that stripe */ 1262 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1263 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1264 RF_ASSERT(diskids); 1265 1266 /* reject this entire parity stripe if it does not contain the 1267 * indicated disk or it does not contain the failed disk */ 1268 1269 for (i = 0; i < stripeWidth; i++) { 1270 if (col == diskids[i]) 1271 break; 1272 } 1273 if (i == stripeWidth) 1274 goto skipit; 1275 for (j = 0; j < stripeWidth; j++) { 1276 if (fcol == diskids[j]) 1277 break; 1278 } 1279 if (j == stripeWidth) { 1280 goto skipit; 1281 } 1282 /* find out which disk the parity is on */ 1283 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1284 1285 /* find out if either the current RU or the failed RU is parity */ 1286 /* also, if the parity occurs in this stripe prior to the data and/or 1287 * failed col, we need to decrement i and/or j */ 1288 for (k = 0; k < stripeWidth; k++) 1289 if (diskids[k] == pcol) 1290 break; 1291 RF_ASSERT(k < stripeWidth); 1292 i_offset = i; 1293 j_offset = j; 1294 if (k < i) 1295 i_offset--; 1296 else 1297 if (k == i) { 1298 i_is_parity = 1; 1299 i_offset = 0; 1300 } /* set offsets to zero to disable multiply 1301 * below */ 1302 if (k < j) 1303 j_offset--; 1304 else 1305 if (k == j) { 1306 j_is_parity = 1; 1307 j_offset = 0; 1308 } 1309 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1310 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1311 * tells us how far into the stripe the [current,failed] disk is. */ 1312 1313 /* call the mapping routine to get the offset into the current disk, 1314 * repeat for failed disk. */ 1315 if (i_is_parity) 1316 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1317 else 1318 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1319 1320 RF_ASSERT(col == testcol); 1321 1322 if (j_is_parity) 1323 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1324 else 1325 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1326 RF_ASSERT(fcol == testcol); 1327 1328 /* now locate the spare unit for the failed unit */ 1329 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1330 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1331 if (j_is_parity) 1332 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1333 else 1334 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1335 } else { 1336 #endif 1337 *spCol = raidPtr->reconControl->spareCol; 1338 *spOffset = *outFailedDiskSectorOffset; 1339 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1340 } 1341 #endif 1342 return (0); 1343 1344 skipit: 1345 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1346 psid, col); 1347 return (1); 1348 } 1349 /* this is called when a buffer has become ready to write to the replacement disk */ 1350 static int 1351 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1352 { 1353 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1354 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1355 #if RF_ACC_TRACE > 0 1356 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1357 #endif 1358 RF_ReconBuffer_t *rbuf; 1359 RF_DiskQueueData_t *req; 1360 1361 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1362 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1363 * have gotten the event that sent us here */ 1364 RF_ASSERT(rbuf->pssPtr); 1365 1366 rbuf->pssPtr->writeRbuf = rbuf; 1367 rbuf->pssPtr = NULL; 1368 1369 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1370 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1371 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1372 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1373 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1374 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1375 1376 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1377 * kernel space */ 1378 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1379 sectorsPerRU, rbuf->buffer, 1380 rbuf->parityStripeID, rbuf->which_ru, 1381 ReconWriteDoneProc, (void *) rbuf, NULL, 1382 #if RF_ACC_TRACE > 0 1383 &raidPtr->recon_tracerecs[fcol], 1384 #else 1385 NULL, 1386 #endif 1387 (void *) raidPtr, 0, NULL); 1388 1389 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1390 1391 rbuf->arg = (void *) req; 1392 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1393 raidPtr->reconControl->pending_writes++; 1394 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1395 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1396 1397 return (0); 1398 } 1399 1400 /* 1401 * this gets called upon the completion of a reconstruction read 1402 * operation the arg is a pointer to the per-disk reconstruction 1403 * control structure for the process that just finished a read. 1404 * 1405 * called at interrupt context in the kernel, so don't do anything 1406 * illegal here. 1407 */ 1408 static int 1409 ReconReadDoneProc(void *arg, int status) 1410 { 1411 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1412 RF_Raid_t *raidPtr; 1413 1414 /* Detect that reconCtrl is no longer valid, and if that 1415 is the case, bail without calling rf_CauseReconEvent(). 1416 There won't be anyone listening for this event anyway */ 1417 1418 if (ctrl->reconCtrl == NULL) 1419 return(0); 1420 1421 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1422 1423 if (status) { 1424 printf("raid%d: Recon read failed!\n", raidPtr->raidid); 1425 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1426 return(0); 1427 } 1428 #if RF_ACC_TRACE > 0 1429 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1430 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1431 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1432 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1433 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1434 #endif 1435 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1436 return (0); 1437 } 1438 /* this gets called upon the completion of a reconstruction write operation. 1439 * the arg is a pointer to the rbuf that was just written 1440 * 1441 * called at interrupt context in the kernel, so don't do anything illegal here. 1442 */ 1443 static int 1444 ReconWriteDoneProc(void *arg, int status) 1445 { 1446 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1447 1448 /* Detect that reconControl is no longer valid, and if that 1449 is the case, bail without calling rf_CauseReconEvent(). 1450 There won't be anyone listening for this event anyway */ 1451 1452 if (rbuf->raidPtr->reconControl == NULL) 1453 return(0); 1454 1455 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1456 if (status) { 1457 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1458 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1459 return(0); 1460 } 1461 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1462 return (0); 1463 } 1464 1465 1466 /* 1467 * computes a new minimum head sep, and wakes up anyone who needs to 1468 * be woken as a result 1469 */ 1470 static void 1471 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1472 { 1473 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1474 RF_HeadSepLimit_t new_min; 1475 RF_RowCol_t i; 1476 RF_CallbackDesc_t *p; 1477 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1478 * of a minimum */ 1479 1480 1481 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1482 while(reconCtrlPtr->rb_lock) { 1483 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1484 } 1485 reconCtrlPtr->rb_lock = 1; 1486 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1487 1488 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1489 for (i = 0; i < raidPtr->numCol; i++) 1490 if (i != reconCtrlPtr->fcol) { 1491 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1492 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1493 } 1494 /* set the new minimum and wake up anyone who can now run again */ 1495 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1496 reconCtrlPtr->minHeadSepCounter = new_min; 1497 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1498 while (reconCtrlPtr->headSepCBList) { 1499 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1500 break; 1501 p = reconCtrlPtr->headSepCBList; 1502 reconCtrlPtr->headSepCBList = p->next; 1503 p->next = NULL; 1504 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1505 rf_FreeCallbackDesc(p); 1506 } 1507 1508 } 1509 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1510 reconCtrlPtr->rb_lock = 0; 1511 wakeup(&reconCtrlPtr->rb_lock); 1512 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1513 } 1514 1515 /* 1516 * checks to see that the maximum head separation will not be violated 1517 * if we initiate a reconstruction I/O on the indicated disk. 1518 * Limiting the maximum head separation between two disks eliminates 1519 * the nasty buffer-stall conditions that occur when one disk races 1520 * ahead of the others and consumes all of the floating recon buffers. 1521 * This code is complex and unpleasant but it's necessary to avoid 1522 * some very nasty, albeit fairly rare, reconstruction behavior. 1523 * 1524 * returns non-zero if and only if we have to stop working on the 1525 * indicated disk due to a head-separation delay. 1526 */ 1527 static int 1528 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1529 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1530 RF_ReconUnitNum_t which_ru) 1531 { 1532 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1533 RF_CallbackDesc_t *cb, *p, *pt; 1534 int retval = 0; 1535 1536 /* if we're too far ahead of the slowest disk, stop working on this 1537 * disk until the slower ones catch up. We do this by scheduling a 1538 * wakeup callback for the time when the slowest disk has caught up. 1539 * We define "caught up" with 20% hysteresis, i.e. the head separation 1540 * must have fallen to at most 80% of the max allowable head 1541 * separation before we'll wake up. 1542 * 1543 */ 1544 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1545 while(reconCtrlPtr->rb_lock) { 1546 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1547 } 1548 reconCtrlPtr->rb_lock = 1; 1549 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1550 if ((raidPtr->headSepLimit >= 0) && 1551 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1552 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1553 raidPtr->raidid, col, ctrl->headSepCounter, 1554 reconCtrlPtr->minHeadSepCounter, 1555 raidPtr->headSepLimit); 1556 cb = rf_AllocCallbackDesc(); 1557 /* the minHeadSepCounter value we have to get to before we'll 1558 * wake up. build in 20% hysteresis. */ 1559 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1560 cb->col = col; 1561 cb->next = NULL; 1562 1563 /* insert this callback descriptor into the sorted list of 1564 * pending head-sep callbacks */ 1565 p = reconCtrlPtr->headSepCBList; 1566 if (!p) 1567 reconCtrlPtr->headSepCBList = cb; 1568 else 1569 if (cb->callbackArg.v < p->callbackArg.v) { 1570 cb->next = reconCtrlPtr->headSepCBList; 1571 reconCtrlPtr->headSepCBList = cb; 1572 } else { 1573 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1574 cb->next = p; 1575 pt->next = cb; 1576 } 1577 retval = 1; 1578 #if RF_RECON_STATS > 0 1579 ctrl->reconCtrl->reconDesc->hsStallCount++; 1580 #endif /* RF_RECON_STATS > 0 */ 1581 } 1582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1583 reconCtrlPtr->rb_lock = 0; 1584 wakeup(&reconCtrlPtr->rb_lock); 1585 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1586 1587 return (retval); 1588 } 1589 /* 1590 * checks to see if reconstruction has been either forced or blocked 1591 * by a user operation. if forced, we skip this RU entirely. else if 1592 * blocked, put ourselves on the wait list. else return 0. 1593 * 1594 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1595 */ 1596 static int 1597 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1598 RF_ReconParityStripeStatus_t *pssPtr, 1599 RF_PerDiskReconCtrl_t *ctrl, 1600 RF_RowCol_t col, RF_StripeNum_t psid, 1601 RF_ReconUnitNum_t which_ru) 1602 { 1603 RF_CallbackDesc_t *cb; 1604 int retcode = 0; 1605 1606 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1607 retcode = RF_PSS_FORCED_ON_WRITE; 1608 else 1609 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1610 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1611 cb = rf_AllocCallbackDesc(); /* append ourselves to 1612 * the blockage-wait 1613 * list */ 1614 cb->col = col; 1615 cb->next = pssPtr->blockWaitList; 1616 pssPtr->blockWaitList = cb; 1617 retcode = RF_PSS_RECON_BLOCKED; 1618 } 1619 if (!retcode) 1620 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1621 * reconstruction */ 1622 1623 return (retcode); 1624 } 1625 /* 1626 * if reconstruction is currently ongoing for the indicated stripeID, 1627 * reconstruction is forced to completion and we return non-zero to 1628 * indicate that the caller must wait. If not, then reconstruction is 1629 * blocked on the indicated stripe and the routine returns zero. If 1630 * and only if we return non-zero, we'll cause the cbFunc to get 1631 * invoked with the cbArg when the reconstruction has completed. 1632 */ 1633 int 1634 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1635 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1636 { 1637 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1638 * forcing recon on */ 1639 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1640 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1641 * stripe status structure */ 1642 RF_StripeNum_t psid; /* parity stripe id */ 1643 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1644 * offset */ 1645 RF_RowCol_t *diskids; 1646 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1647 RF_RowCol_t fcol, diskno, i; 1648 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1649 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1650 RF_CallbackDesc_t *cb; 1651 int nPromoted; 1652 1653 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1654 1655 /* allocate a new PSS in case we need it */ 1656 newpssPtr = rf_AllocPSStatus(raidPtr); 1657 1658 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1659 1660 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1661 1662 if (pssPtr != newpssPtr) { 1663 rf_FreePSStatus(raidPtr, newpssPtr); 1664 } 1665 1666 /* if recon is not ongoing on this PS, just return */ 1667 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1668 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1669 return (0); 1670 } 1671 /* otherwise, we have to wait for reconstruction to complete on this 1672 * RU. */ 1673 /* In order to avoid waiting for a potentially large number of 1674 * low-priority accesses to complete, we force a normal-priority (i.e. 1675 * not low-priority) reconstruction on this RU. */ 1676 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1677 DDprintf1("Forcing recon on psid %ld\n", psid); 1678 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1679 * forced recon */ 1680 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1681 * that we just set */ 1682 fcol = raidPtr->reconControl->fcol; 1683 1684 /* get a listing of the disks comprising the indicated stripe */ 1685 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1686 1687 /* For previously issued reads, elevate them to normal 1688 * priority. If the I/O has already completed, it won't be 1689 * found in the queue, and hence this will be a no-op. For 1690 * unissued reads, allocate buffers and issue new reads. The 1691 * fact that we've set the FORCED bit means that the regular 1692 * recon procs will not re-issue these reqs */ 1693 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1694 if ((diskno = diskids[i]) != fcol) { 1695 if (pssPtr->issued[diskno]) { 1696 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1697 if (rf_reconDebug && nPromoted) 1698 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1699 } else { 1700 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1701 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1702 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1703 * location */ 1704 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1705 new_rbuf->which_ru = which_ru; 1706 new_rbuf->failedDiskSectorOffset = fd_offset; 1707 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1708 1709 /* use NULL b_proc b/c all addrs 1710 * should be in kernel space */ 1711 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1712 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1713 NULL, (void *) raidPtr, 0, NULL); 1714 1715 RF_ASSERT(req); /* XXX -- fix this -- 1716 * XXX */ 1717 1718 new_rbuf->arg = req; 1719 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1720 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1721 } 1722 } 1723 /* if the write is sitting in the disk queue, elevate its 1724 * priority */ 1725 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1726 printf("raid%d: promoted write to col %d\n", 1727 raidPtr->raidid, fcol); 1728 } 1729 /* install a callback descriptor to be invoked when recon completes on 1730 * this parity stripe. */ 1731 cb = rf_AllocCallbackDesc(); 1732 /* XXX the following is bogus.. These functions don't really match!! 1733 * GO */ 1734 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1735 cb->callbackArg.p = (void *) cbArg; 1736 cb->next = pssPtr->procWaitList; 1737 pssPtr->procWaitList = cb; 1738 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1739 raidPtr->raidid, psid); 1740 1741 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1742 return (1); 1743 } 1744 /* called upon the completion of a forced reconstruction read. 1745 * all we do is schedule the FORCEDREADONE event. 1746 * called at interrupt context in the kernel, so don't do anything illegal here. 1747 */ 1748 static void 1749 ForceReconReadDoneProc(void *arg, int status) 1750 { 1751 RF_ReconBuffer_t *rbuf = arg; 1752 1753 /* Detect that reconControl is no longer valid, and if that 1754 is the case, bail without calling rf_CauseReconEvent(). 1755 There won't be anyone listening for this event anyway */ 1756 1757 if (rbuf->raidPtr->reconControl == NULL) 1758 return; 1759 1760 if (status) { 1761 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1762 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1763 return; 1764 } 1765 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1766 } 1767 /* releases a block on the reconstruction of the indicated stripe */ 1768 int 1769 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1770 { 1771 RF_StripeNum_t stripeID = asmap->stripeID; 1772 RF_ReconParityStripeStatus_t *pssPtr; 1773 RF_ReconUnitNum_t which_ru; 1774 RF_StripeNum_t psid; 1775 RF_CallbackDesc_t *cb; 1776 1777 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1778 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1779 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1780 1781 /* When recon is forced, the pss desc can get deleted before we get 1782 * back to unblock recon. But, this can _only_ happen when recon is 1783 * forced. It would be good to put some kind of sanity check here, but 1784 * how to decide if recon was just forced or not? */ 1785 if (!pssPtr) { 1786 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1787 * RU %d\n",psid,which_ru); */ 1788 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1789 if (rf_reconDebug || rf_pssDebug) 1790 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1791 #endif 1792 goto out; 1793 } 1794 pssPtr->blockCount--; 1795 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1796 raidPtr->raidid, psid, pssPtr->blockCount); 1797 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1798 1799 /* unblock recon before calling CauseReconEvent in case 1800 * CauseReconEvent causes us to try to issue a new read before 1801 * returning here. */ 1802 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1803 1804 1805 while (pssPtr->blockWaitList) { 1806 /* spin through the block-wait list and 1807 release all the waiters */ 1808 cb = pssPtr->blockWaitList; 1809 pssPtr->blockWaitList = cb->next; 1810 cb->next = NULL; 1811 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1812 rf_FreeCallbackDesc(cb); 1813 } 1814 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1815 /* if no recon was requested while recon was blocked */ 1816 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1817 } 1818 } 1819 out: 1820 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1821 return (0); 1822 } 1823