xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 8e6f7afb5bba2c07fd084c08249718961dfbc1d1)
1 /*	$NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_general.h"
59 #include "rf_freelist.h"
60 #include "rf_debugprint.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77 
78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80 
81 static RF_FreeList_t *rf_recond_freelist;
82 #define RF_MAX_FREE_RECOND  4
83 #define RF_RECOND_INC       1
84 
85 static RF_RaidReconDesc_t *
86 AllocRaidReconDesc(RF_Raid_t * raidPtr,
87     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
88     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
89 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
90 static int
91 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
92     RF_ReconEvent_t * event);
93 static int
94 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
95     RF_RowCol_t col);
96 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
97 static int
98 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
99     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
100     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
101     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
102 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
103 static int ReconReadDoneProc(void *arg, int status);
104 static int ReconWriteDoneProc(void *arg, int status);
105 static void
106 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
107     RF_HeadSepLimit_t hsCtr);
108 static int
109 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
110     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
111     RF_ReconUnitNum_t which_ru);
112 static int
113 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
114     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
115     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
116     RF_ReconUnitNum_t which_ru);
117 static void ForceReconReadDoneProc(void *arg, int status);
118 
119 static void rf_ShutdownReconstruction(void *);
120 
121 struct RF_ReconDoneProc_s {
122 	void    (*proc) (RF_Raid_t *, void *);
123 	void   *arg;
124 	RF_ReconDoneProc_t *next;
125 };
126 
127 static RF_FreeList_t *rf_rdp_freelist;
128 #define RF_MAX_FREE_RDP 4
129 #define RF_RDP_INC      1
130 
131 static void
132 SignalReconDone(RF_Raid_t * raidPtr)
133 {
134 	RF_ReconDoneProc_t *p;
135 
136 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
137 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
138 		p->proc(raidPtr, p->arg);
139 	}
140 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
141 }
142 
143 int
144 rf_RegisterReconDoneProc(
145     RF_Raid_t * raidPtr,
146     void (*proc) (RF_Raid_t *, void *),
147     void *arg,
148     RF_ReconDoneProc_t ** handlep)
149 {
150 	RF_ReconDoneProc_t *p;
151 
152 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
153 	if (p == NULL)
154 		return (ENOMEM);
155 	p->proc = proc;
156 	p->arg = arg;
157 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
158 	p->next = raidPtr->recon_done_procs;
159 	raidPtr->recon_done_procs = p;
160 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
161 	if (handlep)
162 		*handlep = p;
163 	return (0);
164 }
165 /**************************************************************************
166  *
167  * sets up the parameters that will be used by the reconstruction process
168  * currently there are none, except for those that the layout-specific
169  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
170  *
171  * in the kernel, we fire off the recon thread.
172  *
173  **************************************************************************/
174 static void
175 rf_ShutdownReconstruction(ignored)
176 	void   *ignored;
177 {
178 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
179 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
180 }
181 
182 int
183 rf_ConfigureReconstruction(listp)
184 	RF_ShutdownList_t **listp;
185 {
186 	int     rc;
187 
188 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
189 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
190 	if (rf_recond_freelist == NULL)
191 		return (ENOMEM);
192 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
193 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
194 	if (rf_rdp_freelist == NULL) {
195 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
196 		return (ENOMEM);
197 	}
198 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
199 	if (rc) {
200 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
201 		    __FILE__, __LINE__, rc);
202 		rf_ShutdownReconstruction(NULL);
203 		return (rc);
204 	}
205 	return (0);
206 }
207 
208 static RF_RaidReconDesc_t *
209 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
210 	RF_Raid_t *raidPtr;
211 	RF_RowCol_t row;
212 	RF_RowCol_t col;
213 	RF_RaidDisk_t *spareDiskPtr;
214 	int     numDisksDone;
215 	RF_RowCol_t srow;
216 	RF_RowCol_t scol;
217 {
218 
219 	RF_RaidReconDesc_t *reconDesc;
220 
221 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
222 
223 	reconDesc->raidPtr = raidPtr;
224 	reconDesc->row = row;
225 	reconDesc->col = col;
226 	reconDesc->spareDiskPtr = spareDiskPtr;
227 	reconDesc->numDisksDone = numDisksDone;
228 	reconDesc->srow = srow;
229 	reconDesc->scol = scol;
230 	reconDesc->state = 0;
231 	reconDesc->next = NULL;
232 
233 	return (reconDesc);
234 }
235 
236 static void
237 FreeReconDesc(reconDesc)
238 	RF_RaidReconDesc_t *reconDesc;
239 {
240 #if RF_RECON_STATS > 0
241 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
242 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
243 #endif				/* RF_RECON_STATS > 0 */
244 	printf("RAIDframe: %lu max exec ticks\n",
245 	    (long) reconDesc->maxReconExecTicks);
246 #if (RF_RECON_STATS > 0) || defined(KERNEL)
247 	printf("\n");
248 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
249 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
250 }
251 
252 
253 /*****************************************************************************
254  *
255  * primary routine to reconstruct a failed disk.  This should be called from
256  * within its own thread.  It won't return until reconstruction completes,
257  * fails, or is aborted.
258  *****************************************************************************/
259 int
260 rf_ReconstructFailedDisk(raidPtr, row, col)
261 	RF_Raid_t *raidPtr;
262 	RF_RowCol_t row;
263 	RF_RowCol_t col;
264 {
265 	RF_LayoutSW_t *lp;
266 	int     rc;
267 
268 	lp = raidPtr->Layout.map;
269 	if (lp->SubmitReconBuffer) {
270 		/*
271 	         * The current infrastructure only supports reconstructing one
272 	         * disk at a time for each array.
273 	         */
274 		RF_LOCK_MUTEX(raidPtr->mutex);
275 		while (raidPtr->reconInProgress) {
276 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
277 		}
278 		raidPtr->reconInProgress++;
279 		RF_UNLOCK_MUTEX(raidPtr->mutex);
280 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
281 		RF_LOCK_MUTEX(raidPtr->mutex);
282 		raidPtr->reconInProgress--;
283 		RF_UNLOCK_MUTEX(raidPtr->mutex);
284 	} else {
285 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
286 		    lp->parityConfig);
287 		rc = EIO;
288 	}
289 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
290 	wakeup(&raidPtr->waitForReconCond);	/* XXX Methinks this will be
291 						 * needed at some point... GO */
292 	return (rc);
293 }
294 
295 int
296 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
297 	RF_Raid_t *raidPtr;
298 	RF_RowCol_t row;
299 	RF_RowCol_t col;
300 {
301 	RF_ComponentLabel_t c_label;
302 	RF_RaidDisk_t *spareDiskPtr = NULL;
303 	RF_RaidReconDesc_t *reconDesc;
304 	RF_RowCol_t srow, scol;
305 	int     numDisksDone = 0, rc;
306 
307 	/* first look for a spare drive onto which to reconstruct the data */
308 	/* spare disk descriptors are stored in row 0.  This may have to
309 	 * change eventually */
310 
311 	RF_LOCK_MUTEX(raidPtr->mutex);
312 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
313 
314 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
315 		if (raidPtr->status[row] != rf_rs_degraded) {
316 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
317 			RF_UNLOCK_MUTEX(raidPtr->mutex);
318 			return (EINVAL);
319 		}
320 		srow = row;
321 		scol = (-1);
322 	} else {
323 		srow = 0;
324 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
325 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
326 				spareDiskPtr = &raidPtr->Disks[srow][scol];
327 				spareDiskPtr->status = rf_ds_used_spare;
328 				break;
329 			}
330 		}
331 		if (!spareDiskPtr) {
332 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
333 			RF_UNLOCK_MUTEX(raidPtr->mutex);
334 			return (ENOSPC);
335 		}
336 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
337 	}
338 	RF_UNLOCK_MUTEX(raidPtr->mutex);
339 
340 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
341 	raidPtr->reconDesc = (void *) reconDesc;
342 #if RF_RECON_STATS > 0
343 	reconDesc->hsStallCount = 0;
344 	reconDesc->numReconExecDelays = 0;
345 	reconDesc->numReconEventWaits = 0;
346 #endif				/* RF_RECON_STATS > 0 */
347 	reconDesc->reconExecTimerRunning = 0;
348 	reconDesc->reconExecTicks = 0;
349 	reconDesc->maxReconExecTicks = 0;
350 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
351 
352 	if (!rc) {
353 		/* fix up the component label */
354 		/* Don't actually need the read here.. */
355 		raidread_component_label(
356                         raidPtr->raid_cinfo[srow][scol].ci_dev,
357 			raidPtr->raid_cinfo[srow][scol].ci_vp,
358 			&c_label);
359 
360 		raid_init_component_label( raidPtr, &c_label);
361 		c_label.row = row;
362 		c_label.column = col;
363 		c_label.clean = RF_RAID_DIRTY;
364 		c_label.status = rf_ds_optimal;
365 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
366 
367 		/* We've just done a rebuild based on all the other
368 		   disks, so at this point the parity is known to be
369 		   clean, even if it wasn't before. */
370 
371 		/* XXX doesn't hold for RAID 6!!*/
372 
373 		raidPtr->parity_good = RF_RAID_CLEAN;
374 
375 		/* XXXX MORE NEEDED HERE */
376 
377 		raidwrite_component_label(
378                         raidPtr->raid_cinfo[srow][scol].ci_dev,
379 			raidPtr->raid_cinfo[srow][scol].ci_vp,
380 			&c_label);
381 
382 	}
383 	return (rc);
384 }
385 
386 /*
387 
388    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
389    and you don't get a spare until the next Monday.  With this function
390    (and hot-swappable drives) you can now put your new disk containing
391    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
392    rebuild the data "on the spot".
393 
394 */
395 
396 int
397 rf_ReconstructInPlace(raidPtr, row, col)
398 	RF_Raid_t *raidPtr;
399 	RF_RowCol_t row;
400 	RF_RowCol_t col;
401 {
402 	RF_RaidDisk_t *spareDiskPtr = NULL;
403 	RF_RaidReconDesc_t *reconDesc;
404 	RF_LayoutSW_t *lp;
405 	RF_RaidDisk_t *badDisk;
406 	RF_ComponentLabel_t c_label;
407 	int     numDisksDone = 0, rc;
408 	struct partinfo dpart;
409 	struct vnode *vp;
410 	struct vattr va;
411 	struct proc *proc;
412 	int retcode;
413 	int ac;
414 
415 	lp = raidPtr->Layout.map;
416 	if (lp->SubmitReconBuffer) {
417 		/*
418 	         * The current infrastructure only supports reconstructing one
419 	         * disk at a time for each array.
420 	         */
421 		RF_LOCK_MUTEX(raidPtr->mutex);
422 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
423 		    (raidPtr->numFailures > 0)) {
424 			/* XXX 0 above shouldn't be constant!!! */
425 			/* some component other than this has failed.
426 			   Let's not make things worse than they already
427 			   are... */
428 			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
429 			printf("      Row: %d Col: %d   Too many failures.\n",
430 			       row, col);
431 			RF_UNLOCK_MUTEX(raidPtr->mutex);
432 			return (EINVAL);
433 		}
434 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
435 			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
436 			printf("      Row: %d Col: %d   Reconstruction already occuring!\n", row, col);
437 
438 			RF_UNLOCK_MUTEX(raidPtr->mutex);
439 			return (EINVAL);
440 		}
441 
442 
443 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
444 			/* "It's gone..." */
445 			raidPtr->numFailures++;
446 			raidPtr->Disks[row][col].status = rf_ds_failed;
447 			raidPtr->status[row] = rf_rs_degraded;
448 			rf_update_component_labels(raidPtr,
449 						   RF_NORMAL_COMPONENT_UPDATE);
450 		}
451 
452 		while (raidPtr->reconInProgress) {
453 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
454 		}
455 
456 		raidPtr->reconInProgress++;
457 
458 
459 		/* first look for a spare drive onto which to reconstruct
460 		   the data.  spare disk descriptors are stored in row 0.
461 		   This may have to change eventually */
462 
463 		/* Actually, we don't care if it's failed or not...
464 		   On a RAID set with correct parity, this function
465 		   should be callable on any component without ill affects. */
466 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
467 		 */
468 
469 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
470 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
471 
472 			raidPtr->reconInProgress--;
473 			RF_UNLOCK_MUTEX(raidPtr->mutex);
474 			return (EINVAL);
475 		}
476 
477 		/* XXX need goop here to see if the disk is alive,
478 		   and, if not, make it so...  */
479 
480 
481 
482 		badDisk = &raidPtr->Disks[row][col];
483 
484 		proc = raidPtr->engine_thread;
485 
486 		/* This device may have been opened successfully the
487 		   first time. Close it before trying to open it again.. */
488 
489 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
490 			printf("Closed the open device: %s\n",
491 			       raidPtr->Disks[row][col].devname);
492 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
493 			ac = raidPtr->Disks[row][col].auto_configured;
494 			rf_close_component(raidPtr, vp, ac);
495 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
496 		}
497 		/* note that this disk was *not* auto_configured (any longer)*/
498 		raidPtr->Disks[row][col].auto_configured = 0;
499 
500 		printf("About to (re-)open the device for rebuilding: %s\n",
501 		       raidPtr->Disks[row][col].devname);
502 
503 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
504 				     proc, &vp);
505 
506 		if (retcode) {
507 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
508 			       raidPtr->Disks[row][col].devname, retcode);
509 
510 			/* XXX the component isn't responding properly...
511 			   must be still dead :-( */
512 			raidPtr->reconInProgress--;
513 			RF_UNLOCK_MUTEX(raidPtr->mutex);
514 			return(retcode);
515 
516 		} else {
517 
518 			/* Ok, so we can at least do a lookup...
519 			   How about actually getting a vp for it? */
520 
521 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
522 						   proc)) != 0) {
523 				raidPtr->reconInProgress--;
524 				RF_UNLOCK_MUTEX(raidPtr->mutex);
525 				return(retcode);
526 			}
527 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
528 					    FREAD, proc->p_ucred, proc);
529 			if (retcode) {
530 				raidPtr->reconInProgress--;
531 				RF_UNLOCK_MUTEX(raidPtr->mutex);
532 				return(retcode);
533 			}
534 			raidPtr->Disks[row][col].blockSize =
535 				dpart.disklab->d_secsize;
536 
537 			raidPtr->Disks[row][col].numBlocks =
538 				dpart.part->p_size - rf_protectedSectors;
539 
540 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
541 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
542 
543 			raidPtr->Disks[row][col].dev = va.va_rdev;
544 
545 			/* we allow the user to specify that only a
546 			   fraction of the disks should be used this is
547 			   just for debug:  it speeds up
548 			 * the parity scan */
549 			raidPtr->Disks[row][col].numBlocks =
550 				raidPtr->Disks[row][col].numBlocks *
551 				rf_sizePercentage / 100;
552 		}
553 
554 
555 
556 		spareDiskPtr = &raidPtr->Disks[row][col];
557 		spareDiskPtr->status = rf_ds_used_spare;
558 
559 		printf("RECON: initiating in-place reconstruction on\n");
560 		printf("       row %d col %d -> spare at row %d col %d\n",
561 		       row, col, row, col);
562 
563 		RF_UNLOCK_MUTEX(raidPtr->mutex);
564 
565 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
566 					       spareDiskPtr, numDisksDone,
567 					       row, col);
568 		raidPtr->reconDesc = (void *) reconDesc;
569 #if RF_RECON_STATS > 0
570 		reconDesc->hsStallCount = 0;
571 		reconDesc->numReconExecDelays = 0;
572 		reconDesc->numReconEventWaits = 0;
573 #endif				/* RF_RECON_STATS > 0 */
574 		reconDesc->reconExecTimerRunning = 0;
575 		reconDesc->reconExecTicks = 0;
576 		reconDesc->maxReconExecTicks = 0;
577 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
578 
579 		RF_LOCK_MUTEX(raidPtr->mutex);
580 		raidPtr->reconInProgress--;
581 		RF_UNLOCK_MUTEX(raidPtr->mutex);
582 
583 	} else {
584 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
585 			     lp->parityConfig);
586 		rc = EIO;
587 	}
588 	RF_LOCK_MUTEX(raidPtr->mutex);
589 
590 	if (!rc) {
591 		/* Need to set these here, as at this point it'll be claiming
592 		   that the disk is in rf_ds_spared!  But we know better :-) */
593 
594 		raidPtr->Disks[row][col].status = rf_ds_optimal;
595 		raidPtr->status[row] = rf_rs_optimal;
596 
597 		/* fix up the component label */
598 		/* Don't actually need the read here.. */
599 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
600 					 raidPtr->raid_cinfo[row][col].ci_vp,
601 					 &c_label);
602 
603 		raid_init_component_label(raidPtr, &c_label);
604 
605 		c_label.row = row;
606 		c_label.column = col;
607 
608 		/* We've just done a rebuild based on all the other
609 		   disks, so at this point the parity is known to be
610 		   clean, even if it wasn't before. */
611 
612 		/* XXX doesn't hold for RAID 6!!*/
613 
614 		raidPtr->parity_good = RF_RAID_CLEAN;
615 
616 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
617 					  raidPtr->raid_cinfo[row][col].ci_vp,
618 					  &c_label);
619 
620 	}
621 	RF_UNLOCK_MUTEX(raidPtr->mutex);
622 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
623 	wakeup(&raidPtr->waitForReconCond);
624 	return (rc);
625 }
626 
627 
628 int
629 rf_ContinueReconstructFailedDisk(reconDesc)
630 	RF_RaidReconDesc_t *reconDesc;
631 {
632 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
633 	RF_RowCol_t row = reconDesc->row;
634 	RF_RowCol_t col = reconDesc->col;
635 	RF_RowCol_t srow = reconDesc->srow;
636 	RF_RowCol_t scol = reconDesc->scol;
637 	RF_ReconMap_t *mapPtr;
638 
639 	RF_ReconEvent_t *event;
640 	struct timeval etime, elpsd;
641 	unsigned long xor_s, xor_resid_us;
642 	int     retcode, i, ds;
643 
644 	switch (reconDesc->state) {
645 
646 
647 	case 0:
648 
649 		raidPtr->accumXorTimeUs = 0;
650 
651 		/* create one trace record per physical disk */
652 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
653 
654 		/* quiesce the array prior to starting recon.  this is needed
655 		 * to assure no nasty interactions with pending user writes.
656 		 * We need to do this before we change the disk or row status. */
657 		reconDesc->state = 1;
658 
659 		Dprintf("RECON: begin request suspend\n");
660 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
661 		Dprintf("RECON: end request suspend\n");
662 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
663 						 * user accs */
664 
665 		/* fall through to state 1 */
666 
667 	case 1:
668 
669 		RF_LOCK_MUTEX(raidPtr->mutex);
670 
671 		/* create the reconstruction control pointer and install it in
672 		 * the right slot */
673 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
674 		mapPtr = raidPtr->reconControl[row]->reconMap;
675 		raidPtr->status[row] = rf_rs_reconstructing;
676 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
677 		raidPtr->Disks[row][col].spareRow = srow;
678 		raidPtr->Disks[row][col].spareCol = scol;
679 
680 		RF_UNLOCK_MUTEX(raidPtr->mutex);
681 
682 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
683 
684 		/* now start up the actual reconstruction: issue a read for
685 		 * each surviving disk */
686 
687 		reconDesc->numDisksDone = 0;
688 		for (i = 0; i < raidPtr->numCol; i++) {
689 			if (i != col) {
690 				/* find and issue the next I/O on the
691 				 * indicated disk */
692 				if (IssueNextReadRequest(raidPtr, row, i)) {
693 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
694 					reconDesc->numDisksDone++;
695 				}
696 			}
697 		}
698 
699 	case 2:
700 		Dprintf("RECON: resume requests\n");
701 		rf_ResumeNewRequests(raidPtr);
702 
703 
704 		reconDesc->state = 3;
705 
706 	case 3:
707 
708 		/* process reconstruction events until all disks report that
709 		 * they've completed all work */
710 		mapPtr = raidPtr->reconControl[row]->reconMap;
711 
712 
713 
714 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
715 
716 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
717 			RF_ASSERT(event);
718 
719 			if (ProcessReconEvent(raidPtr, row, event))
720 				reconDesc->numDisksDone++;
721 			raidPtr->reconControl[row]->numRUsTotal =
722 				mapPtr->totalRUs;
723 			raidPtr->reconControl[row]->numRUsComplete =
724 				mapPtr->totalRUs -
725 				rf_UnitsLeftToReconstruct(mapPtr);
726 
727 			raidPtr->reconControl[row]->percentComplete =
728 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
729 			if (rf_prReconSched) {
730 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
731 			}
732 		}
733 
734 
735 
736 		reconDesc->state = 4;
737 
738 
739 	case 4:
740 		mapPtr = raidPtr->reconControl[row]->reconMap;
741 		if (rf_reconDebug) {
742 			printf("RECON: all reads completed\n");
743 		}
744 		/* at this point all the reads have completed.  We now wait
745 		 * for any pending writes to complete, and then we're done */
746 
747 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
748 
749 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
750 			RF_ASSERT(event);
751 
752 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
753 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
754 			if (rf_prReconSched) {
755 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
756 			}
757 		}
758 		reconDesc->state = 5;
759 
760 	case 5:
761 		/* Success:  mark the dead disk as reconstructed.  We quiesce
762 		 * the array here to assure no nasty interactions with pending
763 		 * user accesses when we free up the psstatus structure as
764 		 * part of FreeReconControl() */
765 
766 		reconDesc->state = 6;
767 
768 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
769 		rf_StopUserStats(raidPtr);
770 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
771 						 * accs accumulated during
772 						 * recon */
773 
774 		/* fall through to state 6 */
775 	case 6:
776 
777 
778 
779 		RF_LOCK_MUTEX(raidPtr->mutex);
780 		raidPtr->numFailures--;
781 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
782 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
783 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
784 		RF_UNLOCK_MUTEX(raidPtr->mutex);
785 		RF_GETTIME(etime);
786 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
787 
788 		/* XXX -- why is state 7 different from state 6 if there is no
789 		 * return() here? -- XXX Note that I set elpsd above & use it
790 		 * below, so if you put a return here you'll have to fix this.
791 		 * (also, FreeReconControl is called below) */
792 
793 	case 7:
794 
795 		rf_ResumeNewRequests(raidPtr);
796 
797 		printf("Reconstruction of disk at row %d col %d completed\n",
798 		       row, col);
799 		xor_s = raidPtr->accumXorTimeUs / 1000000;
800 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
801 		printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
802 		    (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
803 		printf("  (start time %d sec %d usec, end time %d sec %d usec)\n",
804 		    (int) raidPtr->reconControl[row]->starttime.tv_sec,
805 		    (int) raidPtr->reconControl[row]->starttime.tv_usec,
806 		    (int) etime.tv_sec, (int) etime.tv_usec);
807 
808 #if RF_RECON_STATS > 0
809 		printf("Total head-sep stall count was %d\n",
810 		    (int) reconDesc->hsStallCount);
811 #endif				/* RF_RECON_STATS > 0 */
812 		rf_FreeReconControl(raidPtr, row);
813 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
814 		FreeReconDesc(reconDesc);
815 
816 	}
817 
818 	SignalReconDone(raidPtr);
819 	return (0);
820 }
821 /*****************************************************************************
822  * do the right thing upon each reconstruction event.
823  * returns nonzero if and only if there is nothing left unread on the
824  * indicated disk
825  *****************************************************************************/
826 static int
827 ProcessReconEvent(raidPtr, frow, event)
828 	RF_Raid_t *raidPtr;
829 	RF_RowCol_t frow;
830 	RF_ReconEvent_t *event;
831 {
832 	int     retcode = 0, submitblocked;
833 	RF_ReconBuffer_t *rbuf;
834 	RF_SectorCount_t sectorsPerRU;
835 
836 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
837 	switch (event->type) {
838 
839 		/* a read I/O has completed */
840 	case RF_REVENT_READDONE:
841 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
842 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
843 		    frow, event->col, rbuf->parityStripeID);
844 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
845 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
846 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
847 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
848 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
849 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
850 		if (!submitblocked)
851 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
852 		break;
853 
854 		/* a write I/O has completed */
855 	case RF_REVENT_WRITEDONE:
856 		if (rf_floatingRbufDebug) {
857 			rf_CheckFloatingRbufCount(raidPtr, 1);
858 		}
859 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
860 		rbuf = (RF_ReconBuffer_t *) event->arg;
861 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
862 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
863 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
864 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
865 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
866 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
867 
868 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
869 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
870 			raidPtr->numFullReconBuffers--;
871 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
872 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
873 		} else
874 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
875 				rf_FreeReconBuffer(rbuf);
876 			else
877 				RF_ASSERT(0);
878 		break;
879 
880 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
881 					 * cleared */
882 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
883 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
884 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
885 						 * BUFCLEAR event if we
886 						 * couldn't submit */
887 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
888 		break;
889 
890 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
891 					 * blockage has been cleared */
892 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
893 		retcode = TryToRead(raidPtr, frow, event->col);
894 		break;
895 
896 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
897 					 * reconstruction blockage has been
898 					 * cleared */
899 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
900 		retcode = TryToRead(raidPtr, frow, event->col);
901 		break;
902 
903 		/* a buffer has become ready to write */
904 	case RF_REVENT_BUFREADY:
905 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
906 		retcode = IssueNextWriteRequest(raidPtr, frow);
907 		if (rf_floatingRbufDebug) {
908 			rf_CheckFloatingRbufCount(raidPtr, 1);
909 		}
910 		break;
911 
912 		/* we need to skip the current RU entirely because it got
913 		 * recon'd while we were waiting for something else to happen */
914 	case RF_REVENT_SKIP:
915 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
916 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
917 		break;
918 
919 		/* a forced-reconstruction read access has completed.  Just
920 		 * submit the buffer */
921 	case RF_REVENT_FORCEDREADDONE:
922 		rbuf = (RF_ReconBuffer_t *) event->arg;
923 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
924 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
925 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
926 		RF_ASSERT(!submitblocked);
927 		break;
928 
929 	default:
930 		RF_PANIC();
931 	}
932 	rf_FreeReconEventDesc(event);
933 	return (retcode);
934 }
935 /*****************************************************************************
936  *
937  * find the next thing that's needed on the indicated disk, and issue
938  * a read request for it.  We assume that the reconstruction buffer
939  * associated with this process is free to receive the data.  If
940  * reconstruction is blocked on the indicated RU, we issue a
941  * blockage-release request instead of a physical disk read request.
942  * If the current disk gets too far ahead of the others, we issue a
943  * head-separation wait request and return.
944  *
945  * ctrl->{ru_count, curPSID, diskOffset} and
946  * rbuf->failedDiskSectorOffset are maintained to point to the unit
947  * we're currently accessing.  Note that this deviates from the
948  * standard C idiom of having counters point to the next thing to be
949  * accessed.  This allows us to easily retry when we're blocked by
950  * head separation or reconstruction-blockage events.
951  *
952  * returns nonzero if and only if there is nothing left unread on the
953  * indicated disk
954  *
955  *****************************************************************************/
956 static int
957 IssueNextReadRequest(raidPtr, row, col)
958 	RF_Raid_t *raidPtr;
959 	RF_RowCol_t row;
960 	RF_RowCol_t col;
961 {
962 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
963 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
964 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
965 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
966 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
967 	int     do_new_check = 0, retcode = 0, status;
968 
969 	/* if we are currently the slowest disk, mark that we have to do a new
970 	 * check */
971 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
972 		do_new_check = 1;
973 
974 	while (1) {
975 
976 		ctrl->ru_count++;
977 		if (ctrl->ru_count < RUsPerPU) {
978 			ctrl->diskOffset += sectorsPerRU;
979 			rbuf->failedDiskSectorOffset += sectorsPerRU;
980 		} else {
981 			ctrl->curPSID++;
982 			ctrl->ru_count = 0;
983 			/* code left over from when head-sep was based on
984 			 * parity stripe id */
985 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
986 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
987 				return (1);	/* finito! */
988 			}
989 			/* find the disk offsets of the start of the parity
990 			 * stripe on both the current disk and the failed
991 			 * disk. skip this entire parity stripe if either disk
992 			 * does not appear in the indicated PS */
993 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
994 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
995 			if (status) {
996 				ctrl->ru_count = RUsPerPU - 1;
997 				continue;
998 			}
999 		}
1000 		rbuf->which_ru = ctrl->ru_count;
1001 
1002 		/* skip this RU if it's already been reconstructed */
1003 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1004 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1005 			continue;
1006 		}
1007 		break;
1008 	}
1009 	ctrl->headSepCounter++;
1010 	if (do_new_check)
1011 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1012 
1013 
1014 	/* at this point, we have definitely decided what to do, and we have
1015 	 * only to see if we can actually do it now */
1016 	rbuf->parityStripeID = ctrl->curPSID;
1017 	rbuf->which_ru = ctrl->ru_count;
1018 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1019 	    sizeof(raidPtr->recon_tracerecs[col]));
1020 	raidPtr->recon_tracerecs[col].reconacc = 1;
1021 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1022 	retcode = TryToRead(raidPtr, row, col);
1023 	return (retcode);
1024 }
1025 
1026 /*
1027  * tries to issue the next read on the indicated disk.  We may be
1028  * blocked by (a) the heads being too far apart, or (b) recon on the
1029  * indicated RU being blocked due to a write by a user thread.  In
1030  * this case, we issue a head-sep or blockage wait request, which will
1031  * cause this same routine to be invoked again later when the blockage
1032  * has cleared.
1033  */
1034 
1035 static int
1036 TryToRead(raidPtr, row, col)
1037 	RF_Raid_t *raidPtr;
1038 	RF_RowCol_t row;
1039 	RF_RowCol_t col;
1040 {
1041 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1042 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1043 	RF_StripeNum_t psid = ctrl->curPSID;
1044 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1045 	RF_DiskQueueData_t *req;
1046 	int     status, created = 0;
1047 	RF_ReconParityStripeStatus_t *pssPtr;
1048 
1049 	/* if the current disk is too far ahead of the others, issue a
1050 	 * head-separation wait and return */
1051 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1052 		return (0);
1053 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1054 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1055 
1056 	/* if recon is blocked on the indicated parity stripe, issue a
1057 	 * block-wait request and return. this also must mark the indicated RU
1058 	 * in the stripe as under reconstruction if not blocked. */
1059 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1060 	if (status == RF_PSS_RECON_BLOCKED) {
1061 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1062 		goto out;
1063 	} else
1064 		if (status == RF_PSS_FORCED_ON_WRITE) {
1065 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1066 			goto out;
1067 		}
1068 	/* make one last check to be sure that the indicated RU didn't get
1069 	 * reconstructed while we were waiting for something else to happen.
1070 	 * This is unfortunate in that it causes us to make this check twice
1071 	 * in the normal case.  Might want to make some attempt to re-work
1072 	 * this so that we only do this check if we've definitely blocked on
1073 	 * one of the above checks.  When this condition is detected, we may
1074 	 * have just created a bogus status entry, which we need to delete. */
1075 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1076 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1077 		if (created)
1078 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1079 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1080 		goto out;
1081 	}
1082 	/* found something to read.  issue the I/O */
1083 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1084 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1085 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1086 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1087 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1088 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1089 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1090 
1091 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1092 	 * should be in kernel space */
1093 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1094 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1095 
1096 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1097 
1098 	ctrl->rbuf->arg = (void *) req;
1099 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1100 	pssPtr->issued[col] = 1;
1101 
1102 out:
1103 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1104 	return (0);
1105 }
1106 
1107 
1108 /*
1109  * given a parity stripe ID, we want to find out whether both the
1110  * current disk and the failed disk exist in that parity stripe.  If
1111  * not, we want to skip this whole PS.  If so, we want to find the
1112  * disk offset of the start of the PS on both the current disk and the
1113  * failed disk.
1114  *
1115  * this works by getting a list of disks comprising the indicated
1116  * parity stripe, and searching the list for the current and failed
1117  * disks.  Once we've decided they both exist in the parity stripe, we
1118  * need to decide whether each is data or parity, so that we'll know
1119  * which mapping function to call to get the corresponding disk
1120  * offsets.
1121  *
1122  * this is kind of unpleasant, but doing it this way allows the
1123  * reconstruction code to use parity stripe IDs rather than physical
1124  * disks address to march through the failed disk, which greatly
1125  * simplifies a lot of code, as well as eliminating the need for a
1126  * reverse-mapping function.  I also think it will execute faster,
1127  * since the calls to the mapping module are kept to a minimum.
1128  *
1129  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1130  * THE STRIPE IN THE CORRECT ORDER */
1131 
1132 
1133 static int
1134 ComputePSDiskOffsets(
1135     RF_Raid_t * raidPtr,	/* raid descriptor */
1136     RF_StripeNum_t psid,	/* parity stripe identifier */
1137     RF_RowCol_t row,		/* row and column of disk to find the offsets
1138 				 * for */
1139     RF_RowCol_t col,
1140     RF_SectorNum_t * outDiskOffset,
1141     RF_SectorNum_t * outFailedDiskSectorOffset,
1142     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1143     RF_RowCol_t * spCol,
1144     RF_SectorNum_t * spOffset)
1145 {				/* OUT: offset into disk containing spare unit */
1146 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1147 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1148 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1149 	RF_RowCol_t *diskids;
1150 	u_int   i, j, k, i_offset, j_offset;
1151 	RF_RowCol_t prow, pcol;
1152 	int     testcol, testrow;
1153 	RF_RowCol_t stripe;
1154 	RF_SectorNum_t poffset;
1155 	char    i_is_parity = 0, j_is_parity = 0;
1156 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1157 
1158 	/* get a listing of the disks comprising that stripe */
1159 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1160 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1161 	RF_ASSERT(diskids);
1162 
1163 	/* reject this entire parity stripe if it does not contain the
1164 	 * indicated disk or it does not contain the failed disk */
1165 	if (row != stripe)
1166 		goto skipit;
1167 	for (i = 0; i < stripeWidth; i++) {
1168 		if (col == diskids[i])
1169 			break;
1170 	}
1171 	if (i == stripeWidth)
1172 		goto skipit;
1173 	for (j = 0; j < stripeWidth; j++) {
1174 		if (fcol == diskids[j])
1175 			break;
1176 	}
1177 	if (j == stripeWidth) {
1178 		goto skipit;
1179 	}
1180 	/* find out which disk the parity is on */
1181 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1182 
1183 	/* find out if either the current RU or the failed RU is parity */
1184 	/* also, if the parity occurs in this stripe prior to the data and/or
1185 	 * failed col, we need to decrement i and/or j */
1186 	for (k = 0; k < stripeWidth; k++)
1187 		if (diskids[k] == pcol)
1188 			break;
1189 	RF_ASSERT(k < stripeWidth);
1190 	i_offset = i;
1191 	j_offset = j;
1192 	if (k < i)
1193 		i_offset--;
1194 	else
1195 		if (k == i) {
1196 			i_is_parity = 1;
1197 			i_offset = 0;
1198 		}		/* set offsets to zero to disable multiply
1199 				 * below */
1200 	if (k < j)
1201 		j_offset--;
1202 	else
1203 		if (k == j) {
1204 			j_is_parity = 1;
1205 			j_offset = 0;
1206 		}
1207 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1208 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1209 	 * tells us how far into the stripe the [current,failed] disk is. */
1210 
1211 	/* call the mapping routine to get the offset into the current disk,
1212 	 * repeat for failed disk. */
1213 	if (i_is_parity)
1214 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1215 	else
1216 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1217 
1218 	RF_ASSERT(row == testrow && col == testcol);
1219 
1220 	if (j_is_parity)
1221 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1222 	else
1223 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1224 	RF_ASSERT(row == testrow && fcol == testcol);
1225 
1226 	/* now locate the spare unit for the failed unit */
1227 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1228 		if (j_is_parity)
1229 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1230 		else
1231 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1232 	} else {
1233 		*spRow = raidPtr->reconControl[row]->spareRow;
1234 		*spCol = raidPtr->reconControl[row]->spareCol;
1235 		*spOffset = *outFailedDiskSectorOffset;
1236 	}
1237 
1238 	return (0);
1239 
1240 skipit:
1241 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1242 	    psid, row, col);
1243 	return (1);
1244 }
1245 /* this is called when a buffer has become ready to write to the replacement disk */
1246 static int
1247 IssueNextWriteRequest(raidPtr, row)
1248 	RF_Raid_t *raidPtr;
1249 	RF_RowCol_t row;
1250 {
1251 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1252 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1253 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1254 	RF_ReconBuffer_t *rbuf;
1255 	RF_DiskQueueData_t *req;
1256 
1257 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1258 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1259 				 * have gotten the event that sent us here */
1260 	RF_ASSERT(rbuf->pssPtr);
1261 
1262 	rbuf->pssPtr->writeRbuf = rbuf;
1263 	rbuf->pssPtr = NULL;
1264 
1265 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1266 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1267 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1268 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1269 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1270 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1271 
1272 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1273 	 * kernel space */
1274 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1275 	    sectorsPerRU, rbuf->buffer,
1276 	    rbuf->parityStripeID, rbuf->which_ru,
1277 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1278 	    &raidPtr->recon_tracerecs[fcol],
1279 	    (void *) raidPtr, 0, NULL);
1280 
1281 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1282 
1283 	rbuf->arg = (void *) req;
1284 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1285 
1286 	return (0);
1287 }
1288 
1289 /*
1290  * this gets called upon the completion of a reconstruction read
1291  * operation the arg is a pointer to the per-disk reconstruction
1292  * control structure for the process that just finished a read.
1293  *
1294  * called at interrupt context in the kernel, so don't do anything
1295  * illegal here.
1296  */
1297 static int
1298 ReconReadDoneProc(arg, status)
1299 	void   *arg;
1300 	int     status;
1301 {
1302 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1303 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1304 
1305 	if (status) {
1306 		/*
1307 	         * XXX
1308 	         */
1309 		printf("Recon read failed!\n");
1310 		RF_PANIC();
1311 	}
1312 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1313 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1314 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1315 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1316 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1317 
1318 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1319 	return (0);
1320 }
1321 /* this gets called upon the completion of a reconstruction write operation.
1322  * the arg is a pointer to the rbuf that was just written
1323  *
1324  * called at interrupt context in the kernel, so don't do anything illegal here.
1325  */
1326 static int
1327 ReconWriteDoneProc(arg, status)
1328 	void   *arg;
1329 	int     status;
1330 {
1331 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1332 
1333 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1334 	if (status) {
1335 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1336 							 * write failed!\n"); */
1337 		RF_PANIC();
1338 	}
1339 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1340 	return (0);
1341 }
1342 
1343 
1344 /*
1345  * computes a new minimum head sep, and wakes up anyone who needs to
1346  * be woken as a result
1347  */
1348 static void
1349 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1350 	RF_Raid_t *raidPtr;
1351 	RF_RowCol_t row;
1352 	RF_HeadSepLimit_t hsCtr;
1353 {
1354 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1355 	RF_HeadSepLimit_t new_min;
1356 	RF_RowCol_t i;
1357 	RF_CallbackDesc_t *p;
1358 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1359 								 * of a minimum */
1360 
1361 
1362 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1363 
1364 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1365 	for (i = 0; i < raidPtr->numCol; i++)
1366 		if (i != reconCtrlPtr->fcol) {
1367 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1368 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1369 		}
1370 	/* set the new minimum and wake up anyone who can now run again */
1371 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1372 		reconCtrlPtr->minHeadSepCounter = new_min;
1373 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1374 		while (reconCtrlPtr->headSepCBList) {
1375 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1376 				break;
1377 			p = reconCtrlPtr->headSepCBList;
1378 			reconCtrlPtr->headSepCBList = p->next;
1379 			p->next = NULL;
1380 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1381 			rf_FreeCallbackDesc(p);
1382 		}
1383 
1384 	}
1385 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1386 }
1387 
1388 /*
1389  * checks to see that the maximum head separation will not be violated
1390  * if we initiate a reconstruction I/O on the indicated disk.
1391  * Limiting the maximum head separation between two disks eliminates
1392  * the nasty buffer-stall conditions that occur when one disk races
1393  * ahead of the others and consumes all of the floating recon buffers.
1394  * This code is complex and unpleasant but it's necessary to avoid
1395  * some very nasty, albeit fairly rare, reconstruction behavior.
1396  *
1397  * returns non-zero if and only if we have to stop working on the
1398  * indicated disk due to a head-separation delay.
1399  */
1400 static int
1401 CheckHeadSeparation(
1402     RF_Raid_t * raidPtr,
1403     RF_PerDiskReconCtrl_t * ctrl,
1404     RF_RowCol_t row,
1405     RF_RowCol_t col,
1406     RF_HeadSepLimit_t hsCtr,
1407     RF_ReconUnitNum_t which_ru)
1408 {
1409 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1410 	RF_CallbackDesc_t *cb, *p, *pt;
1411 	int     retval = 0;
1412 
1413 	/* if we're too far ahead of the slowest disk, stop working on this
1414 	 * disk until the slower ones catch up.  We do this by scheduling a
1415 	 * wakeup callback for the time when the slowest disk has caught up.
1416 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1417 	 * must have fallen to at most 80% of the max allowable head
1418 	 * separation before we'll wake up.
1419 	 *
1420 	 */
1421 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1422 	if ((raidPtr->headSepLimit >= 0) &&
1423 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1424 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1425 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1426 			 reconCtrlPtr->minHeadSepCounter,
1427 			 raidPtr->headSepLimit);
1428 		cb = rf_AllocCallbackDesc();
1429 		/* the minHeadSepCounter value we have to get to before we'll
1430 		 * wake up.  build in 20% hysteresis. */
1431 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1432 		cb->row = row;
1433 		cb->col = col;
1434 		cb->next = NULL;
1435 
1436 		/* insert this callback descriptor into the sorted list of
1437 		 * pending head-sep callbacks */
1438 		p = reconCtrlPtr->headSepCBList;
1439 		if (!p)
1440 			reconCtrlPtr->headSepCBList = cb;
1441 		else
1442 			if (cb->callbackArg.v < p->callbackArg.v) {
1443 				cb->next = reconCtrlPtr->headSepCBList;
1444 				reconCtrlPtr->headSepCBList = cb;
1445 			} else {
1446 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1447 				cb->next = p;
1448 				pt->next = cb;
1449 			}
1450 		retval = 1;
1451 #if RF_RECON_STATS > 0
1452 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1453 #endif				/* RF_RECON_STATS > 0 */
1454 	}
1455 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1456 
1457 	return (retval);
1458 }
1459 /*
1460  * checks to see if reconstruction has been either forced or blocked
1461  * by a user operation.  if forced, we skip this RU entirely.  else if
1462  * blocked, put ourselves on the wait list.  else return 0.
1463  *
1464  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1465  */
1466 static int
1467 CheckForcedOrBlockedReconstruction(
1468     RF_Raid_t * raidPtr,
1469     RF_ReconParityStripeStatus_t * pssPtr,
1470     RF_PerDiskReconCtrl_t * ctrl,
1471     RF_RowCol_t row,
1472     RF_RowCol_t col,
1473     RF_StripeNum_t psid,
1474     RF_ReconUnitNum_t which_ru)
1475 {
1476 	RF_CallbackDesc_t *cb;
1477 	int     retcode = 0;
1478 
1479 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1480 		retcode = RF_PSS_FORCED_ON_WRITE;
1481 	else
1482 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1483 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1484 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1485 							 * the blockage-wait
1486 							 * list */
1487 			cb->row = row;
1488 			cb->col = col;
1489 			cb->next = pssPtr->blockWaitList;
1490 			pssPtr->blockWaitList = cb;
1491 			retcode = RF_PSS_RECON_BLOCKED;
1492 		}
1493 	if (!retcode)
1494 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1495 							 * reconstruction */
1496 
1497 	return (retcode);
1498 }
1499 /*
1500  * if reconstruction is currently ongoing for the indicated stripeID,
1501  * reconstruction is forced to completion and we return non-zero to
1502  * indicate that the caller must wait.  If not, then reconstruction is
1503  * blocked on the indicated stripe and the routine returns zero.  If
1504  * and only if we return non-zero, we'll cause the cbFunc to get
1505  * invoked with the cbArg when the reconstruction has completed.
1506  */
1507 int
1508 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1509 	RF_Raid_t *raidPtr;
1510 	RF_AccessStripeMap_t *asmap;
1511 	void    (*cbFunc) (RF_Raid_t *, void *);
1512 	void   *cbArg;
1513 {
1514 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1515 						 * we're working on */
1516 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1517 							 * forcing recon on */
1518 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1519 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1520 						 * stripe status structure */
1521 	RF_StripeNum_t psid;	/* parity stripe id */
1522 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1523 						 * offset */
1524 	RF_RowCol_t *diskids;
1525 	RF_RowCol_t stripe;
1526 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1527 	RF_RowCol_t fcol, diskno, i;
1528 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1529 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1530 	RF_CallbackDesc_t *cb;
1531 	int     created = 0, nPromoted;
1532 
1533 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1534 
1535 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1536 
1537 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1538 
1539 	/* if recon is not ongoing on this PS, just return */
1540 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1541 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1542 		return (0);
1543 	}
1544 	/* otherwise, we have to wait for reconstruction to complete on this
1545 	 * RU. */
1546 	/* In order to avoid waiting for a potentially large number of
1547 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1548 	 * not low-priority) reconstruction on this RU. */
1549 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1550 		DDprintf1("Forcing recon on psid %ld\n", psid);
1551 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1552 								 * forced recon */
1553 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1554 							 * that we just set */
1555 		fcol = raidPtr->reconControl[row]->fcol;
1556 
1557 		/* get a listing of the disks comprising the indicated stripe */
1558 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1559 		RF_ASSERT(row == stripe);
1560 
1561 		/* For previously issued reads, elevate them to normal
1562 		 * priority.  If the I/O has already completed, it won't be
1563 		 * found in the queue, and hence this will be a no-op. For
1564 		 * unissued reads, allocate buffers and issue new reads.  The
1565 		 * fact that we've set the FORCED bit means that the regular
1566 		 * recon procs will not re-issue these reqs */
1567 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1568 			if ((diskno = diskids[i]) != fcol) {
1569 				if (pssPtr->issued[diskno]) {
1570 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1571 					if (rf_reconDebug && nPromoted)
1572 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1573 				} else {
1574 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1575 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1576 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1577 													 * location */
1578 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1579 					new_rbuf->which_ru = which_ru;
1580 					new_rbuf->failedDiskSectorOffset = fd_offset;
1581 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1582 
1583 					/* use NULL b_proc b/c all addrs
1584 					 * should be in kernel space */
1585 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1586 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1587 					    NULL, (void *) raidPtr, 0, NULL);
1588 
1589 					RF_ASSERT(req);	/* XXX -- fix this --
1590 							 * XXX */
1591 
1592 					new_rbuf->arg = req;
1593 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1594 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1595 				}
1596 			}
1597 		/* if the write is sitting in the disk queue, elevate its
1598 		 * priority */
1599 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1600 			printf("raid%d: promoted write to row %d col %d\n",
1601 			       raidPtr->raidid, row, fcol);
1602 	}
1603 	/* install a callback descriptor to be invoked when recon completes on
1604 	 * this parity stripe. */
1605 	cb = rf_AllocCallbackDesc();
1606 	/* XXX the following is bogus.. These functions don't really match!!
1607 	 * GO */
1608 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1609 	cb->callbackArg.p = (void *) cbArg;
1610 	cb->next = pssPtr->procWaitList;
1611 	pssPtr->procWaitList = cb;
1612 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1613 		  raidPtr->raidid, psid);
1614 
1615 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1616 	return (1);
1617 }
1618 /* called upon the completion of a forced reconstruction read.
1619  * all we do is schedule the FORCEDREADONE event.
1620  * called at interrupt context in the kernel, so don't do anything illegal here.
1621  */
1622 static void
1623 ForceReconReadDoneProc(arg, status)
1624 	void   *arg;
1625 	int     status;
1626 {
1627 	RF_ReconBuffer_t *rbuf = arg;
1628 
1629 	if (status) {
1630 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1631 							 *  recon read
1632 							 * failed!\n"); */
1633 		RF_PANIC();
1634 	}
1635 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1636 }
1637 /* releases a block on the reconstruction of the indicated stripe */
1638 int
1639 rf_UnblockRecon(raidPtr, asmap)
1640 	RF_Raid_t *raidPtr;
1641 	RF_AccessStripeMap_t *asmap;
1642 {
1643 	RF_RowCol_t row = asmap->origRow;
1644 	RF_StripeNum_t stripeID = asmap->stripeID;
1645 	RF_ReconParityStripeStatus_t *pssPtr;
1646 	RF_ReconUnitNum_t which_ru;
1647 	RF_StripeNum_t psid;
1648 	int     created = 0;
1649 	RF_CallbackDesc_t *cb;
1650 
1651 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1652 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1653 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1654 
1655 	/* When recon is forced, the pss desc can get deleted before we get
1656 	 * back to unblock recon. But, this can _only_ happen when recon is
1657 	 * forced. It would be good to put some kind of sanity check here, but
1658 	 * how to decide if recon was just forced or not? */
1659 	if (!pssPtr) {
1660 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1661 		 * RU %d\n",psid,which_ru); */
1662 		if (rf_reconDebug || rf_pssDebug)
1663 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1664 		goto out;
1665 	}
1666 	pssPtr->blockCount--;
1667 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1668 		 raidPtr->raidid, psid, pssPtr->blockCount);
1669 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1670 
1671 		/* unblock recon before calling CauseReconEvent in case
1672 		 * CauseReconEvent causes us to try to issue a new read before
1673 		 * returning here. */
1674 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1675 
1676 
1677 		while (pssPtr->blockWaitList) {
1678 			/* spin through the block-wait list and
1679 			   release all the waiters */
1680 			cb = pssPtr->blockWaitList;
1681 			pssPtr->blockWaitList = cb->next;
1682 			cb->next = NULL;
1683 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1684 			rf_FreeCallbackDesc(cb);
1685 		}
1686 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1687 			/* if no recon was requested while recon was blocked */
1688 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1689 		}
1690 	}
1691 out:
1692 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1693 	return (0);
1694 }
1695