1 /* $NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_general.h" 59 #include "rf_freelist.h" 60 #include "rf_debugprint.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 static RF_FreeList_t *rf_recond_freelist; 82 #define RF_MAX_FREE_RECOND 4 83 #define RF_RECOND_INC 1 84 85 static RF_RaidReconDesc_t * 86 AllocRaidReconDesc(RF_Raid_t * raidPtr, 87 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 88 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 89 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 90 static int 91 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 92 RF_ReconEvent_t * event); 93 static int 94 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 95 RF_RowCol_t col); 96 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 97 static int 98 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 99 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 100 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 101 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 102 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 103 static int ReconReadDoneProc(void *arg, int status); 104 static int ReconWriteDoneProc(void *arg, int status); 105 static void 106 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 107 RF_HeadSepLimit_t hsCtr); 108 static int 109 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 110 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 111 RF_ReconUnitNum_t which_ru); 112 static int 113 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 114 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 115 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 116 RF_ReconUnitNum_t which_ru); 117 static void ForceReconReadDoneProc(void *arg, int status); 118 119 static void rf_ShutdownReconstruction(void *); 120 121 struct RF_ReconDoneProc_s { 122 void (*proc) (RF_Raid_t *, void *); 123 void *arg; 124 RF_ReconDoneProc_t *next; 125 }; 126 127 static RF_FreeList_t *rf_rdp_freelist; 128 #define RF_MAX_FREE_RDP 4 129 #define RF_RDP_INC 1 130 131 static void 132 SignalReconDone(RF_Raid_t * raidPtr) 133 { 134 RF_ReconDoneProc_t *p; 135 136 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 137 for (p = raidPtr->recon_done_procs; p; p = p->next) { 138 p->proc(raidPtr, p->arg); 139 } 140 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 141 } 142 143 int 144 rf_RegisterReconDoneProc( 145 RF_Raid_t * raidPtr, 146 void (*proc) (RF_Raid_t *, void *), 147 void *arg, 148 RF_ReconDoneProc_t ** handlep) 149 { 150 RF_ReconDoneProc_t *p; 151 152 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 153 if (p == NULL) 154 return (ENOMEM); 155 p->proc = proc; 156 p->arg = arg; 157 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 158 p->next = raidPtr->recon_done_procs; 159 raidPtr->recon_done_procs = p; 160 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 161 if (handlep) 162 *handlep = p; 163 return (0); 164 } 165 /************************************************************************** 166 * 167 * sets up the parameters that will be used by the reconstruction process 168 * currently there are none, except for those that the layout-specific 169 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 170 * 171 * in the kernel, we fire off the recon thread. 172 * 173 **************************************************************************/ 174 static void 175 rf_ShutdownReconstruction(ignored) 176 void *ignored; 177 { 178 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 179 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 180 } 181 182 int 183 rf_ConfigureReconstruction(listp) 184 RF_ShutdownList_t **listp; 185 { 186 int rc; 187 188 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 189 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 190 if (rf_recond_freelist == NULL) 191 return (ENOMEM); 192 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 193 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 194 if (rf_rdp_freelist == NULL) { 195 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 196 return (ENOMEM); 197 } 198 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 199 if (rc) { 200 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 201 __FILE__, __LINE__, rc); 202 rf_ShutdownReconstruction(NULL); 203 return (rc); 204 } 205 return (0); 206 } 207 208 static RF_RaidReconDesc_t * 209 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 210 RF_Raid_t *raidPtr; 211 RF_RowCol_t row; 212 RF_RowCol_t col; 213 RF_RaidDisk_t *spareDiskPtr; 214 int numDisksDone; 215 RF_RowCol_t srow; 216 RF_RowCol_t scol; 217 { 218 219 RF_RaidReconDesc_t *reconDesc; 220 221 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 222 223 reconDesc->raidPtr = raidPtr; 224 reconDesc->row = row; 225 reconDesc->col = col; 226 reconDesc->spareDiskPtr = spareDiskPtr; 227 reconDesc->numDisksDone = numDisksDone; 228 reconDesc->srow = srow; 229 reconDesc->scol = scol; 230 reconDesc->state = 0; 231 reconDesc->next = NULL; 232 233 return (reconDesc); 234 } 235 236 static void 237 FreeReconDesc(reconDesc) 238 RF_RaidReconDesc_t *reconDesc; 239 { 240 #if RF_RECON_STATS > 0 241 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 242 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 243 #endif /* RF_RECON_STATS > 0 */ 244 printf("RAIDframe: %lu max exec ticks\n", 245 (long) reconDesc->maxReconExecTicks); 246 #if (RF_RECON_STATS > 0) || defined(KERNEL) 247 printf("\n"); 248 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 249 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 250 } 251 252 253 /***************************************************************************** 254 * 255 * primary routine to reconstruct a failed disk. This should be called from 256 * within its own thread. It won't return until reconstruction completes, 257 * fails, or is aborted. 258 *****************************************************************************/ 259 int 260 rf_ReconstructFailedDisk(raidPtr, row, col) 261 RF_Raid_t *raidPtr; 262 RF_RowCol_t row; 263 RF_RowCol_t col; 264 { 265 RF_LayoutSW_t *lp; 266 int rc; 267 268 lp = raidPtr->Layout.map; 269 if (lp->SubmitReconBuffer) { 270 /* 271 * The current infrastructure only supports reconstructing one 272 * disk at a time for each array. 273 */ 274 RF_LOCK_MUTEX(raidPtr->mutex); 275 while (raidPtr->reconInProgress) { 276 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 277 } 278 raidPtr->reconInProgress++; 279 RF_UNLOCK_MUTEX(raidPtr->mutex); 280 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 281 RF_LOCK_MUTEX(raidPtr->mutex); 282 raidPtr->reconInProgress--; 283 RF_UNLOCK_MUTEX(raidPtr->mutex); 284 } else { 285 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 286 lp->parityConfig); 287 rc = EIO; 288 } 289 RF_SIGNAL_COND(raidPtr->waitForReconCond); 290 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 291 * needed at some point... GO */ 292 return (rc); 293 } 294 295 int 296 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 297 RF_Raid_t *raidPtr; 298 RF_RowCol_t row; 299 RF_RowCol_t col; 300 { 301 RF_ComponentLabel_t c_label; 302 RF_RaidDisk_t *spareDiskPtr = NULL; 303 RF_RaidReconDesc_t *reconDesc; 304 RF_RowCol_t srow, scol; 305 int numDisksDone = 0, rc; 306 307 /* first look for a spare drive onto which to reconstruct the data */ 308 /* spare disk descriptors are stored in row 0. This may have to 309 * change eventually */ 310 311 RF_LOCK_MUTEX(raidPtr->mutex); 312 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 313 314 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 315 if (raidPtr->status[row] != rf_rs_degraded) { 316 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 317 RF_UNLOCK_MUTEX(raidPtr->mutex); 318 return (EINVAL); 319 } 320 srow = row; 321 scol = (-1); 322 } else { 323 srow = 0; 324 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 325 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 326 spareDiskPtr = &raidPtr->Disks[srow][scol]; 327 spareDiskPtr->status = rf_ds_used_spare; 328 break; 329 } 330 } 331 if (!spareDiskPtr) { 332 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 333 RF_UNLOCK_MUTEX(raidPtr->mutex); 334 return (ENOSPC); 335 } 336 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 337 } 338 RF_UNLOCK_MUTEX(raidPtr->mutex); 339 340 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 341 raidPtr->reconDesc = (void *) reconDesc; 342 #if RF_RECON_STATS > 0 343 reconDesc->hsStallCount = 0; 344 reconDesc->numReconExecDelays = 0; 345 reconDesc->numReconEventWaits = 0; 346 #endif /* RF_RECON_STATS > 0 */ 347 reconDesc->reconExecTimerRunning = 0; 348 reconDesc->reconExecTicks = 0; 349 reconDesc->maxReconExecTicks = 0; 350 rc = rf_ContinueReconstructFailedDisk(reconDesc); 351 352 if (!rc) { 353 /* fix up the component label */ 354 /* Don't actually need the read here.. */ 355 raidread_component_label( 356 raidPtr->raid_cinfo[srow][scol].ci_dev, 357 raidPtr->raid_cinfo[srow][scol].ci_vp, 358 &c_label); 359 360 raid_init_component_label( raidPtr, &c_label); 361 c_label.row = row; 362 c_label.column = col; 363 c_label.clean = RF_RAID_DIRTY; 364 c_label.status = rf_ds_optimal; 365 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 366 367 /* We've just done a rebuild based on all the other 368 disks, so at this point the parity is known to be 369 clean, even if it wasn't before. */ 370 371 /* XXX doesn't hold for RAID 6!!*/ 372 373 raidPtr->parity_good = RF_RAID_CLEAN; 374 375 /* XXXX MORE NEEDED HERE */ 376 377 raidwrite_component_label( 378 raidPtr->raid_cinfo[srow][scol].ci_dev, 379 raidPtr->raid_cinfo[srow][scol].ci_vp, 380 &c_label); 381 382 } 383 return (rc); 384 } 385 386 /* 387 388 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 389 and you don't get a spare until the next Monday. With this function 390 (and hot-swappable drives) you can now put your new disk containing 391 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 392 rebuild the data "on the spot". 393 394 */ 395 396 int 397 rf_ReconstructInPlace(raidPtr, row, col) 398 RF_Raid_t *raidPtr; 399 RF_RowCol_t row; 400 RF_RowCol_t col; 401 { 402 RF_RaidDisk_t *spareDiskPtr = NULL; 403 RF_RaidReconDesc_t *reconDesc; 404 RF_LayoutSW_t *lp; 405 RF_RaidDisk_t *badDisk; 406 RF_ComponentLabel_t c_label; 407 int numDisksDone = 0, rc; 408 struct partinfo dpart; 409 struct vnode *vp; 410 struct vattr va; 411 struct proc *proc; 412 int retcode; 413 int ac; 414 415 lp = raidPtr->Layout.map; 416 if (lp->SubmitReconBuffer) { 417 /* 418 * The current infrastructure only supports reconstructing one 419 * disk at a time for each array. 420 */ 421 RF_LOCK_MUTEX(raidPtr->mutex); 422 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 423 (raidPtr->numFailures > 0)) { 424 /* XXX 0 above shouldn't be constant!!! */ 425 /* some component other than this has failed. 426 Let's not make things worse than they already 427 are... */ 428 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 429 printf(" Row: %d Col: %d Too many failures.\n", 430 row, col); 431 RF_UNLOCK_MUTEX(raidPtr->mutex); 432 return (EINVAL); 433 } 434 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 435 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 436 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 437 438 RF_UNLOCK_MUTEX(raidPtr->mutex); 439 return (EINVAL); 440 } 441 442 443 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 444 /* "It's gone..." */ 445 raidPtr->numFailures++; 446 raidPtr->Disks[row][col].status = rf_ds_failed; 447 raidPtr->status[row] = rf_rs_degraded; 448 rf_update_component_labels(raidPtr, 449 RF_NORMAL_COMPONENT_UPDATE); 450 } 451 452 while (raidPtr->reconInProgress) { 453 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 454 } 455 456 raidPtr->reconInProgress++; 457 458 459 /* first look for a spare drive onto which to reconstruct 460 the data. spare disk descriptors are stored in row 0. 461 This may have to change eventually */ 462 463 /* Actually, we don't care if it's failed or not... 464 On a RAID set with correct parity, this function 465 should be callable on any component without ill affects. */ 466 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 467 */ 468 469 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 470 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 471 472 raidPtr->reconInProgress--; 473 RF_UNLOCK_MUTEX(raidPtr->mutex); 474 return (EINVAL); 475 } 476 477 /* XXX need goop here to see if the disk is alive, 478 and, if not, make it so... */ 479 480 481 482 badDisk = &raidPtr->Disks[row][col]; 483 484 proc = raidPtr->engine_thread; 485 486 /* This device may have been opened successfully the 487 first time. Close it before trying to open it again.. */ 488 489 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 490 printf("Closed the open device: %s\n", 491 raidPtr->Disks[row][col].devname); 492 vp = raidPtr->raid_cinfo[row][col].ci_vp; 493 ac = raidPtr->Disks[row][col].auto_configured; 494 rf_close_component(raidPtr, vp, ac); 495 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 496 } 497 /* note that this disk was *not* auto_configured (any longer)*/ 498 raidPtr->Disks[row][col].auto_configured = 0; 499 500 printf("About to (re-)open the device for rebuilding: %s\n", 501 raidPtr->Disks[row][col].devname); 502 503 retcode = raidlookup(raidPtr->Disks[row][col].devname, 504 proc, &vp); 505 506 if (retcode) { 507 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 508 raidPtr->Disks[row][col].devname, retcode); 509 510 /* XXX the component isn't responding properly... 511 must be still dead :-( */ 512 raidPtr->reconInProgress--; 513 RF_UNLOCK_MUTEX(raidPtr->mutex); 514 return(retcode); 515 516 } else { 517 518 /* Ok, so we can at least do a lookup... 519 How about actually getting a vp for it? */ 520 521 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 522 proc)) != 0) { 523 raidPtr->reconInProgress--; 524 RF_UNLOCK_MUTEX(raidPtr->mutex); 525 return(retcode); 526 } 527 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 528 FREAD, proc->p_ucred, proc); 529 if (retcode) { 530 raidPtr->reconInProgress--; 531 RF_UNLOCK_MUTEX(raidPtr->mutex); 532 return(retcode); 533 } 534 raidPtr->Disks[row][col].blockSize = 535 dpart.disklab->d_secsize; 536 537 raidPtr->Disks[row][col].numBlocks = 538 dpart.part->p_size - rf_protectedSectors; 539 540 raidPtr->raid_cinfo[row][col].ci_vp = vp; 541 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 542 543 raidPtr->Disks[row][col].dev = va.va_rdev; 544 545 /* we allow the user to specify that only a 546 fraction of the disks should be used this is 547 just for debug: it speeds up 548 * the parity scan */ 549 raidPtr->Disks[row][col].numBlocks = 550 raidPtr->Disks[row][col].numBlocks * 551 rf_sizePercentage / 100; 552 } 553 554 555 556 spareDiskPtr = &raidPtr->Disks[row][col]; 557 spareDiskPtr->status = rf_ds_used_spare; 558 559 printf("RECON: initiating in-place reconstruction on\n"); 560 printf(" row %d col %d -> spare at row %d col %d\n", 561 row, col, row, col); 562 563 RF_UNLOCK_MUTEX(raidPtr->mutex); 564 565 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 566 spareDiskPtr, numDisksDone, 567 row, col); 568 raidPtr->reconDesc = (void *) reconDesc; 569 #if RF_RECON_STATS > 0 570 reconDesc->hsStallCount = 0; 571 reconDesc->numReconExecDelays = 0; 572 reconDesc->numReconEventWaits = 0; 573 #endif /* RF_RECON_STATS > 0 */ 574 reconDesc->reconExecTimerRunning = 0; 575 reconDesc->reconExecTicks = 0; 576 reconDesc->maxReconExecTicks = 0; 577 rc = rf_ContinueReconstructFailedDisk(reconDesc); 578 579 RF_LOCK_MUTEX(raidPtr->mutex); 580 raidPtr->reconInProgress--; 581 RF_UNLOCK_MUTEX(raidPtr->mutex); 582 583 } else { 584 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 585 lp->parityConfig); 586 rc = EIO; 587 } 588 RF_LOCK_MUTEX(raidPtr->mutex); 589 590 if (!rc) { 591 /* Need to set these here, as at this point it'll be claiming 592 that the disk is in rf_ds_spared! But we know better :-) */ 593 594 raidPtr->Disks[row][col].status = rf_ds_optimal; 595 raidPtr->status[row] = rf_rs_optimal; 596 597 /* fix up the component label */ 598 /* Don't actually need the read here.. */ 599 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 600 raidPtr->raid_cinfo[row][col].ci_vp, 601 &c_label); 602 603 raid_init_component_label(raidPtr, &c_label); 604 605 c_label.row = row; 606 c_label.column = col; 607 608 /* We've just done a rebuild based on all the other 609 disks, so at this point the parity is known to be 610 clean, even if it wasn't before. */ 611 612 /* XXX doesn't hold for RAID 6!!*/ 613 614 raidPtr->parity_good = RF_RAID_CLEAN; 615 616 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 617 raidPtr->raid_cinfo[row][col].ci_vp, 618 &c_label); 619 620 } 621 RF_UNLOCK_MUTEX(raidPtr->mutex); 622 RF_SIGNAL_COND(raidPtr->waitForReconCond); 623 wakeup(&raidPtr->waitForReconCond); 624 return (rc); 625 } 626 627 628 int 629 rf_ContinueReconstructFailedDisk(reconDesc) 630 RF_RaidReconDesc_t *reconDesc; 631 { 632 RF_Raid_t *raidPtr = reconDesc->raidPtr; 633 RF_RowCol_t row = reconDesc->row; 634 RF_RowCol_t col = reconDesc->col; 635 RF_RowCol_t srow = reconDesc->srow; 636 RF_RowCol_t scol = reconDesc->scol; 637 RF_ReconMap_t *mapPtr; 638 639 RF_ReconEvent_t *event; 640 struct timeval etime, elpsd; 641 unsigned long xor_s, xor_resid_us; 642 int retcode, i, ds; 643 644 switch (reconDesc->state) { 645 646 647 case 0: 648 649 raidPtr->accumXorTimeUs = 0; 650 651 /* create one trace record per physical disk */ 652 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 653 654 /* quiesce the array prior to starting recon. this is needed 655 * to assure no nasty interactions with pending user writes. 656 * We need to do this before we change the disk or row status. */ 657 reconDesc->state = 1; 658 659 Dprintf("RECON: begin request suspend\n"); 660 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 661 Dprintf("RECON: end request suspend\n"); 662 rf_StartUserStats(raidPtr); /* zero out the stats kept on 663 * user accs */ 664 665 /* fall through to state 1 */ 666 667 case 1: 668 669 RF_LOCK_MUTEX(raidPtr->mutex); 670 671 /* create the reconstruction control pointer and install it in 672 * the right slot */ 673 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 674 mapPtr = raidPtr->reconControl[row]->reconMap; 675 raidPtr->status[row] = rf_rs_reconstructing; 676 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 677 raidPtr->Disks[row][col].spareRow = srow; 678 raidPtr->Disks[row][col].spareCol = scol; 679 680 RF_UNLOCK_MUTEX(raidPtr->mutex); 681 682 RF_GETTIME(raidPtr->reconControl[row]->starttime); 683 684 /* now start up the actual reconstruction: issue a read for 685 * each surviving disk */ 686 687 reconDesc->numDisksDone = 0; 688 for (i = 0; i < raidPtr->numCol; i++) { 689 if (i != col) { 690 /* find and issue the next I/O on the 691 * indicated disk */ 692 if (IssueNextReadRequest(raidPtr, row, i)) { 693 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 694 reconDesc->numDisksDone++; 695 } 696 } 697 } 698 699 case 2: 700 Dprintf("RECON: resume requests\n"); 701 rf_ResumeNewRequests(raidPtr); 702 703 704 reconDesc->state = 3; 705 706 case 3: 707 708 /* process reconstruction events until all disks report that 709 * they've completed all work */ 710 mapPtr = raidPtr->reconControl[row]->reconMap; 711 712 713 714 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 715 716 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 717 RF_ASSERT(event); 718 719 if (ProcessReconEvent(raidPtr, row, event)) 720 reconDesc->numDisksDone++; 721 raidPtr->reconControl[row]->numRUsTotal = 722 mapPtr->totalRUs; 723 raidPtr->reconControl[row]->numRUsComplete = 724 mapPtr->totalRUs - 725 rf_UnitsLeftToReconstruct(mapPtr); 726 727 raidPtr->reconControl[row]->percentComplete = 728 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 729 if (rf_prReconSched) { 730 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 731 } 732 } 733 734 735 736 reconDesc->state = 4; 737 738 739 case 4: 740 mapPtr = raidPtr->reconControl[row]->reconMap; 741 if (rf_reconDebug) { 742 printf("RECON: all reads completed\n"); 743 } 744 /* at this point all the reads have completed. We now wait 745 * for any pending writes to complete, and then we're done */ 746 747 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 748 749 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 750 RF_ASSERT(event); 751 752 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 753 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 754 if (rf_prReconSched) { 755 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 756 } 757 } 758 reconDesc->state = 5; 759 760 case 5: 761 /* Success: mark the dead disk as reconstructed. We quiesce 762 * the array here to assure no nasty interactions with pending 763 * user accesses when we free up the psstatus structure as 764 * part of FreeReconControl() */ 765 766 reconDesc->state = 6; 767 768 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 769 rf_StopUserStats(raidPtr); 770 rf_PrintUserStats(raidPtr); /* print out the stats on user 771 * accs accumulated during 772 * recon */ 773 774 /* fall through to state 6 */ 775 case 6: 776 777 778 779 RF_LOCK_MUTEX(raidPtr->mutex); 780 raidPtr->numFailures--; 781 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 782 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 783 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 784 RF_UNLOCK_MUTEX(raidPtr->mutex); 785 RF_GETTIME(etime); 786 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 787 788 /* XXX -- why is state 7 different from state 6 if there is no 789 * return() here? -- XXX Note that I set elpsd above & use it 790 * below, so if you put a return here you'll have to fix this. 791 * (also, FreeReconControl is called below) */ 792 793 case 7: 794 795 rf_ResumeNewRequests(raidPtr); 796 797 printf("Reconstruction of disk at row %d col %d completed\n", 798 row, col); 799 xor_s = raidPtr->accumXorTimeUs / 1000000; 800 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 801 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 802 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 803 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 804 (int) raidPtr->reconControl[row]->starttime.tv_sec, 805 (int) raidPtr->reconControl[row]->starttime.tv_usec, 806 (int) etime.tv_sec, (int) etime.tv_usec); 807 808 #if RF_RECON_STATS > 0 809 printf("Total head-sep stall count was %d\n", 810 (int) reconDesc->hsStallCount); 811 #endif /* RF_RECON_STATS > 0 */ 812 rf_FreeReconControl(raidPtr, row); 813 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 814 FreeReconDesc(reconDesc); 815 816 } 817 818 SignalReconDone(raidPtr); 819 return (0); 820 } 821 /***************************************************************************** 822 * do the right thing upon each reconstruction event. 823 * returns nonzero if and only if there is nothing left unread on the 824 * indicated disk 825 *****************************************************************************/ 826 static int 827 ProcessReconEvent(raidPtr, frow, event) 828 RF_Raid_t *raidPtr; 829 RF_RowCol_t frow; 830 RF_ReconEvent_t *event; 831 { 832 int retcode = 0, submitblocked; 833 RF_ReconBuffer_t *rbuf; 834 RF_SectorCount_t sectorsPerRU; 835 836 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 837 switch (event->type) { 838 839 /* a read I/O has completed */ 840 case RF_REVENT_READDONE: 841 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 842 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 843 frow, event->col, rbuf->parityStripeID); 844 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 845 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 846 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 847 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 848 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 849 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 850 if (!submitblocked) 851 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 852 break; 853 854 /* a write I/O has completed */ 855 case RF_REVENT_WRITEDONE: 856 if (rf_floatingRbufDebug) { 857 rf_CheckFloatingRbufCount(raidPtr, 1); 858 } 859 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 860 rbuf = (RF_ReconBuffer_t *) event->arg; 861 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 862 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 863 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 864 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 865 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 866 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 867 868 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 869 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 870 raidPtr->numFullReconBuffers--; 871 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 872 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 873 } else 874 if (rbuf->type == RF_RBUF_TYPE_FORCED) 875 rf_FreeReconBuffer(rbuf); 876 else 877 RF_ASSERT(0); 878 break; 879 880 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 881 * cleared */ 882 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 883 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 884 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 885 * BUFCLEAR event if we 886 * couldn't submit */ 887 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 888 break; 889 890 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 891 * blockage has been cleared */ 892 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 893 retcode = TryToRead(raidPtr, frow, event->col); 894 break; 895 896 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 897 * reconstruction blockage has been 898 * cleared */ 899 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 900 retcode = TryToRead(raidPtr, frow, event->col); 901 break; 902 903 /* a buffer has become ready to write */ 904 case RF_REVENT_BUFREADY: 905 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 906 retcode = IssueNextWriteRequest(raidPtr, frow); 907 if (rf_floatingRbufDebug) { 908 rf_CheckFloatingRbufCount(raidPtr, 1); 909 } 910 break; 911 912 /* we need to skip the current RU entirely because it got 913 * recon'd while we were waiting for something else to happen */ 914 case RF_REVENT_SKIP: 915 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 916 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 917 break; 918 919 /* a forced-reconstruction read access has completed. Just 920 * submit the buffer */ 921 case RF_REVENT_FORCEDREADDONE: 922 rbuf = (RF_ReconBuffer_t *) event->arg; 923 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 924 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 925 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 926 RF_ASSERT(!submitblocked); 927 break; 928 929 default: 930 RF_PANIC(); 931 } 932 rf_FreeReconEventDesc(event); 933 return (retcode); 934 } 935 /***************************************************************************** 936 * 937 * find the next thing that's needed on the indicated disk, and issue 938 * a read request for it. We assume that the reconstruction buffer 939 * associated with this process is free to receive the data. If 940 * reconstruction is blocked on the indicated RU, we issue a 941 * blockage-release request instead of a physical disk read request. 942 * If the current disk gets too far ahead of the others, we issue a 943 * head-separation wait request and return. 944 * 945 * ctrl->{ru_count, curPSID, diskOffset} and 946 * rbuf->failedDiskSectorOffset are maintained to point to the unit 947 * we're currently accessing. Note that this deviates from the 948 * standard C idiom of having counters point to the next thing to be 949 * accessed. This allows us to easily retry when we're blocked by 950 * head separation or reconstruction-blockage events. 951 * 952 * returns nonzero if and only if there is nothing left unread on the 953 * indicated disk 954 * 955 *****************************************************************************/ 956 static int 957 IssueNextReadRequest(raidPtr, row, col) 958 RF_Raid_t *raidPtr; 959 RF_RowCol_t row; 960 RF_RowCol_t col; 961 { 962 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 963 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 964 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 965 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 966 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 967 int do_new_check = 0, retcode = 0, status; 968 969 /* if we are currently the slowest disk, mark that we have to do a new 970 * check */ 971 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 972 do_new_check = 1; 973 974 while (1) { 975 976 ctrl->ru_count++; 977 if (ctrl->ru_count < RUsPerPU) { 978 ctrl->diskOffset += sectorsPerRU; 979 rbuf->failedDiskSectorOffset += sectorsPerRU; 980 } else { 981 ctrl->curPSID++; 982 ctrl->ru_count = 0; 983 /* code left over from when head-sep was based on 984 * parity stripe id */ 985 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 986 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 987 return (1); /* finito! */ 988 } 989 /* find the disk offsets of the start of the parity 990 * stripe on both the current disk and the failed 991 * disk. skip this entire parity stripe if either disk 992 * does not appear in the indicated PS */ 993 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 994 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 995 if (status) { 996 ctrl->ru_count = RUsPerPU - 1; 997 continue; 998 } 999 } 1000 rbuf->which_ru = ctrl->ru_count; 1001 1002 /* skip this RU if it's already been reconstructed */ 1003 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1004 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1005 continue; 1006 } 1007 break; 1008 } 1009 ctrl->headSepCounter++; 1010 if (do_new_check) 1011 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1012 1013 1014 /* at this point, we have definitely decided what to do, and we have 1015 * only to see if we can actually do it now */ 1016 rbuf->parityStripeID = ctrl->curPSID; 1017 rbuf->which_ru = ctrl->ru_count; 1018 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1019 sizeof(raidPtr->recon_tracerecs[col])); 1020 raidPtr->recon_tracerecs[col].reconacc = 1; 1021 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1022 retcode = TryToRead(raidPtr, row, col); 1023 return (retcode); 1024 } 1025 1026 /* 1027 * tries to issue the next read on the indicated disk. We may be 1028 * blocked by (a) the heads being too far apart, or (b) recon on the 1029 * indicated RU being blocked due to a write by a user thread. In 1030 * this case, we issue a head-sep or blockage wait request, which will 1031 * cause this same routine to be invoked again later when the blockage 1032 * has cleared. 1033 */ 1034 1035 static int 1036 TryToRead(raidPtr, row, col) 1037 RF_Raid_t *raidPtr; 1038 RF_RowCol_t row; 1039 RF_RowCol_t col; 1040 { 1041 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1042 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1043 RF_StripeNum_t psid = ctrl->curPSID; 1044 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1045 RF_DiskQueueData_t *req; 1046 int status, created = 0; 1047 RF_ReconParityStripeStatus_t *pssPtr; 1048 1049 /* if the current disk is too far ahead of the others, issue a 1050 * head-separation wait and return */ 1051 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1052 return (0); 1053 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1054 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1055 1056 /* if recon is blocked on the indicated parity stripe, issue a 1057 * block-wait request and return. this also must mark the indicated RU 1058 * in the stripe as under reconstruction if not blocked. */ 1059 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1060 if (status == RF_PSS_RECON_BLOCKED) { 1061 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1062 goto out; 1063 } else 1064 if (status == RF_PSS_FORCED_ON_WRITE) { 1065 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1066 goto out; 1067 } 1068 /* make one last check to be sure that the indicated RU didn't get 1069 * reconstructed while we were waiting for something else to happen. 1070 * This is unfortunate in that it causes us to make this check twice 1071 * in the normal case. Might want to make some attempt to re-work 1072 * this so that we only do this check if we've definitely blocked on 1073 * one of the above checks. When this condition is detected, we may 1074 * have just created a bogus status entry, which we need to delete. */ 1075 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1076 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1077 if (created) 1078 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1079 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1080 goto out; 1081 } 1082 /* found something to read. issue the I/O */ 1083 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1084 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1085 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1086 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1087 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1088 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1089 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1090 1091 /* should be ok to use a NULL proc pointer here, all the bufs we use 1092 * should be in kernel space */ 1093 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1094 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1095 1096 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1097 1098 ctrl->rbuf->arg = (void *) req; 1099 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1100 pssPtr->issued[col] = 1; 1101 1102 out: 1103 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1104 return (0); 1105 } 1106 1107 1108 /* 1109 * given a parity stripe ID, we want to find out whether both the 1110 * current disk and the failed disk exist in that parity stripe. If 1111 * not, we want to skip this whole PS. If so, we want to find the 1112 * disk offset of the start of the PS on both the current disk and the 1113 * failed disk. 1114 * 1115 * this works by getting a list of disks comprising the indicated 1116 * parity stripe, and searching the list for the current and failed 1117 * disks. Once we've decided they both exist in the parity stripe, we 1118 * need to decide whether each is data or parity, so that we'll know 1119 * which mapping function to call to get the corresponding disk 1120 * offsets. 1121 * 1122 * this is kind of unpleasant, but doing it this way allows the 1123 * reconstruction code to use parity stripe IDs rather than physical 1124 * disks address to march through the failed disk, which greatly 1125 * simplifies a lot of code, as well as eliminating the need for a 1126 * reverse-mapping function. I also think it will execute faster, 1127 * since the calls to the mapping module are kept to a minimum. 1128 * 1129 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1130 * THE STRIPE IN THE CORRECT ORDER */ 1131 1132 1133 static int 1134 ComputePSDiskOffsets( 1135 RF_Raid_t * raidPtr, /* raid descriptor */ 1136 RF_StripeNum_t psid, /* parity stripe identifier */ 1137 RF_RowCol_t row, /* row and column of disk to find the offsets 1138 * for */ 1139 RF_RowCol_t col, 1140 RF_SectorNum_t * outDiskOffset, 1141 RF_SectorNum_t * outFailedDiskSectorOffset, 1142 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1143 RF_RowCol_t * spCol, 1144 RF_SectorNum_t * spOffset) 1145 { /* OUT: offset into disk containing spare unit */ 1146 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1147 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1148 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1149 RF_RowCol_t *diskids; 1150 u_int i, j, k, i_offset, j_offset; 1151 RF_RowCol_t prow, pcol; 1152 int testcol, testrow; 1153 RF_RowCol_t stripe; 1154 RF_SectorNum_t poffset; 1155 char i_is_parity = 0, j_is_parity = 0; 1156 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1157 1158 /* get a listing of the disks comprising that stripe */ 1159 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1160 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1161 RF_ASSERT(diskids); 1162 1163 /* reject this entire parity stripe if it does not contain the 1164 * indicated disk or it does not contain the failed disk */ 1165 if (row != stripe) 1166 goto skipit; 1167 for (i = 0; i < stripeWidth; i++) { 1168 if (col == diskids[i]) 1169 break; 1170 } 1171 if (i == stripeWidth) 1172 goto skipit; 1173 for (j = 0; j < stripeWidth; j++) { 1174 if (fcol == diskids[j]) 1175 break; 1176 } 1177 if (j == stripeWidth) { 1178 goto skipit; 1179 } 1180 /* find out which disk the parity is on */ 1181 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1182 1183 /* find out if either the current RU or the failed RU is parity */ 1184 /* also, if the parity occurs in this stripe prior to the data and/or 1185 * failed col, we need to decrement i and/or j */ 1186 for (k = 0; k < stripeWidth; k++) 1187 if (diskids[k] == pcol) 1188 break; 1189 RF_ASSERT(k < stripeWidth); 1190 i_offset = i; 1191 j_offset = j; 1192 if (k < i) 1193 i_offset--; 1194 else 1195 if (k == i) { 1196 i_is_parity = 1; 1197 i_offset = 0; 1198 } /* set offsets to zero to disable multiply 1199 * below */ 1200 if (k < j) 1201 j_offset--; 1202 else 1203 if (k == j) { 1204 j_is_parity = 1; 1205 j_offset = 0; 1206 } 1207 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1208 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1209 * tells us how far into the stripe the [current,failed] disk is. */ 1210 1211 /* call the mapping routine to get the offset into the current disk, 1212 * repeat for failed disk. */ 1213 if (i_is_parity) 1214 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1215 else 1216 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1217 1218 RF_ASSERT(row == testrow && col == testcol); 1219 1220 if (j_is_parity) 1221 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1222 else 1223 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1224 RF_ASSERT(row == testrow && fcol == testcol); 1225 1226 /* now locate the spare unit for the failed unit */ 1227 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1228 if (j_is_parity) 1229 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1230 else 1231 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1232 } else { 1233 *spRow = raidPtr->reconControl[row]->spareRow; 1234 *spCol = raidPtr->reconControl[row]->spareCol; 1235 *spOffset = *outFailedDiskSectorOffset; 1236 } 1237 1238 return (0); 1239 1240 skipit: 1241 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1242 psid, row, col); 1243 return (1); 1244 } 1245 /* this is called when a buffer has become ready to write to the replacement disk */ 1246 static int 1247 IssueNextWriteRequest(raidPtr, row) 1248 RF_Raid_t *raidPtr; 1249 RF_RowCol_t row; 1250 { 1251 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1252 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1253 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1254 RF_ReconBuffer_t *rbuf; 1255 RF_DiskQueueData_t *req; 1256 1257 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1258 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1259 * have gotten the event that sent us here */ 1260 RF_ASSERT(rbuf->pssPtr); 1261 1262 rbuf->pssPtr->writeRbuf = rbuf; 1263 rbuf->pssPtr = NULL; 1264 1265 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1266 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1267 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1268 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1269 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1270 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1271 1272 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1273 * kernel space */ 1274 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1275 sectorsPerRU, rbuf->buffer, 1276 rbuf->parityStripeID, rbuf->which_ru, 1277 ReconWriteDoneProc, (void *) rbuf, NULL, 1278 &raidPtr->recon_tracerecs[fcol], 1279 (void *) raidPtr, 0, NULL); 1280 1281 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1282 1283 rbuf->arg = (void *) req; 1284 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1285 1286 return (0); 1287 } 1288 1289 /* 1290 * this gets called upon the completion of a reconstruction read 1291 * operation the arg is a pointer to the per-disk reconstruction 1292 * control structure for the process that just finished a read. 1293 * 1294 * called at interrupt context in the kernel, so don't do anything 1295 * illegal here. 1296 */ 1297 static int 1298 ReconReadDoneProc(arg, status) 1299 void *arg; 1300 int status; 1301 { 1302 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1303 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1304 1305 if (status) { 1306 /* 1307 * XXX 1308 */ 1309 printf("Recon read failed!\n"); 1310 RF_PANIC(); 1311 } 1312 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1313 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1314 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1315 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1316 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1317 1318 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1319 return (0); 1320 } 1321 /* this gets called upon the completion of a reconstruction write operation. 1322 * the arg is a pointer to the rbuf that was just written 1323 * 1324 * called at interrupt context in the kernel, so don't do anything illegal here. 1325 */ 1326 static int 1327 ReconWriteDoneProc(arg, status) 1328 void *arg; 1329 int status; 1330 { 1331 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1332 1333 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1334 if (status) { 1335 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1336 * write failed!\n"); */ 1337 RF_PANIC(); 1338 } 1339 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1340 return (0); 1341 } 1342 1343 1344 /* 1345 * computes a new minimum head sep, and wakes up anyone who needs to 1346 * be woken as a result 1347 */ 1348 static void 1349 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1350 RF_Raid_t *raidPtr; 1351 RF_RowCol_t row; 1352 RF_HeadSepLimit_t hsCtr; 1353 { 1354 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1355 RF_HeadSepLimit_t new_min; 1356 RF_RowCol_t i; 1357 RF_CallbackDesc_t *p; 1358 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1359 * of a minimum */ 1360 1361 1362 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1363 1364 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1365 for (i = 0; i < raidPtr->numCol; i++) 1366 if (i != reconCtrlPtr->fcol) { 1367 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1368 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1369 } 1370 /* set the new minimum and wake up anyone who can now run again */ 1371 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1372 reconCtrlPtr->minHeadSepCounter = new_min; 1373 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1374 while (reconCtrlPtr->headSepCBList) { 1375 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1376 break; 1377 p = reconCtrlPtr->headSepCBList; 1378 reconCtrlPtr->headSepCBList = p->next; 1379 p->next = NULL; 1380 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1381 rf_FreeCallbackDesc(p); 1382 } 1383 1384 } 1385 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1386 } 1387 1388 /* 1389 * checks to see that the maximum head separation will not be violated 1390 * if we initiate a reconstruction I/O on the indicated disk. 1391 * Limiting the maximum head separation between two disks eliminates 1392 * the nasty buffer-stall conditions that occur when one disk races 1393 * ahead of the others and consumes all of the floating recon buffers. 1394 * This code is complex and unpleasant but it's necessary to avoid 1395 * some very nasty, albeit fairly rare, reconstruction behavior. 1396 * 1397 * returns non-zero if and only if we have to stop working on the 1398 * indicated disk due to a head-separation delay. 1399 */ 1400 static int 1401 CheckHeadSeparation( 1402 RF_Raid_t * raidPtr, 1403 RF_PerDiskReconCtrl_t * ctrl, 1404 RF_RowCol_t row, 1405 RF_RowCol_t col, 1406 RF_HeadSepLimit_t hsCtr, 1407 RF_ReconUnitNum_t which_ru) 1408 { 1409 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1410 RF_CallbackDesc_t *cb, *p, *pt; 1411 int retval = 0; 1412 1413 /* if we're too far ahead of the slowest disk, stop working on this 1414 * disk until the slower ones catch up. We do this by scheduling a 1415 * wakeup callback for the time when the slowest disk has caught up. 1416 * We define "caught up" with 20% hysteresis, i.e. the head separation 1417 * must have fallen to at most 80% of the max allowable head 1418 * separation before we'll wake up. 1419 * 1420 */ 1421 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1422 if ((raidPtr->headSepLimit >= 0) && 1423 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1424 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1425 raidPtr->raidid, row, col, ctrl->headSepCounter, 1426 reconCtrlPtr->minHeadSepCounter, 1427 raidPtr->headSepLimit); 1428 cb = rf_AllocCallbackDesc(); 1429 /* the minHeadSepCounter value we have to get to before we'll 1430 * wake up. build in 20% hysteresis. */ 1431 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1432 cb->row = row; 1433 cb->col = col; 1434 cb->next = NULL; 1435 1436 /* insert this callback descriptor into the sorted list of 1437 * pending head-sep callbacks */ 1438 p = reconCtrlPtr->headSepCBList; 1439 if (!p) 1440 reconCtrlPtr->headSepCBList = cb; 1441 else 1442 if (cb->callbackArg.v < p->callbackArg.v) { 1443 cb->next = reconCtrlPtr->headSepCBList; 1444 reconCtrlPtr->headSepCBList = cb; 1445 } else { 1446 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1447 cb->next = p; 1448 pt->next = cb; 1449 } 1450 retval = 1; 1451 #if RF_RECON_STATS > 0 1452 ctrl->reconCtrl->reconDesc->hsStallCount++; 1453 #endif /* RF_RECON_STATS > 0 */ 1454 } 1455 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1456 1457 return (retval); 1458 } 1459 /* 1460 * checks to see if reconstruction has been either forced or blocked 1461 * by a user operation. if forced, we skip this RU entirely. else if 1462 * blocked, put ourselves on the wait list. else return 0. 1463 * 1464 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1465 */ 1466 static int 1467 CheckForcedOrBlockedReconstruction( 1468 RF_Raid_t * raidPtr, 1469 RF_ReconParityStripeStatus_t * pssPtr, 1470 RF_PerDiskReconCtrl_t * ctrl, 1471 RF_RowCol_t row, 1472 RF_RowCol_t col, 1473 RF_StripeNum_t psid, 1474 RF_ReconUnitNum_t which_ru) 1475 { 1476 RF_CallbackDesc_t *cb; 1477 int retcode = 0; 1478 1479 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1480 retcode = RF_PSS_FORCED_ON_WRITE; 1481 else 1482 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1483 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1484 cb = rf_AllocCallbackDesc(); /* append ourselves to 1485 * the blockage-wait 1486 * list */ 1487 cb->row = row; 1488 cb->col = col; 1489 cb->next = pssPtr->blockWaitList; 1490 pssPtr->blockWaitList = cb; 1491 retcode = RF_PSS_RECON_BLOCKED; 1492 } 1493 if (!retcode) 1494 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1495 * reconstruction */ 1496 1497 return (retcode); 1498 } 1499 /* 1500 * if reconstruction is currently ongoing for the indicated stripeID, 1501 * reconstruction is forced to completion and we return non-zero to 1502 * indicate that the caller must wait. If not, then reconstruction is 1503 * blocked on the indicated stripe and the routine returns zero. If 1504 * and only if we return non-zero, we'll cause the cbFunc to get 1505 * invoked with the cbArg when the reconstruction has completed. 1506 */ 1507 int 1508 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1509 RF_Raid_t *raidPtr; 1510 RF_AccessStripeMap_t *asmap; 1511 void (*cbFunc) (RF_Raid_t *, void *); 1512 void *cbArg; 1513 { 1514 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1515 * we're working on */ 1516 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1517 * forcing recon on */ 1518 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1519 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1520 * stripe status structure */ 1521 RF_StripeNum_t psid; /* parity stripe id */ 1522 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1523 * offset */ 1524 RF_RowCol_t *diskids; 1525 RF_RowCol_t stripe; 1526 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1527 RF_RowCol_t fcol, diskno, i; 1528 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1529 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1530 RF_CallbackDesc_t *cb; 1531 int created = 0, nPromoted; 1532 1533 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1534 1535 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1536 1537 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1538 1539 /* if recon is not ongoing on this PS, just return */ 1540 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1541 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1542 return (0); 1543 } 1544 /* otherwise, we have to wait for reconstruction to complete on this 1545 * RU. */ 1546 /* In order to avoid waiting for a potentially large number of 1547 * low-priority accesses to complete, we force a normal-priority (i.e. 1548 * not low-priority) reconstruction on this RU. */ 1549 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1550 DDprintf1("Forcing recon on psid %ld\n", psid); 1551 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1552 * forced recon */ 1553 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1554 * that we just set */ 1555 fcol = raidPtr->reconControl[row]->fcol; 1556 1557 /* get a listing of the disks comprising the indicated stripe */ 1558 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1559 RF_ASSERT(row == stripe); 1560 1561 /* For previously issued reads, elevate them to normal 1562 * priority. If the I/O has already completed, it won't be 1563 * found in the queue, and hence this will be a no-op. For 1564 * unissued reads, allocate buffers and issue new reads. The 1565 * fact that we've set the FORCED bit means that the regular 1566 * recon procs will not re-issue these reqs */ 1567 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1568 if ((diskno = diskids[i]) != fcol) { 1569 if (pssPtr->issued[diskno]) { 1570 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1571 if (rf_reconDebug && nPromoted) 1572 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1573 } else { 1574 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1575 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1576 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1577 * location */ 1578 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1579 new_rbuf->which_ru = which_ru; 1580 new_rbuf->failedDiskSectorOffset = fd_offset; 1581 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1582 1583 /* use NULL b_proc b/c all addrs 1584 * should be in kernel space */ 1585 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1586 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1587 NULL, (void *) raidPtr, 0, NULL); 1588 1589 RF_ASSERT(req); /* XXX -- fix this -- 1590 * XXX */ 1591 1592 new_rbuf->arg = req; 1593 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1594 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1595 } 1596 } 1597 /* if the write is sitting in the disk queue, elevate its 1598 * priority */ 1599 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1600 printf("raid%d: promoted write to row %d col %d\n", 1601 raidPtr->raidid, row, fcol); 1602 } 1603 /* install a callback descriptor to be invoked when recon completes on 1604 * this parity stripe. */ 1605 cb = rf_AllocCallbackDesc(); 1606 /* XXX the following is bogus.. These functions don't really match!! 1607 * GO */ 1608 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1609 cb->callbackArg.p = (void *) cbArg; 1610 cb->next = pssPtr->procWaitList; 1611 pssPtr->procWaitList = cb; 1612 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1613 raidPtr->raidid, psid); 1614 1615 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1616 return (1); 1617 } 1618 /* called upon the completion of a forced reconstruction read. 1619 * all we do is schedule the FORCEDREADONE event. 1620 * called at interrupt context in the kernel, so don't do anything illegal here. 1621 */ 1622 static void 1623 ForceReconReadDoneProc(arg, status) 1624 void *arg; 1625 int status; 1626 { 1627 RF_ReconBuffer_t *rbuf = arg; 1628 1629 if (status) { 1630 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1631 * recon read 1632 * failed!\n"); */ 1633 RF_PANIC(); 1634 } 1635 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1636 } 1637 /* releases a block on the reconstruction of the indicated stripe */ 1638 int 1639 rf_UnblockRecon(raidPtr, asmap) 1640 RF_Raid_t *raidPtr; 1641 RF_AccessStripeMap_t *asmap; 1642 { 1643 RF_RowCol_t row = asmap->origRow; 1644 RF_StripeNum_t stripeID = asmap->stripeID; 1645 RF_ReconParityStripeStatus_t *pssPtr; 1646 RF_ReconUnitNum_t which_ru; 1647 RF_StripeNum_t psid; 1648 int created = 0; 1649 RF_CallbackDesc_t *cb; 1650 1651 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1652 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1653 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1654 1655 /* When recon is forced, the pss desc can get deleted before we get 1656 * back to unblock recon. But, this can _only_ happen when recon is 1657 * forced. It would be good to put some kind of sanity check here, but 1658 * how to decide if recon was just forced or not? */ 1659 if (!pssPtr) { 1660 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1661 * RU %d\n",psid,which_ru); */ 1662 if (rf_reconDebug || rf_pssDebug) 1663 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1664 goto out; 1665 } 1666 pssPtr->blockCount--; 1667 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1668 raidPtr->raidid, psid, pssPtr->blockCount); 1669 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1670 1671 /* unblock recon before calling CauseReconEvent in case 1672 * CauseReconEvent causes us to try to issue a new read before 1673 * returning here. */ 1674 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1675 1676 1677 while (pssPtr->blockWaitList) { 1678 /* spin through the block-wait list and 1679 release all the waiters */ 1680 cb = pssPtr->blockWaitList; 1681 pssPtr->blockWaitList = cb->next; 1682 cb->next = NULL; 1683 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1684 rf_FreeCallbackDesc(cb); 1685 } 1686 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1687 /* if no recon was requested while recon was blocked */ 1688 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1689 } 1690 } 1691 out: 1692 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1693 return (0); 1694 } 1695