1 /* $NetBSD: rf_reconstruct.c,v 1.21 2000/03/07 02:59:50 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include "rf_types.h" 36 #include <sys/time.h> 37 #include <sys/buf.h> 38 #include <sys/errno.h> 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_general.h" 58 #include "rf_freelist.h" 59 #include "rf_debugprint.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 static RF_FreeList_t *rf_recond_freelist; 81 #define RF_MAX_FREE_RECOND 4 82 #define RF_RECOND_INC 1 83 84 static RF_RaidReconDesc_t * 85 AllocRaidReconDesc(RF_Raid_t * raidPtr, 86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 89 static int 90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 91 RF_ReconEvent_t * event); 92 static int 93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 94 RF_RowCol_t col); 95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 96 static int 97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 102 static int ReconReadDoneProc(void *arg, int status); 103 static int ReconWriteDoneProc(void *arg, int status); 104 static void 105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 106 RF_HeadSepLimit_t hsCtr); 107 static int 108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 110 RF_ReconUnitNum_t which_ru); 111 static int 112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 115 RF_ReconUnitNum_t which_ru); 116 static void ForceReconReadDoneProc(void *arg, int status); 117 118 static void rf_ShutdownReconstruction(void *); 119 120 struct RF_ReconDoneProc_s { 121 void (*proc) (RF_Raid_t *, void *); 122 void *arg; 123 RF_ReconDoneProc_t *next; 124 }; 125 126 static RF_FreeList_t *rf_rdp_freelist; 127 #define RF_MAX_FREE_RDP 4 128 #define RF_RDP_INC 1 129 130 static void 131 SignalReconDone(RF_Raid_t * raidPtr) 132 { 133 RF_ReconDoneProc_t *p; 134 135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 136 for (p = raidPtr->recon_done_procs; p; p = p->next) { 137 p->proc(raidPtr, p->arg); 138 } 139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 140 } 141 142 int 143 rf_RegisterReconDoneProc( 144 RF_Raid_t * raidPtr, 145 void (*proc) (RF_Raid_t *, void *), 146 void *arg, 147 RF_ReconDoneProc_t ** handlep) 148 { 149 RF_ReconDoneProc_t *p; 150 151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 152 if (p == NULL) 153 return (ENOMEM); 154 p->proc = proc; 155 p->arg = arg; 156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 157 p->next = raidPtr->recon_done_procs; 158 raidPtr->recon_done_procs = p; 159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 160 if (handlep) 161 *handlep = p; 162 return (0); 163 } 164 /************************************************************************** 165 * 166 * sets up the parameters that will be used by the reconstruction process 167 * currently there are none, except for those that the layout-specific 168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 169 * 170 * in the kernel, we fire off the recon thread. 171 * 172 **************************************************************************/ 173 static void 174 rf_ShutdownReconstruction(ignored) 175 void *ignored; 176 { 177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 179 } 180 181 int 182 rf_ConfigureReconstruction(listp) 183 RF_ShutdownList_t **listp; 184 { 185 int rc; 186 187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 189 if (rf_recond_freelist == NULL) 190 return (ENOMEM); 191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 193 if (rf_rdp_freelist == NULL) { 194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 195 return (ENOMEM); 196 } 197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 198 if (rc) { 199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 200 __FILE__, __LINE__, rc); 201 rf_ShutdownReconstruction(NULL); 202 return (rc); 203 } 204 return (0); 205 } 206 207 static RF_RaidReconDesc_t * 208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 209 RF_Raid_t *raidPtr; 210 RF_RowCol_t row; 211 RF_RowCol_t col; 212 RF_RaidDisk_t *spareDiskPtr; 213 int numDisksDone; 214 RF_RowCol_t srow; 215 RF_RowCol_t scol; 216 { 217 218 RF_RaidReconDesc_t *reconDesc; 219 220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 221 222 reconDesc->raidPtr = raidPtr; 223 reconDesc->row = row; 224 reconDesc->col = col; 225 reconDesc->spareDiskPtr = spareDiskPtr; 226 reconDesc->numDisksDone = numDisksDone; 227 reconDesc->srow = srow; 228 reconDesc->scol = scol; 229 reconDesc->state = 0; 230 reconDesc->next = NULL; 231 232 return (reconDesc); 233 } 234 235 static void 236 FreeReconDesc(reconDesc) 237 RF_RaidReconDesc_t *reconDesc; 238 { 239 #if RF_RECON_STATS > 0 240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 242 #endif /* RF_RECON_STATS > 0 */ 243 printf("RAIDframe: %lu max exec ticks\n", 244 (long) reconDesc->maxReconExecTicks); 245 #if (RF_RECON_STATS > 0) || defined(KERNEL) 246 printf("\n"); 247 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 249 } 250 251 252 /***************************************************************************** 253 * 254 * primary routine to reconstruct a failed disk. This should be called from 255 * within its own thread. It won't return until reconstruction completes, 256 * fails, or is aborted. 257 *****************************************************************************/ 258 int 259 rf_ReconstructFailedDisk(raidPtr, row, col) 260 RF_Raid_t *raidPtr; 261 RF_RowCol_t row; 262 RF_RowCol_t col; 263 { 264 RF_LayoutSW_t *lp; 265 int rc; 266 267 lp = raidPtr->Layout.map; 268 if (lp->SubmitReconBuffer) { 269 /* 270 * The current infrastructure only supports reconstructing one 271 * disk at a time for each array. 272 */ 273 RF_LOCK_MUTEX(raidPtr->mutex); 274 while (raidPtr->reconInProgress) { 275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 276 } 277 raidPtr->reconInProgress++; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 280 RF_LOCK_MUTEX(raidPtr->mutex); 281 raidPtr->reconInProgress--; 282 RF_UNLOCK_MUTEX(raidPtr->mutex); 283 } else { 284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 285 lp->parityConfig); 286 rc = EIO; 287 } 288 RF_SIGNAL_COND(raidPtr->waitForReconCond); 289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 290 * needed at some point... GO */ 291 return (rc); 292 } 293 294 int 295 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 296 RF_Raid_t *raidPtr; 297 RF_RowCol_t row; 298 RF_RowCol_t col; 299 { 300 RF_ComponentLabel_t c_label; 301 RF_RaidDisk_t *spareDiskPtr = NULL; 302 RF_RaidReconDesc_t *reconDesc; 303 RF_RowCol_t srow, scol; 304 int numDisksDone = 0, rc; 305 306 /* first look for a spare drive onto which to reconstruct the data */ 307 /* spare disk descriptors are stored in row 0. This may have to 308 * change eventually */ 309 310 RF_LOCK_MUTEX(raidPtr->mutex); 311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 312 313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 314 if (raidPtr->status[row] != rf_rs_degraded) { 315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 316 RF_UNLOCK_MUTEX(raidPtr->mutex); 317 return (EINVAL); 318 } 319 srow = row; 320 scol = (-1); 321 } else { 322 srow = 0; 323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 325 spareDiskPtr = &raidPtr->Disks[srow][scol]; 326 spareDiskPtr->status = rf_ds_used_spare; 327 break; 328 } 329 } 330 if (!spareDiskPtr) { 331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 332 RF_UNLOCK_MUTEX(raidPtr->mutex); 333 return (ENOSPC); 334 } 335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 336 } 337 RF_UNLOCK_MUTEX(raidPtr->mutex); 338 339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 340 raidPtr->reconDesc = (void *) reconDesc; 341 #if RF_RECON_STATS > 0 342 reconDesc->hsStallCount = 0; 343 reconDesc->numReconExecDelays = 0; 344 reconDesc->numReconEventWaits = 0; 345 #endif /* RF_RECON_STATS > 0 */ 346 reconDesc->reconExecTimerRunning = 0; 347 reconDesc->reconExecTicks = 0; 348 reconDesc->maxReconExecTicks = 0; 349 rc = rf_ContinueReconstructFailedDisk(reconDesc); 350 351 if (!rc) { 352 /* fix up the component label */ 353 /* Don't actually need the read here.. */ 354 raidread_component_label( 355 raidPtr->raid_cinfo[srow][scol].ci_dev, 356 raidPtr->raid_cinfo[srow][scol].ci_vp, 357 &c_label); 358 359 raid_init_component_label( raidPtr, &c_label); 360 c_label.row = row; 361 c_label.column = col; 362 c_label.clean = RF_RAID_DIRTY; 363 c_label.status = rf_ds_optimal; 364 365 /* XXXX MORE NEEDED HERE */ 366 367 raidwrite_component_label( 368 raidPtr->raid_cinfo[srow][scol].ci_dev, 369 raidPtr->raid_cinfo[srow][scol].ci_vp, 370 &c_label); 371 372 } 373 return (rc); 374 } 375 376 /* 377 378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 379 and you don't get a spare until the next Monday. With this function 380 (and hot-swappable drives) you can now put your new disk containing 381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 382 rebuild the data "on the spot". 383 384 */ 385 386 int 387 rf_ReconstructInPlace(raidPtr, row, col) 388 RF_Raid_t *raidPtr; 389 RF_RowCol_t row; 390 RF_RowCol_t col; 391 { 392 RF_RaidDisk_t *spareDiskPtr = NULL; 393 RF_RaidReconDesc_t *reconDesc; 394 RF_LayoutSW_t *lp; 395 RF_RaidDisk_t *badDisk; 396 RF_ComponentLabel_t c_label; 397 int numDisksDone = 0, rc; 398 struct partinfo dpart; 399 struct vnode *vp; 400 struct vattr va; 401 struct proc *proc; 402 int retcode; 403 int ac; 404 405 lp = raidPtr->Layout.map; 406 if (lp->SubmitReconBuffer) { 407 /* 408 * The current infrastructure only supports reconstructing one 409 * disk at a time for each array. 410 */ 411 RF_LOCK_MUTEX(raidPtr->mutex); 412 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 413 (raidPtr->numFailures > 0)) { 414 /* XXX 0 above shouldn't be constant!!! */ 415 /* some component other than this has failed. 416 Let's not make things worse than they already 417 are... */ 418 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 419 printf(" Row: %d Col: %d Too many failures.\n", 420 row, col); 421 RF_UNLOCK_MUTEX(raidPtr->mutex); 422 return (EINVAL); 423 } 424 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 425 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 426 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 427 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 return (EINVAL); 430 } 431 432 433 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 434 /* "It's gone..." */ 435 raidPtr->numFailures++; 436 raidPtr->Disks[row][col].status = rf_ds_failed; 437 raidPtr->status[row] = rf_rs_degraded; 438 rf_update_component_labels(raidPtr); 439 } 440 441 while (raidPtr->reconInProgress) { 442 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 443 } 444 445 raidPtr->reconInProgress++; 446 447 448 /* first look for a spare drive onto which to reconstruct 449 the data. spare disk descriptors are stored in row 0. 450 This may have to change eventually */ 451 452 /* Actually, we don't care if it's failed or not... 453 On a RAID set with correct parity, this function 454 should be callable on any component without ill affects. */ 455 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 456 */ 457 458 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 459 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 460 461 raidPtr->reconInProgress--; 462 RF_UNLOCK_MUTEX(raidPtr->mutex); 463 return (EINVAL); 464 } 465 466 /* XXX need goop here to see if the disk is alive, 467 and, if not, make it so... */ 468 469 470 471 badDisk = &raidPtr->Disks[row][col]; 472 473 proc = raidPtr->engine_thread; 474 475 /* This device may have been opened successfully the 476 first time. Close it before trying to open it again.. */ 477 478 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 479 printf("Closed the open device: %s\n", 480 raidPtr->Disks[row][col].devname); 481 vp = raidPtr->raid_cinfo[row][col].ci_vp; 482 ac = raidPtr->Disks[row][col].auto_configured; 483 rf_close_component(raidPtr, vp, ac); 484 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 485 } 486 /* note that this disk was *not* auto_configured (any longer)*/ 487 raidPtr->Disks[row][col].auto_configured = 0; 488 489 printf("About to (re-)open the device for rebuilding: %s\n", 490 raidPtr->Disks[row][col].devname); 491 492 retcode = raidlookup(raidPtr->Disks[row][col].devname, 493 proc, &vp); 494 495 if (retcode) { 496 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 497 raidPtr->Disks[row][col].devname, retcode); 498 499 /* XXX the component isn't responding properly... 500 must be still dead :-( */ 501 raidPtr->reconInProgress--; 502 RF_UNLOCK_MUTEX(raidPtr->mutex); 503 return(retcode); 504 505 } else { 506 507 /* Ok, so we can at least do a lookup... 508 How about actually getting a vp for it? */ 509 510 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 511 proc)) != 0) { 512 raidPtr->reconInProgress--; 513 RF_UNLOCK_MUTEX(raidPtr->mutex); 514 return(retcode); 515 } 516 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 517 FREAD, proc->p_ucred, proc); 518 if (retcode) { 519 raidPtr->reconInProgress--; 520 RF_UNLOCK_MUTEX(raidPtr->mutex); 521 return(retcode); 522 } 523 raidPtr->Disks[row][col].blockSize = 524 dpart.disklab->d_secsize; 525 526 raidPtr->Disks[row][col].numBlocks = 527 dpart.part->p_size - rf_protectedSectors; 528 529 raidPtr->raid_cinfo[row][col].ci_vp = vp; 530 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 531 532 raidPtr->Disks[row][col].dev = va.va_rdev; 533 534 /* we allow the user to specify that only a 535 fraction of the disks should be used this is 536 just for debug: it speeds up 537 * the parity scan */ 538 raidPtr->Disks[row][col].numBlocks = 539 raidPtr->Disks[row][col].numBlocks * 540 rf_sizePercentage / 100; 541 } 542 543 544 545 spareDiskPtr = &raidPtr->Disks[row][col]; 546 spareDiskPtr->status = rf_ds_used_spare; 547 548 printf("RECON: initiating in-place reconstruction on\n"); 549 printf(" row %d col %d -> spare at row %d col %d\n", 550 row, col, row, col); 551 552 RF_UNLOCK_MUTEX(raidPtr->mutex); 553 554 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 555 spareDiskPtr, numDisksDone, 556 row, col); 557 raidPtr->reconDesc = (void *) reconDesc; 558 #if RF_RECON_STATS > 0 559 reconDesc->hsStallCount = 0; 560 reconDesc->numReconExecDelays = 0; 561 reconDesc->numReconEventWaits = 0; 562 #endif /* RF_RECON_STATS > 0 */ 563 reconDesc->reconExecTimerRunning = 0; 564 reconDesc->reconExecTicks = 0; 565 reconDesc->maxReconExecTicks = 0; 566 rc = rf_ContinueReconstructFailedDisk(reconDesc); 567 568 RF_LOCK_MUTEX(raidPtr->mutex); 569 raidPtr->reconInProgress--; 570 RF_UNLOCK_MUTEX(raidPtr->mutex); 571 572 } else { 573 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 574 lp->parityConfig); 575 rc = EIO; 576 } 577 RF_LOCK_MUTEX(raidPtr->mutex); 578 579 if (!rc) { 580 /* Need to set these here, as at this point it'll be claiming 581 that the disk is in rf_ds_spared! But we know better :-) */ 582 583 raidPtr->Disks[row][col].status = rf_ds_optimal; 584 raidPtr->status[row] = rf_rs_optimal; 585 586 /* fix up the component label */ 587 /* Don't actually need the read here.. */ 588 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 589 raidPtr->raid_cinfo[row][col].ci_vp, 590 &c_label); 591 592 raid_init_component_label(raidPtr, &c_label); 593 594 c_label.row = row; 595 c_label.column = col; 596 597 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 598 raidPtr->raid_cinfo[row][col].ci_vp, 599 &c_label); 600 601 } 602 RF_UNLOCK_MUTEX(raidPtr->mutex); 603 RF_SIGNAL_COND(raidPtr->waitForReconCond); 604 wakeup(&raidPtr->waitForReconCond); 605 return (rc); 606 } 607 608 609 int 610 rf_ContinueReconstructFailedDisk(reconDesc) 611 RF_RaidReconDesc_t *reconDesc; 612 { 613 RF_Raid_t *raidPtr = reconDesc->raidPtr; 614 RF_RowCol_t row = reconDesc->row; 615 RF_RowCol_t col = reconDesc->col; 616 RF_RowCol_t srow = reconDesc->srow; 617 RF_RowCol_t scol = reconDesc->scol; 618 RF_ReconMap_t *mapPtr; 619 620 RF_ReconEvent_t *event; 621 struct timeval etime, elpsd; 622 unsigned long xor_s, xor_resid_us; 623 int retcode, i, ds; 624 625 switch (reconDesc->state) { 626 627 628 case 0: 629 630 raidPtr->accumXorTimeUs = 0; 631 632 /* create one trace record per physical disk */ 633 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 634 635 /* quiesce the array prior to starting recon. this is needed 636 * to assure no nasty interactions with pending user writes. 637 * We need to do this before we change the disk or row status. */ 638 reconDesc->state = 1; 639 640 Dprintf("RECON: begin request suspend\n"); 641 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 642 Dprintf("RECON: end request suspend\n"); 643 rf_StartUserStats(raidPtr); /* zero out the stats kept on 644 * user accs */ 645 646 /* fall through to state 1 */ 647 648 case 1: 649 650 RF_LOCK_MUTEX(raidPtr->mutex); 651 652 /* create the reconstruction control pointer and install it in 653 * the right slot */ 654 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 655 mapPtr = raidPtr->reconControl[row]->reconMap; 656 raidPtr->status[row] = rf_rs_reconstructing; 657 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 658 raidPtr->Disks[row][col].spareRow = srow; 659 raidPtr->Disks[row][col].spareCol = scol; 660 661 RF_UNLOCK_MUTEX(raidPtr->mutex); 662 663 RF_GETTIME(raidPtr->reconControl[row]->starttime); 664 665 /* now start up the actual reconstruction: issue a read for 666 * each surviving disk */ 667 668 reconDesc->numDisksDone = 0; 669 for (i = 0; i < raidPtr->numCol; i++) { 670 if (i != col) { 671 /* find and issue the next I/O on the 672 * indicated disk */ 673 if (IssueNextReadRequest(raidPtr, row, i)) { 674 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 675 reconDesc->numDisksDone++; 676 } 677 } 678 } 679 680 case 2: 681 Dprintf("RECON: resume requests\n"); 682 rf_ResumeNewRequests(raidPtr); 683 684 685 reconDesc->state = 3; 686 687 case 3: 688 689 /* process reconstruction events until all disks report that 690 * they've completed all work */ 691 mapPtr = raidPtr->reconControl[row]->reconMap; 692 693 694 695 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 696 697 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 698 RF_ASSERT(event); 699 700 if (ProcessReconEvent(raidPtr, row, event)) 701 reconDesc->numDisksDone++; 702 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 703 if (rf_prReconSched) { 704 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 705 } 706 } 707 708 709 710 reconDesc->state = 4; 711 712 713 case 4: 714 mapPtr = raidPtr->reconControl[row]->reconMap; 715 if (rf_reconDebug) { 716 printf("RECON: all reads completed\n"); 717 } 718 /* at this point all the reads have completed. We now wait 719 * for any pending writes to complete, and then we're done */ 720 721 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 722 723 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 724 RF_ASSERT(event); 725 726 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 727 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 728 if (rf_prReconSched) { 729 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 730 } 731 } 732 reconDesc->state = 5; 733 734 case 5: 735 /* Success: mark the dead disk as reconstructed. We quiesce 736 * the array here to assure no nasty interactions with pending 737 * user accesses when we free up the psstatus structure as 738 * part of FreeReconControl() */ 739 740 reconDesc->state = 6; 741 742 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 743 rf_StopUserStats(raidPtr); 744 rf_PrintUserStats(raidPtr); /* print out the stats on user 745 * accs accumulated during 746 * recon */ 747 748 /* fall through to state 6 */ 749 case 6: 750 751 752 753 RF_LOCK_MUTEX(raidPtr->mutex); 754 raidPtr->numFailures--; 755 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 756 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 757 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 758 RF_UNLOCK_MUTEX(raidPtr->mutex); 759 RF_GETTIME(etime); 760 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 761 762 /* XXX -- why is state 7 different from state 6 if there is no 763 * return() here? -- XXX Note that I set elpsd above & use it 764 * below, so if you put a return here you'll have to fix this. 765 * (also, FreeReconControl is called below) */ 766 767 case 7: 768 769 rf_ResumeNewRequests(raidPtr); 770 771 printf("Reconstruction of disk at row %d col %d completed\n", 772 row, col); 773 xor_s = raidPtr->accumXorTimeUs / 1000000; 774 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 775 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 776 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 777 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 778 (int) raidPtr->reconControl[row]->starttime.tv_sec, 779 (int) raidPtr->reconControl[row]->starttime.tv_usec, 780 (int) etime.tv_sec, (int) etime.tv_usec); 781 782 #if RF_RECON_STATS > 0 783 printf("Total head-sep stall count was %d\n", 784 (int) reconDesc->hsStallCount); 785 #endif /* RF_RECON_STATS > 0 */ 786 rf_FreeReconControl(raidPtr, row); 787 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 788 FreeReconDesc(reconDesc); 789 790 } 791 792 SignalReconDone(raidPtr); 793 return (0); 794 } 795 /***************************************************************************** 796 * do the right thing upon each reconstruction event. 797 * returns nonzero if and only if there is nothing left unread on the 798 * indicated disk 799 *****************************************************************************/ 800 static int 801 ProcessReconEvent(raidPtr, frow, event) 802 RF_Raid_t *raidPtr; 803 RF_RowCol_t frow; 804 RF_ReconEvent_t *event; 805 { 806 int retcode = 0, submitblocked; 807 RF_ReconBuffer_t *rbuf; 808 RF_SectorCount_t sectorsPerRU; 809 810 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 811 switch (event->type) { 812 813 /* a read I/O has completed */ 814 case RF_REVENT_READDONE: 815 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 816 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 817 frow, event->col, rbuf->parityStripeID); 818 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 819 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 820 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 821 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 822 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 823 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 824 if (!submitblocked) 825 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 826 break; 827 828 /* a write I/O has completed */ 829 case RF_REVENT_WRITEDONE: 830 if (rf_floatingRbufDebug) { 831 rf_CheckFloatingRbufCount(raidPtr, 1); 832 } 833 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 834 rbuf = (RF_ReconBuffer_t *) event->arg; 835 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 836 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 837 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 838 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 839 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 840 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 841 842 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 843 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 844 raidPtr->numFullReconBuffers--; 845 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 846 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 847 } else 848 if (rbuf->type == RF_RBUF_TYPE_FORCED) 849 rf_FreeReconBuffer(rbuf); 850 else 851 RF_ASSERT(0); 852 break; 853 854 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 855 * cleared */ 856 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 857 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 858 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 859 * BUFCLEAR event if we 860 * couldn't submit */ 861 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 862 break; 863 864 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 865 * blockage has been cleared */ 866 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 867 retcode = TryToRead(raidPtr, frow, event->col); 868 break; 869 870 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 871 * reconstruction blockage has been 872 * cleared */ 873 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 874 retcode = TryToRead(raidPtr, frow, event->col); 875 break; 876 877 /* a buffer has become ready to write */ 878 case RF_REVENT_BUFREADY: 879 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 880 retcode = IssueNextWriteRequest(raidPtr, frow); 881 if (rf_floatingRbufDebug) { 882 rf_CheckFloatingRbufCount(raidPtr, 1); 883 } 884 break; 885 886 /* we need to skip the current RU entirely because it got 887 * recon'd while we were waiting for something else to happen */ 888 case RF_REVENT_SKIP: 889 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 890 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 891 break; 892 893 /* a forced-reconstruction read access has completed. Just 894 * submit the buffer */ 895 case RF_REVENT_FORCEDREADDONE: 896 rbuf = (RF_ReconBuffer_t *) event->arg; 897 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 898 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 899 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 900 RF_ASSERT(!submitblocked); 901 break; 902 903 default: 904 RF_PANIC(); 905 } 906 rf_FreeReconEventDesc(event); 907 return (retcode); 908 } 909 /***************************************************************************** 910 * 911 * find the next thing that's needed on the indicated disk, and issue 912 * a read request for it. We assume that the reconstruction buffer 913 * associated with this process is free to receive the data. If 914 * reconstruction is blocked on the indicated RU, we issue a 915 * blockage-release request instead of a physical disk read request. 916 * If the current disk gets too far ahead of the others, we issue a 917 * head-separation wait request and return. 918 * 919 * ctrl->{ru_count, curPSID, diskOffset} and 920 * rbuf->failedDiskSectorOffset are maintained to point the the unit 921 * we're currently accessing. Note that this deviates from the 922 * standard C idiom of having counters point to the next thing to be 923 * accessed. This allows us to easily retry when we're blocked by 924 * head separation or reconstruction-blockage events. 925 * 926 * returns nonzero if and only if there is nothing left unread on the 927 * indicated disk 928 * 929 *****************************************************************************/ 930 static int 931 IssueNextReadRequest(raidPtr, row, col) 932 RF_Raid_t *raidPtr; 933 RF_RowCol_t row; 934 RF_RowCol_t col; 935 { 936 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 937 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 938 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 939 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 940 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 941 int do_new_check = 0, retcode = 0, status; 942 943 /* if we are currently the slowest disk, mark that we have to do a new 944 * check */ 945 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 946 do_new_check = 1; 947 948 while (1) { 949 950 ctrl->ru_count++; 951 if (ctrl->ru_count < RUsPerPU) { 952 ctrl->diskOffset += sectorsPerRU; 953 rbuf->failedDiskSectorOffset += sectorsPerRU; 954 } else { 955 ctrl->curPSID++; 956 ctrl->ru_count = 0; 957 /* code left over from when head-sep was based on 958 * parity stripe id */ 959 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 960 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 961 return (1); /* finito! */ 962 } 963 /* find the disk offsets of the start of the parity 964 * stripe on both the current disk and the failed 965 * disk. skip this entire parity stripe if either disk 966 * does not appear in the indicated PS */ 967 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 968 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 969 if (status) { 970 ctrl->ru_count = RUsPerPU - 1; 971 continue; 972 } 973 } 974 rbuf->which_ru = ctrl->ru_count; 975 976 /* skip this RU if it's already been reconstructed */ 977 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 978 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 979 continue; 980 } 981 break; 982 } 983 ctrl->headSepCounter++; 984 if (do_new_check) 985 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 986 987 988 /* at this point, we have definitely decided what to do, and we have 989 * only to see if we can actually do it now */ 990 rbuf->parityStripeID = ctrl->curPSID; 991 rbuf->which_ru = ctrl->ru_count; 992 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); 993 raidPtr->recon_tracerecs[col].reconacc = 1; 994 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 995 retcode = TryToRead(raidPtr, row, col); 996 return (retcode); 997 } 998 999 /* 1000 * tries to issue the next read on the indicated disk. We may be 1001 * blocked by (a) the heads being too far apart, or (b) recon on the 1002 * indicated RU being blocked due to a write by a user thread. In 1003 * this case, we issue a head-sep or blockage wait request, which will 1004 * cause this same routine to be invoked again later when the blockage 1005 * has cleared. 1006 */ 1007 1008 static int 1009 TryToRead(raidPtr, row, col) 1010 RF_Raid_t *raidPtr; 1011 RF_RowCol_t row; 1012 RF_RowCol_t col; 1013 { 1014 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1015 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1016 RF_StripeNum_t psid = ctrl->curPSID; 1017 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1018 RF_DiskQueueData_t *req; 1019 int status, created = 0; 1020 RF_ReconParityStripeStatus_t *pssPtr; 1021 1022 /* if the current disk is too far ahead of the others, issue a 1023 * head-separation wait and return */ 1024 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1025 return (0); 1026 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1027 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1028 1029 /* if recon is blocked on the indicated parity stripe, issue a 1030 * block-wait request and return. this also must mark the indicated RU 1031 * in the stripe as under reconstruction if not blocked. */ 1032 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1033 if (status == RF_PSS_RECON_BLOCKED) { 1034 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1035 goto out; 1036 } else 1037 if (status == RF_PSS_FORCED_ON_WRITE) { 1038 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1039 goto out; 1040 } 1041 /* make one last check to be sure that the indicated RU didn't get 1042 * reconstructed while we were waiting for something else to happen. 1043 * This is unfortunate in that it causes us to make this check twice 1044 * in the normal case. Might want to make some attempt to re-work 1045 * this so that we only do this check if we've definitely blocked on 1046 * one of the above checks. When this condition is detected, we may 1047 * have just created a bogus status entry, which we need to delete. */ 1048 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1049 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1050 if (created) 1051 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1052 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1053 goto out; 1054 } 1055 /* found something to read. issue the I/O */ 1056 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1057 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1058 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1059 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1060 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1061 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1062 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1063 1064 /* should be ok to use a NULL proc pointer here, all the bufs we use 1065 * should be in kernel space */ 1066 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1067 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1068 1069 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1070 1071 ctrl->rbuf->arg = (void *) req; 1072 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1073 pssPtr->issued[col] = 1; 1074 1075 out: 1076 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1077 return (0); 1078 } 1079 1080 1081 /* 1082 * given a parity stripe ID, we want to find out whether both the 1083 * current disk and the failed disk exist in that parity stripe. If 1084 * not, we want to skip this whole PS. If so, we want to find the 1085 * disk offset of the start of the PS on both the current disk and the 1086 * failed disk. 1087 * 1088 * this works by getting a list of disks comprising the indicated 1089 * parity stripe, and searching the list for the current and failed 1090 * disks. Once we've decided they both exist in the parity stripe, we 1091 * need to decide whether each is data or parity, so that we'll know 1092 * which mapping function to call to get the corresponding disk 1093 * offsets. 1094 * 1095 * this is kind of unpleasant, but doing it this way allows the 1096 * reconstruction code to use parity stripe IDs rather than physical 1097 * disks address to march through the failed disk, which greatly 1098 * simplifies a lot of code, as well as eliminating the need for a 1099 * reverse-mapping function. I also think it will execute faster, 1100 * since the calls to the mapping module are kept to a minimum. 1101 * 1102 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1103 * THE STRIPE IN THE CORRECT ORDER */ 1104 1105 1106 static int 1107 ComputePSDiskOffsets( 1108 RF_Raid_t * raidPtr, /* raid descriptor */ 1109 RF_StripeNum_t psid, /* parity stripe identifier */ 1110 RF_RowCol_t row, /* row and column of disk to find the offsets 1111 * for */ 1112 RF_RowCol_t col, 1113 RF_SectorNum_t * outDiskOffset, 1114 RF_SectorNum_t * outFailedDiskSectorOffset, 1115 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1116 RF_RowCol_t * spCol, 1117 RF_SectorNum_t * spOffset) 1118 { /* OUT: offset into disk containing spare unit */ 1119 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1120 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1121 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1122 RF_RowCol_t *diskids; 1123 u_int i, j, k, i_offset, j_offset; 1124 RF_RowCol_t prow, pcol; 1125 int testcol, testrow; 1126 RF_RowCol_t stripe; 1127 RF_SectorNum_t poffset; 1128 char i_is_parity = 0, j_is_parity = 0; 1129 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1130 1131 /* get a listing of the disks comprising that stripe */ 1132 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1133 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1134 RF_ASSERT(diskids); 1135 1136 /* reject this entire parity stripe if it does not contain the 1137 * indicated disk or it does not contain the failed disk */ 1138 if (row != stripe) 1139 goto skipit; 1140 for (i = 0; i < stripeWidth; i++) { 1141 if (col == diskids[i]) 1142 break; 1143 } 1144 if (i == stripeWidth) 1145 goto skipit; 1146 for (j = 0; j < stripeWidth; j++) { 1147 if (fcol == diskids[j]) 1148 break; 1149 } 1150 if (j == stripeWidth) { 1151 goto skipit; 1152 } 1153 /* find out which disk the parity is on */ 1154 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1155 1156 /* find out if either the current RU or the failed RU is parity */ 1157 /* also, if the parity occurs in this stripe prior to the data and/or 1158 * failed col, we need to decrement i and/or j */ 1159 for (k = 0; k < stripeWidth; k++) 1160 if (diskids[k] == pcol) 1161 break; 1162 RF_ASSERT(k < stripeWidth); 1163 i_offset = i; 1164 j_offset = j; 1165 if (k < i) 1166 i_offset--; 1167 else 1168 if (k == i) { 1169 i_is_parity = 1; 1170 i_offset = 0; 1171 } /* set offsets to zero to disable multiply 1172 * below */ 1173 if (k < j) 1174 j_offset--; 1175 else 1176 if (k == j) { 1177 j_is_parity = 1; 1178 j_offset = 0; 1179 } 1180 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1181 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1182 * tells us how far into the stripe the [current,failed] disk is. */ 1183 1184 /* call the mapping routine to get the offset into the current disk, 1185 * repeat for failed disk. */ 1186 if (i_is_parity) 1187 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1188 else 1189 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1190 1191 RF_ASSERT(row == testrow && col == testcol); 1192 1193 if (j_is_parity) 1194 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1195 else 1196 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1197 RF_ASSERT(row == testrow && fcol == testcol); 1198 1199 /* now locate the spare unit for the failed unit */ 1200 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1201 if (j_is_parity) 1202 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1203 else 1204 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1205 } else { 1206 *spRow = raidPtr->reconControl[row]->spareRow; 1207 *spCol = raidPtr->reconControl[row]->spareCol; 1208 *spOffset = *outFailedDiskSectorOffset; 1209 } 1210 1211 return (0); 1212 1213 skipit: 1214 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1215 psid, row, col); 1216 return (1); 1217 } 1218 /* this is called when a buffer has become ready to write to the replacement disk */ 1219 static int 1220 IssueNextWriteRequest(raidPtr, row) 1221 RF_Raid_t *raidPtr; 1222 RF_RowCol_t row; 1223 { 1224 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1225 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1226 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1227 RF_ReconBuffer_t *rbuf; 1228 RF_DiskQueueData_t *req; 1229 1230 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1231 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1232 * have gotten the event that sent us here */ 1233 RF_ASSERT(rbuf->pssPtr); 1234 1235 rbuf->pssPtr->writeRbuf = rbuf; 1236 rbuf->pssPtr = NULL; 1237 1238 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1239 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1240 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1241 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1242 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1243 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1244 1245 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1246 * kernel space */ 1247 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1248 sectorsPerRU, rbuf->buffer, 1249 rbuf->parityStripeID, rbuf->which_ru, 1250 ReconWriteDoneProc, (void *) rbuf, NULL, 1251 &raidPtr->recon_tracerecs[fcol], 1252 (void *) raidPtr, 0, NULL); 1253 1254 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1255 1256 rbuf->arg = (void *) req; 1257 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * this gets called upon the completion of a reconstruction read 1264 * operation the arg is a pointer to the per-disk reconstruction 1265 * control structure for the process that just finished a read. 1266 * 1267 * called at interrupt context in the kernel, so don't do anything 1268 * illegal here. 1269 */ 1270 static int 1271 ReconReadDoneProc(arg, status) 1272 void *arg; 1273 int status; 1274 { 1275 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1276 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1277 1278 if (status) { 1279 /* 1280 * XXX 1281 */ 1282 printf("Recon read failed!\n"); 1283 RF_PANIC(); 1284 } 1285 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1286 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1287 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1288 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1289 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1290 1291 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1292 return (0); 1293 } 1294 /* this gets called upon the completion of a reconstruction write operation. 1295 * the arg is a pointer to the rbuf that was just written 1296 * 1297 * called at interrupt context in the kernel, so don't do anything illegal here. 1298 */ 1299 static int 1300 ReconWriteDoneProc(arg, status) 1301 void *arg; 1302 int status; 1303 { 1304 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1305 1306 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1307 if (status) { 1308 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1309 * write failed!\n"); */ 1310 RF_PANIC(); 1311 } 1312 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1313 return (0); 1314 } 1315 1316 1317 /* 1318 * computes a new minimum head sep, and wakes up anyone who needs to 1319 * be woken as a result 1320 */ 1321 static void 1322 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1323 RF_Raid_t *raidPtr; 1324 RF_RowCol_t row; 1325 RF_HeadSepLimit_t hsCtr; 1326 { 1327 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1328 RF_HeadSepLimit_t new_min; 1329 RF_RowCol_t i; 1330 RF_CallbackDesc_t *p; 1331 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1332 * of a minimum */ 1333 1334 1335 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1336 1337 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1338 for (i = 0; i < raidPtr->numCol; i++) 1339 if (i != reconCtrlPtr->fcol) { 1340 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1341 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1342 } 1343 /* set the new minimum and wake up anyone who can now run again */ 1344 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1345 reconCtrlPtr->minHeadSepCounter = new_min; 1346 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1347 while (reconCtrlPtr->headSepCBList) { 1348 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1349 break; 1350 p = reconCtrlPtr->headSepCBList; 1351 reconCtrlPtr->headSepCBList = p->next; 1352 p->next = NULL; 1353 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1354 rf_FreeCallbackDesc(p); 1355 } 1356 1357 } 1358 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1359 } 1360 1361 /* 1362 * checks to see that the maximum head separation will not be violated 1363 * if we initiate a reconstruction I/O on the indicated disk. 1364 * Limiting the maximum head separation between two disks eliminates 1365 * the nasty buffer-stall conditions that occur when one disk races 1366 * ahead of the others and consumes all of the floating recon buffers. 1367 * This code is complex and unpleasant but it's necessary to avoid 1368 * some very nasty, albeit fairly rare, reconstruction behavior. 1369 * 1370 * returns non-zero if and only if we have to stop working on the 1371 * indicated disk due to a head-separation delay. 1372 */ 1373 static int 1374 CheckHeadSeparation( 1375 RF_Raid_t * raidPtr, 1376 RF_PerDiskReconCtrl_t * ctrl, 1377 RF_RowCol_t row, 1378 RF_RowCol_t col, 1379 RF_HeadSepLimit_t hsCtr, 1380 RF_ReconUnitNum_t which_ru) 1381 { 1382 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1383 RF_CallbackDesc_t *cb, *p, *pt; 1384 int retval = 0; 1385 1386 /* if we're too far ahead of the slowest disk, stop working on this 1387 * disk until the slower ones catch up. We do this by scheduling a 1388 * wakeup callback for the time when the slowest disk has caught up. 1389 * We define "caught up" with 20% hysteresis, i.e. the head separation 1390 * must have fallen to at most 80% of the max allowable head 1391 * separation before we'll wake up. 1392 * 1393 */ 1394 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1395 if ((raidPtr->headSepLimit >= 0) && 1396 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1397 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1398 raidPtr->raidid, row, col, ctrl->headSepCounter, 1399 reconCtrlPtr->minHeadSepCounter, 1400 raidPtr->headSepLimit); 1401 cb = rf_AllocCallbackDesc(); 1402 /* the minHeadSepCounter value we have to get to before we'll 1403 * wake up. build in 20% hysteresis. */ 1404 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1405 cb->row = row; 1406 cb->col = col; 1407 cb->next = NULL; 1408 1409 /* insert this callback descriptor into the sorted list of 1410 * pending head-sep callbacks */ 1411 p = reconCtrlPtr->headSepCBList; 1412 if (!p) 1413 reconCtrlPtr->headSepCBList = cb; 1414 else 1415 if (cb->callbackArg.v < p->callbackArg.v) { 1416 cb->next = reconCtrlPtr->headSepCBList; 1417 reconCtrlPtr->headSepCBList = cb; 1418 } else { 1419 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1420 cb->next = p; 1421 pt->next = cb; 1422 } 1423 retval = 1; 1424 #if RF_RECON_STATS > 0 1425 ctrl->reconCtrl->reconDesc->hsStallCount++; 1426 #endif /* RF_RECON_STATS > 0 */ 1427 } 1428 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1429 1430 return (retval); 1431 } 1432 /* 1433 * checks to see if reconstruction has been either forced or blocked 1434 * by a user operation. if forced, we skip this RU entirely. else if 1435 * blocked, put ourselves on the wait list. else return 0. 1436 * 1437 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1438 */ 1439 static int 1440 CheckForcedOrBlockedReconstruction( 1441 RF_Raid_t * raidPtr, 1442 RF_ReconParityStripeStatus_t * pssPtr, 1443 RF_PerDiskReconCtrl_t * ctrl, 1444 RF_RowCol_t row, 1445 RF_RowCol_t col, 1446 RF_StripeNum_t psid, 1447 RF_ReconUnitNum_t which_ru) 1448 { 1449 RF_CallbackDesc_t *cb; 1450 int retcode = 0; 1451 1452 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1453 retcode = RF_PSS_FORCED_ON_WRITE; 1454 else 1455 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1456 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1457 cb = rf_AllocCallbackDesc(); /* append ourselves to 1458 * the blockage-wait 1459 * list */ 1460 cb->row = row; 1461 cb->col = col; 1462 cb->next = pssPtr->blockWaitList; 1463 pssPtr->blockWaitList = cb; 1464 retcode = RF_PSS_RECON_BLOCKED; 1465 } 1466 if (!retcode) 1467 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1468 * reconstruction */ 1469 1470 return (retcode); 1471 } 1472 /* 1473 * if reconstruction is currently ongoing for the indicated stripeID, 1474 * reconstruction is forced to completion and we return non-zero to 1475 * indicate that the caller must wait. If not, then reconstruction is 1476 * blocked on the indicated stripe and the routine returns zero. If 1477 * and only if we return non-zero, we'll cause the cbFunc to get 1478 * invoked with the cbArg when the reconstruction has completed. 1479 */ 1480 int 1481 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1482 RF_Raid_t *raidPtr; 1483 RF_AccessStripeMap_t *asmap; 1484 void (*cbFunc) (RF_Raid_t *, void *); 1485 void *cbArg; 1486 { 1487 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1488 * we're working on */ 1489 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1490 * forcing recon on */ 1491 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1492 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1493 * stripe status structure */ 1494 RF_StripeNum_t psid; /* parity stripe id */ 1495 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1496 * offset */ 1497 RF_RowCol_t *diskids; 1498 RF_RowCol_t stripe; 1499 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1500 RF_RowCol_t fcol, diskno, i; 1501 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1502 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1503 RF_CallbackDesc_t *cb; 1504 int created = 0, nPromoted; 1505 1506 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1507 1508 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1509 1510 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1511 1512 /* if recon is not ongoing on this PS, just return */ 1513 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1514 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1515 return (0); 1516 } 1517 /* otherwise, we have to wait for reconstruction to complete on this 1518 * RU. */ 1519 /* In order to avoid waiting for a potentially large number of 1520 * low-priority accesses to complete, we force a normal-priority (i.e. 1521 * not low-priority) reconstruction on this RU. */ 1522 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1523 DDprintf1("Forcing recon on psid %ld\n", psid); 1524 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1525 * forced recon */ 1526 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1527 * that we just set */ 1528 fcol = raidPtr->reconControl[row]->fcol; 1529 1530 /* get a listing of the disks comprising the indicated stripe */ 1531 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1532 RF_ASSERT(row == stripe); 1533 1534 /* For previously issued reads, elevate them to normal 1535 * priority. If the I/O has already completed, it won't be 1536 * found in the queue, and hence this will be a no-op. For 1537 * unissued reads, allocate buffers and issue new reads. The 1538 * fact that we've set the FORCED bit means that the regular 1539 * recon procs will not re-issue these reqs */ 1540 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1541 if ((diskno = diskids[i]) != fcol) { 1542 if (pssPtr->issued[diskno]) { 1543 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1544 if (rf_reconDebug && nPromoted) 1545 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1546 } else { 1547 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1548 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1549 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1550 * location */ 1551 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1552 new_rbuf->which_ru = which_ru; 1553 new_rbuf->failedDiskSectorOffset = fd_offset; 1554 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1555 1556 /* use NULL b_proc b/c all addrs 1557 * should be in kernel space */ 1558 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1559 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1560 NULL, (void *) raidPtr, 0, NULL); 1561 1562 RF_ASSERT(req); /* XXX -- fix this -- 1563 * XXX */ 1564 1565 new_rbuf->arg = req; 1566 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1567 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1568 } 1569 } 1570 /* if the write is sitting in the disk queue, elevate its 1571 * priority */ 1572 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1573 printf("raid%d: promoted write to row %d col %d\n", 1574 raidPtr->raidid, row, fcol); 1575 } 1576 /* install a callback descriptor to be invoked when recon completes on 1577 * this parity stripe. */ 1578 cb = rf_AllocCallbackDesc(); 1579 /* XXX the following is bogus.. These functions don't really match!! 1580 * GO */ 1581 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1582 cb->callbackArg.p = (void *) cbArg; 1583 cb->next = pssPtr->procWaitList; 1584 pssPtr->procWaitList = cb; 1585 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1586 raidPtr->raidid, psid); 1587 1588 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1589 return (1); 1590 } 1591 /* called upon the completion of a forced reconstruction read. 1592 * all we do is schedule the FORCEDREADONE event. 1593 * called at interrupt context in the kernel, so don't do anything illegal here. 1594 */ 1595 static void 1596 ForceReconReadDoneProc(arg, status) 1597 void *arg; 1598 int status; 1599 { 1600 RF_ReconBuffer_t *rbuf = arg; 1601 1602 if (status) { 1603 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1604 * recon read 1605 * failed!\n"); */ 1606 RF_PANIC(); 1607 } 1608 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1609 } 1610 /* releases a block on the reconstruction of the indicated stripe */ 1611 int 1612 rf_UnblockRecon(raidPtr, asmap) 1613 RF_Raid_t *raidPtr; 1614 RF_AccessStripeMap_t *asmap; 1615 { 1616 RF_RowCol_t row = asmap->origRow; 1617 RF_StripeNum_t stripeID = asmap->stripeID; 1618 RF_ReconParityStripeStatus_t *pssPtr; 1619 RF_ReconUnitNum_t which_ru; 1620 RF_StripeNum_t psid; 1621 int created = 0; 1622 RF_CallbackDesc_t *cb; 1623 1624 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1625 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1626 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1627 1628 /* When recon is forced, the pss desc can get deleted before we get 1629 * back to unblock recon. But, this can _only_ happen when recon is 1630 * forced. It would be good to put some kind of sanity check here, but 1631 * how to decide if recon was just forced or not? */ 1632 if (!pssPtr) { 1633 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1634 * RU %d\n",psid,which_ru); */ 1635 if (rf_reconDebug || rf_pssDebug) 1636 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1637 goto out; 1638 } 1639 pssPtr->blockCount--; 1640 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1641 raidPtr->raidid, psid, pssPtr->blockCount); 1642 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1643 1644 /* unblock recon before calling CauseReconEvent in case 1645 * CauseReconEvent causes us to try to issue a new read before 1646 * returning here. */ 1647 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1648 1649 1650 while (pssPtr->blockWaitList) { 1651 /* spin through the block-wait list and 1652 release all the waiters */ 1653 cb = pssPtr->blockWaitList; 1654 pssPtr->blockWaitList = cb->next; 1655 cb->next = NULL; 1656 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1657 rf_FreeCallbackDesc(cb); 1658 } 1659 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1660 /* if no recon was requested while recon was blocked */ 1661 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1662 } 1663 } 1664 out: 1665 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1666 return (0); 1667 } 1668