1 /* $NetBSD: rf_reconstruct.c,v 1.115 2011/05/28 00:53:04 yamt Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.115 2011/05/28 00:53:04 yamt Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <sys/namei.h> /* for pathbuf */ 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #if RF_DEBUG_RECON 69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 77 78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 80 81 #else /* RF_DEBUG_RECON */ 82 83 #define Dprintf(s) {} 84 #define Dprintf1(s,a) {} 85 #define Dprintf2(s,a,b) {} 86 #define Dprintf3(s,a,b,c) {} 87 #define Dprintf4(s,a,b,c,d) {} 88 #define Dprintf5(s,a,b,c,d,e) {} 89 #define Dprintf6(s,a,b,c,d,e,f) {} 90 #define Dprintf7(s,a,b,c,d,e,f,g) {} 91 92 #define DDprintf1(s,a) {} 93 #define DDprintf2(s,a,b) {} 94 95 #endif /* RF_DEBUG_RECON */ 96 97 #define RF_RECON_DONE_READS 1 98 #define RF_RECON_READ_ERROR 2 99 #define RF_RECON_WRITE_ERROR 3 100 #define RF_RECON_READ_STOPPED 4 101 #define RF_RECON_WRITE_DONE 5 102 103 #define RF_MAX_FREE_RECONBUFFER 32 104 #define RF_MIN_FREE_RECONBUFFER 16 105 106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 107 RF_RaidDisk_t *, int, RF_RowCol_t); 108 static void FreeReconDesc(RF_RaidReconDesc_t *); 109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 111 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 113 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 114 RF_SectorNum_t *); 115 static int IssueNextWriteRequest(RF_Raid_t *); 116 static int ReconReadDoneProc(void *, int); 117 static int ReconWriteDoneProc(void *, int); 118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 120 RF_RowCol_t, RF_HeadSepLimit_t, 121 RF_ReconUnitNum_t); 122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 123 RF_ReconParityStripeStatus_t *, 124 RF_PerDiskReconCtrl_t *, 125 RF_RowCol_t, RF_StripeNum_t, 126 RF_ReconUnitNum_t); 127 static void ForceReconReadDoneProc(void *, int); 128 static void rf_ShutdownReconstruction(void *); 129 130 struct RF_ReconDoneProc_s { 131 void (*proc) (RF_Raid_t *, void *); 132 void *arg; 133 RF_ReconDoneProc_t *next; 134 }; 135 136 /************************************************************************** 137 * 138 * sets up the parameters that will be used by the reconstruction process 139 * currently there are none, except for those that the layout-specific 140 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 141 * 142 * in the kernel, we fire off the recon thread. 143 * 144 **************************************************************************/ 145 static void 146 rf_ShutdownReconstruction(void *ignored) 147 { 148 pool_destroy(&rf_pools.reconbuffer); 149 } 150 151 int 152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 153 { 154 155 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 156 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 157 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 158 159 return (0); 160 } 161 162 static RF_RaidReconDesc_t * 163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 164 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 165 RF_RowCol_t scol) 166 { 167 168 RF_RaidReconDesc_t *reconDesc; 169 170 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 171 (RF_RaidReconDesc_t *)); 172 reconDesc->raidPtr = raidPtr; 173 reconDesc->col = col; 174 reconDesc->spareDiskPtr = spareDiskPtr; 175 reconDesc->numDisksDone = numDisksDone; 176 reconDesc->scol = scol; 177 reconDesc->next = NULL; 178 179 return (reconDesc); 180 } 181 182 static void 183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 184 { 185 #if RF_RECON_STATS > 0 186 printf("raid%d: %lu recon event waits, %lu recon delays\n", 187 reconDesc->raidPtr->raidid, 188 (long) reconDesc->numReconEventWaits, 189 (long) reconDesc->numReconExecDelays); 190 #endif /* RF_RECON_STATS > 0 */ 191 printf("raid%d: %lu max exec ticks\n", 192 reconDesc->raidPtr->raidid, 193 (long) reconDesc->maxReconExecTicks); 194 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 195 } 196 197 198 /***************************************************************************** 199 * 200 * primary routine to reconstruct a failed disk. This should be called from 201 * within its own thread. It won't return until reconstruction completes, 202 * fails, or is aborted. 203 *****************************************************************************/ 204 int 205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 206 { 207 const RF_LayoutSW_t *lp; 208 int rc; 209 210 lp = raidPtr->Layout.map; 211 if (lp->SubmitReconBuffer) { 212 /* 213 * The current infrastructure only supports reconstructing one 214 * disk at a time for each array. 215 */ 216 rf_lock_mutex2(raidPtr->mutex); 217 while (raidPtr->reconInProgress) { 218 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 219 } 220 raidPtr->reconInProgress++; 221 rf_unlock_mutex2(raidPtr->mutex); 222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 223 rf_lock_mutex2(raidPtr->mutex); 224 raidPtr->reconInProgress--; 225 } else { 226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 227 lp->parityConfig); 228 rc = EIO; 229 rf_lock_mutex2(raidPtr->mutex); 230 } 231 rf_signal_cond2(raidPtr->waitForReconCond); 232 rf_unlock_mutex2(raidPtr->mutex); 233 return (rc); 234 } 235 236 int 237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 238 { 239 RF_ComponentLabel_t *c_label; 240 RF_RaidDisk_t *spareDiskPtr = NULL; 241 RF_RaidReconDesc_t *reconDesc; 242 RF_RowCol_t scol; 243 int numDisksDone = 0, rc; 244 245 /* first look for a spare drive onto which to reconstruct the data */ 246 /* spare disk descriptors are stored in row 0. This may have to 247 * change eventually */ 248 249 rf_lock_mutex2(raidPtr->mutex); 250 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 252 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 253 if (raidPtr->status != rf_rs_degraded) { 254 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 255 rf_unlock_mutex2(raidPtr->mutex); 256 return (EINVAL); 257 } 258 scol = (-1); 259 } else { 260 #endif 261 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 262 if (raidPtr->Disks[scol].status == rf_ds_spare) { 263 spareDiskPtr = &raidPtr->Disks[scol]; 264 spareDiskPtr->status = rf_ds_used_spare; 265 break; 266 } 267 } 268 if (!spareDiskPtr) { 269 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 270 rf_unlock_mutex2(raidPtr->mutex); 271 return (ENOSPC); 272 } 273 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 275 } 276 #endif 277 rf_unlock_mutex2(raidPtr->mutex); 278 279 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 280 raidPtr->reconDesc = (void *) reconDesc; 281 #if RF_RECON_STATS > 0 282 reconDesc->hsStallCount = 0; 283 reconDesc->numReconExecDelays = 0; 284 reconDesc->numReconEventWaits = 0; 285 #endif /* RF_RECON_STATS > 0 */ 286 reconDesc->reconExecTimerRunning = 0; 287 reconDesc->reconExecTicks = 0; 288 reconDesc->maxReconExecTicks = 0; 289 rc = rf_ContinueReconstructFailedDisk(reconDesc); 290 291 if (!rc) { 292 /* fix up the component label */ 293 /* Don't actually need the read here.. */ 294 c_label = raidget_component_label(raidPtr, scol); 295 296 raid_init_component_label(raidPtr, c_label); 297 c_label->row = 0; 298 c_label->column = col; 299 c_label->clean = RF_RAID_DIRTY; 300 c_label->status = rf_ds_optimal; 301 rf_component_label_set_partitionsize(c_label, 302 raidPtr->Disks[scol].partitionSize); 303 304 /* We've just done a rebuild based on all the other 305 disks, so at this point the parity is known to be 306 clean, even if it wasn't before. */ 307 308 /* XXX doesn't hold for RAID 6!!*/ 309 310 rf_lock_mutex2(raidPtr->mutex); 311 raidPtr->parity_good = RF_RAID_CLEAN; 312 rf_unlock_mutex2(raidPtr->mutex); 313 314 /* XXXX MORE NEEDED HERE */ 315 316 raidflush_component_label(raidPtr, scol); 317 } else { 318 /* Reconstruct failed. */ 319 320 rf_lock_mutex2(raidPtr->mutex); 321 /* Failed disk goes back to "failed" status */ 322 raidPtr->Disks[col].status = rf_ds_failed; 323 324 /* Spare disk goes back to "spare" status. */ 325 spareDiskPtr->status = rf_ds_spare; 326 rf_unlock_mutex2(raidPtr->mutex); 327 328 } 329 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 330 return (rc); 331 } 332 333 /* 334 335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 336 and you don't get a spare until the next Monday. With this function 337 (and hot-swappable drives) you can now put your new disk containing 338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 339 rebuild the data "on the spot". 340 341 */ 342 343 int 344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 345 { 346 RF_RaidDisk_t *spareDiskPtr = NULL; 347 RF_RaidReconDesc_t *reconDesc; 348 const RF_LayoutSW_t *lp; 349 RF_ComponentLabel_t *c_label; 350 int numDisksDone = 0, rc; 351 struct partinfo dpart; 352 struct pathbuf *pb; 353 struct vnode *vp; 354 struct vattr va; 355 int retcode; 356 int ac; 357 358 rf_lock_mutex2(raidPtr->mutex); 359 lp = raidPtr->Layout.map; 360 if (!lp->SubmitReconBuffer) { 361 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 362 lp->parityConfig); 363 /* wakeup anyone who might be waiting to do a reconstruct */ 364 rf_signal_cond2(raidPtr->waitForReconCond); 365 rf_unlock_mutex2(raidPtr->mutex); 366 return(EIO); 367 } 368 369 /* 370 * The current infrastructure only supports reconstructing one 371 * disk at a time for each array. 372 */ 373 374 if (raidPtr->Disks[col].status != rf_ds_failed) { 375 /* "It's gone..." */ 376 raidPtr->numFailures++; 377 raidPtr->Disks[col].status = rf_ds_failed; 378 raidPtr->status = rf_rs_degraded; 379 rf_unlock_mutex2(raidPtr->mutex); 380 rf_update_component_labels(raidPtr, 381 RF_NORMAL_COMPONENT_UPDATE); 382 rf_lock_mutex2(raidPtr->mutex); 383 } 384 385 while (raidPtr->reconInProgress) { 386 rf_wait_cond2(raidPtr->waitForReconCond, raidPtr->mutex); 387 } 388 389 raidPtr->reconInProgress++; 390 391 /* first look for a spare drive onto which to reconstruct the 392 data. spare disk descriptors are stored in row 0. This 393 may have to change eventually */ 394 395 /* Actually, we don't care if it's failed or not... On a RAID 396 set with correct parity, this function should be callable 397 on any component without ill effects. */ 398 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 399 400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 401 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 402 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 403 404 raidPtr->reconInProgress--; 405 rf_signal_cond2(raidPtr->waitForReconCond); 406 rf_unlock_mutex2(raidPtr->mutex); 407 return (EINVAL); 408 } 409 #endif 410 411 /* This device may have been opened successfully the 412 first time. Close it before trying to open it again.. */ 413 414 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 415 #if 0 416 printf("Closed the open device: %s\n", 417 raidPtr->Disks[col].devname); 418 #endif 419 vp = raidPtr->raid_cinfo[col].ci_vp; 420 ac = raidPtr->Disks[col].auto_configured; 421 rf_unlock_mutex2(raidPtr->mutex); 422 rf_close_component(raidPtr, vp, ac); 423 rf_lock_mutex2(raidPtr->mutex); 424 raidPtr->raid_cinfo[col].ci_vp = NULL; 425 } 426 /* note that this disk was *not* auto_configured (any longer)*/ 427 raidPtr->Disks[col].auto_configured = 0; 428 429 #if 0 430 printf("About to (re-)open the device for rebuilding: %s\n", 431 raidPtr->Disks[col].devname); 432 #endif 433 rf_unlock_mutex2(raidPtr->mutex); 434 pb = pathbuf_create(raidPtr->Disks[col].devname); 435 if (pb == NULL) { 436 retcode = ENOMEM; 437 } else { 438 retcode = dk_lookup(pb, curlwp, &vp); 439 pathbuf_destroy(pb); 440 } 441 442 if (retcode) { 443 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 444 raidPtr->Disks[col].devname, retcode); 445 446 /* the component isn't responding properly... 447 must be still dead :-( */ 448 rf_lock_mutex2(raidPtr->mutex); 449 raidPtr->reconInProgress--; 450 rf_signal_cond2(raidPtr->waitForReconCond); 451 rf_unlock_mutex2(raidPtr->mutex); 452 return(retcode); 453 } 454 455 /* Ok, so we can at least do a lookup... 456 How about actually getting a vp for it? */ 457 458 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) { 459 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 460 rf_lock_mutex2(raidPtr->mutex); 461 raidPtr->reconInProgress--; 462 rf_signal_cond2(raidPtr->waitForReconCond); 463 rf_unlock_mutex2(raidPtr->mutex); 464 return(retcode); 465 } 466 467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred); 468 if (retcode) { 469 vn_close(vp, FREAD | FWRITE, kauth_cred_get()); 470 rf_lock_mutex2(raidPtr->mutex); 471 raidPtr->reconInProgress--; 472 rf_signal_cond2(raidPtr->waitForReconCond); 473 rf_unlock_mutex2(raidPtr->mutex); 474 return(retcode); 475 } 476 rf_lock_mutex2(raidPtr->mutex); 477 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 478 479 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 480 rf_protectedSectors; 481 482 raidPtr->raid_cinfo[col].ci_vp = vp; 483 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 484 485 raidPtr->Disks[col].dev = va.va_rdev; 486 487 /* we allow the user to specify that only a fraction 488 of the disks should be used this is just for debug: 489 it speeds up * the parity scan */ 490 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 491 rf_sizePercentage / 100; 492 rf_unlock_mutex2(raidPtr->mutex); 493 494 spareDiskPtr = &raidPtr->Disks[col]; 495 spareDiskPtr->status = rf_ds_used_spare; 496 497 printf("raid%d: initiating in-place reconstruction on column %d\n", 498 raidPtr->raidid, col); 499 500 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 501 numDisksDone, col); 502 raidPtr->reconDesc = (void *) reconDesc; 503 #if RF_RECON_STATS > 0 504 reconDesc->hsStallCount = 0; 505 reconDesc->numReconExecDelays = 0; 506 reconDesc->numReconEventWaits = 0; 507 #endif /* RF_RECON_STATS > 0 */ 508 reconDesc->reconExecTimerRunning = 0; 509 reconDesc->reconExecTicks = 0; 510 reconDesc->maxReconExecTicks = 0; 511 rc = rf_ContinueReconstructFailedDisk(reconDesc); 512 513 if (!rc) { 514 rf_lock_mutex2(raidPtr->mutex); 515 /* Need to set these here, as at this point it'll be claiming 516 that the disk is in rf_ds_spared! But we know better :-) */ 517 518 raidPtr->Disks[col].status = rf_ds_optimal; 519 raidPtr->status = rf_rs_optimal; 520 rf_unlock_mutex2(raidPtr->mutex); 521 522 /* fix up the component label */ 523 /* Don't actually need the read here.. */ 524 c_label = raidget_component_label(raidPtr, col); 525 526 rf_lock_mutex2(raidPtr->mutex); 527 raid_init_component_label(raidPtr, c_label); 528 529 c_label->row = 0; 530 c_label->column = col; 531 532 /* We've just done a rebuild based on all the other 533 disks, so at this point the parity is known to be 534 clean, even if it wasn't before. */ 535 536 /* XXX doesn't hold for RAID 6!!*/ 537 538 raidPtr->parity_good = RF_RAID_CLEAN; 539 rf_unlock_mutex2(raidPtr->mutex); 540 541 raidflush_component_label(raidPtr, col); 542 } else { 543 /* Reconstruct-in-place failed. Disk goes back to 544 "failed" status, regardless of what it was before. */ 545 rf_lock_mutex2(raidPtr->mutex); 546 raidPtr->Disks[col].status = rf_ds_failed; 547 rf_unlock_mutex2(raidPtr->mutex); 548 } 549 550 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 551 552 rf_lock_mutex2(raidPtr->mutex); 553 raidPtr->reconInProgress--; 554 rf_signal_cond2(raidPtr->waitForReconCond); 555 rf_unlock_mutex2(raidPtr->mutex); 556 557 return (rc); 558 } 559 560 561 int 562 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 563 { 564 RF_Raid_t *raidPtr = reconDesc->raidPtr; 565 RF_RowCol_t col = reconDesc->col; 566 RF_RowCol_t scol = reconDesc->scol; 567 RF_ReconMap_t *mapPtr; 568 RF_ReconCtrl_t *tmp_reconctrl; 569 RF_ReconEvent_t *event; 570 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 571 RF_ReconUnitCount_t RUsPerPU; 572 struct timeval etime, elpsd; 573 unsigned long xor_s, xor_resid_us; 574 int i, ds; 575 int status, done; 576 int recon_error, write_error; 577 578 raidPtr->accumXorTimeUs = 0; 579 #if RF_ACC_TRACE > 0 580 /* create one trace record per physical disk */ 581 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 582 #endif 583 584 /* quiesce the array prior to starting recon. this is needed 585 * to assure no nasty interactions with pending user writes. 586 * We need to do this before we change the disk or row status. */ 587 588 Dprintf("RECON: begin request suspend\n"); 589 rf_SuspendNewRequestsAndWait(raidPtr); 590 Dprintf("RECON: end request suspend\n"); 591 592 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 593 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 594 595 rf_lock_mutex2(raidPtr->mutex); 596 597 /* create the reconstruction control pointer and install it in 598 * the right slot */ 599 raidPtr->reconControl = tmp_reconctrl; 600 mapPtr = raidPtr->reconControl->reconMap; 601 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 602 raidPtr->reconControl->numRUsComplete = 0; 603 raidPtr->status = rf_rs_reconstructing; 604 raidPtr->Disks[col].status = rf_ds_reconstructing; 605 raidPtr->Disks[col].spareCol = scol; 606 607 rf_unlock_mutex2(raidPtr->mutex); 608 609 RF_GETTIME(raidPtr->reconControl->starttime); 610 611 Dprintf("RECON: resume requests\n"); 612 rf_ResumeNewRequests(raidPtr); 613 614 615 mapPtr = raidPtr->reconControl->reconMap; 616 617 incPSID = RF_RECONMAP_SIZE; 618 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 619 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 620 recon_error = 0; 621 write_error = 0; 622 pending_writes = incPSID; 623 raidPtr->reconControl->lastPSID = incPSID; 624 625 /* start the actual reconstruction */ 626 627 done = 0; 628 while (!done) { 629 630 if (raidPtr->waitShutdown) { 631 /* someone is unconfiguring this array... bail on the reconstruct.. */ 632 recon_error = 1; 633 break; 634 } 635 636 num_writes = 0; 637 638 /* issue a read for each surviving disk */ 639 640 reconDesc->numDisksDone = 0; 641 for (i = 0; i < raidPtr->numCol; i++) { 642 if (i != col) { 643 /* find and issue the next I/O on the 644 * indicated disk */ 645 if (IssueNextReadRequest(raidPtr, i)) { 646 Dprintf1("RECON: done issuing for c%d\n", i); 647 reconDesc->numDisksDone++; 648 } 649 } 650 } 651 652 /* process reconstruction events until all disks report that 653 * they've completed all work */ 654 655 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 656 657 event = rf_GetNextReconEvent(reconDesc); 658 status = ProcessReconEvent(raidPtr, event); 659 660 /* the normal case is that a read completes, and all is well. */ 661 if (status == RF_RECON_DONE_READS) { 662 reconDesc->numDisksDone++; 663 } else if ((status == RF_RECON_READ_ERROR) || 664 (status == RF_RECON_WRITE_ERROR)) { 665 /* an error was encountered while reconstructing... 666 Pretend we've finished this disk. 667 */ 668 recon_error = 1; 669 raidPtr->reconControl->error = 1; 670 671 /* bump the numDisksDone count for reads, 672 but not for writes */ 673 if (status == RF_RECON_READ_ERROR) 674 reconDesc->numDisksDone++; 675 676 /* write errors are special -- when we are 677 done dealing with the reads that are 678 finished, we don't want to wait for any 679 writes */ 680 if (status == RF_RECON_WRITE_ERROR) { 681 write_error = 1; 682 num_writes++; 683 } 684 685 } else if (status == RF_RECON_READ_STOPPED) { 686 /* count this component as being "done" */ 687 reconDesc->numDisksDone++; 688 } else if (status == RF_RECON_WRITE_DONE) { 689 num_writes++; 690 } 691 692 if (recon_error) { 693 /* make sure any stragglers are woken up so that 694 their theads will complete, and we can get out 695 of here with all IO processed */ 696 697 rf_WakeupHeadSepCBWaiters(raidPtr); 698 } 699 700 raidPtr->reconControl->numRUsTotal = 701 mapPtr->totalRUs; 702 raidPtr->reconControl->numRUsComplete = 703 mapPtr->totalRUs - 704 rf_UnitsLeftToReconstruct(mapPtr); 705 706 #if RF_DEBUG_RECON 707 raidPtr->reconControl->percentComplete = 708 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 709 if (rf_prReconSched) { 710 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 711 } 712 #endif 713 } 714 715 /* reads done, wakup any waiters, and then wait for writes */ 716 717 rf_WakeupHeadSepCBWaiters(raidPtr); 718 719 while (!recon_error && (num_writes < pending_writes)) { 720 event = rf_GetNextReconEvent(reconDesc); 721 status = ProcessReconEvent(raidPtr, event); 722 723 if (status == RF_RECON_WRITE_ERROR) { 724 num_writes++; 725 recon_error = 1; 726 raidPtr->reconControl->error = 1; 727 /* an error was encountered at the very end... bail */ 728 } else if (status == RF_RECON_WRITE_DONE) { 729 num_writes++; 730 } /* else it's something else, and we don't care */ 731 } 732 if (recon_error || 733 (raidPtr->reconControl->lastPSID == lastPSID)) { 734 done = 1; 735 break; 736 } 737 738 prev = raidPtr->reconControl->lastPSID; 739 raidPtr->reconControl->lastPSID += incPSID; 740 741 if (raidPtr->reconControl->lastPSID > lastPSID) { 742 pending_writes = lastPSID - prev; 743 raidPtr->reconControl->lastPSID = lastPSID; 744 } 745 746 /* back down curPSID to get ready for the next round... */ 747 for (i = 0; i < raidPtr->numCol; i++) { 748 if (i != col) { 749 raidPtr->reconControl->perDiskInfo[i].curPSID--; 750 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 751 } 752 } 753 } 754 755 mapPtr = raidPtr->reconControl->reconMap; 756 if (rf_reconDebug) { 757 printf("RECON: all reads completed\n"); 758 } 759 /* at this point all the reads have completed. We now wait 760 * for any pending writes to complete, and then we're done */ 761 762 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 763 764 event = rf_GetNextReconEvent(reconDesc); 765 status = ProcessReconEvent(raidPtr, event); 766 767 if (status == RF_RECON_WRITE_ERROR) { 768 recon_error = 1; 769 raidPtr->reconControl->error = 1; 770 /* an error was encountered at the very end... bail */ 771 } else { 772 #if RF_DEBUG_RECON 773 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 774 if (rf_prReconSched) { 775 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 776 } 777 #endif 778 } 779 } 780 781 if (recon_error) { 782 /* we've encountered an error in reconstructing. */ 783 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 784 785 /* we start by blocking IO to the RAID set. */ 786 rf_SuspendNewRequestsAndWait(raidPtr); 787 788 rf_lock_mutex2(raidPtr->mutex); 789 /* mark set as being degraded, rather than 790 rf_rs_reconstructing as we were before the problem. 791 After this is done we can update status of the 792 component disks without worrying about someone 793 trying to read from a failed component. 794 */ 795 raidPtr->status = rf_rs_degraded; 796 rf_unlock_mutex2(raidPtr->mutex); 797 798 /* resume IO */ 799 rf_ResumeNewRequests(raidPtr); 800 801 /* At this point there are two cases: 802 1) If we've experienced a read error, then we've 803 already waited for all the reads we're going to get, 804 and we just need to wait for the writes. 805 806 2) If we've experienced a write error, we've also 807 already waited for all the reads to complete, 808 but there is little point in waiting for the writes -- 809 when they do complete, they will just be ignored. 810 811 So we just wait for writes to complete if we didn't have a 812 write error. 813 */ 814 815 if (!write_error) { 816 /* wait for writes to complete */ 817 while (raidPtr->reconControl->pending_writes > 0) { 818 819 event = rf_GetNextReconEvent(reconDesc); 820 status = ProcessReconEvent(raidPtr, event); 821 822 if (status == RF_RECON_WRITE_ERROR) { 823 raidPtr->reconControl->error = 1; 824 /* an error was encountered at the very end... bail. 825 This will be very bad news for the user, since 826 at this point there will have been a read error 827 on one component, and a write error on another! 828 */ 829 break; 830 } 831 } 832 } 833 834 835 /* cleanup */ 836 837 /* drain the event queue - after waiting for the writes above, 838 there shouldn't be much (if anything!) left in the queue. */ 839 840 rf_DrainReconEventQueue(reconDesc); 841 842 /* XXX As much as we'd like to free the recon control structure 843 and the reconDesc, we have no way of knowing if/when those will 844 be touched by IO that has yet to occur. It is rather poor to be 845 basically causing a 'memory leak' here, but there doesn't seem to be 846 a cleaner alternative at this time. Perhaps when the reconstruct code 847 gets a makeover this problem will go away. 848 */ 849 #if 0 850 rf_FreeReconControl(raidPtr); 851 #endif 852 853 #if RF_ACC_TRACE > 0 854 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 855 #endif 856 /* XXX see comment above */ 857 #if 0 858 FreeReconDesc(reconDesc); 859 #endif 860 861 return (1); 862 } 863 864 /* Success: mark the dead disk as reconstructed. We quiesce 865 * the array here to assure no nasty interactions with pending 866 * user accesses when we free up the psstatus structure as 867 * part of FreeReconControl() */ 868 869 rf_SuspendNewRequestsAndWait(raidPtr); 870 871 rf_lock_mutex2(raidPtr->mutex); 872 raidPtr->numFailures--; 873 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 874 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 875 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 876 rf_unlock_mutex2(raidPtr->mutex); 877 RF_GETTIME(etime); 878 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 879 880 rf_ResumeNewRequests(raidPtr); 881 882 printf("raid%d: Reconstruction of disk at col %d completed\n", 883 raidPtr->raidid, col); 884 xor_s = raidPtr->accumXorTimeUs / 1000000; 885 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 886 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 887 raidPtr->raidid, 888 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 889 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 890 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 891 raidPtr->raidid, 892 (int) raidPtr->reconControl->starttime.tv_sec, 893 (int) raidPtr->reconControl->starttime.tv_usec, 894 (int) etime.tv_sec, (int) etime.tv_usec); 895 #if RF_RECON_STATS > 0 896 printf("raid%d: Total head-sep stall count was %d\n", 897 raidPtr->raidid, (int) reconDesc->hsStallCount); 898 #endif /* RF_RECON_STATS > 0 */ 899 rf_FreeReconControl(raidPtr); 900 #if RF_ACC_TRACE > 0 901 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 902 #endif 903 FreeReconDesc(reconDesc); 904 905 return (0); 906 907 } 908 /***************************************************************************** 909 * do the right thing upon each reconstruction event. 910 *****************************************************************************/ 911 static int 912 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 913 { 914 int retcode = 0, submitblocked; 915 RF_ReconBuffer_t *rbuf; 916 RF_SectorCount_t sectorsPerRU; 917 918 retcode = RF_RECON_READ_STOPPED; 919 920 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 921 922 switch (event->type) { 923 924 /* a read I/O has completed */ 925 case RF_REVENT_READDONE: 926 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 927 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 928 event->col, rbuf->parityStripeID); 929 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 930 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 931 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 932 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 933 if (!raidPtr->reconControl->error) { 934 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 935 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 936 if (!submitblocked) 937 retcode = IssueNextReadRequest(raidPtr, event->col); 938 else 939 retcode = 0; 940 } 941 break; 942 943 /* a write I/O has completed */ 944 case RF_REVENT_WRITEDONE: 945 #if RF_DEBUG_RECON 946 if (rf_floatingRbufDebug) { 947 rf_CheckFloatingRbufCount(raidPtr, 1); 948 } 949 #endif 950 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 951 rbuf = (RF_ReconBuffer_t *) event->arg; 952 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 953 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 954 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 955 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 956 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 957 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 958 959 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 960 raidPtr->reconControl->pending_writes--; 961 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 962 963 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 964 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 965 while(raidPtr->reconControl->rb_lock) { 966 rf_wait_cond2(raidPtr->reconControl->rb_cv, 967 raidPtr->reconControl->rb_mutex); 968 } 969 raidPtr->reconControl->rb_lock = 1; 970 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 971 972 raidPtr->numFullReconBuffers--; 973 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 974 975 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 976 raidPtr->reconControl->rb_lock = 0; 977 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 978 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 979 } else 980 if (rbuf->type == RF_RBUF_TYPE_FORCED) 981 rf_FreeReconBuffer(rbuf); 982 else 983 RF_ASSERT(0); 984 retcode = RF_RECON_WRITE_DONE; 985 break; 986 987 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 988 * cleared */ 989 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 990 if (!raidPtr->reconControl->error) { 991 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 992 0, (int) (long) event->arg); 993 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 994 * BUFCLEAR event if we 995 * couldn't submit */ 996 retcode = IssueNextReadRequest(raidPtr, event->col); 997 } 998 break; 999 1000 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 1001 * blockage has been cleared */ 1002 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 1003 if (!raidPtr->reconControl->error) { 1004 retcode = TryToRead(raidPtr, event->col); 1005 } 1006 break; 1007 1008 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1009 * reconstruction blockage has been 1010 * cleared */ 1011 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1012 if (!raidPtr->reconControl->error) { 1013 retcode = TryToRead(raidPtr, event->col); 1014 } 1015 break; 1016 1017 /* a buffer has become ready to write */ 1018 case RF_REVENT_BUFREADY: 1019 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1020 if (!raidPtr->reconControl->error) { 1021 retcode = IssueNextWriteRequest(raidPtr); 1022 #if RF_DEBUG_RECON 1023 if (rf_floatingRbufDebug) { 1024 rf_CheckFloatingRbufCount(raidPtr, 1); 1025 } 1026 #endif 1027 } 1028 break; 1029 1030 /* we need to skip the current RU entirely because it got 1031 * recon'd while we were waiting for something else to happen */ 1032 case RF_REVENT_SKIP: 1033 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1034 if (!raidPtr->reconControl->error) { 1035 retcode = IssueNextReadRequest(raidPtr, event->col); 1036 } 1037 break; 1038 1039 /* a forced-reconstruction read access has completed. Just 1040 * submit the buffer */ 1041 case RF_REVENT_FORCEDREADDONE: 1042 rbuf = (RF_ReconBuffer_t *) event->arg; 1043 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1044 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1045 if (!raidPtr->reconControl->error) { 1046 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1047 RF_ASSERT(!submitblocked); 1048 retcode = 0; 1049 } 1050 break; 1051 1052 /* A read I/O failed to complete */ 1053 case RF_REVENT_READ_FAILED: 1054 retcode = RF_RECON_READ_ERROR; 1055 break; 1056 1057 /* A write I/O failed to complete */ 1058 case RF_REVENT_WRITE_FAILED: 1059 retcode = RF_RECON_WRITE_ERROR; 1060 1061 /* This is an error, but it was a pending write. 1062 Account for it. */ 1063 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1064 raidPtr->reconControl->pending_writes--; 1065 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1066 1067 rbuf = (RF_ReconBuffer_t *) event->arg; 1068 1069 /* cleanup the disk queue data */ 1070 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1071 1072 /* At this point we're erroring out, badly, and floatingRbufs 1073 may not even be valid. Rather than putting this back onto 1074 the floatingRbufs list, just arrange for its immediate 1075 destruction. 1076 */ 1077 rf_FreeReconBuffer(rbuf); 1078 break; 1079 1080 /* a forced read I/O failed to complete */ 1081 case RF_REVENT_FORCEDREAD_FAILED: 1082 retcode = RF_RECON_READ_ERROR; 1083 break; 1084 1085 default: 1086 RF_PANIC(); 1087 } 1088 rf_FreeReconEventDesc(event); 1089 return (retcode); 1090 } 1091 /***************************************************************************** 1092 * 1093 * find the next thing that's needed on the indicated disk, and issue 1094 * a read request for it. We assume that the reconstruction buffer 1095 * associated with this process is free to receive the data. If 1096 * reconstruction is blocked on the indicated RU, we issue a 1097 * blockage-release request instead of a physical disk read request. 1098 * If the current disk gets too far ahead of the others, we issue a 1099 * head-separation wait request and return. 1100 * 1101 * ctrl->{ru_count, curPSID, diskOffset} and 1102 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1103 * we're currently accessing. Note that this deviates from the 1104 * standard C idiom of having counters point to the next thing to be 1105 * accessed. This allows us to easily retry when we're blocked by 1106 * head separation or reconstruction-blockage events. 1107 * 1108 *****************************************************************************/ 1109 static int 1110 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1111 { 1112 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1113 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1114 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1115 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1116 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1117 int do_new_check = 0, retcode = 0, status; 1118 1119 /* if we are currently the slowest disk, mark that we have to do a new 1120 * check */ 1121 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1122 do_new_check = 1; 1123 1124 while (1) { 1125 1126 ctrl->ru_count++; 1127 if (ctrl->ru_count < RUsPerPU) { 1128 ctrl->diskOffset += sectorsPerRU; 1129 rbuf->failedDiskSectorOffset += sectorsPerRU; 1130 } else { 1131 ctrl->curPSID++; 1132 ctrl->ru_count = 0; 1133 /* code left over from when head-sep was based on 1134 * parity stripe id */ 1135 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1136 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1137 return (RF_RECON_DONE_READS); /* finito! */ 1138 } 1139 /* find the disk offsets of the start of the parity 1140 * stripe on both the current disk and the failed 1141 * disk. skip this entire parity stripe if either disk 1142 * does not appear in the indicated PS */ 1143 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1144 &rbuf->spCol, &rbuf->spOffset); 1145 if (status) { 1146 ctrl->ru_count = RUsPerPU - 1; 1147 continue; 1148 } 1149 } 1150 rbuf->which_ru = ctrl->ru_count; 1151 1152 /* skip this RU if it's already been reconstructed */ 1153 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1154 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1155 continue; 1156 } 1157 break; 1158 } 1159 ctrl->headSepCounter++; 1160 if (do_new_check) 1161 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1162 1163 1164 /* at this point, we have definitely decided what to do, and we have 1165 * only to see if we can actually do it now */ 1166 rbuf->parityStripeID = ctrl->curPSID; 1167 rbuf->which_ru = ctrl->ru_count; 1168 #if RF_ACC_TRACE > 0 1169 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1170 sizeof(raidPtr->recon_tracerecs[col])); 1171 raidPtr->recon_tracerecs[col].reconacc = 1; 1172 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1173 #endif 1174 retcode = TryToRead(raidPtr, col); 1175 return (retcode); 1176 } 1177 1178 /* 1179 * tries to issue the next read on the indicated disk. We may be 1180 * blocked by (a) the heads being too far apart, or (b) recon on the 1181 * indicated RU being blocked due to a write by a user thread. In 1182 * this case, we issue a head-sep or blockage wait request, which will 1183 * cause this same routine to be invoked again later when the blockage 1184 * has cleared. 1185 */ 1186 1187 static int 1188 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1189 { 1190 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1191 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1192 RF_StripeNum_t psid = ctrl->curPSID; 1193 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1194 RF_DiskQueueData_t *req; 1195 int status; 1196 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1197 1198 /* if the current disk is too far ahead of the others, issue a 1199 * head-separation wait and return */ 1200 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1201 return (0); 1202 1203 /* allocate a new PSS in case we need it */ 1204 newpssPtr = rf_AllocPSStatus(raidPtr); 1205 1206 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1207 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1208 1209 if (pssPtr != newpssPtr) { 1210 rf_FreePSStatus(raidPtr, newpssPtr); 1211 } 1212 1213 /* if recon is blocked on the indicated parity stripe, issue a 1214 * block-wait request and return. this also must mark the indicated RU 1215 * in the stripe as under reconstruction if not blocked. */ 1216 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1217 if (status == RF_PSS_RECON_BLOCKED) { 1218 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1219 goto out; 1220 } else 1221 if (status == RF_PSS_FORCED_ON_WRITE) { 1222 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1223 goto out; 1224 } 1225 /* make one last check to be sure that the indicated RU didn't get 1226 * reconstructed while we were waiting for something else to happen. 1227 * This is unfortunate in that it causes us to make this check twice 1228 * in the normal case. Might want to make some attempt to re-work 1229 * this so that we only do this check if we've definitely blocked on 1230 * one of the above checks. When this condition is detected, we may 1231 * have just created a bogus status entry, which we need to delete. */ 1232 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1233 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1234 if (pssPtr == newpssPtr) 1235 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1236 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1237 goto out; 1238 } 1239 /* found something to read. issue the I/O */ 1240 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1241 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1242 #if RF_ACC_TRACE > 0 1243 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1244 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1245 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1246 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1247 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1248 #endif 1249 /* should be ok to use a NULL proc pointer here, all the bufs we use 1250 * should be in kernel space */ 1251 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1252 ReconReadDoneProc, (void *) ctrl, 1253 #if RF_ACC_TRACE > 0 1254 &raidPtr->recon_tracerecs[col], 1255 #else 1256 NULL, 1257 #endif 1258 (void *) raidPtr, 0, NULL, PR_WAITOK); 1259 1260 ctrl->rbuf->arg = (void *) req; 1261 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1262 pssPtr->issued[col] = 1; 1263 1264 out: 1265 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1266 return (0); 1267 } 1268 1269 1270 /* 1271 * given a parity stripe ID, we want to find out whether both the 1272 * current disk and the failed disk exist in that parity stripe. If 1273 * not, we want to skip this whole PS. If so, we want to find the 1274 * disk offset of the start of the PS on both the current disk and the 1275 * failed disk. 1276 * 1277 * this works by getting a list of disks comprising the indicated 1278 * parity stripe, and searching the list for the current and failed 1279 * disks. Once we've decided they both exist in the parity stripe, we 1280 * need to decide whether each is data or parity, so that we'll know 1281 * which mapping function to call to get the corresponding disk 1282 * offsets. 1283 * 1284 * this is kind of unpleasant, but doing it this way allows the 1285 * reconstruction code to use parity stripe IDs rather than physical 1286 * disks address to march through the failed disk, which greatly 1287 * simplifies a lot of code, as well as eliminating the need for a 1288 * reverse-mapping function. I also think it will execute faster, 1289 * since the calls to the mapping module are kept to a minimum. 1290 * 1291 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1292 * THE STRIPE IN THE CORRECT ORDER 1293 * 1294 * raidPtr - raid descriptor 1295 * psid - parity stripe identifier 1296 * col - column of disk to find the offsets for 1297 * spCol - out: col of spare unit for failed unit 1298 * spOffset - out: offset into disk containing spare unit 1299 * 1300 */ 1301 1302 1303 static int 1304 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1305 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1306 RF_SectorNum_t *outFailedDiskSectorOffset, 1307 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1308 { 1309 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1310 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1311 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1312 RF_RowCol_t *diskids; 1313 u_int i, j, k, i_offset, j_offset; 1314 RF_RowCol_t pcol; 1315 int testcol; 1316 RF_SectorNum_t poffset; 1317 char i_is_parity = 0, j_is_parity = 0; 1318 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1319 1320 /* get a listing of the disks comprising that stripe */ 1321 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1322 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1323 RF_ASSERT(diskids); 1324 1325 /* reject this entire parity stripe if it does not contain the 1326 * indicated disk or it does not contain the failed disk */ 1327 1328 for (i = 0; i < stripeWidth; i++) { 1329 if (col == diskids[i]) 1330 break; 1331 } 1332 if (i == stripeWidth) 1333 goto skipit; 1334 for (j = 0; j < stripeWidth; j++) { 1335 if (fcol == diskids[j]) 1336 break; 1337 } 1338 if (j == stripeWidth) { 1339 goto skipit; 1340 } 1341 /* find out which disk the parity is on */ 1342 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1343 1344 /* find out if either the current RU or the failed RU is parity */ 1345 /* also, if the parity occurs in this stripe prior to the data and/or 1346 * failed col, we need to decrement i and/or j */ 1347 for (k = 0; k < stripeWidth; k++) 1348 if (diskids[k] == pcol) 1349 break; 1350 RF_ASSERT(k < stripeWidth); 1351 i_offset = i; 1352 j_offset = j; 1353 if (k < i) 1354 i_offset--; 1355 else 1356 if (k == i) { 1357 i_is_parity = 1; 1358 i_offset = 0; 1359 } /* set offsets to zero to disable multiply 1360 * below */ 1361 if (k < j) 1362 j_offset--; 1363 else 1364 if (k == j) { 1365 j_is_parity = 1; 1366 j_offset = 0; 1367 } 1368 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1369 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1370 * tells us how far into the stripe the [current,failed] disk is. */ 1371 1372 /* call the mapping routine to get the offset into the current disk, 1373 * repeat for failed disk. */ 1374 if (i_is_parity) 1375 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1376 else 1377 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1378 1379 RF_ASSERT(col == testcol); 1380 1381 if (j_is_parity) 1382 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1383 else 1384 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1385 RF_ASSERT(fcol == testcol); 1386 1387 /* now locate the spare unit for the failed unit */ 1388 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1389 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1390 if (j_is_parity) 1391 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1392 else 1393 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1394 } else { 1395 #endif 1396 *spCol = raidPtr->reconControl->spareCol; 1397 *spOffset = *outFailedDiskSectorOffset; 1398 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1399 } 1400 #endif 1401 return (0); 1402 1403 skipit: 1404 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1405 psid, col); 1406 return (1); 1407 } 1408 /* this is called when a buffer has become ready to write to the replacement disk */ 1409 static int 1410 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1411 { 1412 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1413 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1414 #if RF_ACC_TRACE > 0 1415 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1416 #endif 1417 RF_ReconBuffer_t *rbuf; 1418 RF_DiskQueueData_t *req; 1419 1420 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1421 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1422 * have gotten the event that sent us here */ 1423 RF_ASSERT(rbuf->pssPtr); 1424 1425 rbuf->pssPtr->writeRbuf = rbuf; 1426 rbuf->pssPtr = NULL; 1427 1428 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1429 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1430 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1431 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1432 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1433 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1434 1435 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1436 * kernel space */ 1437 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1438 sectorsPerRU, rbuf->buffer, 1439 rbuf->parityStripeID, rbuf->which_ru, 1440 ReconWriteDoneProc, (void *) rbuf, 1441 #if RF_ACC_TRACE > 0 1442 &raidPtr->recon_tracerecs[fcol], 1443 #else 1444 NULL, 1445 #endif 1446 (void *) raidPtr, 0, NULL, PR_WAITOK); 1447 1448 rbuf->arg = (void *) req; 1449 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1450 raidPtr->reconControl->pending_writes++; 1451 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1452 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1453 1454 return (0); 1455 } 1456 1457 /* 1458 * this gets called upon the completion of a reconstruction read 1459 * operation the arg is a pointer to the per-disk reconstruction 1460 * control structure for the process that just finished a read. 1461 * 1462 * called at interrupt context in the kernel, so don't do anything 1463 * illegal here. 1464 */ 1465 static int 1466 ReconReadDoneProc(void *arg, int status) 1467 { 1468 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1469 RF_Raid_t *raidPtr; 1470 1471 /* Detect that reconCtrl is no longer valid, and if that 1472 is the case, bail without calling rf_CauseReconEvent(). 1473 There won't be anyone listening for this event anyway */ 1474 1475 if (ctrl->reconCtrl == NULL) 1476 return(0); 1477 1478 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1479 1480 if (status) { 1481 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1482 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1483 return(0); 1484 } 1485 #if RF_ACC_TRACE > 0 1486 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1487 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1488 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1489 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1490 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1491 #endif 1492 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1493 return (0); 1494 } 1495 /* this gets called upon the completion of a reconstruction write operation. 1496 * the arg is a pointer to the rbuf that was just written 1497 * 1498 * called at interrupt context in the kernel, so don't do anything illegal here. 1499 */ 1500 static int 1501 ReconWriteDoneProc(void *arg, int status) 1502 { 1503 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1504 1505 /* Detect that reconControl is no longer valid, and if that 1506 is the case, bail without calling rf_CauseReconEvent(). 1507 There won't be anyone listening for this event anyway */ 1508 1509 if (rbuf->raidPtr->reconControl == NULL) 1510 return(0); 1511 1512 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1513 if (status) { 1514 printf("raid%d: Recon write failed (status %d(0x%x)!\n", rbuf->raidPtr->raidid,status,status); 1515 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1516 return(0); 1517 } 1518 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1519 return (0); 1520 } 1521 1522 1523 /* 1524 * computes a new minimum head sep, and wakes up anyone who needs to 1525 * be woken as a result 1526 */ 1527 static void 1528 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1529 { 1530 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1531 RF_HeadSepLimit_t new_min; 1532 RF_RowCol_t i; 1533 RF_CallbackDesc_t *p; 1534 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1535 * of a minimum */ 1536 1537 1538 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1539 while(reconCtrlPtr->rb_lock) { 1540 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1541 } 1542 reconCtrlPtr->rb_lock = 1; 1543 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1544 1545 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1546 for (i = 0; i < raidPtr->numCol; i++) 1547 if (i != reconCtrlPtr->fcol) { 1548 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1549 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1550 } 1551 /* set the new minimum and wake up anyone who can now run again */ 1552 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1553 reconCtrlPtr->minHeadSepCounter = new_min; 1554 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1555 while (reconCtrlPtr->headSepCBList) { 1556 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1557 break; 1558 p = reconCtrlPtr->headSepCBList; 1559 reconCtrlPtr->headSepCBList = p->next; 1560 p->next = NULL; 1561 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1562 rf_FreeCallbackDesc(p); 1563 } 1564 1565 } 1566 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1567 reconCtrlPtr->rb_lock = 0; 1568 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1569 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1570 } 1571 1572 /* 1573 * checks to see that the maximum head separation will not be violated 1574 * if we initiate a reconstruction I/O on the indicated disk. 1575 * Limiting the maximum head separation between two disks eliminates 1576 * the nasty buffer-stall conditions that occur when one disk races 1577 * ahead of the others and consumes all of the floating recon buffers. 1578 * This code is complex and unpleasant but it's necessary to avoid 1579 * some very nasty, albeit fairly rare, reconstruction behavior. 1580 * 1581 * returns non-zero if and only if we have to stop working on the 1582 * indicated disk due to a head-separation delay. 1583 */ 1584 static int 1585 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1586 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1587 RF_ReconUnitNum_t which_ru) 1588 { 1589 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1590 RF_CallbackDesc_t *cb, *p, *pt; 1591 int retval = 0; 1592 1593 /* if we're too far ahead of the slowest disk, stop working on this 1594 * disk until the slower ones catch up. We do this by scheduling a 1595 * wakeup callback for the time when the slowest disk has caught up. 1596 * We define "caught up" with 20% hysteresis, i.e. the head separation 1597 * must have fallen to at most 80% of the max allowable head 1598 * separation before we'll wake up. 1599 * 1600 */ 1601 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1602 while(reconCtrlPtr->rb_lock) { 1603 rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex); 1604 } 1605 reconCtrlPtr->rb_lock = 1; 1606 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1607 if ((raidPtr->headSepLimit >= 0) && 1608 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1609 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1610 raidPtr->raidid, col, ctrl->headSepCounter, 1611 reconCtrlPtr->minHeadSepCounter, 1612 raidPtr->headSepLimit); 1613 cb = rf_AllocCallbackDesc(); 1614 /* the minHeadSepCounter value we have to get to before we'll 1615 * wake up. build in 20% hysteresis. */ 1616 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1617 cb->col = col; 1618 cb->next = NULL; 1619 1620 /* insert this callback descriptor into the sorted list of 1621 * pending head-sep callbacks */ 1622 p = reconCtrlPtr->headSepCBList; 1623 if (!p) 1624 reconCtrlPtr->headSepCBList = cb; 1625 else 1626 if (cb->callbackArg.v < p->callbackArg.v) { 1627 cb->next = reconCtrlPtr->headSepCBList; 1628 reconCtrlPtr->headSepCBList = cb; 1629 } else { 1630 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1631 cb->next = p; 1632 pt->next = cb; 1633 } 1634 retval = 1; 1635 #if RF_RECON_STATS > 0 1636 ctrl->reconCtrl->reconDesc->hsStallCount++; 1637 #endif /* RF_RECON_STATS > 0 */ 1638 } 1639 rf_lock_mutex2(reconCtrlPtr->rb_mutex); 1640 reconCtrlPtr->rb_lock = 0; 1641 rf_broadcast_cond2(reconCtrlPtr->rb_cv); 1642 rf_unlock_mutex2(reconCtrlPtr->rb_mutex); 1643 1644 return (retval); 1645 } 1646 /* 1647 * checks to see if reconstruction has been either forced or blocked 1648 * by a user operation. if forced, we skip this RU entirely. else if 1649 * blocked, put ourselves on the wait list. else return 0. 1650 * 1651 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1652 */ 1653 static int 1654 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1655 RF_ReconParityStripeStatus_t *pssPtr, 1656 RF_PerDiskReconCtrl_t *ctrl, 1657 RF_RowCol_t col, 1658 RF_StripeNum_t psid, 1659 RF_ReconUnitNum_t which_ru) 1660 { 1661 RF_CallbackDesc_t *cb; 1662 int retcode = 0; 1663 1664 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1665 retcode = RF_PSS_FORCED_ON_WRITE; 1666 else 1667 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1668 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1669 cb = rf_AllocCallbackDesc(); /* append ourselves to 1670 * the blockage-wait 1671 * list */ 1672 cb->col = col; 1673 cb->next = pssPtr->blockWaitList; 1674 pssPtr->blockWaitList = cb; 1675 retcode = RF_PSS_RECON_BLOCKED; 1676 } 1677 if (!retcode) 1678 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1679 * reconstruction */ 1680 1681 return (retcode); 1682 } 1683 /* 1684 * if reconstruction is currently ongoing for the indicated stripeID, 1685 * reconstruction is forced to completion and we return non-zero to 1686 * indicate that the caller must wait. If not, then reconstruction is 1687 * blocked on the indicated stripe and the routine returns zero. If 1688 * and only if we return non-zero, we'll cause the cbFunc to get 1689 * invoked with the cbArg when the reconstruction has completed. 1690 */ 1691 int 1692 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1693 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1694 { 1695 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1696 * forcing recon on */ 1697 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1698 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1699 * stripe status structure */ 1700 RF_StripeNum_t psid; /* parity stripe id */ 1701 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1702 * offset */ 1703 RF_RowCol_t *diskids; 1704 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1705 RF_RowCol_t fcol, diskno, i; 1706 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1707 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1708 RF_CallbackDesc_t *cb; 1709 int nPromoted; 1710 1711 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1712 1713 /* allocate a new PSS in case we need it */ 1714 newpssPtr = rf_AllocPSStatus(raidPtr); 1715 1716 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1717 1718 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1719 1720 if (pssPtr != newpssPtr) { 1721 rf_FreePSStatus(raidPtr, newpssPtr); 1722 } 1723 1724 /* if recon is not ongoing on this PS, just return */ 1725 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1726 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1727 return (0); 1728 } 1729 /* otherwise, we have to wait for reconstruction to complete on this 1730 * RU. */ 1731 /* In order to avoid waiting for a potentially large number of 1732 * low-priority accesses to complete, we force a normal-priority (i.e. 1733 * not low-priority) reconstruction on this RU. */ 1734 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1735 DDprintf1("Forcing recon on psid %ld\n", psid); 1736 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1737 * forced recon */ 1738 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1739 * that we just set */ 1740 fcol = raidPtr->reconControl->fcol; 1741 1742 /* get a listing of the disks comprising the indicated stripe */ 1743 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1744 1745 /* For previously issued reads, elevate them to normal 1746 * priority. If the I/O has already completed, it won't be 1747 * found in the queue, and hence this will be a no-op. For 1748 * unissued reads, allocate buffers and issue new reads. The 1749 * fact that we've set the FORCED bit means that the regular 1750 * recon procs will not re-issue these reqs */ 1751 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1752 if ((diskno = diskids[i]) != fcol) { 1753 if (pssPtr->issued[diskno]) { 1754 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1755 if (rf_reconDebug && nPromoted) 1756 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1757 } else { 1758 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1759 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1760 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1761 * location */ 1762 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1763 new_rbuf->which_ru = which_ru; 1764 new_rbuf->failedDiskSectorOffset = fd_offset; 1765 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1766 1767 /* use NULL b_proc b/c all addrs 1768 * should be in kernel space */ 1769 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1770 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1771 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1772 1773 new_rbuf->arg = req; 1774 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1775 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1776 } 1777 } 1778 /* if the write is sitting in the disk queue, elevate its 1779 * priority */ 1780 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1781 if (rf_reconDebug) 1782 printf("raid%d: promoted write to col %d\n", 1783 raidPtr->raidid, fcol); 1784 } 1785 /* install a callback descriptor to be invoked when recon completes on 1786 * this parity stripe. */ 1787 cb = rf_AllocCallbackDesc(); 1788 /* XXX the following is bogus.. These functions don't really match!! 1789 * GO */ 1790 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1791 cb->callbackArg.p = (void *) cbArg; 1792 cb->next = pssPtr->procWaitList; 1793 pssPtr->procWaitList = cb; 1794 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1795 raidPtr->raidid, psid); 1796 1797 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1798 return (1); 1799 } 1800 /* called upon the completion of a forced reconstruction read. 1801 * all we do is schedule the FORCEDREADONE event. 1802 * called at interrupt context in the kernel, so don't do anything illegal here. 1803 */ 1804 static void 1805 ForceReconReadDoneProc(void *arg, int status) 1806 { 1807 RF_ReconBuffer_t *rbuf = arg; 1808 1809 /* Detect that reconControl is no longer valid, and if that 1810 is the case, bail without calling rf_CauseReconEvent(). 1811 There won't be anyone listening for this event anyway */ 1812 1813 if (rbuf->raidPtr->reconControl == NULL) 1814 return; 1815 1816 if (status) { 1817 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1818 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1819 return; 1820 } 1821 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1822 } 1823 /* releases a block on the reconstruction of the indicated stripe */ 1824 int 1825 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1826 { 1827 RF_StripeNum_t stripeID = asmap->stripeID; 1828 RF_ReconParityStripeStatus_t *pssPtr; 1829 RF_ReconUnitNum_t which_ru; 1830 RF_StripeNum_t psid; 1831 RF_CallbackDesc_t *cb; 1832 1833 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1834 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1835 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1836 1837 /* When recon is forced, the pss desc can get deleted before we get 1838 * back to unblock recon. But, this can _only_ happen when recon is 1839 * forced. It would be good to put some kind of sanity check here, but 1840 * how to decide if recon was just forced or not? */ 1841 if (!pssPtr) { 1842 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1843 * RU %d\n",psid,which_ru); */ 1844 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1845 if (rf_reconDebug || rf_pssDebug) 1846 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1847 #endif 1848 goto out; 1849 } 1850 pssPtr->blockCount--; 1851 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1852 raidPtr->raidid, psid, pssPtr->blockCount); 1853 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1854 1855 /* unblock recon before calling CauseReconEvent in case 1856 * CauseReconEvent causes us to try to issue a new read before 1857 * returning here. */ 1858 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1859 1860 1861 while (pssPtr->blockWaitList) { 1862 /* spin through the block-wait list and 1863 release all the waiters */ 1864 cb = pssPtr->blockWaitList; 1865 pssPtr->blockWaitList = cb->next; 1866 cb->next = NULL; 1867 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1868 rf_FreeCallbackDesc(cb); 1869 } 1870 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1871 /* if no recon was requested while recon was blocked */ 1872 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1873 } 1874 } 1875 out: 1876 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1877 return (0); 1878 } 1879 1880 void 1881 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1882 { 1883 RF_CallbackDesc_t *p; 1884 1885 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1886 while(raidPtr->reconControl->rb_lock) { 1887 rf_wait_cond2(raidPtr->reconControl->rb_cv, 1888 raidPtr->reconControl->rb_mutex); 1889 } 1890 1891 raidPtr->reconControl->rb_lock = 1; 1892 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1893 1894 while (raidPtr->reconControl->headSepCBList) { 1895 p = raidPtr->reconControl->headSepCBList; 1896 raidPtr->reconControl->headSepCBList = p->next; 1897 p->next = NULL; 1898 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1899 rf_FreeCallbackDesc(p); 1900 } 1901 rf_lock_mutex2(raidPtr->reconControl->rb_mutex); 1902 raidPtr->reconControl->rb_lock = 0; 1903 rf_broadcast_cond2(raidPtr->reconControl->rb_cv); 1904 rf_unlock_mutex2(raidPtr->reconControl->rb_mutex); 1905 1906 } 1907 1908