1 /* $NetBSD: rf_reconstruct.c,v 1.26 2000/06/04 02:05:13 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include "rf_types.h" 36 #include <sys/time.h> 37 #include <sys/buf.h> 38 #include <sys/errno.h> 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_general.h" 58 #include "rf_freelist.h" 59 #include "rf_debugprint.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 static RF_FreeList_t *rf_recond_freelist; 81 #define RF_MAX_FREE_RECOND 4 82 #define RF_RECOND_INC 1 83 84 static RF_RaidReconDesc_t * 85 AllocRaidReconDesc(RF_Raid_t * raidPtr, 86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 89 static int 90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 91 RF_ReconEvent_t * event); 92 static int 93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 94 RF_RowCol_t col); 95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 96 static int 97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 102 static int ReconReadDoneProc(void *arg, int status); 103 static int ReconWriteDoneProc(void *arg, int status); 104 static void 105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 106 RF_HeadSepLimit_t hsCtr); 107 static int 108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 110 RF_ReconUnitNum_t which_ru); 111 static int 112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 115 RF_ReconUnitNum_t which_ru); 116 static void ForceReconReadDoneProc(void *arg, int status); 117 118 static void rf_ShutdownReconstruction(void *); 119 120 struct RF_ReconDoneProc_s { 121 void (*proc) (RF_Raid_t *, void *); 122 void *arg; 123 RF_ReconDoneProc_t *next; 124 }; 125 126 static RF_FreeList_t *rf_rdp_freelist; 127 #define RF_MAX_FREE_RDP 4 128 #define RF_RDP_INC 1 129 130 static void 131 SignalReconDone(RF_Raid_t * raidPtr) 132 { 133 RF_ReconDoneProc_t *p; 134 135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 136 for (p = raidPtr->recon_done_procs; p; p = p->next) { 137 p->proc(raidPtr, p->arg); 138 } 139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 140 } 141 142 int 143 rf_RegisterReconDoneProc( 144 RF_Raid_t * raidPtr, 145 void (*proc) (RF_Raid_t *, void *), 146 void *arg, 147 RF_ReconDoneProc_t ** handlep) 148 { 149 RF_ReconDoneProc_t *p; 150 151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 152 if (p == NULL) 153 return (ENOMEM); 154 p->proc = proc; 155 p->arg = arg; 156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 157 p->next = raidPtr->recon_done_procs; 158 raidPtr->recon_done_procs = p; 159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 160 if (handlep) 161 *handlep = p; 162 return (0); 163 } 164 /************************************************************************** 165 * 166 * sets up the parameters that will be used by the reconstruction process 167 * currently there are none, except for those that the layout-specific 168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 169 * 170 * in the kernel, we fire off the recon thread. 171 * 172 **************************************************************************/ 173 static void 174 rf_ShutdownReconstruction(ignored) 175 void *ignored; 176 { 177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 179 } 180 181 int 182 rf_ConfigureReconstruction(listp) 183 RF_ShutdownList_t **listp; 184 { 185 int rc; 186 187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 189 if (rf_recond_freelist == NULL) 190 return (ENOMEM); 191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 193 if (rf_rdp_freelist == NULL) { 194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 195 return (ENOMEM); 196 } 197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 198 if (rc) { 199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 200 __FILE__, __LINE__, rc); 201 rf_ShutdownReconstruction(NULL); 202 return (rc); 203 } 204 return (0); 205 } 206 207 static RF_RaidReconDesc_t * 208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 209 RF_Raid_t *raidPtr; 210 RF_RowCol_t row; 211 RF_RowCol_t col; 212 RF_RaidDisk_t *spareDiskPtr; 213 int numDisksDone; 214 RF_RowCol_t srow; 215 RF_RowCol_t scol; 216 { 217 218 RF_RaidReconDesc_t *reconDesc; 219 220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 221 222 reconDesc->raidPtr = raidPtr; 223 reconDesc->row = row; 224 reconDesc->col = col; 225 reconDesc->spareDiskPtr = spareDiskPtr; 226 reconDesc->numDisksDone = numDisksDone; 227 reconDesc->srow = srow; 228 reconDesc->scol = scol; 229 reconDesc->state = 0; 230 reconDesc->next = NULL; 231 232 return (reconDesc); 233 } 234 235 static void 236 FreeReconDesc(reconDesc) 237 RF_RaidReconDesc_t *reconDesc; 238 { 239 #if RF_RECON_STATS > 0 240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 242 #endif /* RF_RECON_STATS > 0 */ 243 printf("RAIDframe: %lu max exec ticks\n", 244 (long) reconDesc->maxReconExecTicks); 245 #if (RF_RECON_STATS > 0) || defined(KERNEL) 246 printf("\n"); 247 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 249 } 250 251 252 /***************************************************************************** 253 * 254 * primary routine to reconstruct a failed disk. This should be called from 255 * within its own thread. It won't return until reconstruction completes, 256 * fails, or is aborted. 257 *****************************************************************************/ 258 int 259 rf_ReconstructFailedDisk(raidPtr, row, col) 260 RF_Raid_t *raidPtr; 261 RF_RowCol_t row; 262 RF_RowCol_t col; 263 { 264 RF_LayoutSW_t *lp; 265 int rc; 266 267 lp = raidPtr->Layout.map; 268 if (lp->SubmitReconBuffer) { 269 /* 270 * The current infrastructure only supports reconstructing one 271 * disk at a time for each array. 272 */ 273 RF_LOCK_MUTEX(raidPtr->mutex); 274 while (raidPtr->reconInProgress) { 275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 276 } 277 raidPtr->reconInProgress++; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 280 RF_LOCK_MUTEX(raidPtr->mutex); 281 raidPtr->reconInProgress--; 282 RF_UNLOCK_MUTEX(raidPtr->mutex); 283 } else { 284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 285 lp->parityConfig); 286 rc = EIO; 287 } 288 RF_SIGNAL_COND(raidPtr->waitForReconCond); 289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 290 * needed at some point... GO */ 291 return (rc); 292 } 293 294 int 295 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 296 RF_Raid_t *raidPtr; 297 RF_RowCol_t row; 298 RF_RowCol_t col; 299 { 300 RF_ComponentLabel_t c_label; 301 RF_RaidDisk_t *spareDiskPtr = NULL; 302 RF_RaidReconDesc_t *reconDesc; 303 RF_RowCol_t srow, scol; 304 int numDisksDone = 0, rc; 305 306 /* first look for a spare drive onto which to reconstruct the data */ 307 /* spare disk descriptors are stored in row 0. This may have to 308 * change eventually */ 309 310 RF_LOCK_MUTEX(raidPtr->mutex); 311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 312 313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 314 if (raidPtr->status[row] != rf_rs_degraded) { 315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 316 RF_UNLOCK_MUTEX(raidPtr->mutex); 317 return (EINVAL); 318 } 319 srow = row; 320 scol = (-1); 321 } else { 322 srow = 0; 323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 325 spareDiskPtr = &raidPtr->Disks[srow][scol]; 326 spareDiskPtr->status = rf_ds_used_spare; 327 break; 328 } 329 } 330 if (!spareDiskPtr) { 331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 332 RF_UNLOCK_MUTEX(raidPtr->mutex); 333 return (ENOSPC); 334 } 335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 336 } 337 RF_UNLOCK_MUTEX(raidPtr->mutex); 338 339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 340 raidPtr->reconDesc = (void *) reconDesc; 341 #if RF_RECON_STATS > 0 342 reconDesc->hsStallCount = 0; 343 reconDesc->numReconExecDelays = 0; 344 reconDesc->numReconEventWaits = 0; 345 #endif /* RF_RECON_STATS > 0 */ 346 reconDesc->reconExecTimerRunning = 0; 347 reconDesc->reconExecTicks = 0; 348 reconDesc->maxReconExecTicks = 0; 349 rc = rf_ContinueReconstructFailedDisk(reconDesc); 350 351 if (!rc) { 352 /* fix up the component label */ 353 /* Don't actually need the read here.. */ 354 raidread_component_label( 355 raidPtr->raid_cinfo[srow][scol].ci_dev, 356 raidPtr->raid_cinfo[srow][scol].ci_vp, 357 &c_label); 358 359 raid_init_component_label( raidPtr, &c_label); 360 c_label.row = row; 361 c_label.column = col; 362 c_label.clean = RF_RAID_DIRTY; 363 c_label.status = rf_ds_optimal; 364 365 /* XXXX MORE NEEDED HERE */ 366 367 raidwrite_component_label( 368 raidPtr->raid_cinfo[srow][scol].ci_dev, 369 raidPtr->raid_cinfo[srow][scol].ci_vp, 370 &c_label); 371 372 } 373 return (rc); 374 } 375 376 /* 377 378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 379 and you don't get a spare until the next Monday. With this function 380 (and hot-swappable drives) you can now put your new disk containing 381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 382 rebuild the data "on the spot". 383 384 */ 385 386 int 387 rf_ReconstructInPlace(raidPtr, row, col) 388 RF_Raid_t *raidPtr; 389 RF_RowCol_t row; 390 RF_RowCol_t col; 391 { 392 RF_RaidDisk_t *spareDiskPtr = NULL; 393 RF_RaidReconDesc_t *reconDesc; 394 RF_LayoutSW_t *lp; 395 RF_RaidDisk_t *badDisk; 396 RF_ComponentLabel_t c_label; 397 int numDisksDone = 0, rc; 398 struct partinfo dpart; 399 struct vnode *vp; 400 struct vattr va; 401 struct proc *proc; 402 int retcode; 403 int ac; 404 405 lp = raidPtr->Layout.map; 406 if (lp->SubmitReconBuffer) { 407 /* 408 * The current infrastructure only supports reconstructing one 409 * disk at a time for each array. 410 */ 411 RF_LOCK_MUTEX(raidPtr->mutex); 412 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 413 (raidPtr->numFailures > 0)) { 414 /* XXX 0 above shouldn't be constant!!! */ 415 /* some component other than this has failed. 416 Let's not make things worse than they already 417 are... */ 418 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 419 printf(" Row: %d Col: %d Too many failures.\n", 420 row, col); 421 RF_UNLOCK_MUTEX(raidPtr->mutex); 422 return (EINVAL); 423 } 424 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 425 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 426 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 427 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 return (EINVAL); 430 } 431 432 433 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 434 /* "It's gone..." */ 435 raidPtr->numFailures++; 436 raidPtr->Disks[row][col].status = rf_ds_failed; 437 raidPtr->status[row] = rf_rs_degraded; 438 rf_update_component_labels(raidPtr, 439 RF_NORMAL_COMPONENT_UPDATE); 440 } 441 442 while (raidPtr->reconInProgress) { 443 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 444 } 445 446 raidPtr->reconInProgress++; 447 448 449 /* first look for a spare drive onto which to reconstruct 450 the data. spare disk descriptors are stored in row 0. 451 This may have to change eventually */ 452 453 /* Actually, we don't care if it's failed or not... 454 On a RAID set with correct parity, this function 455 should be callable on any component without ill affects. */ 456 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 457 */ 458 459 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 460 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 461 462 raidPtr->reconInProgress--; 463 RF_UNLOCK_MUTEX(raidPtr->mutex); 464 return (EINVAL); 465 } 466 467 /* XXX need goop here to see if the disk is alive, 468 and, if not, make it so... */ 469 470 471 472 badDisk = &raidPtr->Disks[row][col]; 473 474 proc = raidPtr->engine_thread; 475 476 /* This device may have been opened successfully the 477 first time. Close it before trying to open it again.. */ 478 479 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 480 printf("Closed the open device: %s\n", 481 raidPtr->Disks[row][col].devname); 482 vp = raidPtr->raid_cinfo[row][col].ci_vp; 483 ac = raidPtr->Disks[row][col].auto_configured; 484 rf_close_component(raidPtr, vp, ac); 485 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 486 } 487 /* note that this disk was *not* auto_configured (any longer)*/ 488 raidPtr->Disks[row][col].auto_configured = 0; 489 490 printf("About to (re-)open the device for rebuilding: %s\n", 491 raidPtr->Disks[row][col].devname); 492 493 retcode = raidlookup(raidPtr->Disks[row][col].devname, 494 proc, &vp); 495 496 if (retcode) { 497 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 498 raidPtr->Disks[row][col].devname, retcode); 499 500 /* XXX the component isn't responding properly... 501 must be still dead :-( */ 502 raidPtr->reconInProgress--; 503 RF_UNLOCK_MUTEX(raidPtr->mutex); 504 return(retcode); 505 506 } else { 507 508 /* Ok, so we can at least do a lookup... 509 How about actually getting a vp for it? */ 510 511 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 512 proc)) != 0) { 513 raidPtr->reconInProgress--; 514 RF_UNLOCK_MUTEX(raidPtr->mutex); 515 return(retcode); 516 } 517 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 518 FREAD, proc->p_ucred, proc); 519 if (retcode) { 520 raidPtr->reconInProgress--; 521 RF_UNLOCK_MUTEX(raidPtr->mutex); 522 return(retcode); 523 } 524 raidPtr->Disks[row][col].blockSize = 525 dpart.disklab->d_secsize; 526 527 raidPtr->Disks[row][col].numBlocks = 528 dpart.part->p_size - rf_protectedSectors; 529 530 raidPtr->raid_cinfo[row][col].ci_vp = vp; 531 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 532 533 raidPtr->Disks[row][col].dev = va.va_rdev; 534 535 /* we allow the user to specify that only a 536 fraction of the disks should be used this is 537 just for debug: it speeds up 538 * the parity scan */ 539 raidPtr->Disks[row][col].numBlocks = 540 raidPtr->Disks[row][col].numBlocks * 541 rf_sizePercentage / 100; 542 } 543 544 545 546 spareDiskPtr = &raidPtr->Disks[row][col]; 547 spareDiskPtr->status = rf_ds_used_spare; 548 549 printf("RECON: initiating in-place reconstruction on\n"); 550 printf(" row %d col %d -> spare at row %d col %d\n", 551 row, col, row, col); 552 553 RF_UNLOCK_MUTEX(raidPtr->mutex); 554 555 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 556 spareDiskPtr, numDisksDone, 557 row, col); 558 raidPtr->reconDesc = (void *) reconDesc; 559 #if RF_RECON_STATS > 0 560 reconDesc->hsStallCount = 0; 561 reconDesc->numReconExecDelays = 0; 562 reconDesc->numReconEventWaits = 0; 563 #endif /* RF_RECON_STATS > 0 */ 564 reconDesc->reconExecTimerRunning = 0; 565 reconDesc->reconExecTicks = 0; 566 reconDesc->maxReconExecTicks = 0; 567 rc = rf_ContinueReconstructFailedDisk(reconDesc); 568 569 RF_LOCK_MUTEX(raidPtr->mutex); 570 raidPtr->reconInProgress--; 571 RF_UNLOCK_MUTEX(raidPtr->mutex); 572 573 } else { 574 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 575 lp->parityConfig); 576 rc = EIO; 577 } 578 RF_LOCK_MUTEX(raidPtr->mutex); 579 580 if (!rc) { 581 /* Need to set these here, as at this point it'll be claiming 582 that the disk is in rf_ds_spared! But we know better :-) */ 583 584 raidPtr->Disks[row][col].status = rf_ds_optimal; 585 raidPtr->status[row] = rf_rs_optimal; 586 587 /* fix up the component label */ 588 /* Don't actually need the read here.. */ 589 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 590 raidPtr->raid_cinfo[row][col].ci_vp, 591 &c_label); 592 593 raid_init_component_label(raidPtr, &c_label); 594 595 c_label.row = row; 596 c_label.column = col; 597 598 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 599 raidPtr->raid_cinfo[row][col].ci_vp, 600 &c_label); 601 602 } 603 RF_UNLOCK_MUTEX(raidPtr->mutex); 604 RF_SIGNAL_COND(raidPtr->waitForReconCond); 605 wakeup(&raidPtr->waitForReconCond); 606 return (rc); 607 } 608 609 610 int 611 rf_ContinueReconstructFailedDisk(reconDesc) 612 RF_RaidReconDesc_t *reconDesc; 613 { 614 RF_Raid_t *raidPtr = reconDesc->raidPtr; 615 RF_RowCol_t row = reconDesc->row; 616 RF_RowCol_t col = reconDesc->col; 617 RF_RowCol_t srow = reconDesc->srow; 618 RF_RowCol_t scol = reconDesc->scol; 619 RF_ReconMap_t *mapPtr; 620 621 RF_ReconEvent_t *event; 622 struct timeval etime, elpsd; 623 unsigned long xor_s, xor_resid_us; 624 int retcode, i, ds; 625 626 switch (reconDesc->state) { 627 628 629 case 0: 630 631 raidPtr->accumXorTimeUs = 0; 632 633 /* create one trace record per physical disk */ 634 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 635 636 /* quiesce the array prior to starting recon. this is needed 637 * to assure no nasty interactions with pending user writes. 638 * We need to do this before we change the disk or row status. */ 639 reconDesc->state = 1; 640 641 Dprintf("RECON: begin request suspend\n"); 642 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 643 Dprintf("RECON: end request suspend\n"); 644 rf_StartUserStats(raidPtr); /* zero out the stats kept on 645 * user accs */ 646 647 /* fall through to state 1 */ 648 649 case 1: 650 651 RF_LOCK_MUTEX(raidPtr->mutex); 652 653 /* create the reconstruction control pointer and install it in 654 * the right slot */ 655 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 656 mapPtr = raidPtr->reconControl[row]->reconMap; 657 raidPtr->status[row] = rf_rs_reconstructing; 658 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 659 raidPtr->Disks[row][col].spareRow = srow; 660 raidPtr->Disks[row][col].spareCol = scol; 661 662 RF_UNLOCK_MUTEX(raidPtr->mutex); 663 664 RF_GETTIME(raidPtr->reconControl[row]->starttime); 665 666 /* now start up the actual reconstruction: issue a read for 667 * each surviving disk */ 668 669 reconDesc->numDisksDone = 0; 670 for (i = 0; i < raidPtr->numCol; i++) { 671 if (i != col) { 672 /* find and issue the next I/O on the 673 * indicated disk */ 674 if (IssueNextReadRequest(raidPtr, row, i)) { 675 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 676 reconDesc->numDisksDone++; 677 } 678 } 679 } 680 681 case 2: 682 Dprintf("RECON: resume requests\n"); 683 rf_ResumeNewRequests(raidPtr); 684 685 686 reconDesc->state = 3; 687 688 case 3: 689 690 /* process reconstruction events until all disks report that 691 * they've completed all work */ 692 mapPtr = raidPtr->reconControl[row]->reconMap; 693 694 695 696 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 697 698 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 699 RF_ASSERT(event); 700 701 if (ProcessReconEvent(raidPtr, row, event)) 702 reconDesc->numDisksDone++; 703 raidPtr->reconControl[row]->numRUsTotal = 704 mapPtr->totalRUs; 705 raidPtr->reconControl[row]->numRUsComplete = 706 mapPtr->totalRUs - 707 rf_UnitsLeftToReconstruct(mapPtr); 708 709 raidPtr->reconControl[row]->percentComplete = 710 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 711 if (rf_prReconSched) { 712 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 713 } 714 } 715 716 717 718 reconDesc->state = 4; 719 720 721 case 4: 722 mapPtr = raidPtr->reconControl[row]->reconMap; 723 if (rf_reconDebug) { 724 printf("RECON: all reads completed\n"); 725 } 726 /* at this point all the reads have completed. We now wait 727 * for any pending writes to complete, and then we're done */ 728 729 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 730 731 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 732 RF_ASSERT(event); 733 734 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 735 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 736 if (rf_prReconSched) { 737 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 738 } 739 } 740 reconDesc->state = 5; 741 742 case 5: 743 /* Success: mark the dead disk as reconstructed. We quiesce 744 * the array here to assure no nasty interactions with pending 745 * user accesses when we free up the psstatus structure as 746 * part of FreeReconControl() */ 747 748 reconDesc->state = 6; 749 750 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 751 rf_StopUserStats(raidPtr); 752 rf_PrintUserStats(raidPtr); /* print out the stats on user 753 * accs accumulated during 754 * recon */ 755 756 /* fall through to state 6 */ 757 case 6: 758 759 760 761 RF_LOCK_MUTEX(raidPtr->mutex); 762 raidPtr->numFailures--; 763 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 764 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 765 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 766 RF_UNLOCK_MUTEX(raidPtr->mutex); 767 RF_GETTIME(etime); 768 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 769 770 /* XXX -- why is state 7 different from state 6 if there is no 771 * return() here? -- XXX Note that I set elpsd above & use it 772 * below, so if you put a return here you'll have to fix this. 773 * (also, FreeReconControl is called below) */ 774 775 case 7: 776 777 rf_ResumeNewRequests(raidPtr); 778 779 printf("Reconstruction of disk at row %d col %d completed\n", 780 row, col); 781 xor_s = raidPtr->accumXorTimeUs / 1000000; 782 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 783 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 784 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 785 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 786 (int) raidPtr->reconControl[row]->starttime.tv_sec, 787 (int) raidPtr->reconControl[row]->starttime.tv_usec, 788 (int) etime.tv_sec, (int) etime.tv_usec); 789 790 #if RF_RECON_STATS > 0 791 printf("Total head-sep stall count was %d\n", 792 (int) reconDesc->hsStallCount); 793 #endif /* RF_RECON_STATS > 0 */ 794 rf_FreeReconControl(raidPtr, row); 795 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 796 FreeReconDesc(reconDesc); 797 798 } 799 800 SignalReconDone(raidPtr); 801 return (0); 802 } 803 /***************************************************************************** 804 * do the right thing upon each reconstruction event. 805 * returns nonzero if and only if there is nothing left unread on the 806 * indicated disk 807 *****************************************************************************/ 808 static int 809 ProcessReconEvent(raidPtr, frow, event) 810 RF_Raid_t *raidPtr; 811 RF_RowCol_t frow; 812 RF_ReconEvent_t *event; 813 { 814 int retcode = 0, submitblocked; 815 RF_ReconBuffer_t *rbuf; 816 RF_SectorCount_t sectorsPerRU; 817 818 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 819 switch (event->type) { 820 821 /* a read I/O has completed */ 822 case RF_REVENT_READDONE: 823 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 824 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 825 frow, event->col, rbuf->parityStripeID); 826 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 827 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 828 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 829 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 830 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 831 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 832 if (!submitblocked) 833 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 834 break; 835 836 /* a write I/O has completed */ 837 case RF_REVENT_WRITEDONE: 838 if (rf_floatingRbufDebug) { 839 rf_CheckFloatingRbufCount(raidPtr, 1); 840 } 841 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 842 rbuf = (RF_ReconBuffer_t *) event->arg; 843 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 844 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 845 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 846 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 847 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 848 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 849 850 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 851 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 852 raidPtr->numFullReconBuffers--; 853 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 854 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 855 } else 856 if (rbuf->type == RF_RBUF_TYPE_FORCED) 857 rf_FreeReconBuffer(rbuf); 858 else 859 RF_ASSERT(0); 860 break; 861 862 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 863 * cleared */ 864 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 865 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 866 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 867 * BUFCLEAR event if we 868 * couldn't submit */ 869 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 870 break; 871 872 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 873 * blockage has been cleared */ 874 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 875 retcode = TryToRead(raidPtr, frow, event->col); 876 break; 877 878 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 879 * reconstruction blockage has been 880 * cleared */ 881 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 882 retcode = TryToRead(raidPtr, frow, event->col); 883 break; 884 885 /* a buffer has become ready to write */ 886 case RF_REVENT_BUFREADY: 887 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 888 retcode = IssueNextWriteRequest(raidPtr, frow); 889 if (rf_floatingRbufDebug) { 890 rf_CheckFloatingRbufCount(raidPtr, 1); 891 } 892 break; 893 894 /* we need to skip the current RU entirely because it got 895 * recon'd while we were waiting for something else to happen */ 896 case RF_REVENT_SKIP: 897 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 898 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 899 break; 900 901 /* a forced-reconstruction read access has completed. Just 902 * submit the buffer */ 903 case RF_REVENT_FORCEDREADDONE: 904 rbuf = (RF_ReconBuffer_t *) event->arg; 905 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 906 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 907 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 908 RF_ASSERT(!submitblocked); 909 break; 910 911 default: 912 RF_PANIC(); 913 } 914 rf_FreeReconEventDesc(event); 915 return (retcode); 916 } 917 /***************************************************************************** 918 * 919 * find the next thing that's needed on the indicated disk, and issue 920 * a read request for it. We assume that the reconstruction buffer 921 * associated with this process is free to receive the data. If 922 * reconstruction is blocked on the indicated RU, we issue a 923 * blockage-release request instead of a physical disk read request. 924 * If the current disk gets too far ahead of the others, we issue a 925 * head-separation wait request and return. 926 * 927 * ctrl->{ru_count, curPSID, diskOffset} and 928 * rbuf->failedDiskSectorOffset are maintained to point to the unit 929 * we're currently accessing. Note that this deviates from the 930 * standard C idiom of having counters point to the next thing to be 931 * accessed. This allows us to easily retry when we're blocked by 932 * head separation or reconstruction-blockage events. 933 * 934 * returns nonzero if and only if there is nothing left unread on the 935 * indicated disk 936 * 937 *****************************************************************************/ 938 static int 939 IssueNextReadRequest(raidPtr, row, col) 940 RF_Raid_t *raidPtr; 941 RF_RowCol_t row; 942 RF_RowCol_t col; 943 { 944 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 945 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 946 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 947 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 948 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 949 int do_new_check = 0, retcode = 0, status; 950 951 /* if we are currently the slowest disk, mark that we have to do a new 952 * check */ 953 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 954 do_new_check = 1; 955 956 while (1) { 957 958 ctrl->ru_count++; 959 if (ctrl->ru_count < RUsPerPU) { 960 ctrl->diskOffset += sectorsPerRU; 961 rbuf->failedDiskSectorOffset += sectorsPerRU; 962 } else { 963 ctrl->curPSID++; 964 ctrl->ru_count = 0; 965 /* code left over from when head-sep was based on 966 * parity stripe id */ 967 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 968 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 969 return (1); /* finito! */ 970 } 971 /* find the disk offsets of the start of the parity 972 * stripe on both the current disk and the failed 973 * disk. skip this entire parity stripe if either disk 974 * does not appear in the indicated PS */ 975 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 976 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 977 if (status) { 978 ctrl->ru_count = RUsPerPU - 1; 979 continue; 980 } 981 } 982 rbuf->which_ru = ctrl->ru_count; 983 984 /* skip this RU if it's already been reconstructed */ 985 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 986 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 987 continue; 988 } 989 break; 990 } 991 ctrl->headSepCounter++; 992 if (do_new_check) 993 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 994 995 996 /* at this point, we have definitely decided what to do, and we have 997 * only to see if we can actually do it now */ 998 rbuf->parityStripeID = ctrl->curPSID; 999 rbuf->which_ru = ctrl->ru_count; 1000 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); 1001 raidPtr->recon_tracerecs[col].reconacc = 1; 1002 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1003 retcode = TryToRead(raidPtr, row, col); 1004 return (retcode); 1005 } 1006 1007 /* 1008 * tries to issue the next read on the indicated disk. We may be 1009 * blocked by (a) the heads being too far apart, or (b) recon on the 1010 * indicated RU being blocked due to a write by a user thread. In 1011 * this case, we issue a head-sep or blockage wait request, which will 1012 * cause this same routine to be invoked again later when the blockage 1013 * has cleared. 1014 */ 1015 1016 static int 1017 TryToRead(raidPtr, row, col) 1018 RF_Raid_t *raidPtr; 1019 RF_RowCol_t row; 1020 RF_RowCol_t col; 1021 { 1022 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1023 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1024 RF_StripeNum_t psid = ctrl->curPSID; 1025 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1026 RF_DiskQueueData_t *req; 1027 int status, created = 0; 1028 RF_ReconParityStripeStatus_t *pssPtr; 1029 1030 /* if the current disk is too far ahead of the others, issue a 1031 * head-separation wait and return */ 1032 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1033 return (0); 1034 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1035 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1036 1037 /* if recon is blocked on the indicated parity stripe, issue a 1038 * block-wait request and return. this also must mark the indicated RU 1039 * in the stripe as under reconstruction if not blocked. */ 1040 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1041 if (status == RF_PSS_RECON_BLOCKED) { 1042 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1043 goto out; 1044 } else 1045 if (status == RF_PSS_FORCED_ON_WRITE) { 1046 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1047 goto out; 1048 } 1049 /* make one last check to be sure that the indicated RU didn't get 1050 * reconstructed while we were waiting for something else to happen. 1051 * This is unfortunate in that it causes us to make this check twice 1052 * in the normal case. Might want to make some attempt to re-work 1053 * this so that we only do this check if we've definitely blocked on 1054 * one of the above checks. When this condition is detected, we may 1055 * have just created a bogus status entry, which we need to delete. */ 1056 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1057 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1058 if (created) 1059 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1060 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1061 goto out; 1062 } 1063 /* found something to read. issue the I/O */ 1064 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1065 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1066 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1067 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1068 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1069 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1070 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1071 1072 /* should be ok to use a NULL proc pointer here, all the bufs we use 1073 * should be in kernel space */ 1074 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1075 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1076 1077 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1078 1079 ctrl->rbuf->arg = (void *) req; 1080 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1081 pssPtr->issued[col] = 1; 1082 1083 out: 1084 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1085 return (0); 1086 } 1087 1088 1089 /* 1090 * given a parity stripe ID, we want to find out whether both the 1091 * current disk and the failed disk exist in that parity stripe. If 1092 * not, we want to skip this whole PS. If so, we want to find the 1093 * disk offset of the start of the PS on both the current disk and the 1094 * failed disk. 1095 * 1096 * this works by getting a list of disks comprising the indicated 1097 * parity stripe, and searching the list for the current and failed 1098 * disks. Once we've decided they both exist in the parity stripe, we 1099 * need to decide whether each is data or parity, so that we'll know 1100 * which mapping function to call to get the corresponding disk 1101 * offsets. 1102 * 1103 * this is kind of unpleasant, but doing it this way allows the 1104 * reconstruction code to use parity stripe IDs rather than physical 1105 * disks address to march through the failed disk, which greatly 1106 * simplifies a lot of code, as well as eliminating the need for a 1107 * reverse-mapping function. I also think it will execute faster, 1108 * since the calls to the mapping module are kept to a minimum. 1109 * 1110 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1111 * THE STRIPE IN THE CORRECT ORDER */ 1112 1113 1114 static int 1115 ComputePSDiskOffsets( 1116 RF_Raid_t * raidPtr, /* raid descriptor */ 1117 RF_StripeNum_t psid, /* parity stripe identifier */ 1118 RF_RowCol_t row, /* row and column of disk to find the offsets 1119 * for */ 1120 RF_RowCol_t col, 1121 RF_SectorNum_t * outDiskOffset, 1122 RF_SectorNum_t * outFailedDiskSectorOffset, 1123 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1124 RF_RowCol_t * spCol, 1125 RF_SectorNum_t * spOffset) 1126 { /* OUT: offset into disk containing spare unit */ 1127 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1128 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1129 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1130 RF_RowCol_t *diskids; 1131 u_int i, j, k, i_offset, j_offset; 1132 RF_RowCol_t prow, pcol; 1133 int testcol, testrow; 1134 RF_RowCol_t stripe; 1135 RF_SectorNum_t poffset; 1136 char i_is_parity = 0, j_is_parity = 0; 1137 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1138 1139 /* get a listing of the disks comprising that stripe */ 1140 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1141 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1142 RF_ASSERT(diskids); 1143 1144 /* reject this entire parity stripe if it does not contain the 1145 * indicated disk or it does not contain the failed disk */ 1146 if (row != stripe) 1147 goto skipit; 1148 for (i = 0; i < stripeWidth; i++) { 1149 if (col == diskids[i]) 1150 break; 1151 } 1152 if (i == stripeWidth) 1153 goto skipit; 1154 for (j = 0; j < stripeWidth; j++) { 1155 if (fcol == diskids[j]) 1156 break; 1157 } 1158 if (j == stripeWidth) { 1159 goto skipit; 1160 } 1161 /* find out which disk the parity is on */ 1162 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1163 1164 /* find out if either the current RU or the failed RU is parity */ 1165 /* also, if the parity occurs in this stripe prior to the data and/or 1166 * failed col, we need to decrement i and/or j */ 1167 for (k = 0; k < stripeWidth; k++) 1168 if (diskids[k] == pcol) 1169 break; 1170 RF_ASSERT(k < stripeWidth); 1171 i_offset = i; 1172 j_offset = j; 1173 if (k < i) 1174 i_offset--; 1175 else 1176 if (k == i) { 1177 i_is_parity = 1; 1178 i_offset = 0; 1179 } /* set offsets to zero to disable multiply 1180 * below */ 1181 if (k < j) 1182 j_offset--; 1183 else 1184 if (k == j) { 1185 j_is_parity = 1; 1186 j_offset = 0; 1187 } 1188 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1189 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1190 * tells us how far into the stripe the [current,failed] disk is. */ 1191 1192 /* call the mapping routine to get the offset into the current disk, 1193 * repeat for failed disk. */ 1194 if (i_is_parity) 1195 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1196 else 1197 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1198 1199 RF_ASSERT(row == testrow && col == testcol); 1200 1201 if (j_is_parity) 1202 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1203 else 1204 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1205 RF_ASSERT(row == testrow && fcol == testcol); 1206 1207 /* now locate the spare unit for the failed unit */ 1208 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1209 if (j_is_parity) 1210 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1211 else 1212 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1213 } else { 1214 *spRow = raidPtr->reconControl[row]->spareRow; 1215 *spCol = raidPtr->reconControl[row]->spareCol; 1216 *spOffset = *outFailedDiskSectorOffset; 1217 } 1218 1219 return (0); 1220 1221 skipit: 1222 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1223 psid, row, col); 1224 return (1); 1225 } 1226 /* this is called when a buffer has become ready to write to the replacement disk */ 1227 static int 1228 IssueNextWriteRequest(raidPtr, row) 1229 RF_Raid_t *raidPtr; 1230 RF_RowCol_t row; 1231 { 1232 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1233 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1234 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1235 RF_ReconBuffer_t *rbuf; 1236 RF_DiskQueueData_t *req; 1237 1238 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1239 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1240 * have gotten the event that sent us here */ 1241 RF_ASSERT(rbuf->pssPtr); 1242 1243 rbuf->pssPtr->writeRbuf = rbuf; 1244 rbuf->pssPtr = NULL; 1245 1246 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1247 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1248 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1249 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1250 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1251 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1252 1253 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1254 * kernel space */ 1255 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1256 sectorsPerRU, rbuf->buffer, 1257 rbuf->parityStripeID, rbuf->which_ru, 1258 ReconWriteDoneProc, (void *) rbuf, NULL, 1259 &raidPtr->recon_tracerecs[fcol], 1260 (void *) raidPtr, 0, NULL); 1261 1262 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1263 1264 rbuf->arg = (void *) req; 1265 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * this gets called upon the completion of a reconstruction read 1272 * operation the arg is a pointer to the per-disk reconstruction 1273 * control structure for the process that just finished a read. 1274 * 1275 * called at interrupt context in the kernel, so don't do anything 1276 * illegal here. 1277 */ 1278 static int 1279 ReconReadDoneProc(arg, status) 1280 void *arg; 1281 int status; 1282 { 1283 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1284 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1285 1286 if (status) { 1287 /* 1288 * XXX 1289 */ 1290 printf("Recon read failed!\n"); 1291 RF_PANIC(); 1292 } 1293 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1294 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1295 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1296 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1297 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1298 1299 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1300 return (0); 1301 } 1302 /* this gets called upon the completion of a reconstruction write operation. 1303 * the arg is a pointer to the rbuf that was just written 1304 * 1305 * called at interrupt context in the kernel, so don't do anything illegal here. 1306 */ 1307 static int 1308 ReconWriteDoneProc(arg, status) 1309 void *arg; 1310 int status; 1311 { 1312 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1313 1314 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1315 if (status) { 1316 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1317 * write failed!\n"); */ 1318 RF_PANIC(); 1319 } 1320 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1321 return (0); 1322 } 1323 1324 1325 /* 1326 * computes a new minimum head sep, and wakes up anyone who needs to 1327 * be woken as a result 1328 */ 1329 static void 1330 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1331 RF_Raid_t *raidPtr; 1332 RF_RowCol_t row; 1333 RF_HeadSepLimit_t hsCtr; 1334 { 1335 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1336 RF_HeadSepLimit_t new_min; 1337 RF_RowCol_t i; 1338 RF_CallbackDesc_t *p; 1339 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1340 * of a minimum */ 1341 1342 1343 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1344 1345 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1346 for (i = 0; i < raidPtr->numCol; i++) 1347 if (i != reconCtrlPtr->fcol) { 1348 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1349 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1350 } 1351 /* set the new minimum and wake up anyone who can now run again */ 1352 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1353 reconCtrlPtr->minHeadSepCounter = new_min; 1354 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1355 while (reconCtrlPtr->headSepCBList) { 1356 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1357 break; 1358 p = reconCtrlPtr->headSepCBList; 1359 reconCtrlPtr->headSepCBList = p->next; 1360 p->next = NULL; 1361 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1362 rf_FreeCallbackDesc(p); 1363 } 1364 1365 } 1366 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1367 } 1368 1369 /* 1370 * checks to see that the maximum head separation will not be violated 1371 * if we initiate a reconstruction I/O on the indicated disk. 1372 * Limiting the maximum head separation between two disks eliminates 1373 * the nasty buffer-stall conditions that occur when one disk races 1374 * ahead of the others and consumes all of the floating recon buffers. 1375 * This code is complex and unpleasant but it's necessary to avoid 1376 * some very nasty, albeit fairly rare, reconstruction behavior. 1377 * 1378 * returns non-zero if and only if we have to stop working on the 1379 * indicated disk due to a head-separation delay. 1380 */ 1381 static int 1382 CheckHeadSeparation( 1383 RF_Raid_t * raidPtr, 1384 RF_PerDiskReconCtrl_t * ctrl, 1385 RF_RowCol_t row, 1386 RF_RowCol_t col, 1387 RF_HeadSepLimit_t hsCtr, 1388 RF_ReconUnitNum_t which_ru) 1389 { 1390 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1391 RF_CallbackDesc_t *cb, *p, *pt; 1392 int retval = 0; 1393 1394 /* if we're too far ahead of the slowest disk, stop working on this 1395 * disk until the slower ones catch up. We do this by scheduling a 1396 * wakeup callback for the time when the slowest disk has caught up. 1397 * We define "caught up" with 20% hysteresis, i.e. the head separation 1398 * must have fallen to at most 80% of the max allowable head 1399 * separation before we'll wake up. 1400 * 1401 */ 1402 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1403 if ((raidPtr->headSepLimit >= 0) && 1404 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1405 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1406 raidPtr->raidid, row, col, ctrl->headSepCounter, 1407 reconCtrlPtr->minHeadSepCounter, 1408 raidPtr->headSepLimit); 1409 cb = rf_AllocCallbackDesc(); 1410 /* the minHeadSepCounter value we have to get to before we'll 1411 * wake up. build in 20% hysteresis. */ 1412 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1413 cb->row = row; 1414 cb->col = col; 1415 cb->next = NULL; 1416 1417 /* insert this callback descriptor into the sorted list of 1418 * pending head-sep callbacks */ 1419 p = reconCtrlPtr->headSepCBList; 1420 if (!p) 1421 reconCtrlPtr->headSepCBList = cb; 1422 else 1423 if (cb->callbackArg.v < p->callbackArg.v) { 1424 cb->next = reconCtrlPtr->headSepCBList; 1425 reconCtrlPtr->headSepCBList = cb; 1426 } else { 1427 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1428 cb->next = p; 1429 pt->next = cb; 1430 } 1431 retval = 1; 1432 #if RF_RECON_STATS > 0 1433 ctrl->reconCtrl->reconDesc->hsStallCount++; 1434 #endif /* RF_RECON_STATS > 0 */ 1435 } 1436 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1437 1438 return (retval); 1439 } 1440 /* 1441 * checks to see if reconstruction has been either forced or blocked 1442 * by a user operation. if forced, we skip this RU entirely. else if 1443 * blocked, put ourselves on the wait list. else return 0. 1444 * 1445 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1446 */ 1447 static int 1448 CheckForcedOrBlockedReconstruction( 1449 RF_Raid_t * raidPtr, 1450 RF_ReconParityStripeStatus_t * pssPtr, 1451 RF_PerDiskReconCtrl_t * ctrl, 1452 RF_RowCol_t row, 1453 RF_RowCol_t col, 1454 RF_StripeNum_t psid, 1455 RF_ReconUnitNum_t which_ru) 1456 { 1457 RF_CallbackDesc_t *cb; 1458 int retcode = 0; 1459 1460 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1461 retcode = RF_PSS_FORCED_ON_WRITE; 1462 else 1463 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1464 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1465 cb = rf_AllocCallbackDesc(); /* append ourselves to 1466 * the blockage-wait 1467 * list */ 1468 cb->row = row; 1469 cb->col = col; 1470 cb->next = pssPtr->blockWaitList; 1471 pssPtr->blockWaitList = cb; 1472 retcode = RF_PSS_RECON_BLOCKED; 1473 } 1474 if (!retcode) 1475 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1476 * reconstruction */ 1477 1478 return (retcode); 1479 } 1480 /* 1481 * if reconstruction is currently ongoing for the indicated stripeID, 1482 * reconstruction is forced to completion and we return non-zero to 1483 * indicate that the caller must wait. If not, then reconstruction is 1484 * blocked on the indicated stripe and the routine returns zero. If 1485 * and only if we return non-zero, we'll cause the cbFunc to get 1486 * invoked with the cbArg when the reconstruction has completed. 1487 */ 1488 int 1489 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1490 RF_Raid_t *raidPtr; 1491 RF_AccessStripeMap_t *asmap; 1492 void (*cbFunc) (RF_Raid_t *, void *); 1493 void *cbArg; 1494 { 1495 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1496 * we're working on */ 1497 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1498 * forcing recon on */ 1499 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1500 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1501 * stripe status structure */ 1502 RF_StripeNum_t psid; /* parity stripe id */ 1503 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1504 * offset */ 1505 RF_RowCol_t *diskids; 1506 RF_RowCol_t stripe; 1507 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1508 RF_RowCol_t fcol, diskno, i; 1509 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1510 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1511 RF_CallbackDesc_t *cb; 1512 int created = 0, nPromoted; 1513 1514 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1515 1516 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1517 1518 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1519 1520 /* if recon is not ongoing on this PS, just return */ 1521 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1522 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1523 return (0); 1524 } 1525 /* otherwise, we have to wait for reconstruction to complete on this 1526 * RU. */ 1527 /* In order to avoid waiting for a potentially large number of 1528 * low-priority accesses to complete, we force a normal-priority (i.e. 1529 * not low-priority) reconstruction on this RU. */ 1530 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1531 DDprintf1("Forcing recon on psid %ld\n", psid); 1532 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1533 * forced recon */ 1534 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1535 * that we just set */ 1536 fcol = raidPtr->reconControl[row]->fcol; 1537 1538 /* get a listing of the disks comprising the indicated stripe */ 1539 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1540 RF_ASSERT(row == stripe); 1541 1542 /* For previously issued reads, elevate them to normal 1543 * priority. If the I/O has already completed, it won't be 1544 * found in the queue, and hence this will be a no-op. For 1545 * unissued reads, allocate buffers and issue new reads. The 1546 * fact that we've set the FORCED bit means that the regular 1547 * recon procs will not re-issue these reqs */ 1548 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1549 if ((diskno = diskids[i]) != fcol) { 1550 if (pssPtr->issued[diskno]) { 1551 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1552 if (rf_reconDebug && nPromoted) 1553 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1554 } else { 1555 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1556 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1557 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1558 * location */ 1559 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1560 new_rbuf->which_ru = which_ru; 1561 new_rbuf->failedDiskSectorOffset = fd_offset; 1562 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1563 1564 /* use NULL b_proc b/c all addrs 1565 * should be in kernel space */ 1566 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1567 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1568 NULL, (void *) raidPtr, 0, NULL); 1569 1570 RF_ASSERT(req); /* XXX -- fix this -- 1571 * XXX */ 1572 1573 new_rbuf->arg = req; 1574 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1575 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1576 } 1577 } 1578 /* if the write is sitting in the disk queue, elevate its 1579 * priority */ 1580 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1581 printf("raid%d: promoted write to row %d col %d\n", 1582 raidPtr->raidid, row, fcol); 1583 } 1584 /* install a callback descriptor to be invoked when recon completes on 1585 * this parity stripe. */ 1586 cb = rf_AllocCallbackDesc(); 1587 /* XXX the following is bogus.. These functions don't really match!! 1588 * GO */ 1589 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1590 cb->callbackArg.p = (void *) cbArg; 1591 cb->next = pssPtr->procWaitList; 1592 pssPtr->procWaitList = cb; 1593 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1594 raidPtr->raidid, psid); 1595 1596 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1597 return (1); 1598 } 1599 /* called upon the completion of a forced reconstruction read. 1600 * all we do is schedule the FORCEDREADONE event. 1601 * called at interrupt context in the kernel, so don't do anything illegal here. 1602 */ 1603 static void 1604 ForceReconReadDoneProc(arg, status) 1605 void *arg; 1606 int status; 1607 { 1608 RF_ReconBuffer_t *rbuf = arg; 1609 1610 if (status) { 1611 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1612 * recon read 1613 * failed!\n"); */ 1614 RF_PANIC(); 1615 } 1616 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1617 } 1618 /* releases a block on the reconstruction of the indicated stripe */ 1619 int 1620 rf_UnblockRecon(raidPtr, asmap) 1621 RF_Raid_t *raidPtr; 1622 RF_AccessStripeMap_t *asmap; 1623 { 1624 RF_RowCol_t row = asmap->origRow; 1625 RF_StripeNum_t stripeID = asmap->stripeID; 1626 RF_ReconParityStripeStatus_t *pssPtr; 1627 RF_ReconUnitNum_t which_ru; 1628 RF_StripeNum_t psid; 1629 int created = 0; 1630 RF_CallbackDesc_t *cb; 1631 1632 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1633 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1634 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1635 1636 /* When recon is forced, the pss desc can get deleted before we get 1637 * back to unblock recon. But, this can _only_ happen when recon is 1638 * forced. It would be good to put some kind of sanity check here, but 1639 * how to decide if recon was just forced or not? */ 1640 if (!pssPtr) { 1641 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1642 * RU %d\n",psid,which_ru); */ 1643 if (rf_reconDebug || rf_pssDebug) 1644 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1645 goto out; 1646 } 1647 pssPtr->blockCount--; 1648 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1649 raidPtr->raidid, psid, pssPtr->blockCount); 1650 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1651 1652 /* unblock recon before calling CauseReconEvent in case 1653 * CauseReconEvent causes us to try to issue a new read before 1654 * returning here. */ 1655 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1656 1657 1658 while (pssPtr->blockWaitList) { 1659 /* spin through the block-wait list and 1660 release all the waiters */ 1661 cb = pssPtr->blockWaitList; 1662 pssPtr->blockWaitList = cb->next; 1663 cb->next = NULL; 1664 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1665 rf_FreeCallbackDesc(cb); 1666 } 1667 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1668 /* if no recon was requested while recon was blocked */ 1669 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1670 } 1671 } 1672 out: 1673 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1674 return (0); 1675 } 1676