xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 55b509f4905c24fe73eb120c59a2af5115f46d34)
1 /*	$NetBSD: rf_reconstruct.c,v 1.39 2002/09/16 02:48:34 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.39 2002/09/16 02:48:34 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #ifdef DEBUG
70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78 
79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 
82 #else /* DEBUG */
83 
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92 
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95 
96 #endif /* DEBUG */
97 
98 
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND  4
101 #define RF_RECOND_INC       1
102 
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110     RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113     RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125     RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129     RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134     RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136 
137 static void rf_ShutdownReconstruction(void *);
138 
139 struct RF_ReconDoneProc_s {
140 	void    (*proc) (RF_Raid_t *, void *);
141 	void   *arg;
142 	RF_ReconDoneProc_t *next;
143 };
144 
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC      1
148 
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 	RF_ReconDoneProc_t *p;
153 
154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 		p->proc(raidPtr, p->arg);
157 	}
158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160 
161 int
162 rf_RegisterReconDoneProc(
163     RF_Raid_t * raidPtr,
164     void (*proc) (RF_Raid_t *, void *),
165     void *arg,
166     RF_ReconDoneProc_t ** handlep)
167 {
168 	RF_ReconDoneProc_t *p;
169 
170 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 	if (p == NULL)
172 		return (ENOMEM);
173 	p->proc = proc;
174 	p->arg = arg;
175 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 	p->next = raidPtr->recon_done_procs;
177 	raidPtr->recon_done_procs = p;
178 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 	if (handlep)
180 		*handlep = p;
181 	return (0);
182 }
183 /**************************************************************************
184  *
185  * sets up the parameters that will be used by the reconstruction process
186  * currently there are none, except for those that the layout-specific
187  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188  *
189  * in the kernel, we fire off the recon thread.
190  *
191  **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 	void   *ignored;
195 {
196 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199 
200 int
201 rf_ConfigureReconstruction(listp)
202 	RF_ShutdownList_t **listp;
203 {
204 	int     rc;
205 
206 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 	if (rf_recond_freelist == NULL)
209 		return (ENOMEM);
210 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 	if (rf_rdp_freelist == NULL) {
213 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 		return (ENOMEM);
215 	}
216 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 	if (rc) {
218 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 		rf_ShutdownReconstruction(NULL);
220 		return (rc);
221 	}
222 	return (0);
223 }
224 
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 	RF_Raid_t *raidPtr;
228 	RF_RowCol_t row;
229 	RF_RowCol_t col;
230 	RF_RaidDisk_t *spareDiskPtr;
231 	int     numDisksDone;
232 	RF_RowCol_t srow;
233 	RF_RowCol_t scol;
234 {
235 
236 	RF_RaidReconDesc_t *reconDesc;
237 
238 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239 
240 	reconDesc->raidPtr = raidPtr;
241 	reconDesc->row = row;
242 	reconDesc->col = col;
243 	reconDesc->spareDiskPtr = spareDiskPtr;
244 	reconDesc->numDisksDone = numDisksDone;
245 	reconDesc->srow = srow;
246 	reconDesc->scol = scol;
247 	reconDesc->state = 0;
248 	reconDesc->next = NULL;
249 
250 	return (reconDesc);
251 }
252 
253 static void
254 FreeReconDesc(reconDesc)
255 	RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif				/* RF_RECON_STATS > 0 */
261 	printf("RAIDframe: %lu max exec ticks\n",
262 	    (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 	printf("\n");
265 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
266 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268 
269 
270 /*****************************************************************************
271  *
272  * primary routine to reconstruct a failed disk.  This should be called from
273  * within its own thread.  It won't return until reconstruction completes,
274  * fails, or is aborted.
275  *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 	RF_Raid_t *raidPtr;
279 	RF_RowCol_t row;
280 	RF_RowCol_t col;
281 {
282 	RF_LayoutSW_t *lp;
283 	int     rc;
284 
285 	lp = raidPtr->Layout.map;
286 	if (lp->SubmitReconBuffer) {
287 		/*
288 	         * The current infrastructure only supports reconstructing one
289 	         * disk at a time for each array.
290 	         */
291 		RF_LOCK_MUTEX(raidPtr->mutex);
292 		while (raidPtr->reconInProgress) {
293 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 		}
295 		raidPtr->reconInProgress++;
296 		RF_UNLOCK_MUTEX(raidPtr->mutex);
297 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 		RF_LOCK_MUTEX(raidPtr->mutex);
299 		raidPtr->reconInProgress--;
300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
301 	} else {
302 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 		    lp->parityConfig);
304 		rc = EIO;
305 	}
306 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 	return (rc);
308 }
309 
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 	RF_Raid_t *raidPtr;
313 	RF_RowCol_t row;
314 	RF_RowCol_t col;
315 {
316 	RF_ComponentLabel_t c_label;
317 	RF_RaidDisk_t *spareDiskPtr = NULL;
318 	RF_RaidReconDesc_t *reconDesc;
319 	RF_RowCol_t srow, scol;
320 	int     numDisksDone = 0, rc;
321 
322 	/* first look for a spare drive onto which to reconstruct the data */
323 	/* spare disk descriptors are stored in row 0.  This may have to
324 	 * change eventually */
325 
326 	RF_LOCK_MUTEX(raidPtr->mutex);
327 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328 
329 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 		if (raidPtr->status[row] != rf_rs_degraded) {
331 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 			RF_UNLOCK_MUTEX(raidPtr->mutex);
333 			return (EINVAL);
334 		}
335 		srow = row;
336 		scol = (-1);
337 	} else {
338 		srow = 0;
339 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 				spareDiskPtr = &raidPtr->Disks[srow][scol];
342 				spareDiskPtr->status = rf_ds_used_spare;
343 				break;
344 			}
345 		}
346 		if (!spareDiskPtr) {
347 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 			RF_UNLOCK_MUTEX(raidPtr->mutex);
349 			return (ENOSPC);
350 		}
351 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 	}
353 	RF_UNLOCK_MUTEX(raidPtr->mutex);
354 
355 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 	raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 	reconDesc->hsStallCount = 0;
359 	reconDesc->numReconExecDelays = 0;
360 	reconDesc->numReconEventWaits = 0;
361 #endif				/* RF_RECON_STATS > 0 */
362 	reconDesc->reconExecTimerRunning = 0;
363 	reconDesc->reconExecTicks = 0;
364 	reconDesc->maxReconExecTicks = 0;
365 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
366 
367 	if (!rc) {
368 		/* fix up the component label */
369 		/* Don't actually need the read here.. */
370 		raidread_component_label(
371                         raidPtr->raid_cinfo[srow][scol].ci_dev,
372 			raidPtr->raid_cinfo[srow][scol].ci_vp,
373 			&c_label);
374 
375 		raid_init_component_label( raidPtr, &c_label);
376 		c_label.row = row;
377 		c_label.column = col;
378 		c_label.clean = RF_RAID_DIRTY;
379 		c_label.status = rf_ds_optimal;
380 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381 
382 		/* We've just done a rebuild based on all the other
383 		   disks, so at this point the parity is known to be
384 		   clean, even if it wasn't before. */
385 
386 		/* XXX doesn't hold for RAID 6!!*/
387 
388 		raidPtr->parity_good = RF_RAID_CLEAN;
389 
390 		/* XXXX MORE NEEDED HERE */
391 
392 		raidwrite_component_label(
393                         raidPtr->raid_cinfo[srow][scol].ci_dev,
394 			raidPtr->raid_cinfo[srow][scol].ci_vp,
395 			&c_label);
396 
397 	}
398 	return (rc);
399 }
400 
401 /*
402 
403    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404    and you don't get a spare until the next Monday.  With this function
405    (and hot-swappable drives) you can now put your new disk containing
406    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407    rebuild the data "on the spot".
408 
409 */
410 
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 	RF_Raid_t *raidPtr;
414 	RF_RowCol_t row;
415 	RF_RowCol_t col;
416 {
417 	RF_RaidDisk_t *spareDiskPtr = NULL;
418 	RF_RaidReconDesc_t *reconDesc;
419 	RF_LayoutSW_t *lp;
420 	RF_RaidDisk_t *badDisk;
421 	RF_ComponentLabel_t c_label;
422 	int     numDisksDone = 0, rc;
423 	struct partinfo dpart;
424 	struct vnode *vp;
425 	struct vattr va;
426 	struct proc *proc;
427 	int retcode;
428 	int ac;
429 
430 	lp = raidPtr->Layout.map;
431 	if (lp->SubmitReconBuffer) {
432 		/*
433 	         * The current infrastructure only supports reconstructing one
434 	         * disk at a time for each array.
435 	         */
436 		RF_LOCK_MUTEX(raidPtr->mutex);
437 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 		    (raidPtr->numFailures > 0)) {
439 			/* XXX 0 above shouldn't be constant!!! */
440 			/* some component other than this has failed.
441 			   Let's not make things worse than they already
442 			   are... */
443 			printf("raid%d: Unable to reconstruct to disk at:\n",
444 			       raidPtr->raidid);
445 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
446 			       raidPtr->raidid, row, col);
447 			RF_UNLOCK_MUTEX(raidPtr->mutex);
448 			return (EINVAL);
449 		}
450 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 			printf("raid%d: Unable to reconstruct to disk at:\n",
452 			       raidPtr->raidid);
453 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454 
455 			RF_UNLOCK_MUTEX(raidPtr->mutex);
456 			return (EINVAL);
457 		}
458 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 			return (EINVAL);
460 		}
461 
462 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 			/* "It's gone..." */
464 			raidPtr->numFailures++;
465 			raidPtr->Disks[row][col].status = rf_ds_failed;
466 			raidPtr->status[row] = rf_rs_degraded;
467 			rf_update_component_labels(raidPtr,
468 						   RF_NORMAL_COMPONENT_UPDATE);
469 		}
470 
471 		while (raidPtr->reconInProgress) {
472 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 		}
474 
475 		raidPtr->reconInProgress++;
476 
477 
478 		/* first look for a spare drive onto which to reconstruct
479 		   the data.  spare disk descriptors are stored in row 0.
480 		   This may have to change eventually */
481 
482 		/* Actually, we don't care if it's failed or not...
483 		   On a RAID set with correct parity, this function
484 		   should be callable on any component without ill affects. */
485 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 		 */
487 
488 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490 
491 			raidPtr->reconInProgress--;
492 			RF_UNLOCK_MUTEX(raidPtr->mutex);
493 			return (EINVAL);
494 		}
495 
496 		badDisk = &raidPtr->Disks[row][col];
497 
498 		proc = raidPtr->engine_thread;
499 
500 		/* This device may have been opened successfully the
501 		   first time. Close it before trying to open it again.. */
502 
503 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
504 #if 0
505 			printf("Closed the open device: %s\n",
506 			       raidPtr->Disks[row][col].devname);
507 #endif
508 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
509 			ac = raidPtr->Disks[row][col].auto_configured;
510 			rf_close_component(raidPtr, vp, ac);
511 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
512 		}
513 		/* note that this disk was *not* auto_configured (any longer)*/
514 		raidPtr->Disks[row][col].auto_configured = 0;
515 
516 #if 0
517 		printf("About to (re-)open the device for rebuilding: %s\n",
518 		       raidPtr->Disks[row][col].devname);
519 #endif
520 
521 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
522 				     proc, &vp);
523 
524 		if (retcode) {
525 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
526 			       raidPtr->Disks[row][col].devname, retcode);
527 
528 			/* the component isn't responding properly...
529 			   must be still dead :-( */
530 			raidPtr->reconInProgress--;
531 			RF_UNLOCK_MUTEX(raidPtr->mutex);
532 			return(retcode);
533 
534 		} else {
535 
536 			/* Ok, so we can at least do a lookup...
537 			   How about actually getting a vp for it? */
538 
539 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
540 						   proc)) != 0) {
541 				raidPtr->reconInProgress--;
542 				RF_UNLOCK_MUTEX(raidPtr->mutex);
543 				return(retcode);
544 			}
545 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
546 					    FREAD, proc->p_ucred, proc);
547 			if (retcode) {
548 				raidPtr->reconInProgress--;
549 				RF_UNLOCK_MUTEX(raidPtr->mutex);
550 				return(retcode);
551 			}
552 			raidPtr->Disks[row][col].blockSize =
553 				dpart.disklab->d_secsize;
554 
555 			raidPtr->Disks[row][col].numBlocks =
556 				dpart.part->p_size - rf_protectedSectors;
557 
558 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
559 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
560 
561 			raidPtr->Disks[row][col].dev = va.va_rdev;
562 
563 			/* we allow the user to specify that only a
564 			   fraction of the disks should be used this is
565 			   just for debug:  it speeds up
566 			 * the parity scan */
567 			raidPtr->Disks[row][col].numBlocks =
568 				raidPtr->Disks[row][col].numBlocks *
569 				rf_sizePercentage / 100;
570 		}
571 
572 
573 
574 		spareDiskPtr = &raidPtr->Disks[row][col];
575 		spareDiskPtr->status = rf_ds_used_spare;
576 
577 		printf("raid%d: initiating in-place reconstruction on\n",
578 		       raidPtr->raidid);
579 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
580 		       raidPtr->raidid, row, col, row, col);
581 
582 		RF_UNLOCK_MUTEX(raidPtr->mutex);
583 
584 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
585 					       spareDiskPtr, numDisksDone,
586 					       row, col);
587 		raidPtr->reconDesc = (void *) reconDesc;
588 #if RF_RECON_STATS > 0
589 		reconDesc->hsStallCount = 0;
590 		reconDesc->numReconExecDelays = 0;
591 		reconDesc->numReconEventWaits = 0;
592 #endif				/* RF_RECON_STATS > 0 */
593 		reconDesc->reconExecTimerRunning = 0;
594 		reconDesc->reconExecTicks = 0;
595 		reconDesc->maxReconExecTicks = 0;
596 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
597 
598 		RF_LOCK_MUTEX(raidPtr->mutex);
599 		raidPtr->reconInProgress--;
600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
601 
602 	} else {
603 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
604 			     lp->parityConfig);
605 		rc = EIO;
606 	}
607 	RF_LOCK_MUTEX(raidPtr->mutex);
608 
609 	if (!rc) {
610 		/* Need to set these here, as at this point it'll be claiming
611 		   that the disk is in rf_ds_spared!  But we know better :-) */
612 
613 		raidPtr->Disks[row][col].status = rf_ds_optimal;
614 		raidPtr->status[row] = rf_rs_optimal;
615 
616 		/* fix up the component label */
617 		/* Don't actually need the read here.. */
618 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
619 					 raidPtr->raid_cinfo[row][col].ci_vp,
620 					 &c_label);
621 
622 		raid_init_component_label(raidPtr, &c_label);
623 
624 		c_label.row = row;
625 		c_label.column = col;
626 
627 		/* We've just done a rebuild based on all the other
628 		   disks, so at this point the parity is known to be
629 		   clean, even if it wasn't before. */
630 
631 		/* XXX doesn't hold for RAID 6!!*/
632 
633 		raidPtr->parity_good = RF_RAID_CLEAN;
634 
635 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
636 					  raidPtr->raid_cinfo[row][col].ci_vp,
637 					  &c_label);
638 
639 	}
640 	RF_UNLOCK_MUTEX(raidPtr->mutex);
641 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
642 	wakeup(&raidPtr->waitForReconCond);
643 	return (rc);
644 }
645 
646 
647 int
648 rf_ContinueReconstructFailedDisk(reconDesc)
649 	RF_RaidReconDesc_t *reconDesc;
650 {
651 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
652 	RF_RowCol_t row = reconDesc->row;
653 	RF_RowCol_t col = reconDesc->col;
654 	RF_RowCol_t srow = reconDesc->srow;
655 	RF_RowCol_t scol = reconDesc->scol;
656 	RF_ReconMap_t *mapPtr;
657 
658 	RF_ReconEvent_t *event;
659 	struct timeval etime, elpsd;
660 	unsigned long xor_s, xor_resid_us;
661 	int     retcode, i, ds;
662 
663 	switch (reconDesc->state) {
664 
665 
666 	case 0:
667 
668 		raidPtr->accumXorTimeUs = 0;
669 
670 		/* create one trace record per physical disk */
671 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
672 
673 		/* quiesce the array prior to starting recon.  this is needed
674 		 * to assure no nasty interactions with pending user writes.
675 		 * We need to do this before we change the disk or row status. */
676 		reconDesc->state = 1;
677 
678 		Dprintf("RECON: begin request suspend\n");
679 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
680 		Dprintf("RECON: end request suspend\n");
681 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
682 						 * user accs */
683 
684 		/* fall through to state 1 */
685 
686 	case 1:
687 
688 		RF_LOCK_MUTEX(raidPtr->mutex);
689 
690 		/* create the reconstruction control pointer and install it in
691 		 * the right slot */
692 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
693 		mapPtr = raidPtr->reconControl[row]->reconMap;
694 		raidPtr->status[row] = rf_rs_reconstructing;
695 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
696 		raidPtr->Disks[row][col].spareRow = srow;
697 		raidPtr->Disks[row][col].spareCol = scol;
698 
699 		RF_UNLOCK_MUTEX(raidPtr->mutex);
700 
701 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
702 
703 		/* now start up the actual reconstruction: issue a read for
704 		 * each surviving disk */
705 
706 		reconDesc->numDisksDone = 0;
707 		for (i = 0; i < raidPtr->numCol; i++) {
708 			if (i != col) {
709 				/* find and issue the next I/O on the
710 				 * indicated disk */
711 				if (IssueNextReadRequest(raidPtr, row, i)) {
712 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
713 					reconDesc->numDisksDone++;
714 				}
715 			}
716 		}
717 
718 	case 2:
719 		Dprintf("RECON: resume requests\n");
720 		rf_ResumeNewRequests(raidPtr);
721 
722 
723 		reconDesc->state = 3;
724 
725 	case 3:
726 
727 		/* process reconstruction events until all disks report that
728 		 * they've completed all work */
729 		mapPtr = raidPtr->reconControl[row]->reconMap;
730 
731 
732 
733 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
734 
735 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
736 			RF_ASSERT(event);
737 
738 			if (ProcessReconEvent(raidPtr, row, event))
739 				reconDesc->numDisksDone++;
740 			raidPtr->reconControl[row]->numRUsTotal =
741 				mapPtr->totalRUs;
742 			raidPtr->reconControl[row]->numRUsComplete =
743 				mapPtr->totalRUs -
744 				rf_UnitsLeftToReconstruct(mapPtr);
745 
746 			raidPtr->reconControl[row]->percentComplete =
747 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
748 			if (rf_prReconSched) {
749 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
750 			}
751 		}
752 
753 
754 
755 		reconDesc->state = 4;
756 
757 
758 	case 4:
759 		mapPtr = raidPtr->reconControl[row]->reconMap;
760 		if (rf_reconDebug) {
761 			printf("RECON: all reads completed\n");
762 		}
763 		/* at this point all the reads have completed.  We now wait
764 		 * for any pending writes to complete, and then we're done */
765 
766 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
767 
768 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
769 			RF_ASSERT(event);
770 
771 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
772 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
773 			if (rf_prReconSched) {
774 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
775 			}
776 		}
777 		reconDesc->state = 5;
778 
779 	case 5:
780 		/* Success:  mark the dead disk as reconstructed.  We quiesce
781 		 * the array here to assure no nasty interactions with pending
782 		 * user accesses when we free up the psstatus structure as
783 		 * part of FreeReconControl() */
784 
785 		reconDesc->state = 6;
786 
787 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
788 		rf_StopUserStats(raidPtr);
789 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
790 						 * accs accumulated during
791 						 * recon */
792 
793 		/* fall through to state 6 */
794 	case 6:
795 
796 
797 
798 		RF_LOCK_MUTEX(raidPtr->mutex);
799 		raidPtr->numFailures--;
800 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
801 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
802 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
803 		RF_UNLOCK_MUTEX(raidPtr->mutex);
804 		RF_GETTIME(etime);
805 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
806 
807 		/* XXX -- why is state 7 different from state 6 if there is no
808 		 * return() here? -- XXX Note that I set elpsd above & use it
809 		 * below, so if you put a return here you'll have to fix this.
810 		 * (also, FreeReconControl is called below) */
811 
812 	case 7:
813 
814 		rf_ResumeNewRequests(raidPtr);
815 
816 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
817 		       raidPtr->raidid, row, col);
818 		xor_s = raidPtr->accumXorTimeUs / 1000000;
819 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
820 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
821 		       raidPtr->raidid,
822 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
823 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
824 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
825 		       raidPtr->raidid,
826 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
827 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
828 		       (int) etime.tv_sec, (int) etime.tv_usec);
829 
830 #if RF_RECON_STATS > 0
831 		printf("raid%d: Total head-sep stall count was %d\n",
832 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
833 #endif				/* RF_RECON_STATS > 0 */
834 		rf_FreeReconControl(raidPtr, row);
835 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
836 		FreeReconDesc(reconDesc);
837 
838 	}
839 
840 	SignalReconDone(raidPtr);
841 	return (0);
842 }
843 /*****************************************************************************
844  * do the right thing upon each reconstruction event.
845  * returns nonzero if and only if there is nothing left unread on the
846  * indicated disk
847  *****************************************************************************/
848 static int
849 ProcessReconEvent(raidPtr, frow, event)
850 	RF_Raid_t *raidPtr;
851 	RF_RowCol_t frow;
852 	RF_ReconEvent_t *event;
853 {
854 	int     retcode = 0, submitblocked;
855 	RF_ReconBuffer_t *rbuf;
856 	RF_SectorCount_t sectorsPerRU;
857 
858 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
859 	switch (event->type) {
860 
861 		/* a read I/O has completed */
862 	case RF_REVENT_READDONE:
863 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
864 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
865 		    frow, event->col, rbuf->parityStripeID);
866 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
867 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
868 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
869 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
870 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
871 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
872 		if (!submitblocked)
873 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
874 		break;
875 
876 		/* a write I/O has completed */
877 	case RF_REVENT_WRITEDONE:
878 #if RF_DEBUG_RECONBUFFER
879 		if (rf_floatingRbufDebug) {
880 			rf_CheckFloatingRbufCount(raidPtr, 1);
881 		}
882 #endif
883 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
884 		rbuf = (RF_ReconBuffer_t *) event->arg;
885 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
886 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
887 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
888 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
889 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
890 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
891 
892 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
893 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
894 			raidPtr->numFullReconBuffers--;
895 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
896 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
897 		} else
898 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
899 				rf_FreeReconBuffer(rbuf);
900 			else
901 				RF_ASSERT(0);
902 		break;
903 
904 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
905 					 * cleared */
906 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
907 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
908 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
909 						 * BUFCLEAR event if we
910 						 * couldn't submit */
911 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
912 		break;
913 
914 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
915 					 * blockage has been cleared */
916 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
917 		retcode = TryToRead(raidPtr, frow, event->col);
918 		break;
919 
920 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
921 					 * reconstruction blockage has been
922 					 * cleared */
923 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
924 		retcode = TryToRead(raidPtr, frow, event->col);
925 		break;
926 
927 		/* a buffer has become ready to write */
928 	case RF_REVENT_BUFREADY:
929 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
930 		retcode = IssueNextWriteRequest(raidPtr, frow);
931 #if RF_DEBUG_RECONBUFFER
932 		if (rf_floatingRbufDebug) {
933 			rf_CheckFloatingRbufCount(raidPtr, 1);
934 		}
935 #endif
936 		break;
937 
938 		/* we need to skip the current RU entirely because it got
939 		 * recon'd while we were waiting for something else to happen */
940 	case RF_REVENT_SKIP:
941 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
942 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
943 		break;
944 
945 		/* a forced-reconstruction read access has completed.  Just
946 		 * submit the buffer */
947 	case RF_REVENT_FORCEDREADDONE:
948 		rbuf = (RF_ReconBuffer_t *) event->arg;
949 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
950 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
951 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
952 		RF_ASSERT(!submitblocked);
953 		break;
954 
955 	default:
956 		RF_PANIC();
957 	}
958 	rf_FreeReconEventDesc(event);
959 	return (retcode);
960 }
961 /*****************************************************************************
962  *
963  * find the next thing that's needed on the indicated disk, and issue
964  * a read request for it.  We assume that the reconstruction buffer
965  * associated with this process is free to receive the data.  If
966  * reconstruction is blocked on the indicated RU, we issue a
967  * blockage-release request instead of a physical disk read request.
968  * If the current disk gets too far ahead of the others, we issue a
969  * head-separation wait request and return.
970  *
971  * ctrl->{ru_count, curPSID, diskOffset} and
972  * rbuf->failedDiskSectorOffset are maintained to point to the unit
973  * we're currently accessing.  Note that this deviates from the
974  * standard C idiom of having counters point to the next thing to be
975  * accessed.  This allows us to easily retry when we're blocked by
976  * head separation or reconstruction-blockage events.
977  *
978  * returns nonzero if and only if there is nothing left unread on the
979  * indicated disk
980  *
981  *****************************************************************************/
982 static int
983 IssueNextReadRequest(raidPtr, row, col)
984 	RF_Raid_t *raidPtr;
985 	RF_RowCol_t row;
986 	RF_RowCol_t col;
987 {
988 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
989 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
990 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
991 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
992 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
993 	int     do_new_check = 0, retcode = 0, status;
994 
995 	/* if we are currently the slowest disk, mark that we have to do a new
996 	 * check */
997 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
998 		do_new_check = 1;
999 
1000 	while (1) {
1001 
1002 		ctrl->ru_count++;
1003 		if (ctrl->ru_count < RUsPerPU) {
1004 			ctrl->diskOffset += sectorsPerRU;
1005 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1006 		} else {
1007 			ctrl->curPSID++;
1008 			ctrl->ru_count = 0;
1009 			/* code left over from when head-sep was based on
1010 			 * parity stripe id */
1011 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1012 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1013 				return (1);	/* finito! */
1014 			}
1015 			/* find the disk offsets of the start of the parity
1016 			 * stripe on both the current disk and the failed
1017 			 * disk. skip this entire parity stripe if either disk
1018 			 * does not appear in the indicated PS */
1019 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1020 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1021 			if (status) {
1022 				ctrl->ru_count = RUsPerPU - 1;
1023 				continue;
1024 			}
1025 		}
1026 		rbuf->which_ru = ctrl->ru_count;
1027 
1028 		/* skip this RU if it's already been reconstructed */
1029 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1030 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1031 			continue;
1032 		}
1033 		break;
1034 	}
1035 	ctrl->headSepCounter++;
1036 	if (do_new_check)
1037 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1038 
1039 
1040 	/* at this point, we have definitely decided what to do, and we have
1041 	 * only to see if we can actually do it now */
1042 	rbuf->parityStripeID = ctrl->curPSID;
1043 	rbuf->which_ru = ctrl->ru_count;
1044 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1045 	    sizeof(raidPtr->recon_tracerecs[col]));
1046 	raidPtr->recon_tracerecs[col].reconacc = 1;
1047 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1048 	retcode = TryToRead(raidPtr, row, col);
1049 	return (retcode);
1050 }
1051 
1052 /*
1053  * tries to issue the next read on the indicated disk.  We may be
1054  * blocked by (a) the heads being too far apart, or (b) recon on the
1055  * indicated RU being blocked due to a write by a user thread.  In
1056  * this case, we issue a head-sep or blockage wait request, which will
1057  * cause this same routine to be invoked again later when the blockage
1058  * has cleared.
1059  */
1060 
1061 static int
1062 TryToRead(raidPtr, row, col)
1063 	RF_Raid_t *raidPtr;
1064 	RF_RowCol_t row;
1065 	RF_RowCol_t col;
1066 {
1067 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1068 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1069 	RF_StripeNum_t psid = ctrl->curPSID;
1070 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1071 	RF_DiskQueueData_t *req;
1072 	int     status, created = 0;
1073 	RF_ReconParityStripeStatus_t *pssPtr;
1074 
1075 	/* if the current disk is too far ahead of the others, issue a
1076 	 * head-separation wait and return */
1077 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1078 		return (0);
1079 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1080 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1081 
1082 	/* if recon is blocked on the indicated parity stripe, issue a
1083 	 * block-wait request and return. this also must mark the indicated RU
1084 	 * in the stripe as under reconstruction if not blocked. */
1085 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1086 	if (status == RF_PSS_RECON_BLOCKED) {
1087 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1088 		goto out;
1089 	} else
1090 		if (status == RF_PSS_FORCED_ON_WRITE) {
1091 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1092 			goto out;
1093 		}
1094 	/* make one last check to be sure that the indicated RU didn't get
1095 	 * reconstructed while we were waiting for something else to happen.
1096 	 * This is unfortunate in that it causes us to make this check twice
1097 	 * in the normal case.  Might want to make some attempt to re-work
1098 	 * this so that we only do this check if we've definitely blocked on
1099 	 * one of the above checks.  When this condition is detected, we may
1100 	 * have just created a bogus status entry, which we need to delete. */
1101 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1102 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1103 		if (created)
1104 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1105 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1106 		goto out;
1107 	}
1108 	/* found something to read.  issue the I/O */
1109 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1110 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1111 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1112 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1113 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1114 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1115 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1116 
1117 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1118 	 * should be in kernel space */
1119 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1120 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1121 
1122 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1123 
1124 	ctrl->rbuf->arg = (void *) req;
1125 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1126 	pssPtr->issued[col] = 1;
1127 
1128 out:
1129 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1130 	return (0);
1131 }
1132 
1133 
1134 /*
1135  * given a parity stripe ID, we want to find out whether both the
1136  * current disk and the failed disk exist in that parity stripe.  If
1137  * not, we want to skip this whole PS.  If so, we want to find the
1138  * disk offset of the start of the PS on both the current disk and the
1139  * failed disk.
1140  *
1141  * this works by getting a list of disks comprising the indicated
1142  * parity stripe, and searching the list for the current and failed
1143  * disks.  Once we've decided they both exist in the parity stripe, we
1144  * need to decide whether each is data or parity, so that we'll know
1145  * which mapping function to call to get the corresponding disk
1146  * offsets.
1147  *
1148  * this is kind of unpleasant, but doing it this way allows the
1149  * reconstruction code to use parity stripe IDs rather than physical
1150  * disks address to march through the failed disk, which greatly
1151  * simplifies a lot of code, as well as eliminating the need for a
1152  * reverse-mapping function.  I also think it will execute faster,
1153  * since the calls to the mapping module are kept to a minimum.
1154  *
1155  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1156  * THE STRIPE IN THE CORRECT ORDER */
1157 
1158 
1159 static int
1160 ComputePSDiskOffsets(
1161     RF_Raid_t * raidPtr,	/* raid descriptor */
1162     RF_StripeNum_t psid,	/* parity stripe identifier */
1163     RF_RowCol_t row,		/* row and column of disk to find the offsets
1164 				 * for */
1165     RF_RowCol_t col,
1166     RF_SectorNum_t * outDiskOffset,
1167     RF_SectorNum_t * outFailedDiskSectorOffset,
1168     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1169     RF_RowCol_t * spCol,
1170     RF_SectorNum_t * spOffset)
1171 {				/* OUT: offset into disk containing spare unit */
1172 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1173 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1174 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1175 	RF_RowCol_t *diskids;
1176 	u_int   i, j, k, i_offset, j_offset;
1177 	RF_RowCol_t prow, pcol;
1178 	int     testcol, testrow;
1179 	RF_RowCol_t stripe;
1180 	RF_SectorNum_t poffset;
1181 	char    i_is_parity = 0, j_is_parity = 0;
1182 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1183 
1184 	/* get a listing of the disks comprising that stripe */
1185 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1186 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1187 	RF_ASSERT(diskids);
1188 
1189 	/* reject this entire parity stripe if it does not contain the
1190 	 * indicated disk or it does not contain the failed disk */
1191 	if (row != stripe)
1192 		goto skipit;
1193 	for (i = 0; i < stripeWidth; i++) {
1194 		if (col == diskids[i])
1195 			break;
1196 	}
1197 	if (i == stripeWidth)
1198 		goto skipit;
1199 	for (j = 0; j < stripeWidth; j++) {
1200 		if (fcol == diskids[j])
1201 			break;
1202 	}
1203 	if (j == stripeWidth) {
1204 		goto skipit;
1205 	}
1206 	/* find out which disk the parity is on */
1207 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1208 
1209 	/* find out if either the current RU or the failed RU is parity */
1210 	/* also, if the parity occurs in this stripe prior to the data and/or
1211 	 * failed col, we need to decrement i and/or j */
1212 	for (k = 0; k < stripeWidth; k++)
1213 		if (diskids[k] == pcol)
1214 			break;
1215 	RF_ASSERT(k < stripeWidth);
1216 	i_offset = i;
1217 	j_offset = j;
1218 	if (k < i)
1219 		i_offset--;
1220 	else
1221 		if (k == i) {
1222 			i_is_parity = 1;
1223 			i_offset = 0;
1224 		}		/* set offsets to zero to disable multiply
1225 				 * below */
1226 	if (k < j)
1227 		j_offset--;
1228 	else
1229 		if (k == j) {
1230 			j_is_parity = 1;
1231 			j_offset = 0;
1232 		}
1233 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1234 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1235 	 * tells us how far into the stripe the [current,failed] disk is. */
1236 
1237 	/* call the mapping routine to get the offset into the current disk,
1238 	 * repeat for failed disk. */
1239 	if (i_is_parity)
1240 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1241 	else
1242 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1243 
1244 	RF_ASSERT(row == testrow && col == testcol);
1245 
1246 	if (j_is_parity)
1247 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1248 	else
1249 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1250 	RF_ASSERT(row == testrow && fcol == testcol);
1251 
1252 	/* now locate the spare unit for the failed unit */
1253 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1254 		if (j_is_parity)
1255 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1256 		else
1257 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1258 	} else {
1259 		*spRow = raidPtr->reconControl[row]->spareRow;
1260 		*spCol = raidPtr->reconControl[row]->spareCol;
1261 		*spOffset = *outFailedDiskSectorOffset;
1262 	}
1263 
1264 	return (0);
1265 
1266 skipit:
1267 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1268 	    psid, row, col);
1269 	return (1);
1270 }
1271 /* this is called when a buffer has become ready to write to the replacement disk */
1272 static int
1273 IssueNextWriteRequest(raidPtr, row)
1274 	RF_Raid_t *raidPtr;
1275 	RF_RowCol_t row;
1276 {
1277 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1278 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1279 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1280 	RF_ReconBuffer_t *rbuf;
1281 	RF_DiskQueueData_t *req;
1282 
1283 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1284 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1285 				 * have gotten the event that sent us here */
1286 	RF_ASSERT(rbuf->pssPtr);
1287 
1288 	rbuf->pssPtr->writeRbuf = rbuf;
1289 	rbuf->pssPtr = NULL;
1290 
1291 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1292 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1293 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1294 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1295 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1296 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1297 
1298 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1299 	 * kernel space */
1300 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1301 	    sectorsPerRU, rbuf->buffer,
1302 	    rbuf->parityStripeID, rbuf->which_ru,
1303 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1304 	    &raidPtr->recon_tracerecs[fcol],
1305 	    (void *) raidPtr, 0, NULL);
1306 
1307 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1308 
1309 	rbuf->arg = (void *) req;
1310 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1311 
1312 	return (0);
1313 }
1314 
1315 /*
1316  * this gets called upon the completion of a reconstruction read
1317  * operation the arg is a pointer to the per-disk reconstruction
1318  * control structure for the process that just finished a read.
1319  *
1320  * called at interrupt context in the kernel, so don't do anything
1321  * illegal here.
1322  */
1323 static int
1324 ReconReadDoneProc(arg, status)
1325 	void   *arg;
1326 	int     status;
1327 {
1328 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1329 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1330 
1331 	if (status) {
1332 		/*
1333 	         * XXX
1334 	         */
1335 		printf("Recon read failed!\n");
1336 		RF_PANIC();
1337 	}
1338 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1339 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1340 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1341 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1342 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1343 
1344 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1345 	return (0);
1346 }
1347 /* this gets called upon the completion of a reconstruction write operation.
1348  * the arg is a pointer to the rbuf that was just written
1349  *
1350  * called at interrupt context in the kernel, so don't do anything illegal here.
1351  */
1352 static int
1353 ReconWriteDoneProc(arg, status)
1354 	void   *arg;
1355 	int     status;
1356 {
1357 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1358 
1359 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1360 	if (status) {
1361 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1362 							 * write failed!\n"); */
1363 		RF_PANIC();
1364 	}
1365 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1366 	return (0);
1367 }
1368 
1369 
1370 /*
1371  * computes a new minimum head sep, and wakes up anyone who needs to
1372  * be woken as a result
1373  */
1374 static void
1375 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1376 	RF_Raid_t *raidPtr;
1377 	RF_RowCol_t row;
1378 	RF_HeadSepLimit_t hsCtr;
1379 {
1380 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1381 	RF_HeadSepLimit_t new_min;
1382 	RF_RowCol_t i;
1383 	RF_CallbackDesc_t *p;
1384 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1385 								 * of a minimum */
1386 
1387 
1388 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1389 
1390 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1391 	for (i = 0; i < raidPtr->numCol; i++)
1392 		if (i != reconCtrlPtr->fcol) {
1393 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1394 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1395 		}
1396 	/* set the new minimum and wake up anyone who can now run again */
1397 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1398 		reconCtrlPtr->minHeadSepCounter = new_min;
1399 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1400 		while (reconCtrlPtr->headSepCBList) {
1401 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1402 				break;
1403 			p = reconCtrlPtr->headSepCBList;
1404 			reconCtrlPtr->headSepCBList = p->next;
1405 			p->next = NULL;
1406 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1407 			rf_FreeCallbackDesc(p);
1408 		}
1409 
1410 	}
1411 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1412 }
1413 
1414 /*
1415  * checks to see that the maximum head separation will not be violated
1416  * if we initiate a reconstruction I/O on the indicated disk.
1417  * Limiting the maximum head separation between two disks eliminates
1418  * the nasty buffer-stall conditions that occur when one disk races
1419  * ahead of the others and consumes all of the floating recon buffers.
1420  * This code is complex and unpleasant but it's necessary to avoid
1421  * some very nasty, albeit fairly rare, reconstruction behavior.
1422  *
1423  * returns non-zero if and only if we have to stop working on the
1424  * indicated disk due to a head-separation delay.
1425  */
1426 static int
1427 CheckHeadSeparation(
1428     RF_Raid_t * raidPtr,
1429     RF_PerDiskReconCtrl_t * ctrl,
1430     RF_RowCol_t row,
1431     RF_RowCol_t col,
1432     RF_HeadSepLimit_t hsCtr,
1433     RF_ReconUnitNum_t which_ru)
1434 {
1435 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1436 	RF_CallbackDesc_t *cb, *p, *pt;
1437 	int     retval = 0;
1438 
1439 	/* if we're too far ahead of the slowest disk, stop working on this
1440 	 * disk until the slower ones catch up.  We do this by scheduling a
1441 	 * wakeup callback for the time when the slowest disk has caught up.
1442 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1443 	 * must have fallen to at most 80% of the max allowable head
1444 	 * separation before we'll wake up.
1445 	 *
1446 	 */
1447 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1448 	if ((raidPtr->headSepLimit >= 0) &&
1449 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1450 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1451 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1452 			 reconCtrlPtr->minHeadSepCounter,
1453 			 raidPtr->headSepLimit);
1454 		cb = rf_AllocCallbackDesc();
1455 		/* the minHeadSepCounter value we have to get to before we'll
1456 		 * wake up.  build in 20% hysteresis. */
1457 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1458 		cb->row = row;
1459 		cb->col = col;
1460 		cb->next = NULL;
1461 
1462 		/* insert this callback descriptor into the sorted list of
1463 		 * pending head-sep callbacks */
1464 		p = reconCtrlPtr->headSepCBList;
1465 		if (!p)
1466 			reconCtrlPtr->headSepCBList = cb;
1467 		else
1468 			if (cb->callbackArg.v < p->callbackArg.v) {
1469 				cb->next = reconCtrlPtr->headSepCBList;
1470 				reconCtrlPtr->headSepCBList = cb;
1471 			} else {
1472 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1473 				cb->next = p;
1474 				pt->next = cb;
1475 			}
1476 		retval = 1;
1477 #if RF_RECON_STATS > 0
1478 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1479 #endif				/* RF_RECON_STATS > 0 */
1480 	}
1481 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1482 
1483 	return (retval);
1484 }
1485 /*
1486  * checks to see if reconstruction has been either forced or blocked
1487  * by a user operation.  if forced, we skip this RU entirely.  else if
1488  * blocked, put ourselves on the wait list.  else return 0.
1489  *
1490  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1491  */
1492 static int
1493 CheckForcedOrBlockedReconstruction(
1494     RF_Raid_t * raidPtr,
1495     RF_ReconParityStripeStatus_t * pssPtr,
1496     RF_PerDiskReconCtrl_t * ctrl,
1497     RF_RowCol_t row,
1498     RF_RowCol_t col,
1499     RF_StripeNum_t psid,
1500     RF_ReconUnitNum_t which_ru)
1501 {
1502 	RF_CallbackDesc_t *cb;
1503 	int     retcode = 0;
1504 
1505 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1506 		retcode = RF_PSS_FORCED_ON_WRITE;
1507 	else
1508 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1509 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1510 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1511 							 * the blockage-wait
1512 							 * list */
1513 			cb->row = row;
1514 			cb->col = col;
1515 			cb->next = pssPtr->blockWaitList;
1516 			pssPtr->blockWaitList = cb;
1517 			retcode = RF_PSS_RECON_BLOCKED;
1518 		}
1519 	if (!retcode)
1520 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1521 							 * reconstruction */
1522 
1523 	return (retcode);
1524 }
1525 /*
1526  * if reconstruction is currently ongoing for the indicated stripeID,
1527  * reconstruction is forced to completion and we return non-zero to
1528  * indicate that the caller must wait.  If not, then reconstruction is
1529  * blocked on the indicated stripe and the routine returns zero.  If
1530  * and only if we return non-zero, we'll cause the cbFunc to get
1531  * invoked with the cbArg when the reconstruction has completed.
1532  */
1533 int
1534 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1535 	RF_Raid_t *raidPtr;
1536 	RF_AccessStripeMap_t *asmap;
1537 	void    (*cbFunc) (RF_Raid_t *, void *);
1538 	void   *cbArg;
1539 {
1540 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1541 						 * we're working on */
1542 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1543 							 * forcing recon on */
1544 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1545 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1546 						 * stripe status structure */
1547 	RF_StripeNum_t psid;	/* parity stripe id */
1548 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1549 						 * offset */
1550 	RF_RowCol_t *diskids;
1551 	RF_RowCol_t stripe;
1552 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1553 	RF_RowCol_t fcol, diskno, i;
1554 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1555 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1556 	RF_CallbackDesc_t *cb;
1557 	int     created = 0, nPromoted;
1558 
1559 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1560 
1561 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1562 
1563 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1564 
1565 	/* if recon is not ongoing on this PS, just return */
1566 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1567 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1568 		return (0);
1569 	}
1570 	/* otherwise, we have to wait for reconstruction to complete on this
1571 	 * RU. */
1572 	/* In order to avoid waiting for a potentially large number of
1573 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1574 	 * not low-priority) reconstruction on this RU. */
1575 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1576 		DDprintf1("Forcing recon on psid %ld\n", psid);
1577 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1578 								 * forced recon */
1579 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1580 							 * that we just set */
1581 		fcol = raidPtr->reconControl[row]->fcol;
1582 
1583 		/* get a listing of the disks comprising the indicated stripe */
1584 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1585 		RF_ASSERT(row == stripe);
1586 
1587 		/* For previously issued reads, elevate them to normal
1588 		 * priority.  If the I/O has already completed, it won't be
1589 		 * found in the queue, and hence this will be a no-op. For
1590 		 * unissued reads, allocate buffers and issue new reads.  The
1591 		 * fact that we've set the FORCED bit means that the regular
1592 		 * recon procs will not re-issue these reqs */
1593 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1594 			if ((diskno = diskids[i]) != fcol) {
1595 				if (pssPtr->issued[diskno]) {
1596 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1597 					if (rf_reconDebug && nPromoted)
1598 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1599 				} else {
1600 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1601 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1602 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1603 													 * location */
1604 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1605 					new_rbuf->which_ru = which_ru;
1606 					new_rbuf->failedDiskSectorOffset = fd_offset;
1607 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1608 
1609 					/* use NULL b_proc b/c all addrs
1610 					 * should be in kernel space */
1611 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1612 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1613 					    NULL, (void *) raidPtr, 0, NULL);
1614 
1615 					RF_ASSERT(req);	/* XXX -- fix this --
1616 							 * XXX */
1617 
1618 					new_rbuf->arg = req;
1619 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1620 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1621 				}
1622 			}
1623 		/* if the write is sitting in the disk queue, elevate its
1624 		 * priority */
1625 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1626 			printf("raid%d: promoted write to row %d col %d\n",
1627 			       raidPtr->raidid, row, fcol);
1628 	}
1629 	/* install a callback descriptor to be invoked when recon completes on
1630 	 * this parity stripe. */
1631 	cb = rf_AllocCallbackDesc();
1632 	/* XXX the following is bogus.. These functions don't really match!!
1633 	 * GO */
1634 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1635 	cb->callbackArg.p = (void *) cbArg;
1636 	cb->next = pssPtr->procWaitList;
1637 	pssPtr->procWaitList = cb;
1638 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1639 		  raidPtr->raidid, psid);
1640 
1641 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1642 	return (1);
1643 }
1644 /* called upon the completion of a forced reconstruction read.
1645  * all we do is schedule the FORCEDREADONE event.
1646  * called at interrupt context in the kernel, so don't do anything illegal here.
1647  */
1648 static void
1649 ForceReconReadDoneProc(arg, status)
1650 	void   *arg;
1651 	int     status;
1652 {
1653 	RF_ReconBuffer_t *rbuf = arg;
1654 
1655 	if (status) {
1656 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1657 							 *  recon read
1658 							 * failed!\n"); */
1659 		RF_PANIC();
1660 	}
1661 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1662 }
1663 /* releases a block on the reconstruction of the indicated stripe */
1664 int
1665 rf_UnblockRecon(raidPtr, asmap)
1666 	RF_Raid_t *raidPtr;
1667 	RF_AccessStripeMap_t *asmap;
1668 {
1669 	RF_RowCol_t row = asmap->origRow;
1670 	RF_StripeNum_t stripeID = asmap->stripeID;
1671 	RF_ReconParityStripeStatus_t *pssPtr;
1672 	RF_ReconUnitNum_t which_ru;
1673 	RF_StripeNum_t psid;
1674 	int     created = 0;
1675 	RF_CallbackDesc_t *cb;
1676 
1677 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1678 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1679 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1680 
1681 	/* When recon is forced, the pss desc can get deleted before we get
1682 	 * back to unblock recon. But, this can _only_ happen when recon is
1683 	 * forced. It would be good to put some kind of sanity check here, but
1684 	 * how to decide if recon was just forced or not? */
1685 	if (!pssPtr) {
1686 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1687 		 * RU %d\n",psid,which_ru); */
1688 		if (rf_reconDebug || rf_pssDebug)
1689 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1690 		goto out;
1691 	}
1692 	pssPtr->blockCount--;
1693 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1694 		 raidPtr->raidid, psid, pssPtr->blockCount);
1695 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1696 
1697 		/* unblock recon before calling CauseReconEvent in case
1698 		 * CauseReconEvent causes us to try to issue a new read before
1699 		 * returning here. */
1700 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1701 
1702 
1703 		while (pssPtr->blockWaitList) {
1704 			/* spin through the block-wait list and
1705 			   release all the waiters */
1706 			cb = pssPtr->blockWaitList;
1707 			pssPtr->blockWaitList = cb->next;
1708 			cb->next = NULL;
1709 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1710 			rf_FreeCallbackDesc(cb);
1711 		}
1712 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1713 			/* if no recon was requested while recon was blocked */
1714 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1715 		}
1716 	}
1717 out:
1718 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1719 	return (0);
1720 }
1721