xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 549b1bde93c4a3ecc60b634ae8abf6bf2af6034b)
1 /*	$NetBSD: rf_reconstruct.c,v 1.37 2002/09/16 02:25:08 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.37 2002/09/16 02:25:08 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #ifdef DEBUG
70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78 
79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 
82 #else /* DEBUG */
83 
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92 
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95 
96 #endif /* DEBUG */
97 
98 
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND  4
101 #define RF_RECOND_INC       1
102 
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110     RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113     RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125     RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129     RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134     RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136 
137 static void rf_ShutdownReconstruction(void *);
138 
139 struct RF_ReconDoneProc_s {
140 	void    (*proc) (RF_Raid_t *, void *);
141 	void   *arg;
142 	RF_ReconDoneProc_t *next;
143 };
144 
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC      1
148 
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 	RF_ReconDoneProc_t *p;
153 
154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 		p->proc(raidPtr, p->arg);
157 	}
158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160 
161 int
162 rf_RegisterReconDoneProc(
163     RF_Raid_t * raidPtr,
164     void (*proc) (RF_Raid_t *, void *),
165     void *arg,
166     RF_ReconDoneProc_t ** handlep)
167 {
168 	RF_ReconDoneProc_t *p;
169 
170 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 	if (p == NULL)
172 		return (ENOMEM);
173 	p->proc = proc;
174 	p->arg = arg;
175 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 	p->next = raidPtr->recon_done_procs;
177 	raidPtr->recon_done_procs = p;
178 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 	if (handlep)
180 		*handlep = p;
181 	return (0);
182 }
183 /**************************************************************************
184  *
185  * sets up the parameters that will be used by the reconstruction process
186  * currently there are none, except for those that the layout-specific
187  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188  *
189  * in the kernel, we fire off the recon thread.
190  *
191  **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 	void   *ignored;
195 {
196 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199 
200 int
201 rf_ConfigureReconstruction(listp)
202 	RF_ShutdownList_t **listp;
203 {
204 	int     rc;
205 
206 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 	if (rf_recond_freelist == NULL)
209 		return (ENOMEM);
210 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 	if (rf_rdp_freelist == NULL) {
213 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 		return (ENOMEM);
215 	}
216 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 	if (rc) {
218 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 		rf_ShutdownReconstruction(NULL);
220 		return (rc);
221 	}
222 	return (0);
223 }
224 
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 	RF_Raid_t *raidPtr;
228 	RF_RowCol_t row;
229 	RF_RowCol_t col;
230 	RF_RaidDisk_t *spareDiskPtr;
231 	int     numDisksDone;
232 	RF_RowCol_t srow;
233 	RF_RowCol_t scol;
234 {
235 
236 	RF_RaidReconDesc_t *reconDesc;
237 
238 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239 
240 	reconDesc->raidPtr = raidPtr;
241 	reconDesc->row = row;
242 	reconDesc->col = col;
243 	reconDesc->spareDiskPtr = spareDiskPtr;
244 	reconDesc->numDisksDone = numDisksDone;
245 	reconDesc->srow = srow;
246 	reconDesc->scol = scol;
247 	reconDesc->state = 0;
248 	reconDesc->next = NULL;
249 
250 	return (reconDesc);
251 }
252 
253 static void
254 FreeReconDesc(reconDesc)
255 	RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif				/* RF_RECON_STATS > 0 */
261 	printf("RAIDframe: %lu max exec ticks\n",
262 	    (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 	printf("\n");
265 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
266 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268 
269 
270 /*****************************************************************************
271  *
272  * primary routine to reconstruct a failed disk.  This should be called from
273  * within its own thread.  It won't return until reconstruction completes,
274  * fails, or is aborted.
275  *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 	RF_Raid_t *raidPtr;
279 	RF_RowCol_t row;
280 	RF_RowCol_t col;
281 {
282 	RF_LayoutSW_t *lp;
283 	int     rc;
284 
285 	lp = raidPtr->Layout.map;
286 	if (lp->SubmitReconBuffer) {
287 		/*
288 	         * The current infrastructure only supports reconstructing one
289 	         * disk at a time for each array.
290 	         */
291 		RF_LOCK_MUTEX(raidPtr->mutex);
292 		while (raidPtr->reconInProgress) {
293 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 		}
295 		raidPtr->reconInProgress++;
296 		RF_UNLOCK_MUTEX(raidPtr->mutex);
297 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 		RF_LOCK_MUTEX(raidPtr->mutex);
299 		raidPtr->reconInProgress--;
300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
301 	} else {
302 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 		    lp->parityConfig);
304 		rc = EIO;
305 	}
306 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 	return (rc);
308 }
309 
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 	RF_Raid_t *raidPtr;
313 	RF_RowCol_t row;
314 	RF_RowCol_t col;
315 {
316 	RF_ComponentLabel_t c_label;
317 	RF_RaidDisk_t *spareDiskPtr = NULL;
318 	RF_RaidReconDesc_t *reconDesc;
319 	RF_RowCol_t srow, scol;
320 	int     numDisksDone = 0, rc;
321 
322 	/* first look for a spare drive onto which to reconstruct the data */
323 	/* spare disk descriptors are stored in row 0.  This may have to
324 	 * change eventually */
325 
326 	RF_LOCK_MUTEX(raidPtr->mutex);
327 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328 
329 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 		if (raidPtr->status[row] != rf_rs_degraded) {
331 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 			RF_UNLOCK_MUTEX(raidPtr->mutex);
333 			return (EINVAL);
334 		}
335 		srow = row;
336 		scol = (-1);
337 	} else {
338 		srow = 0;
339 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 				spareDiskPtr = &raidPtr->Disks[srow][scol];
342 				spareDiskPtr->status = rf_ds_used_spare;
343 				break;
344 			}
345 		}
346 		if (!spareDiskPtr) {
347 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 			RF_UNLOCK_MUTEX(raidPtr->mutex);
349 			return (ENOSPC);
350 		}
351 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 	}
353 	RF_UNLOCK_MUTEX(raidPtr->mutex);
354 
355 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 	raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 	reconDesc->hsStallCount = 0;
359 	reconDesc->numReconExecDelays = 0;
360 	reconDesc->numReconEventWaits = 0;
361 #endif				/* RF_RECON_STATS > 0 */
362 	reconDesc->reconExecTimerRunning = 0;
363 	reconDesc->reconExecTicks = 0;
364 	reconDesc->maxReconExecTicks = 0;
365 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
366 
367 	if (!rc) {
368 		/* fix up the component label */
369 		/* Don't actually need the read here.. */
370 		raidread_component_label(
371                         raidPtr->raid_cinfo[srow][scol].ci_dev,
372 			raidPtr->raid_cinfo[srow][scol].ci_vp,
373 			&c_label);
374 
375 		raid_init_component_label( raidPtr, &c_label);
376 		c_label.row = row;
377 		c_label.column = col;
378 		c_label.clean = RF_RAID_DIRTY;
379 		c_label.status = rf_ds_optimal;
380 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381 
382 		/* We've just done a rebuild based on all the other
383 		   disks, so at this point the parity is known to be
384 		   clean, even if it wasn't before. */
385 
386 		/* XXX doesn't hold for RAID 6!!*/
387 
388 		raidPtr->parity_good = RF_RAID_CLEAN;
389 
390 		/* XXXX MORE NEEDED HERE */
391 
392 		raidwrite_component_label(
393                         raidPtr->raid_cinfo[srow][scol].ci_dev,
394 			raidPtr->raid_cinfo[srow][scol].ci_vp,
395 			&c_label);
396 
397 	}
398 	return (rc);
399 }
400 
401 /*
402 
403    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404    and you don't get a spare until the next Monday.  With this function
405    (and hot-swappable drives) you can now put your new disk containing
406    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407    rebuild the data "on the spot".
408 
409 */
410 
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 	RF_Raid_t *raidPtr;
414 	RF_RowCol_t row;
415 	RF_RowCol_t col;
416 {
417 	RF_RaidDisk_t *spareDiskPtr = NULL;
418 	RF_RaidReconDesc_t *reconDesc;
419 	RF_LayoutSW_t *lp;
420 	RF_RaidDisk_t *badDisk;
421 	RF_ComponentLabel_t c_label;
422 	int     numDisksDone = 0, rc;
423 	struct partinfo dpart;
424 	struct vnode *vp;
425 	struct vattr va;
426 	struct proc *proc;
427 	int retcode;
428 	int ac;
429 
430 	lp = raidPtr->Layout.map;
431 	if (lp->SubmitReconBuffer) {
432 		/*
433 	         * The current infrastructure only supports reconstructing one
434 	         * disk at a time for each array.
435 	         */
436 		RF_LOCK_MUTEX(raidPtr->mutex);
437 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 		    (raidPtr->numFailures > 0)) {
439 			/* XXX 0 above shouldn't be constant!!! */
440 			/* some component other than this has failed.
441 			   Let's not make things worse than they already
442 			   are... */
443 			printf("raid%d: Unable to reconstruct to disk at:\n",
444 			       raidPtr->raidid);
445 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
446 			       raidPtr->raidid, row, col);
447 			RF_UNLOCK_MUTEX(raidPtr->mutex);
448 			return (EINVAL);
449 		}
450 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 			printf("raid%d: Unable to reconstruct to disk at:\n",
452 			       raidPtr->raidid);
453 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454 
455 			RF_UNLOCK_MUTEX(raidPtr->mutex);
456 			return (EINVAL);
457 		}
458 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 			return (EINVAL);
460 		}
461 
462 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 			/* "It's gone..." */
464 			raidPtr->numFailures++;
465 			raidPtr->Disks[row][col].status = rf_ds_failed;
466 			raidPtr->status[row] = rf_rs_degraded;
467 			rf_update_component_labels(raidPtr,
468 						   RF_NORMAL_COMPONENT_UPDATE);
469 		}
470 
471 		while (raidPtr->reconInProgress) {
472 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 		}
474 
475 		raidPtr->reconInProgress++;
476 
477 
478 		/* first look for a spare drive onto which to reconstruct
479 		   the data.  spare disk descriptors are stored in row 0.
480 		   This may have to change eventually */
481 
482 		/* Actually, we don't care if it's failed or not...
483 		   On a RAID set with correct parity, this function
484 		   should be callable on any component without ill affects. */
485 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 		 */
487 
488 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490 
491 			raidPtr->reconInProgress--;
492 			RF_UNLOCK_MUTEX(raidPtr->mutex);
493 			return (EINVAL);
494 		}
495 
496 		/* XXX need goop here to see if the disk is alive,
497 		   and, if not, make it so...  */
498 
499 
500 
501 		badDisk = &raidPtr->Disks[row][col];
502 
503 		proc = raidPtr->engine_thread;
504 
505 		/* This device may have been opened successfully the
506 		   first time. Close it before trying to open it again.. */
507 
508 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
509 #if 0
510 			printf("Closed the open device: %s\n",
511 			       raidPtr->Disks[row][col].devname);
512 #endif
513 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
514 			ac = raidPtr->Disks[row][col].auto_configured;
515 			rf_close_component(raidPtr, vp, ac);
516 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
517 		}
518 		/* note that this disk was *not* auto_configured (any longer)*/
519 		raidPtr->Disks[row][col].auto_configured = 0;
520 
521 #if 0
522 		printf("About to (re-)open the device for rebuilding: %s\n",
523 		       raidPtr->Disks[row][col].devname);
524 #endif
525 
526 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
527 				     proc, &vp);
528 
529 		if (retcode) {
530 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
531 			       raidPtr->Disks[row][col].devname, retcode);
532 
533 			/* XXX the component isn't responding properly...
534 			   must be still dead :-( */
535 			raidPtr->reconInProgress--;
536 			RF_UNLOCK_MUTEX(raidPtr->mutex);
537 			return(retcode);
538 
539 		} else {
540 
541 			/* Ok, so we can at least do a lookup...
542 			   How about actually getting a vp for it? */
543 
544 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
545 						   proc)) != 0) {
546 				raidPtr->reconInProgress--;
547 				RF_UNLOCK_MUTEX(raidPtr->mutex);
548 				return(retcode);
549 			}
550 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
551 					    FREAD, proc->p_ucred, proc);
552 			if (retcode) {
553 				raidPtr->reconInProgress--;
554 				RF_UNLOCK_MUTEX(raidPtr->mutex);
555 				return(retcode);
556 			}
557 			raidPtr->Disks[row][col].blockSize =
558 				dpart.disklab->d_secsize;
559 
560 			raidPtr->Disks[row][col].numBlocks =
561 				dpart.part->p_size - rf_protectedSectors;
562 
563 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
564 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
565 
566 			raidPtr->Disks[row][col].dev = va.va_rdev;
567 
568 			/* we allow the user to specify that only a
569 			   fraction of the disks should be used this is
570 			   just for debug:  it speeds up
571 			 * the parity scan */
572 			raidPtr->Disks[row][col].numBlocks =
573 				raidPtr->Disks[row][col].numBlocks *
574 				rf_sizePercentage / 100;
575 		}
576 
577 
578 
579 		spareDiskPtr = &raidPtr->Disks[row][col];
580 		spareDiskPtr->status = rf_ds_used_spare;
581 
582 		printf("raid%d: initiating in-place reconstruction on\n",
583 		       raidPtr->raidid);
584 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
585 		       raidPtr->raidid, row, col, row, col);
586 
587 		RF_UNLOCK_MUTEX(raidPtr->mutex);
588 
589 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
590 					       spareDiskPtr, numDisksDone,
591 					       row, col);
592 		raidPtr->reconDesc = (void *) reconDesc;
593 #if RF_RECON_STATS > 0
594 		reconDesc->hsStallCount = 0;
595 		reconDesc->numReconExecDelays = 0;
596 		reconDesc->numReconEventWaits = 0;
597 #endif				/* RF_RECON_STATS > 0 */
598 		reconDesc->reconExecTimerRunning = 0;
599 		reconDesc->reconExecTicks = 0;
600 		reconDesc->maxReconExecTicks = 0;
601 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
602 
603 		RF_LOCK_MUTEX(raidPtr->mutex);
604 		raidPtr->reconInProgress--;
605 		RF_UNLOCK_MUTEX(raidPtr->mutex);
606 
607 	} else {
608 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
609 			     lp->parityConfig);
610 		rc = EIO;
611 	}
612 	RF_LOCK_MUTEX(raidPtr->mutex);
613 
614 	if (!rc) {
615 		/* Need to set these here, as at this point it'll be claiming
616 		   that the disk is in rf_ds_spared!  But we know better :-) */
617 
618 		raidPtr->Disks[row][col].status = rf_ds_optimal;
619 		raidPtr->status[row] = rf_rs_optimal;
620 
621 		/* fix up the component label */
622 		/* Don't actually need the read here.. */
623 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
624 					 raidPtr->raid_cinfo[row][col].ci_vp,
625 					 &c_label);
626 
627 		raid_init_component_label(raidPtr, &c_label);
628 
629 		c_label.row = row;
630 		c_label.column = col;
631 
632 		/* We've just done a rebuild based on all the other
633 		   disks, so at this point the parity is known to be
634 		   clean, even if it wasn't before. */
635 
636 		/* XXX doesn't hold for RAID 6!!*/
637 
638 		raidPtr->parity_good = RF_RAID_CLEAN;
639 
640 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
641 					  raidPtr->raid_cinfo[row][col].ci_vp,
642 					  &c_label);
643 
644 	}
645 	RF_UNLOCK_MUTEX(raidPtr->mutex);
646 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
647 	wakeup(&raidPtr->waitForReconCond);
648 	return (rc);
649 }
650 
651 
652 int
653 rf_ContinueReconstructFailedDisk(reconDesc)
654 	RF_RaidReconDesc_t *reconDesc;
655 {
656 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
657 	RF_RowCol_t row = reconDesc->row;
658 	RF_RowCol_t col = reconDesc->col;
659 	RF_RowCol_t srow = reconDesc->srow;
660 	RF_RowCol_t scol = reconDesc->scol;
661 	RF_ReconMap_t *mapPtr;
662 
663 	RF_ReconEvent_t *event;
664 	struct timeval etime, elpsd;
665 	unsigned long xor_s, xor_resid_us;
666 	int     retcode, i, ds;
667 
668 	switch (reconDesc->state) {
669 
670 
671 	case 0:
672 
673 		raidPtr->accumXorTimeUs = 0;
674 
675 		/* create one trace record per physical disk */
676 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
677 
678 		/* quiesce the array prior to starting recon.  this is needed
679 		 * to assure no nasty interactions with pending user writes.
680 		 * We need to do this before we change the disk or row status. */
681 		reconDesc->state = 1;
682 
683 		Dprintf("RECON: begin request suspend\n");
684 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
685 		Dprintf("RECON: end request suspend\n");
686 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
687 						 * user accs */
688 
689 		/* fall through to state 1 */
690 
691 	case 1:
692 
693 		RF_LOCK_MUTEX(raidPtr->mutex);
694 
695 		/* create the reconstruction control pointer and install it in
696 		 * the right slot */
697 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
698 		mapPtr = raidPtr->reconControl[row]->reconMap;
699 		raidPtr->status[row] = rf_rs_reconstructing;
700 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
701 		raidPtr->Disks[row][col].spareRow = srow;
702 		raidPtr->Disks[row][col].spareCol = scol;
703 
704 		RF_UNLOCK_MUTEX(raidPtr->mutex);
705 
706 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
707 
708 		/* now start up the actual reconstruction: issue a read for
709 		 * each surviving disk */
710 
711 		reconDesc->numDisksDone = 0;
712 		for (i = 0; i < raidPtr->numCol; i++) {
713 			if (i != col) {
714 				/* find and issue the next I/O on the
715 				 * indicated disk */
716 				if (IssueNextReadRequest(raidPtr, row, i)) {
717 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
718 					reconDesc->numDisksDone++;
719 				}
720 			}
721 		}
722 
723 	case 2:
724 		Dprintf("RECON: resume requests\n");
725 		rf_ResumeNewRequests(raidPtr);
726 
727 
728 		reconDesc->state = 3;
729 
730 	case 3:
731 
732 		/* process reconstruction events until all disks report that
733 		 * they've completed all work */
734 		mapPtr = raidPtr->reconControl[row]->reconMap;
735 
736 
737 
738 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
739 
740 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
741 			RF_ASSERT(event);
742 
743 			if (ProcessReconEvent(raidPtr, row, event))
744 				reconDesc->numDisksDone++;
745 			raidPtr->reconControl[row]->numRUsTotal =
746 				mapPtr->totalRUs;
747 			raidPtr->reconControl[row]->numRUsComplete =
748 				mapPtr->totalRUs -
749 				rf_UnitsLeftToReconstruct(mapPtr);
750 
751 			raidPtr->reconControl[row]->percentComplete =
752 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
753 			if (rf_prReconSched) {
754 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
755 			}
756 		}
757 
758 
759 
760 		reconDesc->state = 4;
761 
762 
763 	case 4:
764 		mapPtr = raidPtr->reconControl[row]->reconMap;
765 		if (rf_reconDebug) {
766 			printf("RECON: all reads completed\n");
767 		}
768 		/* at this point all the reads have completed.  We now wait
769 		 * for any pending writes to complete, and then we're done */
770 
771 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
772 
773 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
774 			RF_ASSERT(event);
775 
776 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
777 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
778 			if (rf_prReconSched) {
779 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
780 			}
781 		}
782 		reconDesc->state = 5;
783 
784 	case 5:
785 		/* Success:  mark the dead disk as reconstructed.  We quiesce
786 		 * the array here to assure no nasty interactions with pending
787 		 * user accesses when we free up the psstatus structure as
788 		 * part of FreeReconControl() */
789 
790 		reconDesc->state = 6;
791 
792 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
793 		rf_StopUserStats(raidPtr);
794 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
795 						 * accs accumulated during
796 						 * recon */
797 
798 		/* fall through to state 6 */
799 	case 6:
800 
801 
802 
803 		RF_LOCK_MUTEX(raidPtr->mutex);
804 		raidPtr->numFailures--;
805 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
806 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
807 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
808 		RF_UNLOCK_MUTEX(raidPtr->mutex);
809 		RF_GETTIME(etime);
810 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
811 
812 		/* XXX -- why is state 7 different from state 6 if there is no
813 		 * return() here? -- XXX Note that I set elpsd above & use it
814 		 * below, so if you put a return here you'll have to fix this.
815 		 * (also, FreeReconControl is called below) */
816 
817 	case 7:
818 
819 		rf_ResumeNewRequests(raidPtr);
820 
821 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
822 		       raidPtr->raidid, row, col);
823 		xor_s = raidPtr->accumXorTimeUs / 1000000;
824 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
825 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
826 		       raidPtr->raidid,
827 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
828 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
829 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
830 		       raidPtr->raidid,
831 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
832 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
833 		       (int) etime.tv_sec, (int) etime.tv_usec);
834 
835 #if RF_RECON_STATS > 0
836 		printf("raid%d: Total head-sep stall count was %d\n",
837 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
838 #endif				/* RF_RECON_STATS > 0 */
839 		rf_FreeReconControl(raidPtr, row);
840 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
841 		FreeReconDesc(reconDesc);
842 
843 	}
844 
845 	SignalReconDone(raidPtr);
846 	return (0);
847 }
848 /*****************************************************************************
849  * do the right thing upon each reconstruction event.
850  * returns nonzero if and only if there is nothing left unread on the
851  * indicated disk
852  *****************************************************************************/
853 static int
854 ProcessReconEvent(raidPtr, frow, event)
855 	RF_Raid_t *raidPtr;
856 	RF_RowCol_t frow;
857 	RF_ReconEvent_t *event;
858 {
859 	int     retcode = 0, submitblocked;
860 	RF_ReconBuffer_t *rbuf;
861 	RF_SectorCount_t sectorsPerRU;
862 
863 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
864 	switch (event->type) {
865 
866 		/* a read I/O has completed */
867 	case RF_REVENT_READDONE:
868 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
869 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
870 		    frow, event->col, rbuf->parityStripeID);
871 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
872 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
873 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
874 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
875 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
876 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
877 		if (!submitblocked)
878 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
879 		break;
880 
881 		/* a write I/O has completed */
882 	case RF_REVENT_WRITEDONE:
883 		if (rf_floatingRbufDebug) {
884 			rf_CheckFloatingRbufCount(raidPtr, 1);
885 		}
886 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
887 		rbuf = (RF_ReconBuffer_t *) event->arg;
888 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
889 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
890 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
891 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
892 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
893 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
894 
895 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
896 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
897 			raidPtr->numFullReconBuffers--;
898 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
899 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
900 		} else
901 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
902 				rf_FreeReconBuffer(rbuf);
903 			else
904 				RF_ASSERT(0);
905 		break;
906 
907 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
908 					 * cleared */
909 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
910 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
911 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
912 						 * BUFCLEAR event if we
913 						 * couldn't submit */
914 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
915 		break;
916 
917 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
918 					 * blockage has been cleared */
919 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
920 		retcode = TryToRead(raidPtr, frow, event->col);
921 		break;
922 
923 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
924 					 * reconstruction blockage has been
925 					 * cleared */
926 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
927 		retcode = TryToRead(raidPtr, frow, event->col);
928 		break;
929 
930 		/* a buffer has become ready to write */
931 	case RF_REVENT_BUFREADY:
932 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
933 		retcode = IssueNextWriteRequest(raidPtr, frow);
934 		if (rf_floatingRbufDebug) {
935 			rf_CheckFloatingRbufCount(raidPtr, 1);
936 		}
937 		break;
938 
939 		/* we need to skip the current RU entirely because it got
940 		 * recon'd while we were waiting for something else to happen */
941 	case RF_REVENT_SKIP:
942 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
943 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
944 		break;
945 
946 		/* a forced-reconstruction read access has completed.  Just
947 		 * submit the buffer */
948 	case RF_REVENT_FORCEDREADDONE:
949 		rbuf = (RF_ReconBuffer_t *) event->arg;
950 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
951 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
952 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
953 		RF_ASSERT(!submitblocked);
954 		break;
955 
956 	default:
957 		RF_PANIC();
958 	}
959 	rf_FreeReconEventDesc(event);
960 	return (retcode);
961 }
962 /*****************************************************************************
963  *
964  * find the next thing that's needed on the indicated disk, and issue
965  * a read request for it.  We assume that the reconstruction buffer
966  * associated with this process is free to receive the data.  If
967  * reconstruction is blocked on the indicated RU, we issue a
968  * blockage-release request instead of a physical disk read request.
969  * If the current disk gets too far ahead of the others, we issue a
970  * head-separation wait request and return.
971  *
972  * ctrl->{ru_count, curPSID, diskOffset} and
973  * rbuf->failedDiskSectorOffset are maintained to point to the unit
974  * we're currently accessing.  Note that this deviates from the
975  * standard C idiom of having counters point to the next thing to be
976  * accessed.  This allows us to easily retry when we're blocked by
977  * head separation or reconstruction-blockage events.
978  *
979  * returns nonzero if and only if there is nothing left unread on the
980  * indicated disk
981  *
982  *****************************************************************************/
983 static int
984 IssueNextReadRequest(raidPtr, row, col)
985 	RF_Raid_t *raidPtr;
986 	RF_RowCol_t row;
987 	RF_RowCol_t col;
988 {
989 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
990 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
991 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
992 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
993 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
994 	int     do_new_check = 0, retcode = 0, status;
995 
996 	/* if we are currently the slowest disk, mark that we have to do a new
997 	 * check */
998 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
999 		do_new_check = 1;
1000 
1001 	while (1) {
1002 
1003 		ctrl->ru_count++;
1004 		if (ctrl->ru_count < RUsPerPU) {
1005 			ctrl->diskOffset += sectorsPerRU;
1006 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1007 		} else {
1008 			ctrl->curPSID++;
1009 			ctrl->ru_count = 0;
1010 			/* code left over from when head-sep was based on
1011 			 * parity stripe id */
1012 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1013 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1014 				return (1);	/* finito! */
1015 			}
1016 			/* find the disk offsets of the start of the parity
1017 			 * stripe on both the current disk and the failed
1018 			 * disk. skip this entire parity stripe if either disk
1019 			 * does not appear in the indicated PS */
1020 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1021 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1022 			if (status) {
1023 				ctrl->ru_count = RUsPerPU - 1;
1024 				continue;
1025 			}
1026 		}
1027 		rbuf->which_ru = ctrl->ru_count;
1028 
1029 		/* skip this RU if it's already been reconstructed */
1030 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1031 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1032 			continue;
1033 		}
1034 		break;
1035 	}
1036 	ctrl->headSepCounter++;
1037 	if (do_new_check)
1038 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1039 
1040 
1041 	/* at this point, we have definitely decided what to do, and we have
1042 	 * only to see if we can actually do it now */
1043 	rbuf->parityStripeID = ctrl->curPSID;
1044 	rbuf->which_ru = ctrl->ru_count;
1045 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1046 	    sizeof(raidPtr->recon_tracerecs[col]));
1047 	raidPtr->recon_tracerecs[col].reconacc = 1;
1048 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1049 	retcode = TryToRead(raidPtr, row, col);
1050 	return (retcode);
1051 }
1052 
1053 /*
1054  * tries to issue the next read on the indicated disk.  We may be
1055  * blocked by (a) the heads being too far apart, or (b) recon on the
1056  * indicated RU being blocked due to a write by a user thread.  In
1057  * this case, we issue a head-sep or blockage wait request, which will
1058  * cause this same routine to be invoked again later when the blockage
1059  * has cleared.
1060  */
1061 
1062 static int
1063 TryToRead(raidPtr, row, col)
1064 	RF_Raid_t *raidPtr;
1065 	RF_RowCol_t row;
1066 	RF_RowCol_t col;
1067 {
1068 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1069 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1070 	RF_StripeNum_t psid = ctrl->curPSID;
1071 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1072 	RF_DiskQueueData_t *req;
1073 	int     status, created = 0;
1074 	RF_ReconParityStripeStatus_t *pssPtr;
1075 
1076 	/* if the current disk is too far ahead of the others, issue a
1077 	 * head-separation wait and return */
1078 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1079 		return (0);
1080 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1081 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1082 
1083 	/* if recon is blocked on the indicated parity stripe, issue a
1084 	 * block-wait request and return. this also must mark the indicated RU
1085 	 * in the stripe as under reconstruction if not blocked. */
1086 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1087 	if (status == RF_PSS_RECON_BLOCKED) {
1088 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1089 		goto out;
1090 	} else
1091 		if (status == RF_PSS_FORCED_ON_WRITE) {
1092 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1093 			goto out;
1094 		}
1095 	/* make one last check to be sure that the indicated RU didn't get
1096 	 * reconstructed while we were waiting for something else to happen.
1097 	 * This is unfortunate in that it causes us to make this check twice
1098 	 * in the normal case.  Might want to make some attempt to re-work
1099 	 * this so that we only do this check if we've definitely blocked on
1100 	 * one of the above checks.  When this condition is detected, we may
1101 	 * have just created a bogus status entry, which we need to delete. */
1102 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1103 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1104 		if (created)
1105 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1106 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1107 		goto out;
1108 	}
1109 	/* found something to read.  issue the I/O */
1110 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1111 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1112 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1113 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1114 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1115 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1116 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1117 
1118 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1119 	 * should be in kernel space */
1120 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1121 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1122 
1123 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1124 
1125 	ctrl->rbuf->arg = (void *) req;
1126 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1127 	pssPtr->issued[col] = 1;
1128 
1129 out:
1130 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1131 	return (0);
1132 }
1133 
1134 
1135 /*
1136  * given a parity stripe ID, we want to find out whether both the
1137  * current disk and the failed disk exist in that parity stripe.  If
1138  * not, we want to skip this whole PS.  If so, we want to find the
1139  * disk offset of the start of the PS on both the current disk and the
1140  * failed disk.
1141  *
1142  * this works by getting a list of disks comprising the indicated
1143  * parity stripe, and searching the list for the current and failed
1144  * disks.  Once we've decided they both exist in the parity stripe, we
1145  * need to decide whether each is data or parity, so that we'll know
1146  * which mapping function to call to get the corresponding disk
1147  * offsets.
1148  *
1149  * this is kind of unpleasant, but doing it this way allows the
1150  * reconstruction code to use parity stripe IDs rather than physical
1151  * disks address to march through the failed disk, which greatly
1152  * simplifies a lot of code, as well as eliminating the need for a
1153  * reverse-mapping function.  I also think it will execute faster,
1154  * since the calls to the mapping module are kept to a minimum.
1155  *
1156  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1157  * THE STRIPE IN THE CORRECT ORDER */
1158 
1159 
1160 static int
1161 ComputePSDiskOffsets(
1162     RF_Raid_t * raidPtr,	/* raid descriptor */
1163     RF_StripeNum_t psid,	/* parity stripe identifier */
1164     RF_RowCol_t row,		/* row and column of disk to find the offsets
1165 				 * for */
1166     RF_RowCol_t col,
1167     RF_SectorNum_t * outDiskOffset,
1168     RF_SectorNum_t * outFailedDiskSectorOffset,
1169     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1170     RF_RowCol_t * spCol,
1171     RF_SectorNum_t * spOffset)
1172 {				/* OUT: offset into disk containing spare unit */
1173 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1174 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1175 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1176 	RF_RowCol_t *diskids;
1177 	u_int   i, j, k, i_offset, j_offset;
1178 	RF_RowCol_t prow, pcol;
1179 	int     testcol, testrow;
1180 	RF_RowCol_t stripe;
1181 	RF_SectorNum_t poffset;
1182 	char    i_is_parity = 0, j_is_parity = 0;
1183 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1184 
1185 	/* get a listing of the disks comprising that stripe */
1186 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1187 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1188 	RF_ASSERT(diskids);
1189 
1190 	/* reject this entire parity stripe if it does not contain the
1191 	 * indicated disk or it does not contain the failed disk */
1192 	if (row != stripe)
1193 		goto skipit;
1194 	for (i = 0; i < stripeWidth; i++) {
1195 		if (col == diskids[i])
1196 			break;
1197 	}
1198 	if (i == stripeWidth)
1199 		goto skipit;
1200 	for (j = 0; j < stripeWidth; j++) {
1201 		if (fcol == diskids[j])
1202 			break;
1203 	}
1204 	if (j == stripeWidth) {
1205 		goto skipit;
1206 	}
1207 	/* find out which disk the parity is on */
1208 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1209 
1210 	/* find out if either the current RU or the failed RU is parity */
1211 	/* also, if the parity occurs in this stripe prior to the data and/or
1212 	 * failed col, we need to decrement i and/or j */
1213 	for (k = 0; k < stripeWidth; k++)
1214 		if (diskids[k] == pcol)
1215 			break;
1216 	RF_ASSERT(k < stripeWidth);
1217 	i_offset = i;
1218 	j_offset = j;
1219 	if (k < i)
1220 		i_offset--;
1221 	else
1222 		if (k == i) {
1223 			i_is_parity = 1;
1224 			i_offset = 0;
1225 		}		/* set offsets to zero to disable multiply
1226 				 * below */
1227 	if (k < j)
1228 		j_offset--;
1229 	else
1230 		if (k == j) {
1231 			j_is_parity = 1;
1232 			j_offset = 0;
1233 		}
1234 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1235 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1236 	 * tells us how far into the stripe the [current,failed] disk is. */
1237 
1238 	/* call the mapping routine to get the offset into the current disk,
1239 	 * repeat for failed disk. */
1240 	if (i_is_parity)
1241 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1242 	else
1243 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1244 
1245 	RF_ASSERT(row == testrow && col == testcol);
1246 
1247 	if (j_is_parity)
1248 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1249 	else
1250 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1251 	RF_ASSERT(row == testrow && fcol == testcol);
1252 
1253 	/* now locate the spare unit for the failed unit */
1254 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1255 		if (j_is_parity)
1256 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1257 		else
1258 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1259 	} else {
1260 		*spRow = raidPtr->reconControl[row]->spareRow;
1261 		*spCol = raidPtr->reconControl[row]->spareCol;
1262 		*spOffset = *outFailedDiskSectorOffset;
1263 	}
1264 
1265 	return (0);
1266 
1267 skipit:
1268 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1269 	    psid, row, col);
1270 	return (1);
1271 }
1272 /* this is called when a buffer has become ready to write to the replacement disk */
1273 static int
1274 IssueNextWriteRequest(raidPtr, row)
1275 	RF_Raid_t *raidPtr;
1276 	RF_RowCol_t row;
1277 {
1278 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1279 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1280 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1281 	RF_ReconBuffer_t *rbuf;
1282 	RF_DiskQueueData_t *req;
1283 
1284 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1285 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1286 				 * have gotten the event that sent us here */
1287 	RF_ASSERT(rbuf->pssPtr);
1288 
1289 	rbuf->pssPtr->writeRbuf = rbuf;
1290 	rbuf->pssPtr = NULL;
1291 
1292 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1293 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1294 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1295 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1296 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1297 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1298 
1299 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1300 	 * kernel space */
1301 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1302 	    sectorsPerRU, rbuf->buffer,
1303 	    rbuf->parityStripeID, rbuf->which_ru,
1304 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1305 	    &raidPtr->recon_tracerecs[fcol],
1306 	    (void *) raidPtr, 0, NULL);
1307 
1308 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1309 
1310 	rbuf->arg = (void *) req;
1311 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1312 
1313 	return (0);
1314 }
1315 
1316 /*
1317  * this gets called upon the completion of a reconstruction read
1318  * operation the arg is a pointer to the per-disk reconstruction
1319  * control structure for the process that just finished a read.
1320  *
1321  * called at interrupt context in the kernel, so don't do anything
1322  * illegal here.
1323  */
1324 static int
1325 ReconReadDoneProc(arg, status)
1326 	void   *arg;
1327 	int     status;
1328 {
1329 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1330 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1331 
1332 	if (status) {
1333 		/*
1334 	         * XXX
1335 	         */
1336 		printf("Recon read failed!\n");
1337 		RF_PANIC();
1338 	}
1339 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1340 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1341 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1342 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1343 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1344 
1345 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1346 	return (0);
1347 }
1348 /* this gets called upon the completion of a reconstruction write operation.
1349  * the arg is a pointer to the rbuf that was just written
1350  *
1351  * called at interrupt context in the kernel, so don't do anything illegal here.
1352  */
1353 static int
1354 ReconWriteDoneProc(arg, status)
1355 	void   *arg;
1356 	int     status;
1357 {
1358 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1359 
1360 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1361 	if (status) {
1362 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1363 							 * write failed!\n"); */
1364 		RF_PANIC();
1365 	}
1366 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1367 	return (0);
1368 }
1369 
1370 
1371 /*
1372  * computes a new minimum head sep, and wakes up anyone who needs to
1373  * be woken as a result
1374  */
1375 static void
1376 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1377 	RF_Raid_t *raidPtr;
1378 	RF_RowCol_t row;
1379 	RF_HeadSepLimit_t hsCtr;
1380 {
1381 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1382 	RF_HeadSepLimit_t new_min;
1383 	RF_RowCol_t i;
1384 	RF_CallbackDesc_t *p;
1385 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1386 								 * of a minimum */
1387 
1388 
1389 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1390 
1391 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1392 	for (i = 0; i < raidPtr->numCol; i++)
1393 		if (i != reconCtrlPtr->fcol) {
1394 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1395 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1396 		}
1397 	/* set the new minimum and wake up anyone who can now run again */
1398 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1399 		reconCtrlPtr->minHeadSepCounter = new_min;
1400 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1401 		while (reconCtrlPtr->headSepCBList) {
1402 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1403 				break;
1404 			p = reconCtrlPtr->headSepCBList;
1405 			reconCtrlPtr->headSepCBList = p->next;
1406 			p->next = NULL;
1407 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1408 			rf_FreeCallbackDesc(p);
1409 		}
1410 
1411 	}
1412 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1413 }
1414 
1415 /*
1416  * checks to see that the maximum head separation will not be violated
1417  * if we initiate a reconstruction I/O on the indicated disk.
1418  * Limiting the maximum head separation between two disks eliminates
1419  * the nasty buffer-stall conditions that occur when one disk races
1420  * ahead of the others and consumes all of the floating recon buffers.
1421  * This code is complex and unpleasant but it's necessary to avoid
1422  * some very nasty, albeit fairly rare, reconstruction behavior.
1423  *
1424  * returns non-zero if and only if we have to stop working on the
1425  * indicated disk due to a head-separation delay.
1426  */
1427 static int
1428 CheckHeadSeparation(
1429     RF_Raid_t * raidPtr,
1430     RF_PerDiskReconCtrl_t * ctrl,
1431     RF_RowCol_t row,
1432     RF_RowCol_t col,
1433     RF_HeadSepLimit_t hsCtr,
1434     RF_ReconUnitNum_t which_ru)
1435 {
1436 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1437 	RF_CallbackDesc_t *cb, *p, *pt;
1438 	int     retval = 0;
1439 
1440 	/* if we're too far ahead of the slowest disk, stop working on this
1441 	 * disk until the slower ones catch up.  We do this by scheduling a
1442 	 * wakeup callback for the time when the slowest disk has caught up.
1443 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1444 	 * must have fallen to at most 80% of the max allowable head
1445 	 * separation before we'll wake up.
1446 	 *
1447 	 */
1448 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1449 	if ((raidPtr->headSepLimit >= 0) &&
1450 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1451 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1452 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1453 			 reconCtrlPtr->minHeadSepCounter,
1454 			 raidPtr->headSepLimit);
1455 		cb = rf_AllocCallbackDesc();
1456 		/* the minHeadSepCounter value we have to get to before we'll
1457 		 * wake up.  build in 20% hysteresis. */
1458 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1459 		cb->row = row;
1460 		cb->col = col;
1461 		cb->next = NULL;
1462 
1463 		/* insert this callback descriptor into the sorted list of
1464 		 * pending head-sep callbacks */
1465 		p = reconCtrlPtr->headSepCBList;
1466 		if (!p)
1467 			reconCtrlPtr->headSepCBList = cb;
1468 		else
1469 			if (cb->callbackArg.v < p->callbackArg.v) {
1470 				cb->next = reconCtrlPtr->headSepCBList;
1471 				reconCtrlPtr->headSepCBList = cb;
1472 			} else {
1473 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1474 				cb->next = p;
1475 				pt->next = cb;
1476 			}
1477 		retval = 1;
1478 #if RF_RECON_STATS > 0
1479 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1480 #endif				/* RF_RECON_STATS > 0 */
1481 	}
1482 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1483 
1484 	return (retval);
1485 }
1486 /*
1487  * checks to see if reconstruction has been either forced or blocked
1488  * by a user operation.  if forced, we skip this RU entirely.  else if
1489  * blocked, put ourselves on the wait list.  else return 0.
1490  *
1491  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1492  */
1493 static int
1494 CheckForcedOrBlockedReconstruction(
1495     RF_Raid_t * raidPtr,
1496     RF_ReconParityStripeStatus_t * pssPtr,
1497     RF_PerDiskReconCtrl_t * ctrl,
1498     RF_RowCol_t row,
1499     RF_RowCol_t col,
1500     RF_StripeNum_t psid,
1501     RF_ReconUnitNum_t which_ru)
1502 {
1503 	RF_CallbackDesc_t *cb;
1504 	int     retcode = 0;
1505 
1506 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1507 		retcode = RF_PSS_FORCED_ON_WRITE;
1508 	else
1509 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1510 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1511 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1512 							 * the blockage-wait
1513 							 * list */
1514 			cb->row = row;
1515 			cb->col = col;
1516 			cb->next = pssPtr->blockWaitList;
1517 			pssPtr->blockWaitList = cb;
1518 			retcode = RF_PSS_RECON_BLOCKED;
1519 		}
1520 	if (!retcode)
1521 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1522 							 * reconstruction */
1523 
1524 	return (retcode);
1525 }
1526 /*
1527  * if reconstruction is currently ongoing for the indicated stripeID,
1528  * reconstruction is forced to completion and we return non-zero to
1529  * indicate that the caller must wait.  If not, then reconstruction is
1530  * blocked on the indicated stripe and the routine returns zero.  If
1531  * and only if we return non-zero, we'll cause the cbFunc to get
1532  * invoked with the cbArg when the reconstruction has completed.
1533  */
1534 int
1535 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1536 	RF_Raid_t *raidPtr;
1537 	RF_AccessStripeMap_t *asmap;
1538 	void    (*cbFunc) (RF_Raid_t *, void *);
1539 	void   *cbArg;
1540 {
1541 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1542 						 * we're working on */
1543 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1544 							 * forcing recon on */
1545 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1546 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1547 						 * stripe status structure */
1548 	RF_StripeNum_t psid;	/* parity stripe id */
1549 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1550 						 * offset */
1551 	RF_RowCol_t *diskids;
1552 	RF_RowCol_t stripe;
1553 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1554 	RF_RowCol_t fcol, diskno, i;
1555 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1556 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1557 	RF_CallbackDesc_t *cb;
1558 	int     created = 0, nPromoted;
1559 
1560 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1561 
1562 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1563 
1564 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1565 
1566 	/* if recon is not ongoing on this PS, just return */
1567 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1568 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1569 		return (0);
1570 	}
1571 	/* otherwise, we have to wait for reconstruction to complete on this
1572 	 * RU. */
1573 	/* In order to avoid waiting for a potentially large number of
1574 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1575 	 * not low-priority) reconstruction on this RU. */
1576 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1577 		DDprintf1("Forcing recon on psid %ld\n", psid);
1578 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1579 								 * forced recon */
1580 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1581 							 * that we just set */
1582 		fcol = raidPtr->reconControl[row]->fcol;
1583 
1584 		/* get a listing of the disks comprising the indicated stripe */
1585 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1586 		RF_ASSERT(row == stripe);
1587 
1588 		/* For previously issued reads, elevate them to normal
1589 		 * priority.  If the I/O has already completed, it won't be
1590 		 * found in the queue, and hence this will be a no-op. For
1591 		 * unissued reads, allocate buffers and issue new reads.  The
1592 		 * fact that we've set the FORCED bit means that the regular
1593 		 * recon procs will not re-issue these reqs */
1594 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1595 			if ((diskno = diskids[i]) != fcol) {
1596 				if (pssPtr->issued[diskno]) {
1597 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1598 					if (rf_reconDebug && nPromoted)
1599 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1600 				} else {
1601 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1602 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1603 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1604 													 * location */
1605 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1606 					new_rbuf->which_ru = which_ru;
1607 					new_rbuf->failedDiskSectorOffset = fd_offset;
1608 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1609 
1610 					/* use NULL b_proc b/c all addrs
1611 					 * should be in kernel space */
1612 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1613 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1614 					    NULL, (void *) raidPtr, 0, NULL);
1615 
1616 					RF_ASSERT(req);	/* XXX -- fix this --
1617 							 * XXX */
1618 
1619 					new_rbuf->arg = req;
1620 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1621 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1622 				}
1623 			}
1624 		/* if the write is sitting in the disk queue, elevate its
1625 		 * priority */
1626 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1627 			printf("raid%d: promoted write to row %d col %d\n",
1628 			       raidPtr->raidid, row, fcol);
1629 	}
1630 	/* install a callback descriptor to be invoked when recon completes on
1631 	 * this parity stripe. */
1632 	cb = rf_AllocCallbackDesc();
1633 	/* XXX the following is bogus.. These functions don't really match!!
1634 	 * GO */
1635 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1636 	cb->callbackArg.p = (void *) cbArg;
1637 	cb->next = pssPtr->procWaitList;
1638 	pssPtr->procWaitList = cb;
1639 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1640 		  raidPtr->raidid, psid);
1641 
1642 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1643 	return (1);
1644 }
1645 /* called upon the completion of a forced reconstruction read.
1646  * all we do is schedule the FORCEDREADONE event.
1647  * called at interrupt context in the kernel, so don't do anything illegal here.
1648  */
1649 static void
1650 ForceReconReadDoneProc(arg, status)
1651 	void   *arg;
1652 	int     status;
1653 {
1654 	RF_ReconBuffer_t *rbuf = arg;
1655 
1656 	if (status) {
1657 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1658 							 *  recon read
1659 							 * failed!\n"); */
1660 		RF_PANIC();
1661 	}
1662 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1663 }
1664 /* releases a block on the reconstruction of the indicated stripe */
1665 int
1666 rf_UnblockRecon(raidPtr, asmap)
1667 	RF_Raid_t *raidPtr;
1668 	RF_AccessStripeMap_t *asmap;
1669 {
1670 	RF_RowCol_t row = asmap->origRow;
1671 	RF_StripeNum_t stripeID = asmap->stripeID;
1672 	RF_ReconParityStripeStatus_t *pssPtr;
1673 	RF_ReconUnitNum_t which_ru;
1674 	RF_StripeNum_t psid;
1675 	int     created = 0;
1676 	RF_CallbackDesc_t *cb;
1677 
1678 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1679 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1680 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1681 
1682 	/* When recon is forced, the pss desc can get deleted before we get
1683 	 * back to unblock recon. But, this can _only_ happen when recon is
1684 	 * forced. It would be good to put some kind of sanity check here, but
1685 	 * how to decide if recon was just forced or not? */
1686 	if (!pssPtr) {
1687 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1688 		 * RU %d\n",psid,which_ru); */
1689 		if (rf_reconDebug || rf_pssDebug)
1690 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1691 		goto out;
1692 	}
1693 	pssPtr->blockCount--;
1694 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1695 		 raidPtr->raidid, psid, pssPtr->blockCount);
1696 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1697 
1698 		/* unblock recon before calling CauseReconEvent in case
1699 		 * CauseReconEvent causes us to try to issue a new read before
1700 		 * returning here. */
1701 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1702 
1703 
1704 		while (pssPtr->blockWaitList) {
1705 			/* spin through the block-wait list and
1706 			   release all the waiters */
1707 			cb = pssPtr->blockWaitList;
1708 			pssPtr->blockWaitList = cb->next;
1709 			cb->next = NULL;
1710 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1711 			rf_FreeCallbackDesc(cb);
1712 		}
1713 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1714 			/* if no recon was requested while recon was blocked */
1715 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1716 		}
1717 	}
1718 out:
1719 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1720 	return (0);
1721 }
1722