1 /* $NetBSD: rf_reconstruct.c,v 1.37 2002/09/16 02:25:08 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.37 2002/09/16 02:25:08 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #ifdef DEBUG 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* DEBUG */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* DEBUG */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 int 162 rf_RegisterReconDoneProc( 163 RF_Raid_t * raidPtr, 164 void (*proc) (RF_Raid_t *, void *), 165 void *arg, 166 RF_ReconDoneProc_t ** handlep) 167 { 168 RF_ReconDoneProc_t *p; 169 170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 171 if (p == NULL) 172 return (ENOMEM); 173 p->proc = proc; 174 p->arg = arg; 175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 176 p->next = raidPtr->recon_done_procs; 177 raidPtr->recon_done_procs = p; 178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 179 if (handlep) 180 *handlep = p; 181 return (0); 182 } 183 /************************************************************************** 184 * 185 * sets up the parameters that will be used by the reconstruction process 186 * currently there are none, except for those that the layout-specific 187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 188 * 189 * in the kernel, we fire off the recon thread. 190 * 191 **************************************************************************/ 192 static void 193 rf_ShutdownReconstruction(ignored) 194 void *ignored; 195 { 196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 198 } 199 200 int 201 rf_ConfigureReconstruction(listp) 202 RF_ShutdownList_t **listp; 203 { 204 int rc; 205 206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 208 if (rf_recond_freelist == NULL) 209 return (ENOMEM); 210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 212 if (rf_rdp_freelist == NULL) { 213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 214 return (ENOMEM); 215 } 216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 217 if (rc) { 218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 219 rf_ShutdownReconstruction(NULL); 220 return (rc); 221 } 222 return (0); 223 } 224 225 static RF_RaidReconDesc_t * 226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 227 RF_Raid_t *raidPtr; 228 RF_RowCol_t row; 229 RF_RowCol_t col; 230 RF_RaidDisk_t *spareDiskPtr; 231 int numDisksDone; 232 RF_RowCol_t srow; 233 RF_RowCol_t scol; 234 { 235 236 RF_RaidReconDesc_t *reconDesc; 237 238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 239 240 reconDesc->raidPtr = raidPtr; 241 reconDesc->row = row; 242 reconDesc->col = col; 243 reconDesc->spareDiskPtr = spareDiskPtr; 244 reconDesc->numDisksDone = numDisksDone; 245 reconDesc->srow = srow; 246 reconDesc->scol = scol; 247 reconDesc->state = 0; 248 reconDesc->next = NULL; 249 250 return (reconDesc); 251 } 252 253 static void 254 FreeReconDesc(reconDesc) 255 RF_RaidReconDesc_t *reconDesc; 256 { 257 #if RF_RECON_STATS > 0 258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 260 #endif /* RF_RECON_STATS > 0 */ 261 printf("RAIDframe: %lu max exec ticks\n", 262 (long) reconDesc->maxReconExecTicks); 263 #if (RF_RECON_STATS > 0) || defined(KERNEL) 264 printf("\n"); 265 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 267 } 268 269 270 /***************************************************************************** 271 * 272 * primary routine to reconstruct a failed disk. This should be called from 273 * within its own thread. It won't return until reconstruction completes, 274 * fails, or is aborted. 275 *****************************************************************************/ 276 int 277 rf_ReconstructFailedDisk(raidPtr, row, col) 278 RF_Raid_t *raidPtr; 279 RF_RowCol_t row; 280 RF_RowCol_t col; 281 { 282 RF_LayoutSW_t *lp; 283 int rc; 284 285 lp = raidPtr->Layout.map; 286 if (lp->SubmitReconBuffer) { 287 /* 288 * The current infrastructure only supports reconstructing one 289 * disk at a time for each array. 290 */ 291 RF_LOCK_MUTEX(raidPtr->mutex); 292 while (raidPtr->reconInProgress) { 293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 294 } 295 raidPtr->reconInProgress++; 296 RF_UNLOCK_MUTEX(raidPtr->mutex); 297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 298 RF_LOCK_MUTEX(raidPtr->mutex); 299 raidPtr->reconInProgress--; 300 RF_UNLOCK_MUTEX(raidPtr->mutex); 301 } else { 302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 303 lp->parityConfig); 304 rc = EIO; 305 } 306 RF_SIGNAL_COND(raidPtr->waitForReconCond); 307 return (rc); 308 } 309 310 int 311 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 312 RF_Raid_t *raidPtr; 313 RF_RowCol_t row; 314 RF_RowCol_t col; 315 { 316 RF_ComponentLabel_t c_label; 317 RF_RaidDisk_t *spareDiskPtr = NULL; 318 RF_RaidReconDesc_t *reconDesc; 319 RF_RowCol_t srow, scol; 320 int numDisksDone = 0, rc; 321 322 /* first look for a spare drive onto which to reconstruct the data */ 323 /* spare disk descriptors are stored in row 0. This may have to 324 * change eventually */ 325 326 RF_LOCK_MUTEX(raidPtr->mutex); 327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 328 329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 330 if (raidPtr->status[row] != rf_rs_degraded) { 331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 332 RF_UNLOCK_MUTEX(raidPtr->mutex); 333 return (EINVAL); 334 } 335 srow = row; 336 scol = (-1); 337 } else { 338 srow = 0; 339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 341 spareDiskPtr = &raidPtr->Disks[srow][scol]; 342 spareDiskPtr->status = rf_ds_used_spare; 343 break; 344 } 345 } 346 if (!spareDiskPtr) { 347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 348 RF_UNLOCK_MUTEX(raidPtr->mutex); 349 return (ENOSPC); 350 } 351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 352 } 353 RF_UNLOCK_MUTEX(raidPtr->mutex); 354 355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 356 raidPtr->reconDesc = (void *) reconDesc; 357 #if RF_RECON_STATS > 0 358 reconDesc->hsStallCount = 0; 359 reconDesc->numReconExecDelays = 0; 360 reconDesc->numReconEventWaits = 0; 361 #endif /* RF_RECON_STATS > 0 */ 362 reconDesc->reconExecTimerRunning = 0; 363 reconDesc->reconExecTicks = 0; 364 reconDesc->maxReconExecTicks = 0; 365 rc = rf_ContinueReconstructFailedDisk(reconDesc); 366 367 if (!rc) { 368 /* fix up the component label */ 369 /* Don't actually need the read here.. */ 370 raidread_component_label( 371 raidPtr->raid_cinfo[srow][scol].ci_dev, 372 raidPtr->raid_cinfo[srow][scol].ci_vp, 373 &c_label); 374 375 raid_init_component_label( raidPtr, &c_label); 376 c_label.row = row; 377 c_label.column = col; 378 c_label.clean = RF_RAID_DIRTY; 379 c_label.status = rf_ds_optimal; 380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 381 382 /* We've just done a rebuild based on all the other 383 disks, so at this point the parity is known to be 384 clean, even if it wasn't before. */ 385 386 /* XXX doesn't hold for RAID 6!!*/ 387 388 raidPtr->parity_good = RF_RAID_CLEAN; 389 390 /* XXXX MORE NEEDED HERE */ 391 392 raidwrite_component_label( 393 raidPtr->raid_cinfo[srow][scol].ci_dev, 394 raidPtr->raid_cinfo[srow][scol].ci_vp, 395 &c_label); 396 397 } 398 return (rc); 399 } 400 401 /* 402 403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 404 and you don't get a spare until the next Monday. With this function 405 (and hot-swappable drives) you can now put your new disk containing 406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 407 rebuild the data "on the spot". 408 409 */ 410 411 int 412 rf_ReconstructInPlace(raidPtr, row, col) 413 RF_Raid_t *raidPtr; 414 RF_RowCol_t row; 415 RF_RowCol_t col; 416 { 417 RF_RaidDisk_t *spareDiskPtr = NULL; 418 RF_RaidReconDesc_t *reconDesc; 419 RF_LayoutSW_t *lp; 420 RF_RaidDisk_t *badDisk; 421 RF_ComponentLabel_t c_label; 422 int numDisksDone = 0, rc; 423 struct partinfo dpart; 424 struct vnode *vp; 425 struct vattr va; 426 struct proc *proc; 427 int retcode; 428 int ac; 429 430 lp = raidPtr->Layout.map; 431 if (lp->SubmitReconBuffer) { 432 /* 433 * The current infrastructure only supports reconstructing one 434 * disk at a time for each array. 435 */ 436 RF_LOCK_MUTEX(raidPtr->mutex); 437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 438 (raidPtr->numFailures > 0)) { 439 /* XXX 0 above shouldn't be constant!!! */ 440 /* some component other than this has failed. 441 Let's not make things worse than they already 442 are... */ 443 printf("raid%d: Unable to reconstruct to disk at:\n", 444 raidPtr->raidid); 445 printf("raid%d: Row: %d Col: %d Too many failures.\n", 446 raidPtr->raidid, row, col); 447 RF_UNLOCK_MUTEX(raidPtr->mutex); 448 return (EINVAL); 449 } 450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 451 printf("raid%d: Unable to reconstruct to disk at:\n", 452 raidPtr->raidid); 453 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 454 455 RF_UNLOCK_MUTEX(raidPtr->mutex); 456 return (EINVAL); 457 } 458 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 459 return (EINVAL); 460 } 461 462 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 463 /* "It's gone..." */ 464 raidPtr->numFailures++; 465 raidPtr->Disks[row][col].status = rf_ds_failed; 466 raidPtr->status[row] = rf_rs_degraded; 467 rf_update_component_labels(raidPtr, 468 RF_NORMAL_COMPONENT_UPDATE); 469 } 470 471 while (raidPtr->reconInProgress) { 472 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 473 } 474 475 raidPtr->reconInProgress++; 476 477 478 /* first look for a spare drive onto which to reconstruct 479 the data. spare disk descriptors are stored in row 0. 480 This may have to change eventually */ 481 482 /* Actually, we don't care if it's failed or not... 483 On a RAID set with correct parity, this function 484 should be callable on any component without ill affects. */ 485 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 486 */ 487 488 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 489 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 490 491 raidPtr->reconInProgress--; 492 RF_UNLOCK_MUTEX(raidPtr->mutex); 493 return (EINVAL); 494 } 495 496 /* XXX need goop here to see if the disk is alive, 497 and, if not, make it so... */ 498 499 500 501 badDisk = &raidPtr->Disks[row][col]; 502 503 proc = raidPtr->engine_thread; 504 505 /* This device may have been opened successfully the 506 first time. Close it before trying to open it again.. */ 507 508 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 509 #if 0 510 printf("Closed the open device: %s\n", 511 raidPtr->Disks[row][col].devname); 512 #endif 513 vp = raidPtr->raid_cinfo[row][col].ci_vp; 514 ac = raidPtr->Disks[row][col].auto_configured; 515 rf_close_component(raidPtr, vp, ac); 516 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 517 } 518 /* note that this disk was *not* auto_configured (any longer)*/ 519 raidPtr->Disks[row][col].auto_configured = 0; 520 521 #if 0 522 printf("About to (re-)open the device for rebuilding: %s\n", 523 raidPtr->Disks[row][col].devname); 524 #endif 525 526 retcode = raidlookup(raidPtr->Disks[row][col].devname, 527 proc, &vp); 528 529 if (retcode) { 530 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 531 raidPtr->Disks[row][col].devname, retcode); 532 533 /* XXX the component isn't responding properly... 534 must be still dead :-( */ 535 raidPtr->reconInProgress--; 536 RF_UNLOCK_MUTEX(raidPtr->mutex); 537 return(retcode); 538 539 } else { 540 541 /* Ok, so we can at least do a lookup... 542 How about actually getting a vp for it? */ 543 544 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 545 proc)) != 0) { 546 raidPtr->reconInProgress--; 547 RF_UNLOCK_MUTEX(raidPtr->mutex); 548 return(retcode); 549 } 550 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 551 FREAD, proc->p_ucred, proc); 552 if (retcode) { 553 raidPtr->reconInProgress--; 554 RF_UNLOCK_MUTEX(raidPtr->mutex); 555 return(retcode); 556 } 557 raidPtr->Disks[row][col].blockSize = 558 dpart.disklab->d_secsize; 559 560 raidPtr->Disks[row][col].numBlocks = 561 dpart.part->p_size - rf_protectedSectors; 562 563 raidPtr->raid_cinfo[row][col].ci_vp = vp; 564 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 565 566 raidPtr->Disks[row][col].dev = va.va_rdev; 567 568 /* we allow the user to specify that only a 569 fraction of the disks should be used this is 570 just for debug: it speeds up 571 * the parity scan */ 572 raidPtr->Disks[row][col].numBlocks = 573 raidPtr->Disks[row][col].numBlocks * 574 rf_sizePercentage / 100; 575 } 576 577 578 579 spareDiskPtr = &raidPtr->Disks[row][col]; 580 spareDiskPtr->status = rf_ds_used_spare; 581 582 printf("raid%d: initiating in-place reconstruction on\n", 583 raidPtr->raidid); 584 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 585 raidPtr->raidid, row, col, row, col); 586 587 RF_UNLOCK_MUTEX(raidPtr->mutex); 588 589 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 590 spareDiskPtr, numDisksDone, 591 row, col); 592 raidPtr->reconDesc = (void *) reconDesc; 593 #if RF_RECON_STATS > 0 594 reconDesc->hsStallCount = 0; 595 reconDesc->numReconExecDelays = 0; 596 reconDesc->numReconEventWaits = 0; 597 #endif /* RF_RECON_STATS > 0 */ 598 reconDesc->reconExecTimerRunning = 0; 599 reconDesc->reconExecTicks = 0; 600 reconDesc->maxReconExecTicks = 0; 601 rc = rf_ContinueReconstructFailedDisk(reconDesc); 602 603 RF_LOCK_MUTEX(raidPtr->mutex); 604 raidPtr->reconInProgress--; 605 RF_UNLOCK_MUTEX(raidPtr->mutex); 606 607 } else { 608 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 609 lp->parityConfig); 610 rc = EIO; 611 } 612 RF_LOCK_MUTEX(raidPtr->mutex); 613 614 if (!rc) { 615 /* Need to set these here, as at this point it'll be claiming 616 that the disk is in rf_ds_spared! But we know better :-) */ 617 618 raidPtr->Disks[row][col].status = rf_ds_optimal; 619 raidPtr->status[row] = rf_rs_optimal; 620 621 /* fix up the component label */ 622 /* Don't actually need the read here.. */ 623 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 624 raidPtr->raid_cinfo[row][col].ci_vp, 625 &c_label); 626 627 raid_init_component_label(raidPtr, &c_label); 628 629 c_label.row = row; 630 c_label.column = col; 631 632 /* We've just done a rebuild based on all the other 633 disks, so at this point the parity is known to be 634 clean, even if it wasn't before. */ 635 636 /* XXX doesn't hold for RAID 6!!*/ 637 638 raidPtr->parity_good = RF_RAID_CLEAN; 639 640 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 641 raidPtr->raid_cinfo[row][col].ci_vp, 642 &c_label); 643 644 } 645 RF_UNLOCK_MUTEX(raidPtr->mutex); 646 RF_SIGNAL_COND(raidPtr->waitForReconCond); 647 wakeup(&raidPtr->waitForReconCond); 648 return (rc); 649 } 650 651 652 int 653 rf_ContinueReconstructFailedDisk(reconDesc) 654 RF_RaidReconDesc_t *reconDesc; 655 { 656 RF_Raid_t *raidPtr = reconDesc->raidPtr; 657 RF_RowCol_t row = reconDesc->row; 658 RF_RowCol_t col = reconDesc->col; 659 RF_RowCol_t srow = reconDesc->srow; 660 RF_RowCol_t scol = reconDesc->scol; 661 RF_ReconMap_t *mapPtr; 662 663 RF_ReconEvent_t *event; 664 struct timeval etime, elpsd; 665 unsigned long xor_s, xor_resid_us; 666 int retcode, i, ds; 667 668 switch (reconDesc->state) { 669 670 671 case 0: 672 673 raidPtr->accumXorTimeUs = 0; 674 675 /* create one trace record per physical disk */ 676 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 677 678 /* quiesce the array prior to starting recon. this is needed 679 * to assure no nasty interactions with pending user writes. 680 * We need to do this before we change the disk or row status. */ 681 reconDesc->state = 1; 682 683 Dprintf("RECON: begin request suspend\n"); 684 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 685 Dprintf("RECON: end request suspend\n"); 686 rf_StartUserStats(raidPtr); /* zero out the stats kept on 687 * user accs */ 688 689 /* fall through to state 1 */ 690 691 case 1: 692 693 RF_LOCK_MUTEX(raidPtr->mutex); 694 695 /* create the reconstruction control pointer and install it in 696 * the right slot */ 697 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 698 mapPtr = raidPtr->reconControl[row]->reconMap; 699 raidPtr->status[row] = rf_rs_reconstructing; 700 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 701 raidPtr->Disks[row][col].spareRow = srow; 702 raidPtr->Disks[row][col].spareCol = scol; 703 704 RF_UNLOCK_MUTEX(raidPtr->mutex); 705 706 RF_GETTIME(raidPtr->reconControl[row]->starttime); 707 708 /* now start up the actual reconstruction: issue a read for 709 * each surviving disk */ 710 711 reconDesc->numDisksDone = 0; 712 for (i = 0; i < raidPtr->numCol; i++) { 713 if (i != col) { 714 /* find and issue the next I/O on the 715 * indicated disk */ 716 if (IssueNextReadRequest(raidPtr, row, i)) { 717 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 718 reconDesc->numDisksDone++; 719 } 720 } 721 } 722 723 case 2: 724 Dprintf("RECON: resume requests\n"); 725 rf_ResumeNewRequests(raidPtr); 726 727 728 reconDesc->state = 3; 729 730 case 3: 731 732 /* process reconstruction events until all disks report that 733 * they've completed all work */ 734 mapPtr = raidPtr->reconControl[row]->reconMap; 735 736 737 738 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 739 740 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 741 RF_ASSERT(event); 742 743 if (ProcessReconEvent(raidPtr, row, event)) 744 reconDesc->numDisksDone++; 745 raidPtr->reconControl[row]->numRUsTotal = 746 mapPtr->totalRUs; 747 raidPtr->reconControl[row]->numRUsComplete = 748 mapPtr->totalRUs - 749 rf_UnitsLeftToReconstruct(mapPtr); 750 751 raidPtr->reconControl[row]->percentComplete = 752 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 753 if (rf_prReconSched) { 754 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 755 } 756 } 757 758 759 760 reconDesc->state = 4; 761 762 763 case 4: 764 mapPtr = raidPtr->reconControl[row]->reconMap; 765 if (rf_reconDebug) { 766 printf("RECON: all reads completed\n"); 767 } 768 /* at this point all the reads have completed. We now wait 769 * for any pending writes to complete, and then we're done */ 770 771 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 772 773 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 774 RF_ASSERT(event); 775 776 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 777 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 778 if (rf_prReconSched) { 779 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 780 } 781 } 782 reconDesc->state = 5; 783 784 case 5: 785 /* Success: mark the dead disk as reconstructed. We quiesce 786 * the array here to assure no nasty interactions with pending 787 * user accesses when we free up the psstatus structure as 788 * part of FreeReconControl() */ 789 790 reconDesc->state = 6; 791 792 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 793 rf_StopUserStats(raidPtr); 794 rf_PrintUserStats(raidPtr); /* print out the stats on user 795 * accs accumulated during 796 * recon */ 797 798 /* fall through to state 6 */ 799 case 6: 800 801 802 803 RF_LOCK_MUTEX(raidPtr->mutex); 804 raidPtr->numFailures--; 805 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 806 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 807 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 808 RF_UNLOCK_MUTEX(raidPtr->mutex); 809 RF_GETTIME(etime); 810 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 811 812 /* XXX -- why is state 7 different from state 6 if there is no 813 * return() here? -- XXX Note that I set elpsd above & use it 814 * below, so if you put a return here you'll have to fix this. 815 * (also, FreeReconControl is called below) */ 816 817 case 7: 818 819 rf_ResumeNewRequests(raidPtr); 820 821 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 822 raidPtr->raidid, row, col); 823 xor_s = raidPtr->accumXorTimeUs / 1000000; 824 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 825 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 826 raidPtr->raidid, 827 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 828 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 829 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 830 raidPtr->raidid, 831 (int) raidPtr->reconControl[row]->starttime.tv_sec, 832 (int) raidPtr->reconControl[row]->starttime.tv_usec, 833 (int) etime.tv_sec, (int) etime.tv_usec); 834 835 #if RF_RECON_STATS > 0 836 printf("raid%d: Total head-sep stall count was %d\n", 837 raidPtr->raidid, (int) reconDesc->hsStallCount); 838 #endif /* RF_RECON_STATS > 0 */ 839 rf_FreeReconControl(raidPtr, row); 840 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 841 FreeReconDesc(reconDesc); 842 843 } 844 845 SignalReconDone(raidPtr); 846 return (0); 847 } 848 /***************************************************************************** 849 * do the right thing upon each reconstruction event. 850 * returns nonzero if and only if there is nothing left unread on the 851 * indicated disk 852 *****************************************************************************/ 853 static int 854 ProcessReconEvent(raidPtr, frow, event) 855 RF_Raid_t *raidPtr; 856 RF_RowCol_t frow; 857 RF_ReconEvent_t *event; 858 { 859 int retcode = 0, submitblocked; 860 RF_ReconBuffer_t *rbuf; 861 RF_SectorCount_t sectorsPerRU; 862 863 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 864 switch (event->type) { 865 866 /* a read I/O has completed */ 867 case RF_REVENT_READDONE: 868 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 869 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 870 frow, event->col, rbuf->parityStripeID); 871 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 872 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 873 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 874 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 875 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 876 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 877 if (!submitblocked) 878 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 879 break; 880 881 /* a write I/O has completed */ 882 case RF_REVENT_WRITEDONE: 883 if (rf_floatingRbufDebug) { 884 rf_CheckFloatingRbufCount(raidPtr, 1); 885 } 886 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 887 rbuf = (RF_ReconBuffer_t *) event->arg; 888 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 889 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 890 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 891 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 892 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 893 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 894 895 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 896 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 897 raidPtr->numFullReconBuffers--; 898 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 899 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 900 } else 901 if (rbuf->type == RF_RBUF_TYPE_FORCED) 902 rf_FreeReconBuffer(rbuf); 903 else 904 RF_ASSERT(0); 905 break; 906 907 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 908 * cleared */ 909 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 910 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 911 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 912 * BUFCLEAR event if we 913 * couldn't submit */ 914 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 915 break; 916 917 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 918 * blockage has been cleared */ 919 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 920 retcode = TryToRead(raidPtr, frow, event->col); 921 break; 922 923 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 924 * reconstruction blockage has been 925 * cleared */ 926 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 927 retcode = TryToRead(raidPtr, frow, event->col); 928 break; 929 930 /* a buffer has become ready to write */ 931 case RF_REVENT_BUFREADY: 932 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 933 retcode = IssueNextWriteRequest(raidPtr, frow); 934 if (rf_floatingRbufDebug) { 935 rf_CheckFloatingRbufCount(raidPtr, 1); 936 } 937 break; 938 939 /* we need to skip the current RU entirely because it got 940 * recon'd while we were waiting for something else to happen */ 941 case RF_REVENT_SKIP: 942 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 943 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 944 break; 945 946 /* a forced-reconstruction read access has completed. Just 947 * submit the buffer */ 948 case RF_REVENT_FORCEDREADDONE: 949 rbuf = (RF_ReconBuffer_t *) event->arg; 950 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 951 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 952 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 953 RF_ASSERT(!submitblocked); 954 break; 955 956 default: 957 RF_PANIC(); 958 } 959 rf_FreeReconEventDesc(event); 960 return (retcode); 961 } 962 /***************************************************************************** 963 * 964 * find the next thing that's needed on the indicated disk, and issue 965 * a read request for it. We assume that the reconstruction buffer 966 * associated with this process is free to receive the data. If 967 * reconstruction is blocked on the indicated RU, we issue a 968 * blockage-release request instead of a physical disk read request. 969 * If the current disk gets too far ahead of the others, we issue a 970 * head-separation wait request and return. 971 * 972 * ctrl->{ru_count, curPSID, diskOffset} and 973 * rbuf->failedDiskSectorOffset are maintained to point to the unit 974 * we're currently accessing. Note that this deviates from the 975 * standard C idiom of having counters point to the next thing to be 976 * accessed. This allows us to easily retry when we're blocked by 977 * head separation or reconstruction-blockage events. 978 * 979 * returns nonzero if and only if there is nothing left unread on the 980 * indicated disk 981 * 982 *****************************************************************************/ 983 static int 984 IssueNextReadRequest(raidPtr, row, col) 985 RF_Raid_t *raidPtr; 986 RF_RowCol_t row; 987 RF_RowCol_t col; 988 { 989 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 990 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 991 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 992 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 993 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 994 int do_new_check = 0, retcode = 0, status; 995 996 /* if we are currently the slowest disk, mark that we have to do a new 997 * check */ 998 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 999 do_new_check = 1; 1000 1001 while (1) { 1002 1003 ctrl->ru_count++; 1004 if (ctrl->ru_count < RUsPerPU) { 1005 ctrl->diskOffset += sectorsPerRU; 1006 rbuf->failedDiskSectorOffset += sectorsPerRU; 1007 } else { 1008 ctrl->curPSID++; 1009 ctrl->ru_count = 0; 1010 /* code left over from when head-sep was based on 1011 * parity stripe id */ 1012 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 1013 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 1014 return (1); /* finito! */ 1015 } 1016 /* find the disk offsets of the start of the parity 1017 * stripe on both the current disk and the failed 1018 * disk. skip this entire parity stripe if either disk 1019 * does not appear in the indicated PS */ 1020 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1021 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1022 if (status) { 1023 ctrl->ru_count = RUsPerPU - 1; 1024 continue; 1025 } 1026 } 1027 rbuf->which_ru = ctrl->ru_count; 1028 1029 /* skip this RU if it's already been reconstructed */ 1030 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1031 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1032 continue; 1033 } 1034 break; 1035 } 1036 ctrl->headSepCounter++; 1037 if (do_new_check) 1038 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1039 1040 1041 /* at this point, we have definitely decided what to do, and we have 1042 * only to see if we can actually do it now */ 1043 rbuf->parityStripeID = ctrl->curPSID; 1044 rbuf->which_ru = ctrl->ru_count; 1045 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1046 sizeof(raidPtr->recon_tracerecs[col])); 1047 raidPtr->recon_tracerecs[col].reconacc = 1; 1048 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1049 retcode = TryToRead(raidPtr, row, col); 1050 return (retcode); 1051 } 1052 1053 /* 1054 * tries to issue the next read on the indicated disk. We may be 1055 * blocked by (a) the heads being too far apart, or (b) recon on the 1056 * indicated RU being blocked due to a write by a user thread. In 1057 * this case, we issue a head-sep or blockage wait request, which will 1058 * cause this same routine to be invoked again later when the blockage 1059 * has cleared. 1060 */ 1061 1062 static int 1063 TryToRead(raidPtr, row, col) 1064 RF_Raid_t *raidPtr; 1065 RF_RowCol_t row; 1066 RF_RowCol_t col; 1067 { 1068 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1069 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1070 RF_StripeNum_t psid = ctrl->curPSID; 1071 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1072 RF_DiskQueueData_t *req; 1073 int status, created = 0; 1074 RF_ReconParityStripeStatus_t *pssPtr; 1075 1076 /* if the current disk is too far ahead of the others, issue a 1077 * head-separation wait and return */ 1078 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1079 return (0); 1080 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1081 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1082 1083 /* if recon is blocked on the indicated parity stripe, issue a 1084 * block-wait request and return. this also must mark the indicated RU 1085 * in the stripe as under reconstruction if not blocked. */ 1086 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1087 if (status == RF_PSS_RECON_BLOCKED) { 1088 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1089 goto out; 1090 } else 1091 if (status == RF_PSS_FORCED_ON_WRITE) { 1092 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1093 goto out; 1094 } 1095 /* make one last check to be sure that the indicated RU didn't get 1096 * reconstructed while we were waiting for something else to happen. 1097 * This is unfortunate in that it causes us to make this check twice 1098 * in the normal case. Might want to make some attempt to re-work 1099 * this so that we only do this check if we've definitely blocked on 1100 * one of the above checks. When this condition is detected, we may 1101 * have just created a bogus status entry, which we need to delete. */ 1102 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1103 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1104 if (created) 1105 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1106 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1107 goto out; 1108 } 1109 /* found something to read. issue the I/O */ 1110 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1111 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1112 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1113 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1114 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1115 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1116 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1117 1118 /* should be ok to use a NULL proc pointer here, all the bufs we use 1119 * should be in kernel space */ 1120 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1121 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1122 1123 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1124 1125 ctrl->rbuf->arg = (void *) req; 1126 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1127 pssPtr->issued[col] = 1; 1128 1129 out: 1130 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1131 return (0); 1132 } 1133 1134 1135 /* 1136 * given a parity stripe ID, we want to find out whether both the 1137 * current disk and the failed disk exist in that parity stripe. If 1138 * not, we want to skip this whole PS. If so, we want to find the 1139 * disk offset of the start of the PS on both the current disk and the 1140 * failed disk. 1141 * 1142 * this works by getting a list of disks comprising the indicated 1143 * parity stripe, and searching the list for the current and failed 1144 * disks. Once we've decided they both exist in the parity stripe, we 1145 * need to decide whether each is data or parity, so that we'll know 1146 * which mapping function to call to get the corresponding disk 1147 * offsets. 1148 * 1149 * this is kind of unpleasant, but doing it this way allows the 1150 * reconstruction code to use parity stripe IDs rather than physical 1151 * disks address to march through the failed disk, which greatly 1152 * simplifies a lot of code, as well as eliminating the need for a 1153 * reverse-mapping function. I also think it will execute faster, 1154 * since the calls to the mapping module are kept to a minimum. 1155 * 1156 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1157 * THE STRIPE IN THE CORRECT ORDER */ 1158 1159 1160 static int 1161 ComputePSDiskOffsets( 1162 RF_Raid_t * raidPtr, /* raid descriptor */ 1163 RF_StripeNum_t psid, /* parity stripe identifier */ 1164 RF_RowCol_t row, /* row and column of disk to find the offsets 1165 * for */ 1166 RF_RowCol_t col, 1167 RF_SectorNum_t * outDiskOffset, 1168 RF_SectorNum_t * outFailedDiskSectorOffset, 1169 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1170 RF_RowCol_t * spCol, 1171 RF_SectorNum_t * spOffset) 1172 { /* OUT: offset into disk containing spare unit */ 1173 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1174 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1175 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1176 RF_RowCol_t *diskids; 1177 u_int i, j, k, i_offset, j_offset; 1178 RF_RowCol_t prow, pcol; 1179 int testcol, testrow; 1180 RF_RowCol_t stripe; 1181 RF_SectorNum_t poffset; 1182 char i_is_parity = 0, j_is_parity = 0; 1183 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1184 1185 /* get a listing of the disks comprising that stripe */ 1186 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1187 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1188 RF_ASSERT(diskids); 1189 1190 /* reject this entire parity stripe if it does not contain the 1191 * indicated disk or it does not contain the failed disk */ 1192 if (row != stripe) 1193 goto skipit; 1194 for (i = 0; i < stripeWidth; i++) { 1195 if (col == diskids[i]) 1196 break; 1197 } 1198 if (i == stripeWidth) 1199 goto skipit; 1200 for (j = 0; j < stripeWidth; j++) { 1201 if (fcol == diskids[j]) 1202 break; 1203 } 1204 if (j == stripeWidth) { 1205 goto skipit; 1206 } 1207 /* find out which disk the parity is on */ 1208 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1209 1210 /* find out if either the current RU or the failed RU is parity */ 1211 /* also, if the parity occurs in this stripe prior to the data and/or 1212 * failed col, we need to decrement i and/or j */ 1213 for (k = 0; k < stripeWidth; k++) 1214 if (diskids[k] == pcol) 1215 break; 1216 RF_ASSERT(k < stripeWidth); 1217 i_offset = i; 1218 j_offset = j; 1219 if (k < i) 1220 i_offset--; 1221 else 1222 if (k == i) { 1223 i_is_parity = 1; 1224 i_offset = 0; 1225 } /* set offsets to zero to disable multiply 1226 * below */ 1227 if (k < j) 1228 j_offset--; 1229 else 1230 if (k == j) { 1231 j_is_parity = 1; 1232 j_offset = 0; 1233 } 1234 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1235 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1236 * tells us how far into the stripe the [current,failed] disk is. */ 1237 1238 /* call the mapping routine to get the offset into the current disk, 1239 * repeat for failed disk. */ 1240 if (i_is_parity) 1241 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1242 else 1243 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1244 1245 RF_ASSERT(row == testrow && col == testcol); 1246 1247 if (j_is_parity) 1248 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1249 else 1250 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1251 RF_ASSERT(row == testrow && fcol == testcol); 1252 1253 /* now locate the spare unit for the failed unit */ 1254 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1255 if (j_is_parity) 1256 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1257 else 1258 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1259 } else { 1260 *spRow = raidPtr->reconControl[row]->spareRow; 1261 *spCol = raidPtr->reconControl[row]->spareCol; 1262 *spOffset = *outFailedDiskSectorOffset; 1263 } 1264 1265 return (0); 1266 1267 skipit: 1268 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1269 psid, row, col); 1270 return (1); 1271 } 1272 /* this is called when a buffer has become ready to write to the replacement disk */ 1273 static int 1274 IssueNextWriteRequest(raidPtr, row) 1275 RF_Raid_t *raidPtr; 1276 RF_RowCol_t row; 1277 { 1278 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1279 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1280 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1281 RF_ReconBuffer_t *rbuf; 1282 RF_DiskQueueData_t *req; 1283 1284 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1285 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1286 * have gotten the event that sent us here */ 1287 RF_ASSERT(rbuf->pssPtr); 1288 1289 rbuf->pssPtr->writeRbuf = rbuf; 1290 rbuf->pssPtr = NULL; 1291 1292 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1293 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1294 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1295 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1296 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1297 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1298 1299 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1300 * kernel space */ 1301 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1302 sectorsPerRU, rbuf->buffer, 1303 rbuf->parityStripeID, rbuf->which_ru, 1304 ReconWriteDoneProc, (void *) rbuf, NULL, 1305 &raidPtr->recon_tracerecs[fcol], 1306 (void *) raidPtr, 0, NULL); 1307 1308 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1309 1310 rbuf->arg = (void *) req; 1311 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1312 1313 return (0); 1314 } 1315 1316 /* 1317 * this gets called upon the completion of a reconstruction read 1318 * operation the arg is a pointer to the per-disk reconstruction 1319 * control structure for the process that just finished a read. 1320 * 1321 * called at interrupt context in the kernel, so don't do anything 1322 * illegal here. 1323 */ 1324 static int 1325 ReconReadDoneProc(arg, status) 1326 void *arg; 1327 int status; 1328 { 1329 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1330 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1331 1332 if (status) { 1333 /* 1334 * XXX 1335 */ 1336 printf("Recon read failed!\n"); 1337 RF_PANIC(); 1338 } 1339 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1340 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1341 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1342 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1343 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1344 1345 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1346 return (0); 1347 } 1348 /* this gets called upon the completion of a reconstruction write operation. 1349 * the arg is a pointer to the rbuf that was just written 1350 * 1351 * called at interrupt context in the kernel, so don't do anything illegal here. 1352 */ 1353 static int 1354 ReconWriteDoneProc(arg, status) 1355 void *arg; 1356 int status; 1357 { 1358 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1359 1360 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1361 if (status) { 1362 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1363 * write failed!\n"); */ 1364 RF_PANIC(); 1365 } 1366 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1367 return (0); 1368 } 1369 1370 1371 /* 1372 * computes a new minimum head sep, and wakes up anyone who needs to 1373 * be woken as a result 1374 */ 1375 static void 1376 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1377 RF_Raid_t *raidPtr; 1378 RF_RowCol_t row; 1379 RF_HeadSepLimit_t hsCtr; 1380 { 1381 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1382 RF_HeadSepLimit_t new_min; 1383 RF_RowCol_t i; 1384 RF_CallbackDesc_t *p; 1385 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1386 * of a minimum */ 1387 1388 1389 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1390 1391 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1392 for (i = 0; i < raidPtr->numCol; i++) 1393 if (i != reconCtrlPtr->fcol) { 1394 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1395 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1396 } 1397 /* set the new minimum and wake up anyone who can now run again */ 1398 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1399 reconCtrlPtr->minHeadSepCounter = new_min; 1400 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1401 while (reconCtrlPtr->headSepCBList) { 1402 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1403 break; 1404 p = reconCtrlPtr->headSepCBList; 1405 reconCtrlPtr->headSepCBList = p->next; 1406 p->next = NULL; 1407 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1408 rf_FreeCallbackDesc(p); 1409 } 1410 1411 } 1412 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1413 } 1414 1415 /* 1416 * checks to see that the maximum head separation will not be violated 1417 * if we initiate a reconstruction I/O on the indicated disk. 1418 * Limiting the maximum head separation between two disks eliminates 1419 * the nasty buffer-stall conditions that occur when one disk races 1420 * ahead of the others and consumes all of the floating recon buffers. 1421 * This code is complex and unpleasant but it's necessary to avoid 1422 * some very nasty, albeit fairly rare, reconstruction behavior. 1423 * 1424 * returns non-zero if and only if we have to stop working on the 1425 * indicated disk due to a head-separation delay. 1426 */ 1427 static int 1428 CheckHeadSeparation( 1429 RF_Raid_t * raidPtr, 1430 RF_PerDiskReconCtrl_t * ctrl, 1431 RF_RowCol_t row, 1432 RF_RowCol_t col, 1433 RF_HeadSepLimit_t hsCtr, 1434 RF_ReconUnitNum_t which_ru) 1435 { 1436 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1437 RF_CallbackDesc_t *cb, *p, *pt; 1438 int retval = 0; 1439 1440 /* if we're too far ahead of the slowest disk, stop working on this 1441 * disk until the slower ones catch up. We do this by scheduling a 1442 * wakeup callback for the time when the slowest disk has caught up. 1443 * We define "caught up" with 20% hysteresis, i.e. the head separation 1444 * must have fallen to at most 80% of the max allowable head 1445 * separation before we'll wake up. 1446 * 1447 */ 1448 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1449 if ((raidPtr->headSepLimit >= 0) && 1450 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1451 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1452 raidPtr->raidid, row, col, ctrl->headSepCounter, 1453 reconCtrlPtr->minHeadSepCounter, 1454 raidPtr->headSepLimit); 1455 cb = rf_AllocCallbackDesc(); 1456 /* the minHeadSepCounter value we have to get to before we'll 1457 * wake up. build in 20% hysteresis. */ 1458 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1459 cb->row = row; 1460 cb->col = col; 1461 cb->next = NULL; 1462 1463 /* insert this callback descriptor into the sorted list of 1464 * pending head-sep callbacks */ 1465 p = reconCtrlPtr->headSepCBList; 1466 if (!p) 1467 reconCtrlPtr->headSepCBList = cb; 1468 else 1469 if (cb->callbackArg.v < p->callbackArg.v) { 1470 cb->next = reconCtrlPtr->headSepCBList; 1471 reconCtrlPtr->headSepCBList = cb; 1472 } else { 1473 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1474 cb->next = p; 1475 pt->next = cb; 1476 } 1477 retval = 1; 1478 #if RF_RECON_STATS > 0 1479 ctrl->reconCtrl->reconDesc->hsStallCount++; 1480 #endif /* RF_RECON_STATS > 0 */ 1481 } 1482 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1483 1484 return (retval); 1485 } 1486 /* 1487 * checks to see if reconstruction has been either forced or blocked 1488 * by a user operation. if forced, we skip this RU entirely. else if 1489 * blocked, put ourselves on the wait list. else return 0. 1490 * 1491 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1492 */ 1493 static int 1494 CheckForcedOrBlockedReconstruction( 1495 RF_Raid_t * raidPtr, 1496 RF_ReconParityStripeStatus_t * pssPtr, 1497 RF_PerDiskReconCtrl_t * ctrl, 1498 RF_RowCol_t row, 1499 RF_RowCol_t col, 1500 RF_StripeNum_t psid, 1501 RF_ReconUnitNum_t which_ru) 1502 { 1503 RF_CallbackDesc_t *cb; 1504 int retcode = 0; 1505 1506 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1507 retcode = RF_PSS_FORCED_ON_WRITE; 1508 else 1509 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1510 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1511 cb = rf_AllocCallbackDesc(); /* append ourselves to 1512 * the blockage-wait 1513 * list */ 1514 cb->row = row; 1515 cb->col = col; 1516 cb->next = pssPtr->blockWaitList; 1517 pssPtr->blockWaitList = cb; 1518 retcode = RF_PSS_RECON_BLOCKED; 1519 } 1520 if (!retcode) 1521 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1522 * reconstruction */ 1523 1524 return (retcode); 1525 } 1526 /* 1527 * if reconstruction is currently ongoing for the indicated stripeID, 1528 * reconstruction is forced to completion and we return non-zero to 1529 * indicate that the caller must wait. If not, then reconstruction is 1530 * blocked on the indicated stripe and the routine returns zero. If 1531 * and only if we return non-zero, we'll cause the cbFunc to get 1532 * invoked with the cbArg when the reconstruction has completed. 1533 */ 1534 int 1535 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1536 RF_Raid_t *raidPtr; 1537 RF_AccessStripeMap_t *asmap; 1538 void (*cbFunc) (RF_Raid_t *, void *); 1539 void *cbArg; 1540 { 1541 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1542 * we're working on */ 1543 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1544 * forcing recon on */ 1545 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1546 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1547 * stripe status structure */ 1548 RF_StripeNum_t psid; /* parity stripe id */ 1549 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1550 * offset */ 1551 RF_RowCol_t *diskids; 1552 RF_RowCol_t stripe; 1553 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1554 RF_RowCol_t fcol, diskno, i; 1555 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1556 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1557 RF_CallbackDesc_t *cb; 1558 int created = 0, nPromoted; 1559 1560 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1561 1562 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1563 1564 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1565 1566 /* if recon is not ongoing on this PS, just return */ 1567 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1568 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1569 return (0); 1570 } 1571 /* otherwise, we have to wait for reconstruction to complete on this 1572 * RU. */ 1573 /* In order to avoid waiting for a potentially large number of 1574 * low-priority accesses to complete, we force a normal-priority (i.e. 1575 * not low-priority) reconstruction on this RU. */ 1576 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1577 DDprintf1("Forcing recon on psid %ld\n", psid); 1578 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1579 * forced recon */ 1580 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1581 * that we just set */ 1582 fcol = raidPtr->reconControl[row]->fcol; 1583 1584 /* get a listing of the disks comprising the indicated stripe */ 1585 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1586 RF_ASSERT(row == stripe); 1587 1588 /* For previously issued reads, elevate them to normal 1589 * priority. If the I/O has already completed, it won't be 1590 * found in the queue, and hence this will be a no-op. For 1591 * unissued reads, allocate buffers and issue new reads. The 1592 * fact that we've set the FORCED bit means that the regular 1593 * recon procs will not re-issue these reqs */ 1594 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1595 if ((diskno = diskids[i]) != fcol) { 1596 if (pssPtr->issued[diskno]) { 1597 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1598 if (rf_reconDebug && nPromoted) 1599 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1600 } else { 1601 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1602 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1603 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1604 * location */ 1605 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1606 new_rbuf->which_ru = which_ru; 1607 new_rbuf->failedDiskSectorOffset = fd_offset; 1608 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1609 1610 /* use NULL b_proc b/c all addrs 1611 * should be in kernel space */ 1612 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1613 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1614 NULL, (void *) raidPtr, 0, NULL); 1615 1616 RF_ASSERT(req); /* XXX -- fix this -- 1617 * XXX */ 1618 1619 new_rbuf->arg = req; 1620 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1621 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1622 } 1623 } 1624 /* if the write is sitting in the disk queue, elevate its 1625 * priority */ 1626 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1627 printf("raid%d: promoted write to row %d col %d\n", 1628 raidPtr->raidid, row, fcol); 1629 } 1630 /* install a callback descriptor to be invoked when recon completes on 1631 * this parity stripe. */ 1632 cb = rf_AllocCallbackDesc(); 1633 /* XXX the following is bogus.. These functions don't really match!! 1634 * GO */ 1635 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1636 cb->callbackArg.p = (void *) cbArg; 1637 cb->next = pssPtr->procWaitList; 1638 pssPtr->procWaitList = cb; 1639 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1640 raidPtr->raidid, psid); 1641 1642 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1643 return (1); 1644 } 1645 /* called upon the completion of a forced reconstruction read. 1646 * all we do is schedule the FORCEDREADONE event. 1647 * called at interrupt context in the kernel, so don't do anything illegal here. 1648 */ 1649 static void 1650 ForceReconReadDoneProc(arg, status) 1651 void *arg; 1652 int status; 1653 { 1654 RF_ReconBuffer_t *rbuf = arg; 1655 1656 if (status) { 1657 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1658 * recon read 1659 * failed!\n"); */ 1660 RF_PANIC(); 1661 } 1662 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1663 } 1664 /* releases a block on the reconstruction of the indicated stripe */ 1665 int 1666 rf_UnblockRecon(raidPtr, asmap) 1667 RF_Raid_t *raidPtr; 1668 RF_AccessStripeMap_t *asmap; 1669 { 1670 RF_RowCol_t row = asmap->origRow; 1671 RF_StripeNum_t stripeID = asmap->stripeID; 1672 RF_ReconParityStripeStatus_t *pssPtr; 1673 RF_ReconUnitNum_t which_ru; 1674 RF_StripeNum_t psid; 1675 int created = 0; 1676 RF_CallbackDesc_t *cb; 1677 1678 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1679 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1680 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1681 1682 /* When recon is forced, the pss desc can get deleted before we get 1683 * back to unblock recon. But, this can _only_ happen when recon is 1684 * forced. It would be good to put some kind of sanity check here, but 1685 * how to decide if recon was just forced or not? */ 1686 if (!pssPtr) { 1687 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1688 * RU %d\n",psid,which_ru); */ 1689 if (rf_reconDebug || rf_pssDebug) 1690 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1691 goto out; 1692 } 1693 pssPtr->blockCount--; 1694 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1695 raidPtr->raidid, psid, pssPtr->blockCount); 1696 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1697 1698 /* unblock recon before calling CauseReconEvent in case 1699 * CauseReconEvent causes us to try to issue a new read before 1700 * returning here. */ 1701 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1702 1703 1704 while (pssPtr->blockWaitList) { 1705 /* spin through the block-wait list and 1706 release all the waiters */ 1707 cb = pssPtr->blockWaitList; 1708 pssPtr->blockWaitList = cb->next; 1709 cb->next = NULL; 1710 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1711 rf_FreeCallbackDesc(cb); 1712 } 1713 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1714 /* if no recon was requested while recon was blocked */ 1715 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1716 } 1717 } 1718 out: 1719 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1720 return (0); 1721 } 1722