xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: rf_reconstruct.c,v 1.106 2008/12/20 17:04:51 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.106 2008/12/20 17:04:51 oster Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62 
63 #include "rf_kintf.h"
64 
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66 
67 #if RF_DEBUG_RECON
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 #else /* RF_DEBUG_RECON */
81 
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90 
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93 
94 #endif /* RF_DEBUG_RECON */
95 
96 #define RF_RECON_DONE_READS   1
97 #define RF_RECON_READ_ERROR   2
98 #define RF_RECON_WRITE_ERROR  3
99 #define RF_RECON_READ_STOPPED 4
100 #define RF_RECON_WRITE_DONE   5
101 
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104 
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 				RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 			       RF_RowCol_t, RF_HeadSepLimit_t,
120 			       RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 					      RF_ReconParityStripeStatus_t *,
123 					      RF_PerDiskReconCtrl_t *,
124 					      RF_RowCol_t, RF_StripeNum_t,
125 					      RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128 
129 struct RF_ReconDoneProc_s {
130 	void    (*proc) (RF_Raid_t *, void *);
131 	void   *arg;
132 	RF_ReconDoneProc_t *next;
133 };
134 
135 /**************************************************************************
136  *
137  * sets up the parameters that will be used by the reconstruction process
138  * currently there are none, except for those that the layout-specific
139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140  *
141  * in the kernel, we fire off the recon thread.
142  *
143  **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 	pool_destroy(&rf_pools.reconbuffer);
148 }
149 
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153 
154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157 
158 	return (0);
159 }
160 
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 		   RF_RowCol_t scol)
165 {
166 
167 	RF_RaidReconDesc_t *reconDesc;
168 
169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 		  (RF_RaidReconDesc_t *));
171 	reconDesc->raidPtr = raidPtr;
172 	reconDesc->col = col;
173 	reconDesc->spareDiskPtr = spareDiskPtr;
174 	reconDesc->numDisksDone = numDisksDone;
175 	reconDesc->scol = scol;
176 	reconDesc->next = NULL;
177 
178 	return (reconDesc);
179 }
180 
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 	       reconDesc->raidPtr->raidid,
187 	       (long) reconDesc->numReconEventWaits,
188 	       (long) reconDesc->numReconExecDelays);
189 #endif				/* RF_RECON_STATS > 0 */
190 	printf("raid%d: %lu max exec ticks\n",
191 	       reconDesc->raidPtr->raidid,
192 	       (long) reconDesc->maxReconExecTicks);
193 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
194 }
195 
196 
197 /*****************************************************************************
198  *
199  * primary routine to reconstruct a failed disk.  This should be called from
200  * within its own thread.  It won't return until reconstruction completes,
201  * fails, or is aborted.
202  *****************************************************************************/
203 int
204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
205 {
206 	const RF_LayoutSW_t *lp;
207 	int     rc;
208 
209 	lp = raidPtr->Layout.map;
210 	if (lp->SubmitReconBuffer) {
211 		/*
212 	         * The current infrastructure only supports reconstructing one
213 	         * disk at a time for each array.
214 	         */
215 		RF_LOCK_MUTEX(raidPtr->mutex);
216 		while (raidPtr->reconInProgress) {
217 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
218 		}
219 		raidPtr->reconInProgress++;
220 		RF_UNLOCK_MUTEX(raidPtr->mutex);
221 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
222 		RF_LOCK_MUTEX(raidPtr->mutex);
223 		raidPtr->reconInProgress--;
224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
225 	} else {
226 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
227 		    lp->parityConfig);
228 		rc = EIO;
229 	}
230 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
231 	return (rc);
232 }
233 
234 int
235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
236 {
237 	RF_ComponentLabel_t c_label;
238 	RF_RaidDisk_t *spareDiskPtr = NULL;
239 	RF_RaidReconDesc_t *reconDesc;
240 	RF_RowCol_t scol;
241 	int     numDisksDone = 0, rc;
242 
243 	/* first look for a spare drive onto which to reconstruct the data */
244 	/* spare disk descriptors are stored in row 0.  This may have to
245 	 * change eventually */
246 
247 	RF_LOCK_MUTEX(raidPtr->mutex);
248 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
250 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
251 		if (raidPtr->status != rf_rs_degraded) {
252 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
253 			RF_UNLOCK_MUTEX(raidPtr->mutex);
254 			return (EINVAL);
255 		}
256 		scol = (-1);
257 	} else {
258 #endif
259 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 				spareDiskPtr = &raidPtr->Disks[scol];
262 				spareDiskPtr->status = rf_ds_used_spare;
263 				break;
264 			}
265 		}
266 		if (!spareDiskPtr) {
267 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 			RF_UNLOCK_MUTEX(raidPtr->mutex);
269 			return (ENOSPC);
270 		}
271 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
273 	}
274 #endif
275 	RF_UNLOCK_MUTEX(raidPtr->mutex);
276 
277 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
278 	raidPtr->reconDesc = (void *) reconDesc;
279 #if RF_RECON_STATS > 0
280 	reconDesc->hsStallCount = 0;
281 	reconDesc->numReconExecDelays = 0;
282 	reconDesc->numReconEventWaits = 0;
283 #endif				/* RF_RECON_STATS > 0 */
284 	reconDesc->reconExecTimerRunning = 0;
285 	reconDesc->reconExecTicks = 0;
286 	reconDesc->maxReconExecTicks = 0;
287 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
288 
289 	if (!rc) {
290 		/* fix up the component label */
291 		/* Don't actually need the read here.. */
292 		raidread_component_label(
293                         raidPtr->raid_cinfo[scol].ci_dev,
294 			raidPtr->raid_cinfo[scol].ci_vp,
295 			&c_label);
296 
297 		raid_init_component_label( raidPtr, &c_label);
298 		c_label.row = 0;
299 		c_label.column = col;
300 		c_label.clean = RF_RAID_DIRTY;
301 		c_label.status = rf_ds_optimal;
302 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
303 
304 		/* We've just done a rebuild based on all the other
305 		   disks, so at this point the parity is known to be
306 		   clean, even if it wasn't before. */
307 
308 		/* XXX doesn't hold for RAID 6!!*/
309 
310 		RF_LOCK_MUTEX(raidPtr->mutex);
311 		raidPtr->parity_good = RF_RAID_CLEAN;
312 		RF_UNLOCK_MUTEX(raidPtr->mutex);
313 
314 		/* XXXX MORE NEEDED HERE */
315 
316 		raidwrite_component_label(
317                         raidPtr->raid_cinfo[scol].ci_dev,
318 			raidPtr->raid_cinfo[scol].ci_vp,
319 			&c_label);
320 
321 	} else {
322 		/* Reconstruct failed. */
323 
324 		RF_LOCK_MUTEX(raidPtr->mutex);
325 		/* Failed disk goes back to "failed" status */
326 		raidPtr->Disks[col].status = rf_ds_failed;
327 
328 		/* Spare disk goes back to "spare" status. */
329 		spareDiskPtr->status = rf_ds_spare;
330 		RF_UNLOCK_MUTEX(raidPtr->mutex);
331 
332 	}
333 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
334 	return (rc);
335 }
336 
337 /*
338 
339    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
340    and you don't get a spare until the next Monday.  With this function
341    (and hot-swappable drives) you can now put your new disk containing
342    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
343    rebuild the data "on the spot".
344 
345 */
346 
347 int
348 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
349 {
350 	RF_RaidDisk_t *spareDiskPtr = NULL;
351 	RF_RaidReconDesc_t *reconDesc;
352 	const RF_LayoutSW_t *lp;
353 	RF_ComponentLabel_t c_label;
354 	int     numDisksDone = 0, rc;
355 	struct partinfo dpart;
356 	struct vnode *vp;
357 	struct vattr va;
358 	int retcode;
359 	int ac;
360 
361 	lp = raidPtr->Layout.map;
362 	if (!lp->SubmitReconBuffer) {
363 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 			     lp->parityConfig);
365 		/* wakeup anyone who might be waiting to do a reconstruct */
366 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 		return(EIO);
368 	}
369 
370 	/*
371 	 * The current infrastructure only supports reconstructing one
372 	 * disk at a time for each array.
373 	 */
374 	RF_LOCK_MUTEX(raidPtr->mutex);
375 
376 	if (raidPtr->Disks[col].status != rf_ds_failed) {
377 		/* "It's gone..." */
378 		raidPtr->numFailures++;
379 		raidPtr->Disks[col].status = rf_ds_failed;
380 		raidPtr->status = rf_rs_degraded;
381 		RF_UNLOCK_MUTEX(raidPtr->mutex);
382 		rf_update_component_labels(raidPtr,
383 					   RF_NORMAL_COMPONENT_UPDATE);
384 		RF_LOCK_MUTEX(raidPtr->mutex);
385 	}
386 
387 	while (raidPtr->reconInProgress) {
388 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 	}
390 
391 	raidPtr->reconInProgress++;
392 
393 	/* first look for a spare drive onto which to reconstruct the
394 	   data.  spare disk descriptors are stored in row 0.  This
395 	   may have to change eventually */
396 
397 	/* Actually, we don't care if it's failed or not...  On a RAID
398 	   set with correct parity, this function should be callable
399 	   on any component without ill effects. */
400 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401 
402 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
403 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
404 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
405 
406 		raidPtr->reconInProgress--;
407 		RF_UNLOCK_MUTEX(raidPtr->mutex);
408 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
409 		return (EINVAL);
410 	}
411 #endif
412 
413 	/* This device may have been opened successfully the
414 	   first time. Close it before trying to open it again.. */
415 
416 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 		printf("Closed the open device: %s\n",
419 		       raidPtr->Disks[col].devname);
420 #endif
421 		vp = raidPtr->raid_cinfo[col].ci_vp;
422 		ac = raidPtr->Disks[col].auto_configured;
423 		RF_UNLOCK_MUTEX(raidPtr->mutex);
424 		rf_close_component(raidPtr, vp, ac);
425 		RF_LOCK_MUTEX(raidPtr->mutex);
426 		raidPtr->raid_cinfo[col].ci_vp = NULL;
427 	}
428 	/* note that this disk was *not* auto_configured (any longer)*/
429 	raidPtr->Disks[col].auto_configured = 0;
430 
431 #if 0
432 	printf("About to (re-)open the device for rebuilding: %s\n",
433 	       raidPtr->Disks[col].devname);
434 #endif
435 	RF_UNLOCK_MUTEX(raidPtr->mutex);
436 	retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
437 
438 	if (retcode) {
439 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
440 		       raidPtr->Disks[col].devname, retcode);
441 
442 		/* the component isn't responding properly...
443 		   must be still dead :-( */
444 		RF_LOCK_MUTEX(raidPtr->mutex);
445 		raidPtr->reconInProgress--;
446 		RF_UNLOCK_MUTEX(raidPtr->mutex);
447 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 		return(retcode);
449 	}
450 
451 	/* Ok, so we can at least do a lookup...
452 	   How about actually getting a vp for it? */
453 
454 	if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
455 		RF_LOCK_MUTEX(raidPtr->mutex);
456 		raidPtr->reconInProgress--;
457 		RF_UNLOCK_MUTEX(raidPtr->mutex);
458 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 		return(retcode);
460 	}
461 
462 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
463 	if (retcode) {
464 		RF_LOCK_MUTEX(raidPtr->mutex);
465 		raidPtr->reconInProgress--;
466 		RF_UNLOCK_MUTEX(raidPtr->mutex);
467 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 		return(retcode);
469 	}
470 	RF_LOCK_MUTEX(raidPtr->mutex);
471 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
472 
473 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 		rf_protectedSectors;
475 
476 	raidPtr->raid_cinfo[col].ci_vp = vp;
477 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478 
479 	raidPtr->Disks[col].dev = va.va_rdev;
480 
481 	/* we allow the user to specify that only a fraction
482 	   of the disks should be used this is just for debug:
483 	   it speeds up * the parity scan */
484 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 		rf_sizePercentage / 100;
486 	RF_UNLOCK_MUTEX(raidPtr->mutex);
487 
488 	spareDiskPtr = &raidPtr->Disks[col];
489 	spareDiskPtr->status = rf_ds_used_spare;
490 
491 	printf("raid%d: initiating in-place reconstruction on column %d\n",
492 	       raidPtr->raidid, col);
493 
494 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 				       numDisksDone, col);
496 	raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 	reconDesc->hsStallCount = 0;
499 	reconDesc->numReconExecDelays = 0;
500 	reconDesc->numReconEventWaits = 0;
501 #endif				/* RF_RECON_STATS > 0 */
502 	reconDesc->reconExecTimerRunning = 0;
503 	reconDesc->reconExecTicks = 0;
504 	reconDesc->maxReconExecTicks = 0;
505 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
506 
507 	if (!rc) {
508 		RF_LOCK_MUTEX(raidPtr->mutex);
509 		/* Need to set these here, as at this point it'll be claiming
510 		   that the disk is in rf_ds_spared!  But we know better :-) */
511 
512 		raidPtr->Disks[col].status = rf_ds_optimal;
513 		raidPtr->status = rf_rs_optimal;
514 		RF_UNLOCK_MUTEX(raidPtr->mutex);
515 
516 		/* fix up the component label */
517 		/* Don't actually need the read here.. */
518 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
519 					 raidPtr->raid_cinfo[col].ci_vp,
520 					 &c_label);
521 
522 		RF_LOCK_MUTEX(raidPtr->mutex);
523 		raid_init_component_label(raidPtr, &c_label);
524 
525 		c_label.row = 0;
526 		c_label.column = col;
527 
528 		/* We've just done a rebuild based on all the other
529 		   disks, so at this point the parity is known to be
530 		   clean, even if it wasn't before. */
531 
532 		/* XXX doesn't hold for RAID 6!!*/
533 
534 		raidPtr->parity_good = RF_RAID_CLEAN;
535 		RF_UNLOCK_MUTEX(raidPtr->mutex);
536 
537 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
538 					  raidPtr->raid_cinfo[col].ci_vp,
539 					  &c_label);
540 
541 	} else {
542 		/* Reconstruct-in-place failed.  Disk goes back to
543 		   "failed" status, regardless of what it was before.  */
544 		RF_LOCK_MUTEX(raidPtr->mutex);
545 		raidPtr->Disks[col].status = rf_ds_failed;
546 		RF_UNLOCK_MUTEX(raidPtr->mutex);
547 	}
548 
549 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
550 
551 	RF_LOCK_MUTEX(raidPtr->mutex);
552 	raidPtr->reconInProgress--;
553 	RF_UNLOCK_MUTEX(raidPtr->mutex);
554 
555 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
556 	return (rc);
557 }
558 
559 
560 int
561 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
562 {
563 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
564 	RF_RowCol_t col = reconDesc->col;
565 	RF_RowCol_t scol = reconDesc->scol;
566 	RF_ReconMap_t *mapPtr;
567 	RF_ReconCtrl_t *tmp_reconctrl;
568 	RF_ReconEvent_t *event;
569 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
570 	RF_ReconUnitCount_t RUsPerPU;
571 	struct timeval etime, elpsd;
572 	unsigned long xor_s, xor_resid_us;
573 	int     i, ds;
574 	int status, done;
575 	int recon_error, write_error;
576 
577 	raidPtr->accumXorTimeUs = 0;
578 #if RF_ACC_TRACE > 0
579 	/* create one trace record per physical disk */
580 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581 #endif
582 
583 	/* quiesce the array prior to starting recon.  this is needed
584 	 * to assure no nasty interactions with pending user writes.
585 	 * We need to do this before we change the disk or row status. */
586 
587 	Dprintf("RECON: begin request suspend\n");
588 	rf_SuspendNewRequestsAndWait(raidPtr);
589 	Dprintf("RECON: end request suspend\n");
590 
591 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
592 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
593 
594 	RF_LOCK_MUTEX(raidPtr->mutex);
595 
596 	/* create the reconstruction control pointer and install it in
597 	 * the right slot */
598 	raidPtr->reconControl = tmp_reconctrl;
599 	mapPtr = raidPtr->reconControl->reconMap;
600 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
601 	raidPtr->reconControl->numRUsComplete =	0;
602 	raidPtr->status = rf_rs_reconstructing;
603 	raidPtr->Disks[col].status = rf_ds_reconstructing;
604 	raidPtr->Disks[col].spareCol = scol;
605 
606 	RF_UNLOCK_MUTEX(raidPtr->mutex);
607 
608 	RF_GETTIME(raidPtr->reconControl->starttime);
609 
610 	Dprintf("RECON: resume requests\n");
611 	rf_ResumeNewRequests(raidPtr);
612 
613 
614 	mapPtr = raidPtr->reconControl->reconMap;
615 
616 	incPSID = RF_RECONMAP_SIZE;
617 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
618 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
619 	recon_error = 0;
620 	write_error = 0;
621 	pending_writes = incPSID;
622 	raidPtr->reconControl->lastPSID = incPSID;
623 
624 	/* start the actual reconstruction */
625 
626 	done = 0;
627 	while (!done) {
628 
629 		if (raidPtr->waitShutdown) {
630 			/* someone is unconfiguring this array... bail on the reconstruct.. */
631 			recon_error = 1;
632 			break;
633 		}
634 
635 		num_writes = 0;
636 
637 		/* issue a read for each surviving disk */
638 
639 		reconDesc->numDisksDone = 0;
640 		for (i = 0; i < raidPtr->numCol; i++) {
641 			if (i != col) {
642 				/* find and issue the next I/O on the
643 				 * indicated disk */
644 				if (IssueNextReadRequest(raidPtr, i)) {
645 					Dprintf1("RECON: done issuing for c%d\n", i);
646 					reconDesc->numDisksDone++;
647 				}
648 			}
649 		}
650 
651 		/* process reconstruction events until all disks report that
652 		 * they've completed all work */
653 
654 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
655 
656 			event = rf_GetNextReconEvent(reconDesc);
657 			status = ProcessReconEvent(raidPtr, event);
658 
659 			/* the normal case is that a read completes, and all is well. */
660 			if (status == RF_RECON_DONE_READS) {
661 				reconDesc->numDisksDone++;
662 			} else if ((status == RF_RECON_READ_ERROR) ||
663 				   (status == RF_RECON_WRITE_ERROR)) {
664 				/* an error was encountered while reconstructing...
665 				   Pretend we've finished this disk.
666 				*/
667 				recon_error = 1;
668 				raidPtr->reconControl->error = 1;
669 
670 				/* bump the numDisksDone count for reads,
671 				   but not for writes */
672 				if (status == RF_RECON_READ_ERROR)
673 					reconDesc->numDisksDone++;
674 
675 				/* write errors are special -- when we are
676 				   done dealing with the reads that are
677 				   finished, we don't want to wait for any
678 				   writes */
679 				if (status == RF_RECON_WRITE_ERROR)
680 					write_error = 1;
681 
682 			} else if (status == RF_RECON_READ_STOPPED) {
683 				/* count this component as being "done" */
684 				reconDesc->numDisksDone++;
685 			} else if (status == RF_RECON_WRITE_DONE) {
686 				num_writes++;
687 			}
688 
689 			if (recon_error) {
690 				/* make sure any stragglers are woken up so that
691 				   their theads will complete, and we can get out
692 				   of here with all IO processed */
693 
694 				rf_WakeupHeadSepCBWaiters(raidPtr);
695 			}
696 
697 			raidPtr->reconControl->numRUsTotal =
698 				mapPtr->totalRUs;
699 			raidPtr->reconControl->numRUsComplete =
700 				mapPtr->totalRUs -
701 				rf_UnitsLeftToReconstruct(mapPtr);
702 
703 #if RF_DEBUG_RECON
704 			raidPtr->reconControl->percentComplete =
705 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
706 			if (rf_prReconSched) {
707 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
708 			}
709 #endif
710 		}
711 
712 		/* reads done, wakup any waiters, and then wait for writes */
713 
714 		rf_WakeupHeadSepCBWaiters(raidPtr);
715 
716 		while (!recon_error && (num_writes < pending_writes)) {
717 			event = rf_GetNextReconEvent(reconDesc);
718 			status = ProcessReconEvent(raidPtr, event);
719 
720 			if (status == RF_RECON_WRITE_ERROR) {
721 				recon_error = 1;
722 				raidPtr->reconControl->error = 1;
723 				/* an error was encountered at the very end... bail */
724 			} else if (status == RF_RECON_WRITE_DONE) {
725 				num_writes++;
726 			}
727 		}
728 		if (recon_error ||
729 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
730 			done = 1;
731 			break;
732 		}
733 
734 		prev = raidPtr->reconControl->lastPSID;
735 		raidPtr->reconControl->lastPSID += incPSID;
736 
737 		if (raidPtr->reconControl->lastPSID > lastPSID) {
738 			pending_writes = lastPSID - prev;
739 			raidPtr->reconControl->lastPSID = lastPSID;
740 		}
741 
742 		/* back down curPSID to get ready for the next round... */
743 		for (i = 0; i < raidPtr->numCol; i++) {
744 			if (i != col) {
745 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
746 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
747 			}
748 		}
749 	}
750 
751 	mapPtr = raidPtr->reconControl->reconMap;
752 	if (rf_reconDebug) {
753 		printf("RECON: all reads completed\n");
754 	}
755 	/* at this point all the reads have completed.  We now wait
756 	 * for any pending writes to complete, and then we're done */
757 
758 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
759 
760 		event = rf_GetNextReconEvent(reconDesc);
761 		status = ProcessReconEvent(raidPtr, event);
762 
763 		if (status == RF_RECON_WRITE_ERROR) {
764 			recon_error = 1;
765 			raidPtr->reconControl->error = 1;
766 			/* an error was encountered at the very end... bail */
767 		} else {
768 #if RF_DEBUG_RECON
769 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
770 			if (rf_prReconSched) {
771 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
772 			}
773 #endif
774 		}
775 	}
776 
777 	if (recon_error) {
778 		/* we've encountered an error in reconstructing. */
779 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
780 
781 		/* we start by blocking IO to the RAID set. */
782 		rf_SuspendNewRequestsAndWait(raidPtr);
783 
784 		RF_LOCK_MUTEX(raidPtr->mutex);
785 		/* mark set as being degraded, rather than
786 		   rf_rs_reconstructing as we were before the problem.
787 		   After this is done we can update status of the
788 		   component disks without worrying about someone
789 		   trying to read from a failed component.
790 		*/
791 		raidPtr->status = rf_rs_degraded;
792 		RF_UNLOCK_MUTEX(raidPtr->mutex);
793 
794 		/* resume IO */
795 		rf_ResumeNewRequests(raidPtr);
796 
797 		/* At this point there are two cases:
798 		   1) If we've experienced a read error, then we've
799 		   already waited for all the reads we're going to get,
800 		   and we just need to wait for the writes.
801 
802 		   2) If we've experienced a write error, we've also
803 		   already waited for all the reads to complete,
804 		   but there is little point in waiting for the writes --
805 		   when they do complete, they will just be ignored.
806 
807 		   So we just wait for writes to complete if we didn't have a
808 		   write error.
809 		*/
810 
811 		if (!write_error) {
812 			/* wait for writes to complete */
813 			while (raidPtr->reconControl->pending_writes > 0) {
814 
815 				event = rf_GetNextReconEvent(reconDesc);
816 				status = ProcessReconEvent(raidPtr, event);
817 
818 				if (status == RF_RECON_WRITE_ERROR) {
819 					raidPtr->reconControl->error = 1;
820 					/* an error was encountered at the very end... bail.
821 					   This will be very bad news for the user, since
822 					   at this point there will have been a read error
823 					   on one component, and a write error on another!
824 					*/
825 					break;
826 				}
827 			}
828 		}
829 
830 
831 		/* cleanup */
832 
833 		/* drain the event queue - after waiting for the writes above,
834 		   there shouldn't be much (if anything!) left in the queue. */
835 
836 		rf_DrainReconEventQueue(reconDesc);
837 
838 		/* XXX  As much as we'd like to free the recon control structure
839 		   and the reconDesc, we have no way of knowing if/when those will
840 		   be touched by IO that has yet to occur.  It is rather poor to be
841 		   basically causing a 'memory leak' here, but there doesn't seem to be
842 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
843 		   gets a makeover this problem will go away.
844 		*/
845 #if 0
846 		rf_FreeReconControl(raidPtr);
847 #endif
848 
849 #if RF_ACC_TRACE > 0
850 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
851 #endif
852 		/* XXX see comment above */
853 #if 0
854 		FreeReconDesc(reconDesc);
855 #endif
856 
857 		return (1);
858 	}
859 
860 	/* Success:  mark the dead disk as reconstructed.  We quiesce
861 	 * the array here to assure no nasty interactions with pending
862 	 * user accesses when we free up the psstatus structure as
863 	 * part of FreeReconControl() */
864 
865 	rf_SuspendNewRequestsAndWait(raidPtr);
866 
867 	RF_LOCK_MUTEX(raidPtr->mutex);
868 	raidPtr->numFailures--;
869 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
870 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
871 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
872 	RF_UNLOCK_MUTEX(raidPtr->mutex);
873 	RF_GETTIME(etime);
874 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
875 
876 	rf_ResumeNewRequests(raidPtr);
877 
878 	printf("raid%d: Reconstruction of disk at col %d completed\n",
879 	       raidPtr->raidid, col);
880 	xor_s = raidPtr->accumXorTimeUs / 1000000;
881 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
882 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
883 	       raidPtr->raidid,
884 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
885 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
886 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
887 	       raidPtr->raidid,
888 	       (int) raidPtr->reconControl->starttime.tv_sec,
889 	       (int) raidPtr->reconControl->starttime.tv_usec,
890 	       (int) etime.tv_sec, (int) etime.tv_usec);
891 #if RF_RECON_STATS > 0
892 	printf("raid%d: Total head-sep stall count was %d\n",
893 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
894 #endif				/* RF_RECON_STATS > 0 */
895 	rf_FreeReconControl(raidPtr);
896 #if RF_ACC_TRACE > 0
897 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
898 #endif
899 	FreeReconDesc(reconDesc);
900 
901 	return (0);
902 
903 }
904 /*****************************************************************************
905  * do the right thing upon each reconstruction event.
906  *****************************************************************************/
907 static int
908 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
909 {
910 	int     retcode = 0, submitblocked;
911 	RF_ReconBuffer_t *rbuf;
912 	RF_SectorCount_t sectorsPerRU;
913 
914 	retcode = RF_RECON_READ_STOPPED;
915 
916 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
917 
918 	switch (event->type) {
919 
920 		/* a read I/O has completed */
921 	case RF_REVENT_READDONE:
922 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
923 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
924 		    event->col, rbuf->parityStripeID);
925 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
926 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
927 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
928 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
929 		if (!raidPtr->reconControl->error) {
930 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
931 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
932 			if (!submitblocked)
933 				retcode = IssueNextReadRequest(raidPtr, event->col);
934 			else
935 				retcode = 0;
936 		}
937 		break;
938 
939 		/* a write I/O has completed */
940 	case RF_REVENT_WRITEDONE:
941 #if RF_DEBUG_RECON
942 		if (rf_floatingRbufDebug) {
943 			rf_CheckFloatingRbufCount(raidPtr, 1);
944 		}
945 #endif
946 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
947 		rbuf = (RF_ReconBuffer_t *) event->arg;
948 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
949 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
950 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
951 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
952 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
953 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
954 
955 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
956 		raidPtr->reconControl->pending_writes--;
957 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
958 
959 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
960 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
961 			while(raidPtr->reconControl->rb_lock) {
962 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
963 					&raidPtr->reconControl->rb_mutex);
964 			}
965 			raidPtr->reconControl->rb_lock = 1;
966 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
967 
968 			raidPtr->numFullReconBuffers--;
969 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
970 
971 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
972 			raidPtr->reconControl->rb_lock = 0;
973 			wakeup(&raidPtr->reconControl->rb_lock);
974 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
975 		} else
976 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
977 				rf_FreeReconBuffer(rbuf);
978 			else
979 				RF_ASSERT(0);
980 		retcode = RF_RECON_WRITE_DONE;
981 		break;
982 
983 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
984 					 * cleared */
985 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
986 		if (!raidPtr->reconControl->error) {
987 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
988 							     0, (int) (long) event->arg);
989 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
990 							 * BUFCLEAR event if we
991 							 * couldn't submit */
992 			retcode = IssueNextReadRequest(raidPtr, event->col);
993 		}
994 		break;
995 
996 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
997 					 * blockage has been cleared */
998 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
999 		if (!raidPtr->reconControl->error) {
1000 			retcode = TryToRead(raidPtr, event->col);
1001 		}
1002 		break;
1003 
1004 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
1005 					 * reconstruction blockage has been
1006 					 * cleared */
1007 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
1008 		if (!raidPtr->reconControl->error) {
1009 			retcode = TryToRead(raidPtr, event->col);
1010 		}
1011 		break;
1012 
1013 		/* a buffer has become ready to write */
1014 	case RF_REVENT_BUFREADY:
1015 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
1016 		if (!raidPtr->reconControl->error) {
1017 			retcode = IssueNextWriteRequest(raidPtr);
1018 #if RF_DEBUG_RECON
1019 			if (rf_floatingRbufDebug) {
1020 				rf_CheckFloatingRbufCount(raidPtr, 1);
1021 			}
1022 #endif
1023 		}
1024 		break;
1025 
1026 		/* we need to skip the current RU entirely because it got
1027 		 * recon'd while we were waiting for something else to happen */
1028 	case RF_REVENT_SKIP:
1029 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
1030 		if (!raidPtr->reconControl->error) {
1031 			retcode = IssueNextReadRequest(raidPtr, event->col);
1032 		}
1033 		break;
1034 
1035 		/* a forced-reconstruction read access has completed.  Just
1036 		 * submit the buffer */
1037 	case RF_REVENT_FORCEDREADDONE:
1038 		rbuf = (RF_ReconBuffer_t *) event->arg;
1039 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1040 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
1041 		if (!raidPtr->reconControl->error) {
1042 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
1043 			RF_ASSERT(!submitblocked);
1044 			retcode = 0;
1045 		}
1046 		break;
1047 
1048 		/* A read I/O failed to complete */
1049 	case RF_REVENT_READ_FAILED:
1050 		retcode = RF_RECON_READ_ERROR;
1051 		break;
1052 
1053 		/* A write I/O failed to complete */
1054 	case RF_REVENT_WRITE_FAILED:
1055 		retcode = RF_RECON_WRITE_ERROR;
1056 
1057 		rbuf = (RF_ReconBuffer_t *) event->arg;
1058 
1059 		/* cleanup the disk queue data */
1060 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1061 
1062 		/* At this point we're erroring out, badly, and floatingRbufs
1063 		   may not even be valid.  Rather than putting this back onto
1064 		   the floatingRbufs list, just arrange for its immediate
1065 		   destruction.
1066 		*/
1067 		rf_FreeReconBuffer(rbuf);
1068 		break;
1069 
1070 		/* a forced read I/O failed to complete */
1071 	case RF_REVENT_FORCEDREAD_FAILED:
1072 		retcode = RF_RECON_READ_ERROR;
1073 		break;
1074 
1075 	default:
1076 		RF_PANIC();
1077 	}
1078 	rf_FreeReconEventDesc(event);
1079 	return (retcode);
1080 }
1081 /*****************************************************************************
1082  *
1083  * find the next thing that's needed on the indicated disk, and issue
1084  * a read request for it.  We assume that the reconstruction buffer
1085  * associated with this process is free to receive the data.  If
1086  * reconstruction is blocked on the indicated RU, we issue a
1087  * blockage-release request instead of a physical disk read request.
1088  * If the current disk gets too far ahead of the others, we issue a
1089  * head-separation wait request and return.
1090  *
1091  * ctrl->{ru_count, curPSID, diskOffset} and
1092  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1093  * we're currently accessing.  Note that this deviates from the
1094  * standard C idiom of having counters point to the next thing to be
1095  * accessed.  This allows us to easily retry when we're blocked by
1096  * head separation or reconstruction-blockage events.
1097  *
1098  *****************************************************************************/
1099 static int
1100 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1101 {
1102 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1103 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1104 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1105 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1106 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1107 	int     do_new_check = 0, retcode = 0, status;
1108 
1109 	/* if we are currently the slowest disk, mark that we have to do a new
1110 	 * check */
1111 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1112 		do_new_check = 1;
1113 
1114 	while (1) {
1115 
1116 		ctrl->ru_count++;
1117 		if (ctrl->ru_count < RUsPerPU) {
1118 			ctrl->diskOffset += sectorsPerRU;
1119 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1120 		} else {
1121 			ctrl->curPSID++;
1122 			ctrl->ru_count = 0;
1123 			/* code left over from when head-sep was based on
1124 			 * parity stripe id */
1125 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1126 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1127 				return (RF_RECON_DONE_READS);	/* finito! */
1128 			}
1129 			/* find the disk offsets of the start of the parity
1130 			 * stripe on both the current disk and the failed
1131 			 * disk. skip this entire parity stripe if either disk
1132 			 * does not appear in the indicated PS */
1133 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1134 			    &rbuf->spCol, &rbuf->spOffset);
1135 			if (status) {
1136 				ctrl->ru_count = RUsPerPU - 1;
1137 				continue;
1138 			}
1139 		}
1140 		rbuf->which_ru = ctrl->ru_count;
1141 
1142 		/* skip this RU if it's already been reconstructed */
1143 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1144 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1145 			continue;
1146 		}
1147 		break;
1148 	}
1149 	ctrl->headSepCounter++;
1150 	if (do_new_check)
1151 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1152 
1153 
1154 	/* at this point, we have definitely decided what to do, and we have
1155 	 * only to see if we can actually do it now */
1156 	rbuf->parityStripeID = ctrl->curPSID;
1157 	rbuf->which_ru = ctrl->ru_count;
1158 #if RF_ACC_TRACE > 0
1159 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1160 	    sizeof(raidPtr->recon_tracerecs[col]));
1161 	raidPtr->recon_tracerecs[col].reconacc = 1;
1162 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1163 #endif
1164 	retcode = TryToRead(raidPtr, col);
1165 	return (retcode);
1166 }
1167 
1168 /*
1169  * tries to issue the next read on the indicated disk.  We may be
1170  * blocked by (a) the heads being too far apart, or (b) recon on the
1171  * indicated RU being blocked due to a write by a user thread.  In
1172  * this case, we issue a head-sep or blockage wait request, which will
1173  * cause this same routine to be invoked again later when the blockage
1174  * has cleared.
1175  */
1176 
1177 static int
1178 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1179 {
1180 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1181 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1182 	RF_StripeNum_t psid = ctrl->curPSID;
1183 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1184 	RF_DiskQueueData_t *req;
1185 	int     status;
1186 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1187 
1188 	/* if the current disk is too far ahead of the others, issue a
1189 	 * head-separation wait and return */
1190 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1191 		return (0);
1192 
1193 	/* allocate a new PSS in case we need it */
1194 	newpssPtr = rf_AllocPSStatus(raidPtr);
1195 
1196 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1197 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1198 
1199 	if (pssPtr != newpssPtr) {
1200 		rf_FreePSStatus(raidPtr, newpssPtr);
1201 	}
1202 
1203 	/* if recon is blocked on the indicated parity stripe, issue a
1204 	 * block-wait request and return. this also must mark the indicated RU
1205 	 * in the stripe as under reconstruction if not blocked. */
1206 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1207 	if (status == RF_PSS_RECON_BLOCKED) {
1208 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1209 		goto out;
1210 	} else
1211 		if (status == RF_PSS_FORCED_ON_WRITE) {
1212 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1213 			goto out;
1214 		}
1215 	/* make one last check to be sure that the indicated RU didn't get
1216 	 * reconstructed while we were waiting for something else to happen.
1217 	 * This is unfortunate in that it causes us to make this check twice
1218 	 * in the normal case.  Might want to make some attempt to re-work
1219 	 * this so that we only do this check if we've definitely blocked on
1220 	 * one of the above checks.  When this condition is detected, we may
1221 	 * have just created a bogus status entry, which we need to delete. */
1222 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1223 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1224 		if (pssPtr == newpssPtr)
1225 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1226 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1227 		goto out;
1228 	}
1229 	/* found something to read.  issue the I/O */
1230 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1231 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1232 #if RF_ACC_TRACE > 0
1233 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1234 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1235 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1236 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1237 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1238 #endif
1239 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1240 	 * should be in kernel space */
1241 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1242 	    ReconReadDoneProc, (void *) ctrl,
1243 #if RF_ACC_TRACE > 0
1244 				     &raidPtr->recon_tracerecs[col],
1245 #else
1246 				     NULL,
1247 #endif
1248 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1249 
1250 	ctrl->rbuf->arg = (void *) req;
1251 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1252 	pssPtr->issued[col] = 1;
1253 
1254 out:
1255 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1256 	return (0);
1257 }
1258 
1259 
1260 /*
1261  * given a parity stripe ID, we want to find out whether both the
1262  * current disk and the failed disk exist in that parity stripe.  If
1263  * not, we want to skip this whole PS.  If so, we want to find the
1264  * disk offset of the start of the PS on both the current disk and the
1265  * failed disk.
1266  *
1267  * this works by getting a list of disks comprising the indicated
1268  * parity stripe, and searching the list for the current and failed
1269  * disks.  Once we've decided they both exist in the parity stripe, we
1270  * need to decide whether each is data or parity, so that we'll know
1271  * which mapping function to call to get the corresponding disk
1272  * offsets.
1273  *
1274  * this is kind of unpleasant, but doing it this way allows the
1275  * reconstruction code to use parity stripe IDs rather than physical
1276  * disks address to march through the failed disk, which greatly
1277  * simplifies a lot of code, as well as eliminating the need for a
1278  * reverse-mapping function.  I also think it will execute faster,
1279  * since the calls to the mapping module are kept to a minimum.
1280  *
1281  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1282  * THE STRIPE IN THE CORRECT ORDER
1283  *
1284  * raidPtr          - raid descriptor
1285  * psid             - parity stripe identifier
1286  * col              - column of disk to find the offsets for
1287  * spCol            - out: col of spare unit for failed unit
1288  * spOffset         - out: offset into disk containing spare unit
1289  *
1290  */
1291 
1292 
1293 static int
1294 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1295 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1296 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1297 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1298 {
1299 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1300 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1301 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1302 	RF_RowCol_t *diskids;
1303 	u_int   i, j, k, i_offset, j_offset;
1304 	RF_RowCol_t pcol;
1305 	int     testcol;
1306 	RF_SectorNum_t poffset;
1307 	char    i_is_parity = 0, j_is_parity = 0;
1308 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1309 
1310 	/* get a listing of the disks comprising that stripe */
1311 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1312 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1313 	RF_ASSERT(diskids);
1314 
1315 	/* reject this entire parity stripe if it does not contain the
1316 	 * indicated disk or it does not contain the failed disk */
1317 
1318 	for (i = 0; i < stripeWidth; i++) {
1319 		if (col == diskids[i])
1320 			break;
1321 	}
1322 	if (i == stripeWidth)
1323 		goto skipit;
1324 	for (j = 0; j < stripeWidth; j++) {
1325 		if (fcol == diskids[j])
1326 			break;
1327 	}
1328 	if (j == stripeWidth) {
1329 		goto skipit;
1330 	}
1331 	/* find out which disk the parity is on */
1332 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1333 
1334 	/* find out if either the current RU or the failed RU is parity */
1335 	/* also, if the parity occurs in this stripe prior to the data and/or
1336 	 * failed col, we need to decrement i and/or j */
1337 	for (k = 0; k < stripeWidth; k++)
1338 		if (diskids[k] == pcol)
1339 			break;
1340 	RF_ASSERT(k < stripeWidth);
1341 	i_offset = i;
1342 	j_offset = j;
1343 	if (k < i)
1344 		i_offset--;
1345 	else
1346 		if (k == i) {
1347 			i_is_parity = 1;
1348 			i_offset = 0;
1349 		}		/* set offsets to zero to disable multiply
1350 				 * below */
1351 	if (k < j)
1352 		j_offset--;
1353 	else
1354 		if (k == j) {
1355 			j_is_parity = 1;
1356 			j_offset = 0;
1357 		}
1358 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1359 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1360 	 * tells us how far into the stripe the [current,failed] disk is. */
1361 
1362 	/* call the mapping routine to get the offset into the current disk,
1363 	 * repeat for failed disk. */
1364 	if (i_is_parity)
1365 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1366 	else
1367 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1368 
1369 	RF_ASSERT(col == testcol);
1370 
1371 	if (j_is_parity)
1372 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1373 	else
1374 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1375 	RF_ASSERT(fcol == testcol);
1376 
1377 	/* now locate the spare unit for the failed unit */
1378 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1379 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1380 		if (j_is_parity)
1381 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1382 		else
1383 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1384 	} else {
1385 #endif
1386 		*spCol = raidPtr->reconControl->spareCol;
1387 		*spOffset = *outFailedDiskSectorOffset;
1388 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1389 	}
1390 #endif
1391 	return (0);
1392 
1393 skipit:
1394 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1395 	    psid, col);
1396 	return (1);
1397 }
1398 /* this is called when a buffer has become ready to write to the replacement disk */
1399 static int
1400 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1401 {
1402 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1403 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1404 #if RF_ACC_TRACE > 0
1405 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1406 #endif
1407 	RF_ReconBuffer_t *rbuf;
1408 	RF_DiskQueueData_t *req;
1409 
1410 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1411 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1412 				 * have gotten the event that sent us here */
1413 	RF_ASSERT(rbuf->pssPtr);
1414 
1415 	rbuf->pssPtr->writeRbuf = rbuf;
1416 	rbuf->pssPtr = NULL;
1417 
1418 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1419 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1420 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1421 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1422 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1423 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1424 
1425 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1426 	 * kernel space */
1427 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1428 	    sectorsPerRU, rbuf->buffer,
1429 	    rbuf->parityStripeID, rbuf->which_ru,
1430 	    ReconWriteDoneProc, (void *) rbuf,
1431 #if RF_ACC_TRACE > 0
1432 	    &raidPtr->recon_tracerecs[fcol],
1433 #else
1434 				     NULL,
1435 #endif
1436 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1437 
1438 	rbuf->arg = (void *) req;
1439 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1440 	raidPtr->reconControl->pending_writes++;
1441 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1442 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1443 
1444 	return (0);
1445 }
1446 
1447 /*
1448  * this gets called upon the completion of a reconstruction read
1449  * operation the arg is a pointer to the per-disk reconstruction
1450  * control structure for the process that just finished a read.
1451  *
1452  * called at interrupt context in the kernel, so don't do anything
1453  * illegal here.
1454  */
1455 static int
1456 ReconReadDoneProc(void *arg, int status)
1457 {
1458 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1459 	RF_Raid_t *raidPtr;
1460 
1461 	/* Detect that reconCtrl is no longer valid, and if that
1462 	   is the case, bail without calling rf_CauseReconEvent().
1463 	   There won't be anyone listening for this event anyway */
1464 
1465 	if (ctrl->reconCtrl == NULL)
1466 		return(0);
1467 
1468 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1469 
1470 	if (status) {
1471 		printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status);
1472 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1473 		return(0);
1474 	}
1475 #if RF_ACC_TRACE > 0
1476 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1477 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1478 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1479 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1480 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1481 #endif
1482 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1483 	return (0);
1484 }
1485 /* this gets called upon the completion of a reconstruction write operation.
1486  * the arg is a pointer to the rbuf that was just written
1487  *
1488  * called at interrupt context in the kernel, so don't do anything illegal here.
1489  */
1490 static int
1491 ReconWriteDoneProc(void *arg, int status)
1492 {
1493 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1494 
1495 	/* Detect that reconControl is no longer valid, and if that
1496 	   is the case, bail without calling rf_CauseReconEvent().
1497 	   There won't be anyone listening for this event anyway */
1498 
1499 	if (rbuf->raidPtr->reconControl == NULL)
1500 		return(0);
1501 
1502 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1503 	if (status) {
1504 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1505 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1506 		return(0);
1507 	}
1508 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1509 	return (0);
1510 }
1511 
1512 
1513 /*
1514  * computes a new minimum head sep, and wakes up anyone who needs to
1515  * be woken as a result
1516  */
1517 static void
1518 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1519 {
1520 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1521 	RF_HeadSepLimit_t new_min;
1522 	RF_RowCol_t i;
1523 	RF_CallbackDesc_t *p;
1524 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1525 								 * of a minimum */
1526 
1527 
1528 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1529 	while(reconCtrlPtr->rb_lock) {
1530 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1531 	}
1532 	reconCtrlPtr->rb_lock = 1;
1533 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1534 
1535 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1536 	for (i = 0; i < raidPtr->numCol; i++)
1537 		if (i != reconCtrlPtr->fcol) {
1538 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1539 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1540 		}
1541 	/* set the new minimum and wake up anyone who can now run again */
1542 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1543 		reconCtrlPtr->minHeadSepCounter = new_min;
1544 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1545 		while (reconCtrlPtr->headSepCBList) {
1546 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1547 				break;
1548 			p = reconCtrlPtr->headSepCBList;
1549 			reconCtrlPtr->headSepCBList = p->next;
1550 			p->next = NULL;
1551 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1552 			rf_FreeCallbackDesc(p);
1553 		}
1554 
1555 	}
1556 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1557 	reconCtrlPtr->rb_lock = 0;
1558 	wakeup(&reconCtrlPtr->rb_lock);
1559 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1560 }
1561 
1562 /*
1563  * checks to see that the maximum head separation will not be violated
1564  * if we initiate a reconstruction I/O on the indicated disk.
1565  * Limiting the maximum head separation between two disks eliminates
1566  * the nasty buffer-stall conditions that occur when one disk races
1567  * ahead of the others and consumes all of the floating recon buffers.
1568  * This code is complex and unpleasant but it's necessary to avoid
1569  * some very nasty, albeit fairly rare, reconstruction behavior.
1570  *
1571  * returns non-zero if and only if we have to stop working on the
1572  * indicated disk due to a head-separation delay.
1573  */
1574 static int
1575 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1576 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1577 		    RF_ReconUnitNum_t which_ru)
1578 {
1579 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1580 	RF_CallbackDesc_t *cb, *p, *pt;
1581 	int     retval = 0;
1582 
1583 	/* if we're too far ahead of the slowest disk, stop working on this
1584 	 * disk until the slower ones catch up.  We do this by scheduling a
1585 	 * wakeup callback for the time when the slowest disk has caught up.
1586 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1587 	 * must have fallen to at most 80% of the max allowable head
1588 	 * separation before we'll wake up.
1589 	 *
1590 	 */
1591 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1592 	while(reconCtrlPtr->rb_lock) {
1593 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1594 	}
1595 	reconCtrlPtr->rb_lock = 1;
1596 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1597 	if ((raidPtr->headSepLimit >= 0) &&
1598 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1599 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1600 			 raidPtr->raidid, col, ctrl->headSepCounter,
1601 			 reconCtrlPtr->minHeadSepCounter,
1602 			 raidPtr->headSepLimit);
1603 		cb = rf_AllocCallbackDesc();
1604 		/* the minHeadSepCounter value we have to get to before we'll
1605 		 * wake up.  build in 20% hysteresis. */
1606 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1607 		cb->col = col;
1608 		cb->next = NULL;
1609 
1610 		/* insert this callback descriptor into the sorted list of
1611 		 * pending head-sep callbacks */
1612 		p = reconCtrlPtr->headSepCBList;
1613 		if (!p)
1614 			reconCtrlPtr->headSepCBList = cb;
1615 		else
1616 			if (cb->callbackArg.v < p->callbackArg.v) {
1617 				cb->next = reconCtrlPtr->headSepCBList;
1618 				reconCtrlPtr->headSepCBList = cb;
1619 			} else {
1620 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1621 				cb->next = p;
1622 				pt->next = cb;
1623 			}
1624 		retval = 1;
1625 #if RF_RECON_STATS > 0
1626 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1627 #endif				/* RF_RECON_STATS > 0 */
1628 	}
1629 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1630 	reconCtrlPtr->rb_lock = 0;
1631 	wakeup(&reconCtrlPtr->rb_lock);
1632 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1633 
1634 	return (retval);
1635 }
1636 /*
1637  * checks to see if reconstruction has been either forced or blocked
1638  * by a user operation.  if forced, we skip this RU entirely.  else if
1639  * blocked, put ourselves on the wait list.  else return 0.
1640  *
1641  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1642  */
1643 static int
1644 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1645 				   RF_ReconParityStripeStatus_t *pssPtr,
1646 				   RF_PerDiskReconCtrl_t *ctrl,
1647 				   RF_RowCol_t col,
1648 				   RF_StripeNum_t psid,
1649 				   RF_ReconUnitNum_t which_ru)
1650 {
1651 	RF_CallbackDesc_t *cb;
1652 	int     retcode = 0;
1653 
1654 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1655 		retcode = RF_PSS_FORCED_ON_WRITE;
1656 	else
1657 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1658 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1659 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1660 							 * the blockage-wait
1661 							 * list */
1662 			cb->col = col;
1663 			cb->next = pssPtr->blockWaitList;
1664 			pssPtr->blockWaitList = cb;
1665 			retcode = RF_PSS_RECON_BLOCKED;
1666 		}
1667 	if (!retcode)
1668 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1669 							 * reconstruction */
1670 
1671 	return (retcode);
1672 }
1673 /*
1674  * if reconstruction is currently ongoing for the indicated stripeID,
1675  * reconstruction is forced to completion and we return non-zero to
1676  * indicate that the caller must wait.  If not, then reconstruction is
1677  * blocked on the indicated stripe and the routine returns zero.  If
1678  * and only if we return non-zero, we'll cause the cbFunc to get
1679  * invoked with the cbArg when the reconstruction has completed.
1680  */
1681 int
1682 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1683 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1684 {
1685 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1686 							 * forcing recon on */
1687 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1688 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1689 						 * stripe status structure */
1690 	RF_StripeNum_t psid;	/* parity stripe id */
1691 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1692 						 * offset */
1693 	RF_RowCol_t *diskids;
1694 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1695 	RF_RowCol_t fcol, diskno, i;
1696 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1697 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1698 	RF_CallbackDesc_t *cb;
1699 	int     nPromoted;
1700 
1701 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1702 
1703 	/* allocate a new PSS in case we need it */
1704         newpssPtr = rf_AllocPSStatus(raidPtr);
1705 
1706 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1707 
1708 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1709 
1710         if (pssPtr != newpssPtr) {
1711                 rf_FreePSStatus(raidPtr, newpssPtr);
1712         }
1713 
1714 	/* if recon is not ongoing on this PS, just return */
1715 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1716 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1717 		return (0);
1718 	}
1719 	/* otherwise, we have to wait for reconstruction to complete on this
1720 	 * RU. */
1721 	/* In order to avoid waiting for a potentially large number of
1722 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1723 	 * not low-priority) reconstruction on this RU. */
1724 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1725 		DDprintf1("Forcing recon on psid %ld\n", psid);
1726 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1727 								 * forced recon */
1728 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1729 							 * that we just set */
1730 		fcol = raidPtr->reconControl->fcol;
1731 
1732 		/* get a listing of the disks comprising the indicated stripe */
1733 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1734 
1735 		/* For previously issued reads, elevate them to normal
1736 		 * priority.  If the I/O has already completed, it won't be
1737 		 * found in the queue, and hence this will be a no-op. For
1738 		 * unissued reads, allocate buffers and issue new reads.  The
1739 		 * fact that we've set the FORCED bit means that the regular
1740 		 * recon procs will not re-issue these reqs */
1741 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1742 			if ((diskno = diskids[i]) != fcol) {
1743 				if (pssPtr->issued[diskno]) {
1744 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1745 					if (rf_reconDebug && nPromoted)
1746 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1747 				} else {
1748 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1749 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1750 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1751 													 * location */
1752 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1753 					new_rbuf->which_ru = which_ru;
1754 					new_rbuf->failedDiskSectorOffset = fd_offset;
1755 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1756 
1757 					/* use NULL b_proc b/c all addrs
1758 					 * should be in kernel space */
1759 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1760 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1761 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1762 
1763 					new_rbuf->arg = req;
1764 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1765 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1766 				}
1767 			}
1768 		/* if the write is sitting in the disk queue, elevate its
1769 		 * priority */
1770 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1771 			if (rf_reconDebug)
1772 				printf("raid%d: promoted write to col %d\n",
1773 				       raidPtr->raidid, fcol);
1774 	}
1775 	/* install a callback descriptor to be invoked when recon completes on
1776 	 * this parity stripe. */
1777 	cb = rf_AllocCallbackDesc();
1778 	/* XXX the following is bogus.. These functions don't really match!!
1779 	 * GO */
1780 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1781 	cb->callbackArg.p = (void *) cbArg;
1782 	cb->next = pssPtr->procWaitList;
1783 	pssPtr->procWaitList = cb;
1784 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1785 		  raidPtr->raidid, psid);
1786 
1787 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1788 	return (1);
1789 }
1790 /* called upon the completion of a forced reconstruction read.
1791  * all we do is schedule the FORCEDREADONE event.
1792  * called at interrupt context in the kernel, so don't do anything illegal here.
1793  */
1794 static void
1795 ForceReconReadDoneProc(void *arg, int status)
1796 {
1797 	RF_ReconBuffer_t *rbuf = arg;
1798 
1799 	/* Detect that reconControl is no longer valid, and if that
1800 	   is the case, bail without calling rf_CauseReconEvent().
1801 	   There won't be anyone listening for this event anyway */
1802 
1803 	if (rbuf->raidPtr->reconControl == NULL)
1804 		return;
1805 
1806 	if (status) {
1807 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1808 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1809 		return;
1810 	}
1811 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1812 }
1813 /* releases a block on the reconstruction of the indicated stripe */
1814 int
1815 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1816 {
1817 	RF_StripeNum_t stripeID = asmap->stripeID;
1818 	RF_ReconParityStripeStatus_t *pssPtr;
1819 	RF_ReconUnitNum_t which_ru;
1820 	RF_StripeNum_t psid;
1821 	RF_CallbackDesc_t *cb;
1822 
1823 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1824 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1825 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1826 
1827 	/* When recon is forced, the pss desc can get deleted before we get
1828 	 * back to unblock recon. But, this can _only_ happen when recon is
1829 	 * forced. It would be good to put some kind of sanity check here, but
1830 	 * how to decide if recon was just forced or not? */
1831 	if (!pssPtr) {
1832 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1833 		 * RU %d\n",psid,which_ru); */
1834 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1835 		if (rf_reconDebug || rf_pssDebug)
1836 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1837 #endif
1838 		goto out;
1839 	}
1840 	pssPtr->blockCount--;
1841 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1842 		 raidPtr->raidid, psid, pssPtr->blockCount);
1843 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1844 
1845 		/* unblock recon before calling CauseReconEvent in case
1846 		 * CauseReconEvent causes us to try to issue a new read before
1847 		 * returning here. */
1848 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1849 
1850 
1851 		while (pssPtr->blockWaitList) {
1852 			/* spin through the block-wait list and
1853 			   release all the waiters */
1854 			cb = pssPtr->blockWaitList;
1855 			pssPtr->blockWaitList = cb->next;
1856 			cb->next = NULL;
1857 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1858 			rf_FreeCallbackDesc(cb);
1859 		}
1860 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1861 			/* if no recon was requested while recon was blocked */
1862 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1863 		}
1864 	}
1865 out:
1866 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1867 	return (0);
1868 }
1869 
1870 void
1871 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
1872 {
1873 	RF_CallbackDesc_t *p;
1874 
1875 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1876 	while(raidPtr->reconControl->rb_lock) {
1877 		ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
1878 			"rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
1879 	}
1880 
1881 	raidPtr->reconControl->rb_lock = 1;
1882 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1883 
1884 	while (raidPtr->reconControl->headSepCBList) {
1885 		p = raidPtr->reconControl->headSepCBList;
1886 		raidPtr->reconControl->headSepCBList = p->next;
1887 		p->next = NULL;
1888 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1889 		rf_FreeCallbackDesc(p);
1890 	}
1891 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1892 	raidPtr->reconControl->rb_lock = 0;
1893 	wakeup(&raidPtr->reconControl->rb_lock);
1894 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1895 
1896 }
1897 
1898