1 /* $NetBSD: rf_reconstruct.c,v 1.106 2008/12/20 17:04:51 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.106 2008/12/20 17:04:51 oster Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <dev/raidframe/raidframevar.h> 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_debugprint.h" 58 #include "rf_general.h" 59 #include "rf_driver.h" 60 #include "rf_utils.h" 61 #include "rf_shutdown.h" 62 63 #include "rf_kintf.h" 64 65 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 66 67 #if RF_DEBUG_RECON 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 #else /* RF_DEBUG_RECON */ 81 82 #define Dprintf(s) {} 83 #define Dprintf1(s,a) {} 84 #define Dprintf2(s,a,b) {} 85 #define Dprintf3(s,a,b,c) {} 86 #define Dprintf4(s,a,b,c,d) {} 87 #define Dprintf5(s,a,b,c,d,e) {} 88 #define Dprintf6(s,a,b,c,d,e,f) {} 89 #define Dprintf7(s,a,b,c,d,e,f,g) {} 90 91 #define DDprintf1(s,a) {} 92 #define DDprintf2(s,a,b) {} 93 94 #endif /* RF_DEBUG_RECON */ 95 96 #define RF_RECON_DONE_READS 1 97 #define RF_RECON_READ_ERROR 2 98 #define RF_RECON_WRITE_ERROR 3 99 #define RF_RECON_READ_STOPPED 4 100 #define RF_RECON_WRITE_DONE 5 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 194 } 195 196 197 /***************************************************************************** 198 * 199 * primary routine to reconstruct a failed disk. This should be called from 200 * within its own thread. It won't return until reconstruction completes, 201 * fails, or is aborted. 202 *****************************************************************************/ 203 int 204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 205 { 206 const RF_LayoutSW_t *lp; 207 int rc; 208 209 lp = raidPtr->Layout.map; 210 if (lp->SubmitReconBuffer) { 211 /* 212 * The current infrastructure only supports reconstructing one 213 * disk at a time for each array. 214 */ 215 RF_LOCK_MUTEX(raidPtr->mutex); 216 while (raidPtr->reconInProgress) { 217 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 218 } 219 raidPtr->reconInProgress++; 220 RF_UNLOCK_MUTEX(raidPtr->mutex); 221 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 222 RF_LOCK_MUTEX(raidPtr->mutex); 223 raidPtr->reconInProgress--; 224 RF_UNLOCK_MUTEX(raidPtr->mutex); 225 } else { 226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 227 lp->parityConfig); 228 rc = EIO; 229 } 230 RF_SIGNAL_COND(raidPtr->waitForReconCond); 231 return (rc); 232 } 233 234 int 235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 236 { 237 RF_ComponentLabel_t c_label; 238 RF_RaidDisk_t *spareDiskPtr = NULL; 239 RF_RaidReconDesc_t *reconDesc; 240 RF_RowCol_t scol; 241 int numDisksDone = 0, rc; 242 243 /* first look for a spare drive onto which to reconstruct the data */ 244 /* spare disk descriptors are stored in row 0. This may have to 245 * change eventually */ 246 247 RF_LOCK_MUTEX(raidPtr->mutex); 248 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 250 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 251 if (raidPtr->status != rf_rs_degraded) { 252 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 253 RF_UNLOCK_MUTEX(raidPtr->mutex); 254 return (EINVAL); 255 } 256 scol = (-1); 257 } else { 258 #endif 259 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 260 if (raidPtr->Disks[scol].status == rf_ds_spare) { 261 spareDiskPtr = &raidPtr->Disks[scol]; 262 spareDiskPtr->status = rf_ds_used_spare; 263 break; 264 } 265 } 266 if (!spareDiskPtr) { 267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 268 RF_UNLOCK_MUTEX(raidPtr->mutex); 269 return (ENOSPC); 270 } 271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 273 } 274 #endif 275 RF_UNLOCK_MUTEX(raidPtr->mutex); 276 277 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 278 raidPtr->reconDesc = (void *) reconDesc; 279 #if RF_RECON_STATS > 0 280 reconDesc->hsStallCount = 0; 281 reconDesc->numReconExecDelays = 0; 282 reconDesc->numReconEventWaits = 0; 283 #endif /* RF_RECON_STATS > 0 */ 284 reconDesc->reconExecTimerRunning = 0; 285 reconDesc->reconExecTicks = 0; 286 reconDesc->maxReconExecTicks = 0; 287 rc = rf_ContinueReconstructFailedDisk(reconDesc); 288 289 if (!rc) { 290 /* fix up the component label */ 291 /* Don't actually need the read here.. */ 292 raidread_component_label( 293 raidPtr->raid_cinfo[scol].ci_dev, 294 raidPtr->raid_cinfo[scol].ci_vp, 295 &c_label); 296 297 raid_init_component_label( raidPtr, &c_label); 298 c_label.row = 0; 299 c_label.column = col; 300 c_label.clean = RF_RAID_DIRTY; 301 c_label.status = rf_ds_optimal; 302 c_label.partitionSize = raidPtr->Disks[scol].partitionSize; 303 304 /* We've just done a rebuild based on all the other 305 disks, so at this point the parity is known to be 306 clean, even if it wasn't before. */ 307 308 /* XXX doesn't hold for RAID 6!!*/ 309 310 RF_LOCK_MUTEX(raidPtr->mutex); 311 raidPtr->parity_good = RF_RAID_CLEAN; 312 RF_UNLOCK_MUTEX(raidPtr->mutex); 313 314 /* XXXX MORE NEEDED HERE */ 315 316 raidwrite_component_label( 317 raidPtr->raid_cinfo[scol].ci_dev, 318 raidPtr->raid_cinfo[scol].ci_vp, 319 &c_label); 320 321 } else { 322 /* Reconstruct failed. */ 323 324 RF_LOCK_MUTEX(raidPtr->mutex); 325 /* Failed disk goes back to "failed" status */ 326 raidPtr->Disks[col].status = rf_ds_failed; 327 328 /* Spare disk goes back to "spare" status. */ 329 spareDiskPtr->status = rf_ds_spare; 330 RF_UNLOCK_MUTEX(raidPtr->mutex); 331 332 } 333 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 334 return (rc); 335 } 336 337 /* 338 339 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 340 and you don't get a spare until the next Monday. With this function 341 (and hot-swappable drives) you can now put your new disk containing 342 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 343 rebuild the data "on the spot". 344 345 */ 346 347 int 348 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 349 { 350 RF_RaidDisk_t *spareDiskPtr = NULL; 351 RF_RaidReconDesc_t *reconDesc; 352 const RF_LayoutSW_t *lp; 353 RF_ComponentLabel_t c_label; 354 int numDisksDone = 0, rc; 355 struct partinfo dpart; 356 struct vnode *vp; 357 struct vattr va; 358 int retcode; 359 int ac; 360 361 lp = raidPtr->Layout.map; 362 if (!lp->SubmitReconBuffer) { 363 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 364 lp->parityConfig); 365 /* wakeup anyone who might be waiting to do a reconstruct */ 366 RF_SIGNAL_COND(raidPtr->waitForReconCond); 367 return(EIO); 368 } 369 370 /* 371 * The current infrastructure only supports reconstructing one 372 * disk at a time for each array. 373 */ 374 RF_LOCK_MUTEX(raidPtr->mutex); 375 376 if (raidPtr->Disks[col].status != rf_ds_failed) { 377 /* "It's gone..." */ 378 raidPtr->numFailures++; 379 raidPtr->Disks[col].status = rf_ds_failed; 380 raidPtr->status = rf_rs_degraded; 381 RF_UNLOCK_MUTEX(raidPtr->mutex); 382 rf_update_component_labels(raidPtr, 383 RF_NORMAL_COMPONENT_UPDATE); 384 RF_LOCK_MUTEX(raidPtr->mutex); 385 } 386 387 while (raidPtr->reconInProgress) { 388 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 389 } 390 391 raidPtr->reconInProgress++; 392 393 /* first look for a spare drive onto which to reconstruct the 394 data. spare disk descriptors are stored in row 0. This 395 may have to change eventually */ 396 397 /* Actually, we don't care if it's failed or not... On a RAID 398 set with correct parity, this function should be callable 399 on any component without ill effects. */ 400 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 401 402 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 403 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 404 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 405 406 raidPtr->reconInProgress--; 407 RF_UNLOCK_MUTEX(raidPtr->mutex); 408 RF_SIGNAL_COND(raidPtr->waitForReconCond); 409 return (EINVAL); 410 } 411 #endif 412 413 /* This device may have been opened successfully the 414 first time. Close it before trying to open it again.. */ 415 416 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 417 #if 0 418 printf("Closed the open device: %s\n", 419 raidPtr->Disks[col].devname); 420 #endif 421 vp = raidPtr->raid_cinfo[col].ci_vp; 422 ac = raidPtr->Disks[col].auto_configured; 423 RF_UNLOCK_MUTEX(raidPtr->mutex); 424 rf_close_component(raidPtr, vp, ac); 425 RF_LOCK_MUTEX(raidPtr->mutex); 426 raidPtr->raid_cinfo[col].ci_vp = NULL; 427 } 428 /* note that this disk was *not* auto_configured (any longer)*/ 429 raidPtr->Disks[col].auto_configured = 0; 430 431 #if 0 432 printf("About to (re-)open the device for rebuilding: %s\n", 433 raidPtr->Disks[col].devname); 434 #endif 435 RF_UNLOCK_MUTEX(raidPtr->mutex); 436 retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE); 437 438 if (retcode) { 439 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 440 raidPtr->Disks[col].devname, retcode); 441 442 /* the component isn't responding properly... 443 must be still dead :-( */ 444 RF_LOCK_MUTEX(raidPtr->mutex); 445 raidPtr->reconInProgress--; 446 RF_UNLOCK_MUTEX(raidPtr->mutex); 447 RF_SIGNAL_COND(raidPtr->waitForReconCond); 448 return(retcode); 449 } 450 451 /* Ok, so we can at least do a lookup... 452 How about actually getting a vp for it? */ 453 454 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) { 455 RF_LOCK_MUTEX(raidPtr->mutex); 456 raidPtr->reconInProgress--; 457 RF_UNLOCK_MUTEX(raidPtr->mutex); 458 RF_SIGNAL_COND(raidPtr->waitForReconCond); 459 return(retcode); 460 } 461 462 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred); 463 if (retcode) { 464 RF_LOCK_MUTEX(raidPtr->mutex); 465 raidPtr->reconInProgress--; 466 RF_UNLOCK_MUTEX(raidPtr->mutex); 467 RF_SIGNAL_COND(raidPtr->waitForReconCond); 468 return(retcode); 469 } 470 RF_LOCK_MUTEX(raidPtr->mutex); 471 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 472 473 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 474 rf_protectedSectors; 475 476 raidPtr->raid_cinfo[col].ci_vp = vp; 477 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 478 479 raidPtr->Disks[col].dev = va.va_rdev; 480 481 /* we allow the user to specify that only a fraction 482 of the disks should be used this is just for debug: 483 it speeds up * the parity scan */ 484 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 485 rf_sizePercentage / 100; 486 RF_UNLOCK_MUTEX(raidPtr->mutex); 487 488 spareDiskPtr = &raidPtr->Disks[col]; 489 spareDiskPtr->status = rf_ds_used_spare; 490 491 printf("raid%d: initiating in-place reconstruction on column %d\n", 492 raidPtr->raidid, col); 493 494 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 495 numDisksDone, col); 496 raidPtr->reconDesc = (void *) reconDesc; 497 #if RF_RECON_STATS > 0 498 reconDesc->hsStallCount = 0; 499 reconDesc->numReconExecDelays = 0; 500 reconDesc->numReconEventWaits = 0; 501 #endif /* RF_RECON_STATS > 0 */ 502 reconDesc->reconExecTimerRunning = 0; 503 reconDesc->reconExecTicks = 0; 504 reconDesc->maxReconExecTicks = 0; 505 rc = rf_ContinueReconstructFailedDisk(reconDesc); 506 507 if (!rc) { 508 RF_LOCK_MUTEX(raidPtr->mutex); 509 /* Need to set these here, as at this point it'll be claiming 510 that the disk is in rf_ds_spared! But we know better :-) */ 511 512 raidPtr->Disks[col].status = rf_ds_optimal; 513 raidPtr->status = rf_rs_optimal; 514 RF_UNLOCK_MUTEX(raidPtr->mutex); 515 516 /* fix up the component label */ 517 /* Don't actually need the read here.. */ 518 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, 519 raidPtr->raid_cinfo[col].ci_vp, 520 &c_label); 521 522 RF_LOCK_MUTEX(raidPtr->mutex); 523 raid_init_component_label(raidPtr, &c_label); 524 525 c_label.row = 0; 526 c_label.column = col; 527 528 /* We've just done a rebuild based on all the other 529 disks, so at this point the parity is known to be 530 clean, even if it wasn't before. */ 531 532 /* XXX doesn't hold for RAID 6!!*/ 533 534 raidPtr->parity_good = RF_RAID_CLEAN; 535 RF_UNLOCK_MUTEX(raidPtr->mutex); 536 537 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, 538 raidPtr->raid_cinfo[col].ci_vp, 539 &c_label); 540 541 } else { 542 /* Reconstruct-in-place failed. Disk goes back to 543 "failed" status, regardless of what it was before. */ 544 RF_LOCK_MUTEX(raidPtr->mutex); 545 raidPtr->Disks[col].status = rf_ds_failed; 546 RF_UNLOCK_MUTEX(raidPtr->mutex); 547 } 548 549 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 550 551 RF_LOCK_MUTEX(raidPtr->mutex); 552 raidPtr->reconInProgress--; 553 RF_UNLOCK_MUTEX(raidPtr->mutex); 554 555 RF_SIGNAL_COND(raidPtr->waitForReconCond); 556 return (rc); 557 } 558 559 560 int 561 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 562 { 563 RF_Raid_t *raidPtr = reconDesc->raidPtr; 564 RF_RowCol_t col = reconDesc->col; 565 RF_RowCol_t scol = reconDesc->scol; 566 RF_ReconMap_t *mapPtr; 567 RF_ReconCtrl_t *tmp_reconctrl; 568 RF_ReconEvent_t *event; 569 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 570 RF_ReconUnitCount_t RUsPerPU; 571 struct timeval etime, elpsd; 572 unsigned long xor_s, xor_resid_us; 573 int i, ds; 574 int status, done; 575 int recon_error, write_error; 576 577 raidPtr->accumXorTimeUs = 0; 578 #if RF_ACC_TRACE > 0 579 /* create one trace record per physical disk */ 580 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 581 #endif 582 583 /* quiesce the array prior to starting recon. this is needed 584 * to assure no nasty interactions with pending user writes. 585 * We need to do this before we change the disk or row status. */ 586 587 Dprintf("RECON: begin request suspend\n"); 588 rf_SuspendNewRequestsAndWait(raidPtr); 589 Dprintf("RECON: end request suspend\n"); 590 591 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 592 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 593 594 RF_LOCK_MUTEX(raidPtr->mutex); 595 596 /* create the reconstruction control pointer and install it in 597 * the right slot */ 598 raidPtr->reconControl = tmp_reconctrl; 599 mapPtr = raidPtr->reconControl->reconMap; 600 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 601 raidPtr->reconControl->numRUsComplete = 0; 602 raidPtr->status = rf_rs_reconstructing; 603 raidPtr->Disks[col].status = rf_ds_reconstructing; 604 raidPtr->Disks[col].spareCol = scol; 605 606 RF_UNLOCK_MUTEX(raidPtr->mutex); 607 608 RF_GETTIME(raidPtr->reconControl->starttime); 609 610 Dprintf("RECON: resume requests\n"); 611 rf_ResumeNewRequests(raidPtr); 612 613 614 mapPtr = raidPtr->reconControl->reconMap; 615 616 incPSID = RF_RECONMAP_SIZE; 617 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 618 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 619 recon_error = 0; 620 write_error = 0; 621 pending_writes = incPSID; 622 raidPtr->reconControl->lastPSID = incPSID; 623 624 /* start the actual reconstruction */ 625 626 done = 0; 627 while (!done) { 628 629 if (raidPtr->waitShutdown) { 630 /* someone is unconfiguring this array... bail on the reconstruct.. */ 631 recon_error = 1; 632 break; 633 } 634 635 num_writes = 0; 636 637 /* issue a read for each surviving disk */ 638 639 reconDesc->numDisksDone = 0; 640 for (i = 0; i < raidPtr->numCol; i++) { 641 if (i != col) { 642 /* find and issue the next I/O on the 643 * indicated disk */ 644 if (IssueNextReadRequest(raidPtr, i)) { 645 Dprintf1("RECON: done issuing for c%d\n", i); 646 reconDesc->numDisksDone++; 647 } 648 } 649 } 650 651 /* process reconstruction events until all disks report that 652 * they've completed all work */ 653 654 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 655 656 event = rf_GetNextReconEvent(reconDesc); 657 status = ProcessReconEvent(raidPtr, event); 658 659 /* the normal case is that a read completes, and all is well. */ 660 if (status == RF_RECON_DONE_READS) { 661 reconDesc->numDisksDone++; 662 } else if ((status == RF_RECON_READ_ERROR) || 663 (status == RF_RECON_WRITE_ERROR)) { 664 /* an error was encountered while reconstructing... 665 Pretend we've finished this disk. 666 */ 667 recon_error = 1; 668 raidPtr->reconControl->error = 1; 669 670 /* bump the numDisksDone count for reads, 671 but not for writes */ 672 if (status == RF_RECON_READ_ERROR) 673 reconDesc->numDisksDone++; 674 675 /* write errors are special -- when we are 676 done dealing with the reads that are 677 finished, we don't want to wait for any 678 writes */ 679 if (status == RF_RECON_WRITE_ERROR) 680 write_error = 1; 681 682 } else if (status == RF_RECON_READ_STOPPED) { 683 /* count this component as being "done" */ 684 reconDesc->numDisksDone++; 685 } else if (status == RF_RECON_WRITE_DONE) { 686 num_writes++; 687 } 688 689 if (recon_error) { 690 /* make sure any stragglers are woken up so that 691 their theads will complete, and we can get out 692 of here with all IO processed */ 693 694 rf_WakeupHeadSepCBWaiters(raidPtr); 695 } 696 697 raidPtr->reconControl->numRUsTotal = 698 mapPtr->totalRUs; 699 raidPtr->reconControl->numRUsComplete = 700 mapPtr->totalRUs - 701 rf_UnitsLeftToReconstruct(mapPtr); 702 703 #if RF_DEBUG_RECON 704 raidPtr->reconControl->percentComplete = 705 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 706 if (rf_prReconSched) { 707 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 708 } 709 #endif 710 } 711 712 /* reads done, wakup any waiters, and then wait for writes */ 713 714 rf_WakeupHeadSepCBWaiters(raidPtr); 715 716 while (!recon_error && (num_writes < pending_writes)) { 717 event = rf_GetNextReconEvent(reconDesc); 718 status = ProcessReconEvent(raidPtr, event); 719 720 if (status == RF_RECON_WRITE_ERROR) { 721 recon_error = 1; 722 raidPtr->reconControl->error = 1; 723 /* an error was encountered at the very end... bail */ 724 } else if (status == RF_RECON_WRITE_DONE) { 725 num_writes++; 726 } 727 } 728 if (recon_error || 729 (raidPtr->reconControl->lastPSID == lastPSID)) { 730 done = 1; 731 break; 732 } 733 734 prev = raidPtr->reconControl->lastPSID; 735 raidPtr->reconControl->lastPSID += incPSID; 736 737 if (raidPtr->reconControl->lastPSID > lastPSID) { 738 pending_writes = lastPSID - prev; 739 raidPtr->reconControl->lastPSID = lastPSID; 740 } 741 742 /* back down curPSID to get ready for the next round... */ 743 for (i = 0; i < raidPtr->numCol; i++) { 744 if (i != col) { 745 raidPtr->reconControl->perDiskInfo[i].curPSID--; 746 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 747 } 748 } 749 } 750 751 mapPtr = raidPtr->reconControl->reconMap; 752 if (rf_reconDebug) { 753 printf("RECON: all reads completed\n"); 754 } 755 /* at this point all the reads have completed. We now wait 756 * for any pending writes to complete, and then we're done */ 757 758 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 759 760 event = rf_GetNextReconEvent(reconDesc); 761 status = ProcessReconEvent(raidPtr, event); 762 763 if (status == RF_RECON_WRITE_ERROR) { 764 recon_error = 1; 765 raidPtr->reconControl->error = 1; 766 /* an error was encountered at the very end... bail */ 767 } else { 768 #if RF_DEBUG_RECON 769 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 770 if (rf_prReconSched) { 771 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 772 } 773 #endif 774 } 775 } 776 777 if (recon_error) { 778 /* we've encountered an error in reconstructing. */ 779 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 780 781 /* we start by blocking IO to the RAID set. */ 782 rf_SuspendNewRequestsAndWait(raidPtr); 783 784 RF_LOCK_MUTEX(raidPtr->mutex); 785 /* mark set as being degraded, rather than 786 rf_rs_reconstructing as we were before the problem. 787 After this is done we can update status of the 788 component disks without worrying about someone 789 trying to read from a failed component. 790 */ 791 raidPtr->status = rf_rs_degraded; 792 RF_UNLOCK_MUTEX(raidPtr->mutex); 793 794 /* resume IO */ 795 rf_ResumeNewRequests(raidPtr); 796 797 /* At this point there are two cases: 798 1) If we've experienced a read error, then we've 799 already waited for all the reads we're going to get, 800 and we just need to wait for the writes. 801 802 2) If we've experienced a write error, we've also 803 already waited for all the reads to complete, 804 but there is little point in waiting for the writes -- 805 when they do complete, they will just be ignored. 806 807 So we just wait for writes to complete if we didn't have a 808 write error. 809 */ 810 811 if (!write_error) { 812 /* wait for writes to complete */ 813 while (raidPtr->reconControl->pending_writes > 0) { 814 815 event = rf_GetNextReconEvent(reconDesc); 816 status = ProcessReconEvent(raidPtr, event); 817 818 if (status == RF_RECON_WRITE_ERROR) { 819 raidPtr->reconControl->error = 1; 820 /* an error was encountered at the very end... bail. 821 This will be very bad news for the user, since 822 at this point there will have been a read error 823 on one component, and a write error on another! 824 */ 825 break; 826 } 827 } 828 } 829 830 831 /* cleanup */ 832 833 /* drain the event queue - after waiting for the writes above, 834 there shouldn't be much (if anything!) left in the queue. */ 835 836 rf_DrainReconEventQueue(reconDesc); 837 838 /* XXX As much as we'd like to free the recon control structure 839 and the reconDesc, we have no way of knowing if/when those will 840 be touched by IO that has yet to occur. It is rather poor to be 841 basically causing a 'memory leak' here, but there doesn't seem to be 842 a cleaner alternative at this time. Perhaps when the reconstruct code 843 gets a makeover this problem will go away. 844 */ 845 #if 0 846 rf_FreeReconControl(raidPtr); 847 #endif 848 849 #if RF_ACC_TRACE > 0 850 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 851 #endif 852 /* XXX see comment above */ 853 #if 0 854 FreeReconDesc(reconDesc); 855 #endif 856 857 return (1); 858 } 859 860 /* Success: mark the dead disk as reconstructed. We quiesce 861 * the array here to assure no nasty interactions with pending 862 * user accesses when we free up the psstatus structure as 863 * part of FreeReconControl() */ 864 865 rf_SuspendNewRequestsAndWait(raidPtr); 866 867 RF_LOCK_MUTEX(raidPtr->mutex); 868 raidPtr->numFailures--; 869 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 870 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 871 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 872 RF_UNLOCK_MUTEX(raidPtr->mutex); 873 RF_GETTIME(etime); 874 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 875 876 rf_ResumeNewRequests(raidPtr); 877 878 printf("raid%d: Reconstruction of disk at col %d completed\n", 879 raidPtr->raidid, col); 880 xor_s = raidPtr->accumXorTimeUs / 1000000; 881 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 882 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 883 raidPtr->raidid, 884 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 885 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 886 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 887 raidPtr->raidid, 888 (int) raidPtr->reconControl->starttime.tv_sec, 889 (int) raidPtr->reconControl->starttime.tv_usec, 890 (int) etime.tv_sec, (int) etime.tv_usec); 891 #if RF_RECON_STATS > 0 892 printf("raid%d: Total head-sep stall count was %d\n", 893 raidPtr->raidid, (int) reconDesc->hsStallCount); 894 #endif /* RF_RECON_STATS > 0 */ 895 rf_FreeReconControl(raidPtr); 896 #if RF_ACC_TRACE > 0 897 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 898 #endif 899 FreeReconDesc(reconDesc); 900 901 return (0); 902 903 } 904 /***************************************************************************** 905 * do the right thing upon each reconstruction event. 906 *****************************************************************************/ 907 static int 908 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 909 { 910 int retcode = 0, submitblocked; 911 RF_ReconBuffer_t *rbuf; 912 RF_SectorCount_t sectorsPerRU; 913 914 retcode = RF_RECON_READ_STOPPED; 915 916 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 917 918 switch (event->type) { 919 920 /* a read I/O has completed */ 921 case RF_REVENT_READDONE: 922 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 923 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 924 event->col, rbuf->parityStripeID); 925 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 926 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 927 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 928 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 929 if (!raidPtr->reconControl->error) { 930 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 931 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 932 if (!submitblocked) 933 retcode = IssueNextReadRequest(raidPtr, event->col); 934 else 935 retcode = 0; 936 } 937 break; 938 939 /* a write I/O has completed */ 940 case RF_REVENT_WRITEDONE: 941 #if RF_DEBUG_RECON 942 if (rf_floatingRbufDebug) { 943 rf_CheckFloatingRbufCount(raidPtr, 1); 944 } 945 #endif 946 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 947 rbuf = (RF_ReconBuffer_t *) event->arg; 948 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 949 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 950 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 951 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 952 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 953 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 954 955 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 956 raidPtr->reconControl->pending_writes--; 957 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 958 959 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 960 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 961 while(raidPtr->reconControl->rb_lock) { 962 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 963 &raidPtr->reconControl->rb_mutex); 964 } 965 raidPtr->reconControl->rb_lock = 1; 966 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 967 968 raidPtr->numFullReconBuffers--; 969 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 970 971 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 972 raidPtr->reconControl->rb_lock = 0; 973 wakeup(&raidPtr->reconControl->rb_lock); 974 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 975 } else 976 if (rbuf->type == RF_RBUF_TYPE_FORCED) 977 rf_FreeReconBuffer(rbuf); 978 else 979 RF_ASSERT(0); 980 retcode = RF_RECON_WRITE_DONE; 981 break; 982 983 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 984 * cleared */ 985 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 986 if (!raidPtr->reconControl->error) { 987 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 988 0, (int) (long) event->arg); 989 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 990 * BUFCLEAR event if we 991 * couldn't submit */ 992 retcode = IssueNextReadRequest(raidPtr, event->col); 993 } 994 break; 995 996 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 997 * blockage has been cleared */ 998 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 999 if (!raidPtr->reconControl->error) { 1000 retcode = TryToRead(raidPtr, event->col); 1001 } 1002 break; 1003 1004 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 1005 * reconstruction blockage has been 1006 * cleared */ 1007 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 1008 if (!raidPtr->reconControl->error) { 1009 retcode = TryToRead(raidPtr, event->col); 1010 } 1011 break; 1012 1013 /* a buffer has become ready to write */ 1014 case RF_REVENT_BUFREADY: 1015 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1016 if (!raidPtr->reconControl->error) { 1017 retcode = IssueNextWriteRequest(raidPtr); 1018 #if RF_DEBUG_RECON 1019 if (rf_floatingRbufDebug) { 1020 rf_CheckFloatingRbufCount(raidPtr, 1); 1021 } 1022 #endif 1023 } 1024 break; 1025 1026 /* we need to skip the current RU entirely because it got 1027 * recon'd while we were waiting for something else to happen */ 1028 case RF_REVENT_SKIP: 1029 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1030 if (!raidPtr->reconControl->error) { 1031 retcode = IssueNextReadRequest(raidPtr, event->col); 1032 } 1033 break; 1034 1035 /* a forced-reconstruction read access has completed. Just 1036 * submit the buffer */ 1037 case RF_REVENT_FORCEDREADDONE: 1038 rbuf = (RF_ReconBuffer_t *) event->arg; 1039 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1040 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1041 if (!raidPtr->reconControl->error) { 1042 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1043 RF_ASSERT(!submitblocked); 1044 retcode = 0; 1045 } 1046 break; 1047 1048 /* A read I/O failed to complete */ 1049 case RF_REVENT_READ_FAILED: 1050 retcode = RF_RECON_READ_ERROR; 1051 break; 1052 1053 /* A write I/O failed to complete */ 1054 case RF_REVENT_WRITE_FAILED: 1055 retcode = RF_RECON_WRITE_ERROR; 1056 1057 rbuf = (RF_ReconBuffer_t *) event->arg; 1058 1059 /* cleanup the disk queue data */ 1060 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1061 1062 /* At this point we're erroring out, badly, and floatingRbufs 1063 may not even be valid. Rather than putting this back onto 1064 the floatingRbufs list, just arrange for its immediate 1065 destruction. 1066 */ 1067 rf_FreeReconBuffer(rbuf); 1068 break; 1069 1070 /* a forced read I/O failed to complete */ 1071 case RF_REVENT_FORCEDREAD_FAILED: 1072 retcode = RF_RECON_READ_ERROR; 1073 break; 1074 1075 default: 1076 RF_PANIC(); 1077 } 1078 rf_FreeReconEventDesc(event); 1079 return (retcode); 1080 } 1081 /***************************************************************************** 1082 * 1083 * find the next thing that's needed on the indicated disk, and issue 1084 * a read request for it. We assume that the reconstruction buffer 1085 * associated with this process is free to receive the data. If 1086 * reconstruction is blocked on the indicated RU, we issue a 1087 * blockage-release request instead of a physical disk read request. 1088 * If the current disk gets too far ahead of the others, we issue a 1089 * head-separation wait request and return. 1090 * 1091 * ctrl->{ru_count, curPSID, diskOffset} and 1092 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1093 * we're currently accessing. Note that this deviates from the 1094 * standard C idiom of having counters point to the next thing to be 1095 * accessed. This allows us to easily retry when we're blocked by 1096 * head separation or reconstruction-blockage events. 1097 * 1098 *****************************************************************************/ 1099 static int 1100 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1101 { 1102 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1103 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1104 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1105 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1106 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1107 int do_new_check = 0, retcode = 0, status; 1108 1109 /* if we are currently the slowest disk, mark that we have to do a new 1110 * check */ 1111 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1112 do_new_check = 1; 1113 1114 while (1) { 1115 1116 ctrl->ru_count++; 1117 if (ctrl->ru_count < RUsPerPU) { 1118 ctrl->diskOffset += sectorsPerRU; 1119 rbuf->failedDiskSectorOffset += sectorsPerRU; 1120 } else { 1121 ctrl->curPSID++; 1122 ctrl->ru_count = 0; 1123 /* code left over from when head-sep was based on 1124 * parity stripe id */ 1125 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1126 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1127 return (RF_RECON_DONE_READS); /* finito! */ 1128 } 1129 /* find the disk offsets of the start of the parity 1130 * stripe on both the current disk and the failed 1131 * disk. skip this entire parity stripe if either disk 1132 * does not appear in the indicated PS */ 1133 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1134 &rbuf->spCol, &rbuf->spOffset); 1135 if (status) { 1136 ctrl->ru_count = RUsPerPU - 1; 1137 continue; 1138 } 1139 } 1140 rbuf->which_ru = ctrl->ru_count; 1141 1142 /* skip this RU if it's already been reconstructed */ 1143 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1144 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1145 continue; 1146 } 1147 break; 1148 } 1149 ctrl->headSepCounter++; 1150 if (do_new_check) 1151 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1152 1153 1154 /* at this point, we have definitely decided what to do, and we have 1155 * only to see if we can actually do it now */ 1156 rbuf->parityStripeID = ctrl->curPSID; 1157 rbuf->which_ru = ctrl->ru_count; 1158 #if RF_ACC_TRACE > 0 1159 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1160 sizeof(raidPtr->recon_tracerecs[col])); 1161 raidPtr->recon_tracerecs[col].reconacc = 1; 1162 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1163 #endif 1164 retcode = TryToRead(raidPtr, col); 1165 return (retcode); 1166 } 1167 1168 /* 1169 * tries to issue the next read on the indicated disk. We may be 1170 * blocked by (a) the heads being too far apart, or (b) recon on the 1171 * indicated RU being blocked due to a write by a user thread. In 1172 * this case, we issue a head-sep or blockage wait request, which will 1173 * cause this same routine to be invoked again later when the blockage 1174 * has cleared. 1175 */ 1176 1177 static int 1178 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1179 { 1180 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1181 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1182 RF_StripeNum_t psid = ctrl->curPSID; 1183 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1184 RF_DiskQueueData_t *req; 1185 int status; 1186 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1187 1188 /* if the current disk is too far ahead of the others, issue a 1189 * head-separation wait and return */ 1190 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1191 return (0); 1192 1193 /* allocate a new PSS in case we need it */ 1194 newpssPtr = rf_AllocPSStatus(raidPtr); 1195 1196 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1197 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1198 1199 if (pssPtr != newpssPtr) { 1200 rf_FreePSStatus(raidPtr, newpssPtr); 1201 } 1202 1203 /* if recon is blocked on the indicated parity stripe, issue a 1204 * block-wait request and return. this also must mark the indicated RU 1205 * in the stripe as under reconstruction if not blocked. */ 1206 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1207 if (status == RF_PSS_RECON_BLOCKED) { 1208 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1209 goto out; 1210 } else 1211 if (status == RF_PSS_FORCED_ON_WRITE) { 1212 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1213 goto out; 1214 } 1215 /* make one last check to be sure that the indicated RU didn't get 1216 * reconstructed while we were waiting for something else to happen. 1217 * This is unfortunate in that it causes us to make this check twice 1218 * in the normal case. Might want to make some attempt to re-work 1219 * this so that we only do this check if we've definitely blocked on 1220 * one of the above checks. When this condition is detected, we may 1221 * have just created a bogus status entry, which we need to delete. */ 1222 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1223 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1224 if (pssPtr == newpssPtr) 1225 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1226 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1227 goto out; 1228 } 1229 /* found something to read. issue the I/O */ 1230 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1231 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1232 #if RF_ACC_TRACE > 0 1233 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1234 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1235 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1236 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1237 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1238 #endif 1239 /* should be ok to use a NULL proc pointer here, all the bufs we use 1240 * should be in kernel space */ 1241 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1242 ReconReadDoneProc, (void *) ctrl, 1243 #if RF_ACC_TRACE > 0 1244 &raidPtr->recon_tracerecs[col], 1245 #else 1246 NULL, 1247 #endif 1248 (void *) raidPtr, 0, NULL, PR_WAITOK); 1249 1250 ctrl->rbuf->arg = (void *) req; 1251 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1252 pssPtr->issued[col] = 1; 1253 1254 out: 1255 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1256 return (0); 1257 } 1258 1259 1260 /* 1261 * given a parity stripe ID, we want to find out whether both the 1262 * current disk and the failed disk exist in that parity stripe. If 1263 * not, we want to skip this whole PS. If so, we want to find the 1264 * disk offset of the start of the PS on both the current disk and the 1265 * failed disk. 1266 * 1267 * this works by getting a list of disks comprising the indicated 1268 * parity stripe, and searching the list for the current and failed 1269 * disks. Once we've decided they both exist in the parity stripe, we 1270 * need to decide whether each is data or parity, so that we'll know 1271 * which mapping function to call to get the corresponding disk 1272 * offsets. 1273 * 1274 * this is kind of unpleasant, but doing it this way allows the 1275 * reconstruction code to use parity stripe IDs rather than physical 1276 * disks address to march through the failed disk, which greatly 1277 * simplifies a lot of code, as well as eliminating the need for a 1278 * reverse-mapping function. I also think it will execute faster, 1279 * since the calls to the mapping module are kept to a minimum. 1280 * 1281 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1282 * THE STRIPE IN THE CORRECT ORDER 1283 * 1284 * raidPtr - raid descriptor 1285 * psid - parity stripe identifier 1286 * col - column of disk to find the offsets for 1287 * spCol - out: col of spare unit for failed unit 1288 * spOffset - out: offset into disk containing spare unit 1289 * 1290 */ 1291 1292 1293 static int 1294 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1295 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1296 RF_SectorNum_t *outFailedDiskSectorOffset, 1297 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1298 { 1299 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1300 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1301 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1302 RF_RowCol_t *diskids; 1303 u_int i, j, k, i_offset, j_offset; 1304 RF_RowCol_t pcol; 1305 int testcol; 1306 RF_SectorNum_t poffset; 1307 char i_is_parity = 0, j_is_parity = 0; 1308 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1309 1310 /* get a listing of the disks comprising that stripe */ 1311 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1312 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1313 RF_ASSERT(diskids); 1314 1315 /* reject this entire parity stripe if it does not contain the 1316 * indicated disk or it does not contain the failed disk */ 1317 1318 for (i = 0; i < stripeWidth; i++) { 1319 if (col == diskids[i]) 1320 break; 1321 } 1322 if (i == stripeWidth) 1323 goto skipit; 1324 for (j = 0; j < stripeWidth; j++) { 1325 if (fcol == diskids[j]) 1326 break; 1327 } 1328 if (j == stripeWidth) { 1329 goto skipit; 1330 } 1331 /* find out which disk the parity is on */ 1332 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1333 1334 /* find out if either the current RU or the failed RU is parity */ 1335 /* also, if the parity occurs in this stripe prior to the data and/or 1336 * failed col, we need to decrement i and/or j */ 1337 for (k = 0; k < stripeWidth; k++) 1338 if (diskids[k] == pcol) 1339 break; 1340 RF_ASSERT(k < stripeWidth); 1341 i_offset = i; 1342 j_offset = j; 1343 if (k < i) 1344 i_offset--; 1345 else 1346 if (k == i) { 1347 i_is_parity = 1; 1348 i_offset = 0; 1349 } /* set offsets to zero to disable multiply 1350 * below */ 1351 if (k < j) 1352 j_offset--; 1353 else 1354 if (k == j) { 1355 j_is_parity = 1; 1356 j_offset = 0; 1357 } 1358 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1359 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1360 * tells us how far into the stripe the [current,failed] disk is. */ 1361 1362 /* call the mapping routine to get the offset into the current disk, 1363 * repeat for failed disk. */ 1364 if (i_is_parity) 1365 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1366 else 1367 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1368 1369 RF_ASSERT(col == testcol); 1370 1371 if (j_is_parity) 1372 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1373 else 1374 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1375 RF_ASSERT(fcol == testcol); 1376 1377 /* now locate the spare unit for the failed unit */ 1378 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1379 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1380 if (j_is_parity) 1381 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1382 else 1383 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1384 } else { 1385 #endif 1386 *spCol = raidPtr->reconControl->spareCol; 1387 *spOffset = *outFailedDiskSectorOffset; 1388 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1389 } 1390 #endif 1391 return (0); 1392 1393 skipit: 1394 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1395 psid, col); 1396 return (1); 1397 } 1398 /* this is called when a buffer has become ready to write to the replacement disk */ 1399 static int 1400 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1401 { 1402 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1403 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1404 #if RF_ACC_TRACE > 0 1405 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1406 #endif 1407 RF_ReconBuffer_t *rbuf; 1408 RF_DiskQueueData_t *req; 1409 1410 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1411 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1412 * have gotten the event that sent us here */ 1413 RF_ASSERT(rbuf->pssPtr); 1414 1415 rbuf->pssPtr->writeRbuf = rbuf; 1416 rbuf->pssPtr = NULL; 1417 1418 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1419 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1420 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1421 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1422 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1423 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1424 1425 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1426 * kernel space */ 1427 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1428 sectorsPerRU, rbuf->buffer, 1429 rbuf->parityStripeID, rbuf->which_ru, 1430 ReconWriteDoneProc, (void *) rbuf, 1431 #if RF_ACC_TRACE > 0 1432 &raidPtr->recon_tracerecs[fcol], 1433 #else 1434 NULL, 1435 #endif 1436 (void *) raidPtr, 0, NULL, PR_WAITOK); 1437 1438 rbuf->arg = (void *) req; 1439 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1440 raidPtr->reconControl->pending_writes++; 1441 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1442 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1443 1444 return (0); 1445 } 1446 1447 /* 1448 * this gets called upon the completion of a reconstruction read 1449 * operation the arg is a pointer to the per-disk reconstruction 1450 * control structure for the process that just finished a read. 1451 * 1452 * called at interrupt context in the kernel, so don't do anything 1453 * illegal here. 1454 */ 1455 static int 1456 ReconReadDoneProc(void *arg, int status) 1457 { 1458 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1459 RF_Raid_t *raidPtr; 1460 1461 /* Detect that reconCtrl is no longer valid, and if that 1462 is the case, bail without calling rf_CauseReconEvent(). 1463 There won't be anyone listening for this event anyway */ 1464 1465 if (ctrl->reconCtrl == NULL) 1466 return(0); 1467 1468 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1469 1470 if (status) { 1471 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1472 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1473 return(0); 1474 } 1475 #if RF_ACC_TRACE > 0 1476 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1477 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1478 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1479 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1480 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1481 #endif 1482 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1483 return (0); 1484 } 1485 /* this gets called upon the completion of a reconstruction write operation. 1486 * the arg is a pointer to the rbuf that was just written 1487 * 1488 * called at interrupt context in the kernel, so don't do anything illegal here. 1489 */ 1490 static int 1491 ReconWriteDoneProc(void *arg, int status) 1492 { 1493 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1494 1495 /* Detect that reconControl is no longer valid, and if that 1496 is the case, bail without calling rf_CauseReconEvent(). 1497 There won't be anyone listening for this event anyway */ 1498 1499 if (rbuf->raidPtr->reconControl == NULL) 1500 return(0); 1501 1502 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1503 if (status) { 1504 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1505 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1506 return(0); 1507 } 1508 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1509 return (0); 1510 } 1511 1512 1513 /* 1514 * computes a new minimum head sep, and wakes up anyone who needs to 1515 * be woken as a result 1516 */ 1517 static void 1518 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1519 { 1520 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1521 RF_HeadSepLimit_t new_min; 1522 RF_RowCol_t i; 1523 RF_CallbackDesc_t *p; 1524 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1525 * of a minimum */ 1526 1527 1528 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1529 while(reconCtrlPtr->rb_lock) { 1530 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1531 } 1532 reconCtrlPtr->rb_lock = 1; 1533 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1534 1535 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1536 for (i = 0; i < raidPtr->numCol; i++) 1537 if (i != reconCtrlPtr->fcol) { 1538 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1539 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1540 } 1541 /* set the new minimum and wake up anyone who can now run again */ 1542 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1543 reconCtrlPtr->minHeadSepCounter = new_min; 1544 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1545 while (reconCtrlPtr->headSepCBList) { 1546 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1547 break; 1548 p = reconCtrlPtr->headSepCBList; 1549 reconCtrlPtr->headSepCBList = p->next; 1550 p->next = NULL; 1551 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1552 rf_FreeCallbackDesc(p); 1553 } 1554 1555 } 1556 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1557 reconCtrlPtr->rb_lock = 0; 1558 wakeup(&reconCtrlPtr->rb_lock); 1559 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1560 } 1561 1562 /* 1563 * checks to see that the maximum head separation will not be violated 1564 * if we initiate a reconstruction I/O on the indicated disk. 1565 * Limiting the maximum head separation between two disks eliminates 1566 * the nasty buffer-stall conditions that occur when one disk races 1567 * ahead of the others and consumes all of the floating recon buffers. 1568 * This code is complex and unpleasant but it's necessary to avoid 1569 * some very nasty, albeit fairly rare, reconstruction behavior. 1570 * 1571 * returns non-zero if and only if we have to stop working on the 1572 * indicated disk due to a head-separation delay. 1573 */ 1574 static int 1575 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1576 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1577 RF_ReconUnitNum_t which_ru) 1578 { 1579 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1580 RF_CallbackDesc_t *cb, *p, *pt; 1581 int retval = 0; 1582 1583 /* if we're too far ahead of the slowest disk, stop working on this 1584 * disk until the slower ones catch up. We do this by scheduling a 1585 * wakeup callback for the time when the slowest disk has caught up. 1586 * We define "caught up" with 20% hysteresis, i.e. the head separation 1587 * must have fallen to at most 80% of the max allowable head 1588 * separation before we'll wake up. 1589 * 1590 */ 1591 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1592 while(reconCtrlPtr->rb_lock) { 1593 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1594 } 1595 reconCtrlPtr->rb_lock = 1; 1596 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1597 if ((raidPtr->headSepLimit >= 0) && 1598 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1599 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1600 raidPtr->raidid, col, ctrl->headSepCounter, 1601 reconCtrlPtr->minHeadSepCounter, 1602 raidPtr->headSepLimit); 1603 cb = rf_AllocCallbackDesc(); 1604 /* the minHeadSepCounter value we have to get to before we'll 1605 * wake up. build in 20% hysteresis. */ 1606 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1607 cb->col = col; 1608 cb->next = NULL; 1609 1610 /* insert this callback descriptor into the sorted list of 1611 * pending head-sep callbacks */ 1612 p = reconCtrlPtr->headSepCBList; 1613 if (!p) 1614 reconCtrlPtr->headSepCBList = cb; 1615 else 1616 if (cb->callbackArg.v < p->callbackArg.v) { 1617 cb->next = reconCtrlPtr->headSepCBList; 1618 reconCtrlPtr->headSepCBList = cb; 1619 } else { 1620 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1621 cb->next = p; 1622 pt->next = cb; 1623 } 1624 retval = 1; 1625 #if RF_RECON_STATS > 0 1626 ctrl->reconCtrl->reconDesc->hsStallCount++; 1627 #endif /* RF_RECON_STATS > 0 */ 1628 } 1629 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1630 reconCtrlPtr->rb_lock = 0; 1631 wakeup(&reconCtrlPtr->rb_lock); 1632 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1633 1634 return (retval); 1635 } 1636 /* 1637 * checks to see if reconstruction has been either forced or blocked 1638 * by a user operation. if forced, we skip this RU entirely. else if 1639 * blocked, put ourselves on the wait list. else return 0. 1640 * 1641 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1642 */ 1643 static int 1644 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1645 RF_ReconParityStripeStatus_t *pssPtr, 1646 RF_PerDiskReconCtrl_t *ctrl, 1647 RF_RowCol_t col, 1648 RF_StripeNum_t psid, 1649 RF_ReconUnitNum_t which_ru) 1650 { 1651 RF_CallbackDesc_t *cb; 1652 int retcode = 0; 1653 1654 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1655 retcode = RF_PSS_FORCED_ON_WRITE; 1656 else 1657 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1658 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1659 cb = rf_AllocCallbackDesc(); /* append ourselves to 1660 * the blockage-wait 1661 * list */ 1662 cb->col = col; 1663 cb->next = pssPtr->blockWaitList; 1664 pssPtr->blockWaitList = cb; 1665 retcode = RF_PSS_RECON_BLOCKED; 1666 } 1667 if (!retcode) 1668 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1669 * reconstruction */ 1670 1671 return (retcode); 1672 } 1673 /* 1674 * if reconstruction is currently ongoing for the indicated stripeID, 1675 * reconstruction is forced to completion and we return non-zero to 1676 * indicate that the caller must wait. If not, then reconstruction is 1677 * blocked on the indicated stripe and the routine returns zero. If 1678 * and only if we return non-zero, we'll cause the cbFunc to get 1679 * invoked with the cbArg when the reconstruction has completed. 1680 */ 1681 int 1682 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1683 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1684 { 1685 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1686 * forcing recon on */ 1687 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1688 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1689 * stripe status structure */ 1690 RF_StripeNum_t psid; /* parity stripe id */ 1691 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1692 * offset */ 1693 RF_RowCol_t *diskids; 1694 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1695 RF_RowCol_t fcol, diskno, i; 1696 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1697 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1698 RF_CallbackDesc_t *cb; 1699 int nPromoted; 1700 1701 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1702 1703 /* allocate a new PSS in case we need it */ 1704 newpssPtr = rf_AllocPSStatus(raidPtr); 1705 1706 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1707 1708 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1709 1710 if (pssPtr != newpssPtr) { 1711 rf_FreePSStatus(raidPtr, newpssPtr); 1712 } 1713 1714 /* if recon is not ongoing on this PS, just return */ 1715 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1716 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1717 return (0); 1718 } 1719 /* otherwise, we have to wait for reconstruction to complete on this 1720 * RU. */ 1721 /* In order to avoid waiting for a potentially large number of 1722 * low-priority accesses to complete, we force a normal-priority (i.e. 1723 * not low-priority) reconstruction on this RU. */ 1724 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1725 DDprintf1("Forcing recon on psid %ld\n", psid); 1726 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1727 * forced recon */ 1728 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1729 * that we just set */ 1730 fcol = raidPtr->reconControl->fcol; 1731 1732 /* get a listing of the disks comprising the indicated stripe */ 1733 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1734 1735 /* For previously issued reads, elevate them to normal 1736 * priority. If the I/O has already completed, it won't be 1737 * found in the queue, and hence this will be a no-op. For 1738 * unissued reads, allocate buffers and issue new reads. The 1739 * fact that we've set the FORCED bit means that the regular 1740 * recon procs will not re-issue these reqs */ 1741 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1742 if ((diskno = diskids[i]) != fcol) { 1743 if (pssPtr->issued[diskno]) { 1744 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1745 if (rf_reconDebug && nPromoted) 1746 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1747 } else { 1748 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1749 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1750 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1751 * location */ 1752 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1753 new_rbuf->which_ru = which_ru; 1754 new_rbuf->failedDiskSectorOffset = fd_offset; 1755 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1756 1757 /* use NULL b_proc b/c all addrs 1758 * should be in kernel space */ 1759 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1760 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1761 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1762 1763 new_rbuf->arg = req; 1764 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1765 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1766 } 1767 } 1768 /* if the write is sitting in the disk queue, elevate its 1769 * priority */ 1770 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1771 if (rf_reconDebug) 1772 printf("raid%d: promoted write to col %d\n", 1773 raidPtr->raidid, fcol); 1774 } 1775 /* install a callback descriptor to be invoked when recon completes on 1776 * this parity stripe. */ 1777 cb = rf_AllocCallbackDesc(); 1778 /* XXX the following is bogus.. These functions don't really match!! 1779 * GO */ 1780 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1781 cb->callbackArg.p = (void *) cbArg; 1782 cb->next = pssPtr->procWaitList; 1783 pssPtr->procWaitList = cb; 1784 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1785 raidPtr->raidid, psid); 1786 1787 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1788 return (1); 1789 } 1790 /* called upon the completion of a forced reconstruction read. 1791 * all we do is schedule the FORCEDREADONE event. 1792 * called at interrupt context in the kernel, so don't do anything illegal here. 1793 */ 1794 static void 1795 ForceReconReadDoneProc(void *arg, int status) 1796 { 1797 RF_ReconBuffer_t *rbuf = arg; 1798 1799 /* Detect that reconControl is no longer valid, and if that 1800 is the case, bail without calling rf_CauseReconEvent(). 1801 There won't be anyone listening for this event anyway */ 1802 1803 if (rbuf->raidPtr->reconControl == NULL) 1804 return; 1805 1806 if (status) { 1807 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1808 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1809 return; 1810 } 1811 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1812 } 1813 /* releases a block on the reconstruction of the indicated stripe */ 1814 int 1815 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1816 { 1817 RF_StripeNum_t stripeID = asmap->stripeID; 1818 RF_ReconParityStripeStatus_t *pssPtr; 1819 RF_ReconUnitNum_t which_ru; 1820 RF_StripeNum_t psid; 1821 RF_CallbackDesc_t *cb; 1822 1823 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1824 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1825 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1826 1827 /* When recon is forced, the pss desc can get deleted before we get 1828 * back to unblock recon. But, this can _only_ happen when recon is 1829 * forced. It would be good to put some kind of sanity check here, but 1830 * how to decide if recon was just forced or not? */ 1831 if (!pssPtr) { 1832 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1833 * RU %d\n",psid,which_ru); */ 1834 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1835 if (rf_reconDebug || rf_pssDebug) 1836 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1837 #endif 1838 goto out; 1839 } 1840 pssPtr->blockCount--; 1841 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1842 raidPtr->raidid, psid, pssPtr->blockCount); 1843 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1844 1845 /* unblock recon before calling CauseReconEvent in case 1846 * CauseReconEvent causes us to try to issue a new read before 1847 * returning here. */ 1848 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1849 1850 1851 while (pssPtr->blockWaitList) { 1852 /* spin through the block-wait list and 1853 release all the waiters */ 1854 cb = pssPtr->blockWaitList; 1855 pssPtr->blockWaitList = cb->next; 1856 cb->next = NULL; 1857 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1858 rf_FreeCallbackDesc(cb); 1859 } 1860 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1861 /* if no recon was requested while recon was blocked */ 1862 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1863 } 1864 } 1865 out: 1866 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1867 return (0); 1868 } 1869 1870 void 1871 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1872 { 1873 RF_CallbackDesc_t *p; 1874 1875 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1876 while(raidPtr->reconControl->rb_lock) { 1877 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, 1878 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex); 1879 } 1880 1881 raidPtr->reconControl->rb_lock = 1; 1882 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1883 1884 while (raidPtr->reconControl->headSepCBList) { 1885 p = raidPtr->reconControl->headSepCBList; 1886 raidPtr->reconControl->headSepCBList = p->next; 1887 p->next = NULL; 1888 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1889 rf_FreeCallbackDesc(p); 1890 } 1891 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1892 raidPtr->reconControl->rb_lock = 0; 1893 wakeup(&raidPtr->reconControl->rb_lock); 1894 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1895 1896 } 1897 1898