1 /* $NetBSD: rf_reconstruct.c,v 1.8 1999/08/14 03:10:04 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include "rf_types.h" 36 #include <sys/time.h> 37 #include <sys/buf.h> 38 #include <sys/errno.h> 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_threadid.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_general.h" 59 #include "rf_freelist.h" 60 #include "rf_debugprint.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_cpuutil.h" 64 #include "rf_shutdown.h" 65 66 #include "rf_kintf.h" 67 68 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 69 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 #define Dprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) 79 80 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 81 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 82 #define DDprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 83 #define DDprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 84 #define DDprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 85 #define DDprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 86 #define DDprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 87 #define DDprintf8(s,a,b,c,d,e,f,g,h) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),(void *)((unsigned long)h)) 88 89 static RF_Thread_t recon_thr_handle; 90 static int recon_thread_initialized = 0; 91 92 static RF_FreeList_t *rf_recond_freelist; 93 #define RF_MAX_FREE_RECOND 4 94 #define RF_RECOND_INC 1 95 96 static RF_RaidReconDesc_t * 97 AllocRaidReconDesc(RF_Raid_t * raidPtr, 98 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 99 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 100 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 101 static int 102 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 103 RF_ReconEvent_t * event); 104 static int 105 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 106 RF_RowCol_t col); 107 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 108 static int 109 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 110 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 111 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 112 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 113 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 114 static int ReconReadDoneProc(void *arg, int status); 115 static int ReconWriteDoneProc(void *arg, int status); 116 static void 117 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 118 RF_HeadSepLimit_t hsCtr); 119 static int 120 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 121 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 122 RF_ReconUnitNum_t which_ru); 123 static int 124 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 125 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 126 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 127 RF_ReconUnitNum_t which_ru); 128 static void ForceReconReadDoneProc(void *arg, int status); 129 130 static void rf_ShutdownReconstruction(void *); 131 132 /* XXX these should be in a .h file somewhere */ 133 int raidlookup __P((char *, struct proc *, struct vnode **)); 134 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); 135 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *); 136 137 struct RF_ReconDoneProc_s { 138 void (*proc) (RF_Raid_t *, void *); 139 void *arg; 140 RF_ReconDoneProc_t *next; 141 }; 142 143 static RF_FreeList_t *rf_rdp_freelist; 144 #define RF_MAX_FREE_RDP 4 145 #define RF_RDP_INC 1 146 147 static void 148 SignalReconDone(RF_Raid_t * raidPtr) 149 { 150 RF_ReconDoneProc_t *p; 151 152 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 153 for (p = raidPtr->recon_done_procs; p; p = p->next) { 154 p->proc(raidPtr, p->arg); 155 } 156 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 157 } 158 159 int 160 rf_RegisterReconDoneProc( 161 RF_Raid_t * raidPtr, 162 void (*proc) (RF_Raid_t *, void *), 163 void *arg, 164 RF_ReconDoneProc_t ** handlep) 165 { 166 RF_ReconDoneProc_t *p; 167 168 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 169 if (p == NULL) 170 return (ENOMEM); 171 p->proc = proc; 172 p->arg = arg; 173 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 174 p->next = raidPtr->recon_done_procs; 175 raidPtr->recon_done_procs = p; 176 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 177 if (handlep) 178 *handlep = p; 179 return (0); 180 } 181 /***************************************************************************************** 182 * 183 * sets up the parameters that will be used by the reconstruction process 184 * currently there are none, except for those that the layout-specific 185 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 186 * 187 * in the kernel, we fire off the recon thread. 188 * 189 ****************************************************************************************/ 190 static void 191 rf_ShutdownReconstruction(ignored) 192 void *ignored; 193 { 194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 195 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 196 } 197 198 int 199 rf_ConfigureReconstruction(listp) 200 RF_ShutdownList_t **listp; 201 { 202 int rc; 203 204 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 205 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 206 if (rf_recond_freelist == NULL) 207 return (ENOMEM); 208 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 209 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 210 if (rf_rdp_freelist == NULL) { 211 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 212 return (ENOMEM); 213 } 214 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 215 if (rc) { 216 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 217 __FILE__, __LINE__, rc); 218 rf_ShutdownReconstruction(NULL); 219 return (rc); 220 } 221 if (!recon_thread_initialized) { 222 RF_CREATE_THREAD(recon_thr_handle, rf_ReconKernelThread, NULL); 223 recon_thread_initialized = 1; 224 } 225 return (0); 226 } 227 228 static RF_RaidReconDesc_t * 229 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 230 RF_Raid_t *raidPtr; 231 RF_RowCol_t row; 232 RF_RowCol_t col; 233 RF_RaidDisk_t *spareDiskPtr; 234 int numDisksDone; 235 RF_RowCol_t srow; 236 RF_RowCol_t scol; 237 { 238 239 RF_RaidReconDesc_t *reconDesc; 240 241 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 242 243 reconDesc->raidPtr = raidPtr; 244 reconDesc->row = row; 245 reconDesc->col = col; 246 reconDesc->spareDiskPtr = spareDiskPtr; 247 reconDesc->numDisksDone = numDisksDone; 248 reconDesc->srow = srow; 249 reconDesc->scol = scol; 250 reconDesc->state = 0; 251 reconDesc->next = NULL; 252 253 return (reconDesc); 254 } 255 256 static void 257 FreeReconDesc(reconDesc) 258 RF_RaidReconDesc_t *reconDesc; 259 { 260 #if RF_RECON_STATS > 0 261 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 262 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 263 #endif /* RF_RECON_STATS > 0 */ 264 printf("RAIDframe: %lu max exec ticks\n", 265 (long) reconDesc->maxReconExecTicks); 266 #if (RF_RECON_STATS > 0) || defined(KERNEL) 267 printf("\n"); 268 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 269 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 270 } 271 272 273 /***************************************************************************************** 274 * 275 * primary routine to reconstruct a failed disk. This should be called from 276 * within its own thread. It won't return until reconstruction completes, 277 * fails, or is aborted. 278 ****************************************************************************************/ 279 int 280 rf_ReconstructFailedDisk(raidPtr, row, col) 281 RF_Raid_t *raidPtr; 282 RF_RowCol_t row; 283 RF_RowCol_t col; 284 { 285 RF_LayoutSW_t *lp; 286 int rc; 287 288 lp = raidPtr->Layout.map; 289 if (lp->SubmitReconBuffer) { 290 /* 291 * The current infrastructure only supports reconstructing one 292 * disk at a time for each array. 293 */ 294 RF_LOCK_MUTEX(raidPtr->mutex); 295 while (raidPtr->reconInProgress) { 296 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 297 } 298 raidPtr->reconInProgress++; 299 RF_UNLOCK_MUTEX(raidPtr->mutex); 300 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 301 RF_LOCK_MUTEX(raidPtr->mutex); 302 raidPtr->reconInProgress--; 303 RF_UNLOCK_MUTEX(raidPtr->mutex); 304 } else { 305 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 306 lp->parityConfig); 307 rc = EIO; 308 } 309 RF_SIGNAL_COND(raidPtr->waitForReconCond); 310 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 311 * needed at some point... GO */ 312 return (rc); 313 } 314 315 int 316 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 317 RF_Raid_t *raidPtr; 318 RF_RowCol_t row; 319 RF_RowCol_t col; 320 { 321 RF_ComponentLabel_t c_label; 322 RF_RaidDisk_t *spareDiskPtr = NULL; 323 RF_RaidReconDesc_t *reconDesc; 324 RF_RowCol_t srow, scol; 325 int numDisksDone = 0, rc; 326 327 /* first look for a spare drive onto which to reconstruct the data */ 328 /* spare disk descriptors are stored in row 0. This may have to 329 * change eventually */ 330 331 RF_LOCK_MUTEX(raidPtr->mutex); 332 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 333 334 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 335 if (raidPtr->status[row] != rf_rs_degraded) { 336 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 337 RF_UNLOCK_MUTEX(raidPtr->mutex); 338 return (EINVAL); 339 } 340 srow = row; 341 scol = (-1); 342 } else { 343 srow = 0; 344 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 345 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 346 spareDiskPtr = &raidPtr->Disks[srow][scol]; 347 spareDiskPtr->status = rf_ds_used_spare; 348 break; 349 } 350 } 351 if (!spareDiskPtr) { 352 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 353 RF_UNLOCK_MUTEX(raidPtr->mutex); 354 return (ENOSPC); 355 } 356 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 357 } 358 RF_UNLOCK_MUTEX(raidPtr->mutex); 359 360 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 361 raidPtr->reconDesc = (void *) reconDesc; 362 #if RF_RECON_STATS > 0 363 reconDesc->hsStallCount = 0; 364 reconDesc->numReconExecDelays = 0; 365 reconDesc->numReconEventWaits = 0; 366 #endif /* RF_RECON_STATS > 0 */ 367 reconDesc->reconExecTimerRunning = 0; 368 reconDesc->reconExecTicks = 0; 369 reconDesc->maxReconExecTicks = 0; 370 rc = rf_ContinueReconstructFailedDisk(reconDesc); 371 372 if (!rc) { 373 /* fix up the component label */ 374 /* Don't actually need the read here.. */ 375 raidread_component_label( 376 raidPtr->raid_cinfo[srow][scol].ci_dev, 377 raidPtr->raid_cinfo[srow][scol].ci_vp, 378 &c_label); 379 380 c_label.version = RF_COMPONENT_LABEL_VERSION; 381 c_label.mod_counter = raidPtr->mod_counter; 382 c_label.serial_number = raidPtr->serial_number; 383 c_label.row = row; 384 c_label.column = col; 385 c_label.num_rows = raidPtr->numRow; 386 c_label.num_columns = raidPtr->numCol; 387 c_label.clean = RF_RAID_DIRTY; 388 c_label.status = rf_ds_optimal; 389 390 raidwrite_component_label( 391 raidPtr->raid_cinfo[srow][scol].ci_dev, 392 raidPtr->raid_cinfo[srow][scol].ci_vp, 393 &c_label); 394 395 } 396 return (rc); 397 } 398 399 /* 400 401 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 402 and you don't get a spare until the next Monday. With this function 403 (and hot-swappable drives) you can now put your new disk containing 404 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 405 rebuild the data "on the spot". 406 407 */ 408 409 int 410 rf_ReconstructInPlace(raidPtr, row, col) 411 RF_Raid_t *raidPtr; 412 RF_RowCol_t row; 413 RF_RowCol_t col; 414 { 415 RF_RaidDisk_t *spareDiskPtr = NULL; 416 RF_RaidReconDesc_t *reconDesc; 417 RF_LayoutSW_t *lp; 418 RF_RaidDisk_t *badDisk; 419 RF_ComponentLabel_t c_label; 420 int numDisksDone = 0, rc; 421 struct partinfo dpart; 422 struct vnode *vp; 423 struct vattr va; 424 struct proc *proc; 425 int retcode; 426 427 lp = raidPtr->Layout.map; 428 if (lp->SubmitReconBuffer) { 429 /* 430 * The current infrastructure only supports reconstructing one 431 * disk at a time for each array. 432 */ 433 RF_LOCK_MUTEX(raidPtr->mutex); 434 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 435 (raidPtr->numFailures > 0)) { 436 /* XXX 0 above shouldn't be constant!!! */ 437 /* some component other than this has failed. 438 Let's not make things worse than they already 439 are... */ 440 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 441 printf(" Row: %d Col: %d Too many failures.\n", 442 row, col); 443 RF_UNLOCK_MUTEX(raidPtr->mutex); 444 return (EINVAL); 445 } 446 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 447 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 448 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 449 450 RF_UNLOCK_MUTEX(raidPtr->mutex); 451 return (EINVAL); 452 } 453 454 455 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 456 /* "It's gone..." */ 457 raidPtr->numFailures++; 458 raidPtr->Disks[row][col].status = rf_ds_failed; 459 raidPtr->status[row] = rf_rs_degraded; 460 } 461 462 while (raidPtr->reconInProgress) { 463 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 464 } 465 466 raidPtr->reconInProgress++; 467 468 469 /* first look for a spare drive onto which to reconstruct 470 the data. spare disk descriptors are stored in row 0. 471 This may have to change eventually */ 472 473 /* Actually, we don't care if it's failed or not... 474 On a RAID set with correct parity, this function 475 should be callable on any component without ill affects. */ 476 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 477 */ 478 479 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 480 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 481 482 raidPtr->reconInProgress--; 483 RF_UNLOCK_MUTEX(raidPtr->mutex); 484 return (EINVAL); 485 } 486 487 /* XXX need goop here to see if the disk is alive, 488 and, if not, make it so... */ 489 490 491 492 badDisk = &raidPtr->Disks[row][col]; 493 494 proc = raidPtr->engine_thread; 495 496 /* This device may have been opened successfully the 497 first time. Close it before trying to open it again.. */ 498 499 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 500 printf("Closed the open device: %s\n", 501 raidPtr->Disks[row][col].devname); 502 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0); 503 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp, 504 FREAD | FWRITE, proc->p_ucred, proc); 505 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 506 } 507 printf("About to (re-)open the device for rebuilding: %s\n", 508 raidPtr->Disks[row][col].devname); 509 510 retcode = raidlookup(raidPtr->Disks[row][col].devname, 511 proc, &vp); 512 513 if (retcode) { 514 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 515 raidPtr->Disks[row][col].devname, retcode); 516 517 /* XXX the component isn't responding properly... 518 must be still dead :-( */ 519 raidPtr->reconInProgress--; 520 RF_UNLOCK_MUTEX(raidPtr->mutex); 521 return(retcode); 522 523 } else { 524 525 /* Ok, so we can at least do a lookup... 526 How about actually getting a vp for it? */ 527 528 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 529 proc)) != 0) { 530 raidPtr->reconInProgress--; 531 RF_UNLOCK_MUTEX(raidPtr->mutex); 532 return(retcode); 533 } 534 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 535 FREAD, proc->p_ucred, proc); 536 if (retcode) { 537 raidPtr->reconInProgress--; 538 RF_UNLOCK_MUTEX(raidPtr->mutex); 539 return(retcode); 540 } 541 raidPtr->Disks[row][col].blockSize = 542 dpart.disklab->d_secsize; 543 544 raidPtr->Disks[row][col].numBlocks = 545 dpart.part->p_size - rf_protectedSectors; 546 547 raidPtr->raid_cinfo[row][col].ci_vp = vp; 548 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 549 550 raidPtr->Disks[row][col].dev = va.va_rdev; 551 552 /* we allow the user to specify that only a 553 fraction of the disks should be used this is 554 just for debug: it speeds up 555 * the parity scan */ 556 raidPtr->Disks[row][col].numBlocks = 557 raidPtr->Disks[row][col].numBlocks * 558 rf_sizePercentage / 100; 559 } 560 561 562 563 spareDiskPtr = &raidPtr->Disks[row][col]; 564 spareDiskPtr->status = rf_ds_used_spare; 565 566 printf("RECON: initiating in-place reconstruction on\n"); 567 printf(" row %d col %d -> spare at row %d col %d\n", 568 row, col, row, col); 569 570 RF_UNLOCK_MUTEX(raidPtr->mutex); 571 572 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 573 spareDiskPtr, numDisksDone, 574 row, col); 575 raidPtr->reconDesc = (void *) reconDesc; 576 #if RF_RECON_STATS > 0 577 reconDesc->hsStallCount = 0; 578 reconDesc->numReconExecDelays = 0; 579 reconDesc->numReconEventWaits = 0; 580 #endif /* RF_RECON_STATS > 0 */ 581 reconDesc->reconExecTimerRunning = 0; 582 reconDesc->reconExecTicks = 0; 583 reconDesc->maxReconExecTicks = 0; 584 rc = rf_ContinueReconstructFailedDisk(reconDesc); 585 586 RF_LOCK_MUTEX(raidPtr->mutex); 587 raidPtr->reconInProgress--; 588 RF_UNLOCK_MUTEX(raidPtr->mutex); 589 590 } else { 591 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 592 lp->parityConfig); 593 rc = EIO; 594 } 595 RF_LOCK_MUTEX(raidPtr->mutex); 596 597 if (!rc) { 598 /* Need to set these here, as at this point it'll be claiming 599 that the disk is in rf_ds_spared! But we know better :-) */ 600 601 raidPtr->Disks[row][col].status = rf_ds_optimal; 602 raidPtr->status[row] = rf_rs_optimal; 603 604 /* fix up the component label */ 605 /* Don't actually need the read here.. */ 606 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 607 raidPtr->raid_cinfo[row][col].ci_vp, 608 &c_label); 609 610 c_label.version = RF_COMPONENT_LABEL_VERSION; 611 c_label.mod_counter = raidPtr->mod_counter; 612 c_label.serial_number = raidPtr->serial_number; 613 c_label.row = row; 614 c_label.column = col; 615 c_label.num_rows = raidPtr->numRow; 616 c_label.num_columns = raidPtr->numCol; 617 c_label.clean = RF_RAID_DIRTY; 618 c_label.status = rf_ds_optimal; 619 620 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 621 raidPtr->raid_cinfo[row][col].ci_vp, 622 &c_label); 623 624 } 625 RF_UNLOCK_MUTEX(raidPtr->mutex); 626 RF_SIGNAL_COND(raidPtr->waitForReconCond); 627 wakeup(&raidPtr->waitForReconCond); 628 return (rc); 629 } 630 631 632 int 633 rf_ContinueReconstructFailedDisk(reconDesc) 634 RF_RaidReconDesc_t *reconDesc; 635 { 636 RF_Raid_t *raidPtr = reconDesc->raidPtr; 637 RF_RowCol_t row = reconDesc->row; 638 RF_RowCol_t col = reconDesc->col; 639 RF_RowCol_t srow = reconDesc->srow; 640 RF_RowCol_t scol = reconDesc->scol; 641 RF_ReconMap_t *mapPtr; 642 643 RF_ReconEvent_t *event; 644 struct timeval etime, elpsd; 645 unsigned long xor_s, xor_resid_us; 646 int retcode, i, ds; 647 648 switch (reconDesc->state) { 649 650 651 case 0: 652 653 raidPtr->accumXorTimeUs = 0; 654 655 /* create one trace record per physical disk */ 656 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 657 658 /* quiesce the array prior to starting recon. this is needed 659 * to assure no nasty interactions with pending user writes. 660 * We need to do this before we change the disk or row status. */ 661 reconDesc->state = 1; 662 663 Dprintf("RECON: begin request suspend\n"); 664 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 665 Dprintf("RECON: end request suspend\n"); 666 rf_StartUserStats(raidPtr); /* zero out the stats kept on 667 * user accs */ 668 669 /* fall through to state 1 */ 670 671 case 1: 672 673 RF_LOCK_MUTEX(raidPtr->mutex); 674 675 /* create the reconstruction control pointer and install it in 676 * the right slot */ 677 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 678 mapPtr = raidPtr->reconControl[row]->reconMap; 679 raidPtr->status[row] = rf_rs_reconstructing; 680 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 681 raidPtr->Disks[row][col].spareRow = srow; 682 raidPtr->Disks[row][col].spareCol = scol; 683 684 RF_UNLOCK_MUTEX(raidPtr->mutex); 685 686 RF_GETTIME(raidPtr->reconControl[row]->starttime); 687 688 /* now start up the actual reconstruction: issue a read for 689 * each surviving disk */ 690 rf_start_cpu_monitor(); 691 reconDesc->numDisksDone = 0; 692 for (i = 0; i < raidPtr->numCol; i++) { 693 if (i != col) { 694 /* find and issue the next I/O on the 695 * indicated disk */ 696 if (IssueNextReadRequest(raidPtr, row, i)) { 697 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 698 reconDesc->numDisksDone++; 699 } 700 } 701 } 702 703 case 2: 704 Dprintf("RECON: resume requests\n"); 705 rf_ResumeNewRequests(raidPtr); 706 707 708 reconDesc->state = 3; 709 710 case 3: 711 712 /* process reconstruction events until all disks report that 713 * they've completed all work */ 714 mapPtr = raidPtr->reconControl[row]->reconMap; 715 716 717 718 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 719 720 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 721 RF_ASSERT(event); 722 723 if (ProcessReconEvent(raidPtr, row, event)) 724 reconDesc->numDisksDone++; 725 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 726 if (rf_prReconSched) { 727 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 728 } 729 } 730 731 732 733 reconDesc->state = 4; 734 735 736 case 4: 737 mapPtr = raidPtr->reconControl[row]->reconMap; 738 if (rf_reconDebug) { 739 printf("RECON: all reads completed\n"); 740 } 741 /* at this point all the reads have completed. We now wait 742 * for any pending writes to complete, and then we're done */ 743 744 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 745 746 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 747 RF_ASSERT(event); 748 749 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 750 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 751 if (rf_prReconSched) { 752 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 753 } 754 } 755 reconDesc->state = 5; 756 757 case 5: 758 rf_stop_cpu_monitor(); 759 760 /* Success: mark the dead disk as reconstructed. We quiesce 761 * the array here to assure no nasty interactions with pending 762 * user accesses when we free up the psstatus structure as 763 * part of FreeReconControl() */ 764 765 766 767 reconDesc->state = 6; 768 769 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 770 rf_StopUserStats(raidPtr); 771 rf_PrintUserStats(raidPtr); /* print out the stats on user 772 * accs accumulated during 773 * recon */ 774 775 /* fall through to state 6 */ 776 case 6: 777 778 779 780 RF_LOCK_MUTEX(raidPtr->mutex); 781 raidPtr->numFailures--; 782 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 783 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 784 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 785 RF_UNLOCK_MUTEX(raidPtr->mutex); 786 RF_GETTIME(etime); 787 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 788 789 /* XXX -- why is state 7 different from state 6 if there is no 790 * return() here? -- XXX Note that I set elpsd above & use it 791 * below, so if you put a return here you'll have to fix this. 792 * (also, FreeReconControl is called below) */ 793 794 case 7: 795 796 rf_ResumeNewRequests(raidPtr); 797 798 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col); 799 xor_s = raidPtr->accumXorTimeUs / 1000000; 800 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 801 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 802 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 803 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 804 (int) raidPtr->reconControl[row]->starttime.tv_sec, 805 (int) raidPtr->reconControl[row]->starttime.tv_usec, 806 (int) etime.tv_sec, (int) etime.tv_usec); 807 rf_print_cpu_util("reconstruction"); 808 #if RF_RECON_STATS > 0 809 printf("Total head-sep stall count was %d\n", 810 (int) reconDesc->hsStallCount); 811 #endif /* RF_RECON_STATS > 0 */ 812 rf_FreeReconControl(raidPtr, row); 813 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 814 FreeReconDesc(reconDesc); 815 816 } 817 818 SignalReconDone(raidPtr); 819 return (0); 820 } 821 /***************************************************************************************** 822 * do the right thing upon each reconstruction event. 823 * returns nonzero if and only if there is nothing left unread on the indicated disk 824 ****************************************************************************************/ 825 static int 826 ProcessReconEvent(raidPtr, frow, event) 827 RF_Raid_t *raidPtr; 828 RF_RowCol_t frow; 829 RF_ReconEvent_t *event; 830 { 831 int retcode = 0, submitblocked; 832 RF_ReconBuffer_t *rbuf; 833 RF_SectorCount_t sectorsPerRU; 834 835 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 836 switch (event->type) { 837 838 /* a read I/O has completed */ 839 case RF_REVENT_READDONE: 840 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 841 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 842 frow, event->col, rbuf->parityStripeID); 843 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 844 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 845 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 846 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 847 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 848 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 849 if (!submitblocked) 850 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 851 break; 852 853 /* a write I/O has completed */ 854 case RF_REVENT_WRITEDONE: 855 if (rf_floatingRbufDebug) { 856 rf_CheckFloatingRbufCount(raidPtr, 1); 857 } 858 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 859 rbuf = (RF_ReconBuffer_t *) event->arg; 860 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 861 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 862 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 863 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 864 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 865 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 866 867 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 868 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 869 raidPtr->numFullReconBuffers--; 870 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 871 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 872 } else 873 if (rbuf->type == RF_RBUF_TYPE_FORCED) 874 rf_FreeReconBuffer(rbuf); 875 else 876 RF_ASSERT(0); 877 break; 878 879 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 880 * cleared */ 881 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 882 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 883 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 884 * BUFCLEAR event if we 885 * couldn't submit */ 886 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 887 break; 888 889 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 890 * blockage has been cleared */ 891 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 892 retcode = TryToRead(raidPtr, frow, event->col); 893 break; 894 895 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 896 * reconstruction blockage has been 897 * cleared */ 898 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 899 retcode = TryToRead(raidPtr, frow, event->col); 900 break; 901 902 /* a buffer has become ready to write */ 903 case RF_REVENT_BUFREADY: 904 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 905 retcode = IssueNextWriteRequest(raidPtr, frow); 906 if (rf_floatingRbufDebug) { 907 rf_CheckFloatingRbufCount(raidPtr, 1); 908 } 909 break; 910 911 /* we need to skip the current RU entirely because it got 912 * recon'd while we were waiting for something else to happen */ 913 case RF_REVENT_SKIP: 914 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 915 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 916 break; 917 918 /* a forced-reconstruction read access has completed. Just 919 * submit the buffer */ 920 case RF_REVENT_FORCEDREADDONE: 921 rbuf = (RF_ReconBuffer_t *) event->arg; 922 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 923 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 924 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 925 RF_ASSERT(!submitblocked); 926 break; 927 928 default: 929 RF_PANIC(); 930 } 931 rf_FreeReconEventDesc(event); 932 return (retcode); 933 } 934 /***************************************************************************************** 935 * 936 * find the next thing that's needed on the indicated disk, and issue a read 937 * request for it. We assume that the reconstruction buffer associated with this 938 * process is free to receive the data. If reconstruction is blocked on the 939 * indicated RU, we issue a blockage-release request instead of a physical disk 940 * read request. If the current disk gets too far ahead of the others, we issue 941 * a head-separation wait request and return. 942 * 943 * ctrl->{ru_count, curPSID, diskOffset} and rbuf->failedDiskSectorOffset are 944 * maintained to point the the unit we're currently accessing. Note that this deviates 945 * from the standard C idiom of having counters point to the next thing to be 946 * accessed. This allows us to easily retry when we're blocked by head separation 947 * or reconstruction-blockage events. 948 * 949 * returns nonzero if and only if there is nothing left unread on the indicated disk 950 ****************************************************************************************/ 951 static int 952 IssueNextReadRequest(raidPtr, row, col) 953 RF_Raid_t *raidPtr; 954 RF_RowCol_t row; 955 RF_RowCol_t col; 956 { 957 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 958 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 959 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 960 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 961 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 962 int do_new_check = 0, retcode = 0, status; 963 964 /* if we are currently the slowest disk, mark that we have to do a new 965 * check */ 966 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 967 do_new_check = 1; 968 969 while (1) { 970 971 ctrl->ru_count++; 972 if (ctrl->ru_count < RUsPerPU) { 973 ctrl->diskOffset += sectorsPerRU; 974 rbuf->failedDiskSectorOffset += sectorsPerRU; 975 } else { 976 ctrl->curPSID++; 977 ctrl->ru_count = 0; 978 /* code left over from when head-sep was based on 979 * parity stripe id */ 980 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 981 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 982 return (1); /* finito! */ 983 } 984 /* find the disk offsets of the start of the parity 985 * stripe on both the current disk and the failed 986 * disk. skip this entire parity stripe if either disk 987 * does not appear in the indicated PS */ 988 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 989 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 990 if (status) { 991 ctrl->ru_count = RUsPerPU - 1; 992 continue; 993 } 994 } 995 rbuf->which_ru = ctrl->ru_count; 996 997 /* skip this RU if it's already been reconstructed */ 998 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 999 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1000 continue; 1001 } 1002 break; 1003 } 1004 ctrl->headSepCounter++; 1005 if (do_new_check) 1006 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1007 1008 1009 /* at this point, we have definitely decided what to do, and we have 1010 * only to see if we can actually do it now */ 1011 rbuf->parityStripeID = ctrl->curPSID; 1012 rbuf->which_ru = ctrl->ru_count; 1013 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); 1014 raidPtr->recon_tracerecs[col].reconacc = 1; 1015 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1016 retcode = TryToRead(raidPtr, row, col); 1017 return (retcode); 1018 } 1019 /* tries to issue the next read on the indicated disk. We may be blocked by (a) the heads being too 1020 * far apart, or (b) recon on the indicated RU being blocked due to a write by a user thread. 1021 * In this case, we issue a head-sep or blockage wait request, which will cause this same routine 1022 * to be invoked again later when the blockage has cleared. 1023 */ 1024 static int 1025 TryToRead(raidPtr, row, col) 1026 RF_Raid_t *raidPtr; 1027 RF_RowCol_t row; 1028 RF_RowCol_t col; 1029 { 1030 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1031 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1032 RF_StripeNum_t psid = ctrl->curPSID; 1033 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1034 RF_DiskQueueData_t *req; 1035 int status, created = 0; 1036 RF_ReconParityStripeStatus_t *pssPtr; 1037 1038 /* if the current disk is too far ahead of the others, issue a 1039 * head-separation wait and return */ 1040 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1041 return (0); 1042 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1043 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1044 1045 /* if recon is blocked on the indicated parity stripe, issue a 1046 * block-wait request and return. this also must mark the indicated RU 1047 * in the stripe as under reconstruction if not blocked. */ 1048 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1049 if (status == RF_PSS_RECON_BLOCKED) { 1050 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1051 goto out; 1052 } else 1053 if (status == RF_PSS_FORCED_ON_WRITE) { 1054 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1055 goto out; 1056 } 1057 /* make one last check to be sure that the indicated RU didn't get 1058 * reconstructed while we were waiting for something else to happen. 1059 * This is unfortunate in that it causes us to make this check twice 1060 * in the normal case. Might want to make some attempt to re-work 1061 * this so that we only do this check if we've definitely blocked on 1062 * one of the above checks. When this condition is detected, we may 1063 * have just created a bogus status entry, which we need to delete. */ 1064 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1065 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1066 if (created) 1067 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1068 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1069 goto out; 1070 } 1071 /* found something to read. issue the I/O */ 1072 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1073 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1074 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1075 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1076 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1077 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1078 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1079 1080 /* should be ok to use a NULL proc pointer here, all the bufs we use 1081 * should be in kernel space */ 1082 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1083 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1084 1085 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1086 1087 ctrl->rbuf->arg = (void *) req; 1088 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1089 pssPtr->issued[col] = 1; 1090 1091 out: 1092 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1093 return (0); 1094 } 1095 1096 1097 /* given a parity stripe ID, we want to find out whether both the current disk and the 1098 * failed disk exist in that parity stripe. If not, we want to skip this whole PS. 1099 * If so, we want to find the disk offset of the start of the PS on both the current 1100 * disk and the failed disk. 1101 * 1102 * this works by getting a list of disks comprising the indicated parity stripe, and 1103 * searching the list for the current and failed disks. Once we've decided they both 1104 * exist in the parity stripe, we need to decide whether each is data or parity, 1105 * so that we'll know which mapping function to call to get the corresponding disk 1106 * offsets. 1107 * 1108 * this is kind of unpleasant, but doing it this way allows the reconstruction code 1109 * to use parity stripe IDs rather than physical disks address to march through the 1110 * failed disk, which greatly simplifies a lot of code, as well as eliminating the 1111 * need for a reverse-mapping function. I also think it will execute faster, since 1112 * the calls to the mapping module are kept to a minimum. 1113 * 1114 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING THE STRIPE 1115 * IN THE CORRECT ORDER 1116 */ 1117 static int 1118 ComputePSDiskOffsets( 1119 RF_Raid_t * raidPtr, /* raid descriptor */ 1120 RF_StripeNum_t psid, /* parity stripe identifier */ 1121 RF_RowCol_t row, /* row and column of disk to find the offsets 1122 * for */ 1123 RF_RowCol_t col, 1124 RF_SectorNum_t * outDiskOffset, 1125 RF_SectorNum_t * outFailedDiskSectorOffset, 1126 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1127 RF_RowCol_t * spCol, 1128 RF_SectorNum_t * spOffset) 1129 { /* OUT: offset into disk containing spare unit */ 1130 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1131 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1132 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1133 RF_RowCol_t *diskids; 1134 u_int i, j, k, i_offset, j_offset; 1135 RF_RowCol_t prow, pcol; 1136 int testcol, testrow; 1137 RF_RowCol_t stripe; 1138 RF_SectorNum_t poffset; 1139 char i_is_parity = 0, j_is_parity = 0; 1140 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1141 1142 /* get a listing of the disks comprising that stripe */ 1143 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1144 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1145 RF_ASSERT(diskids); 1146 1147 /* reject this entire parity stripe if it does not contain the 1148 * indicated disk or it does not contain the failed disk */ 1149 if (row != stripe) 1150 goto skipit; 1151 for (i = 0; i < stripeWidth; i++) { 1152 if (col == diskids[i]) 1153 break; 1154 } 1155 if (i == stripeWidth) 1156 goto skipit; 1157 for (j = 0; j < stripeWidth; j++) { 1158 if (fcol == diskids[j]) 1159 break; 1160 } 1161 if (j == stripeWidth) { 1162 goto skipit; 1163 } 1164 /* find out which disk the parity is on */ 1165 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1166 1167 /* find out if either the current RU or the failed RU is parity */ 1168 /* also, if the parity occurs in this stripe prior to the data and/or 1169 * failed col, we need to decrement i and/or j */ 1170 for (k = 0; k < stripeWidth; k++) 1171 if (diskids[k] == pcol) 1172 break; 1173 RF_ASSERT(k < stripeWidth); 1174 i_offset = i; 1175 j_offset = j; 1176 if (k < i) 1177 i_offset--; 1178 else 1179 if (k == i) { 1180 i_is_parity = 1; 1181 i_offset = 0; 1182 } /* set offsets to zero to disable multiply 1183 * below */ 1184 if (k < j) 1185 j_offset--; 1186 else 1187 if (k == j) { 1188 j_is_parity = 1; 1189 j_offset = 0; 1190 } 1191 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1192 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1193 * tells us how far into the stripe the [current,failed] disk is. */ 1194 1195 /* call the mapping routine to get the offset into the current disk, 1196 * repeat for failed disk. */ 1197 if (i_is_parity) 1198 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1199 else 1200 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1201 1202 RF_ASSERT(row == testrow && col == testcol); 1203 1204 if (j_is_parity) 1205 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1206 else 1207 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1208 RF_ASSERT(row == testrow && fcol == testcol); 1209 1210 /* now locate the spare unit for the failed unit */ 1211 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1212 if (j_is_parity) 1213 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1214 else 1215 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1216 } else { 1217 *spRow = raidPtr->reconControl[row]->spareRow; 1218 *spCol = raidPtr->reconControl[row]->spareCol; 1219 *spOffset = *outFailedDiskSectorOffset; 1220 } 1221 1222 return (0); 1223 1224 skipit: 1225 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1226 psid, row, col); 1227 return (1); 1228 } 1229 /* this is called when a buffer has become ready to write to the replacement disk */ 1230 static int 1231 IssueNextWriteRequest(raidPtr, row) 1232 RF_Raid_t *raidPtr; 1233 RF_RowCol_t row; 1234 { 1235 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1236 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1237 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1238 RF_ReconBuffer_t *rbuf; 1239 RF_DiskQueueData_t *req; 1240 1241 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1242 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1243 * have gotten the event that sent us here */ 1244 RF_ASSERT(rbuf->pssPtr); 1245 1246 rbuf->pssPtr->writeRbuf = rbuf; 1247 rbuf->pssPtr = NULL; 1248 1249 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1250 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1251 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1252 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1253 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1254 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1255 1256 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1257 * kernel space */ 1258 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1259 sectorsPerRU, rbuf->buffer, 1260 rbuf->parityStripeID, rbuf->which_ru, 1261 ReconWriteDoneProc, (void *) rbuf, NULL, 1262 &raidPtr->recon_tracerecs[fcol], 1263 (void *) raidPtr, 0, NULL); 1264 1265 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1266 1267 rbuf->arg = (void *) req; 1268 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1269 1270 return (0); 1271 } 1272 /* this gets called upon the completion of a reconstruction read operation 1273 * the arg is a pointer to the per-disk reconstruction control structure 1274 * for the process that just finished a read. 1275 * 1276 * called at interrupt context in the kernel, so don't do anything illegal here. 1277 */ 1278 static int 1279 ReconReadDoneProc(arg, status) 1280 void *arg; 1281 int status; 1282 { 1283 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1284 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1285 1286 if (status) { 1287 /* 1288 * XXX 1289 */ 1290 printf("Recon read failed!\n"); 1291 RF_PANIC(); 1292 } 1293 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1294 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1295 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1296 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1297 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1298 1299 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1300 return (0); 1301 } 1302 /* this gets called upon the completion of a reconstruction write operation. 1303 * the arg is a pointer to the rbuf that was just written 1304 * 1305 * called at interrupt context in the kernel, so don't do anything illegal here. 1306 */ 1307 static int 1308 ReconWriteDoneProc(arg, status) 1309 void *arg; 1310 int status; 1311 { 1312 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1313 1314 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1315 if (status) { 1316 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1317 * write failed!\n"); */ 1318 RF_PANIC(); 1319 } 1320 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1321 return (0); 1322 } 1323 1324 1325 /* computes a new minimum head sep, and wakes up anyone who needs to be woken as a result */ 1326 static void 1327 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1328 RF_Raid_t *raidPtr; 1329 RF_RowCol_t row; 1330 RF_HeadSepLimit_t hsCtr; 1331 { 1332 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1333 RF_HeadSepLimit_t new_min; 1334 RF_RowCol_t i; 1335 RF_CallbackDesc_t *p; 1336 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1337 * of a minimum */ 1338 1339 1340 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1341 1342 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1343 for (i = 0; i < raidPtr->numCol; i++) 1344 if (i != reconCtrlPtr->fcol) { 1345 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1346 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1347 } 1348 /* set the new minimum and wake up anyone who can now run again */ 1349 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1350 reconCtrlPtr->minHeadSepCounter = new_min; 1351 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1352 while (reconCtrlPtr->headSepCBList) { 1353 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1354 break; 1355 p = reconCtrlPtr->headSepCBList; 1356 reconCtrlPtr->headSepCBList = p->next; 1357 p->next = NULL; 1358 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1359 rf_FreeCallbackDesc(p); 1360 } 1361 1362 } 1363 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1364 } 1365 /* checks to see that the maximum head separation will not be violated 1366 * if we initiate a reconstruction I/O on the indicated disk. Limiting the 1367 * maximum head separation between two disks eliminates the nasty buffer-stall 1368 * conditions that occur when one disk races ahead of the others and consumes 1369 * all of the floating recon buffers. This code is complex and unpleasant 1370 * but it's necessary to avoid some very nasty, albeit fairly rare, 1371 * reconstruction behavior. 1372 * 1373 * returns non-zero if and only if we have to stop working on the indicated disk 1374 * due to a head-separation delay. 1375 */ 1376 static int 1377 CheckHeadSeparation( 1378 RF_Raid_t * raidPtr, 1379 RF_PerDiskReconCtrl_t * ctrl, 1380 RF_RowCol_t row, 1381 RF_RowCol_t col, 1382 RF_HeadSepLimit_t hsCtr, 1383 RF_ReconUnitNum_t which_ru) 1384 { 1385 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1386 RF_CallbackDesc_t *cb, *p, *pt; 1387 int retval = 0, tid; 1388 1389 /* if we're too far ahead of the slowest disk, stop working on this 1390 * disk until the slower ones catch up. We do this by scheduling a 1391 * wakeup callback for the time when the slowest disk has caught up. 1392 * We define "caught up" with 20% hysteresis, i.e. the head separation 1393 * must have fallen to at most 80% of the max allowable head 1394 * separation before we'll wake up. 1395 * 1396 */ 1397 rf_get_threadid(tid); 1398 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1399 if ((raidPtr->headSepLimit >= 0) && 1400 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1401 Dprintf6("[%d] RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1402 tid, row, col, ctrl->headSepCounter, reconCtrlPtr->minHeadSepCounter, raidPtr->headSepLimit); 1403 cb = rf_AllocCallbackDesc(); 1404 /* the minHeadSepCounter value we have to get to before we'll 1405 * wake up. build in 20% hysteresis. */ 1406 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1407 cb->row = row; 1408 cb->col = col; 1409 cb->next = NULL; 1410 1411 /* insert this callback descriptor into the sorted list of 1412 * pending head-sep callbacks */ 1413 p = reconCtrlPtr->headSepCBList; 1414 if (!p) 1415 reconCtrlPtr->headSepCBList = cb; 1416 else 1417 if (cb->callbackArg.v < p->callbackArg.v) { 1418 cb->next = reconCtrlPtr->headSepCBList; 1419 reconCtrlPtr->headSepCBList = cb; 1420 } else { 1421 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1422 cb->next = p; 1423 pt->next = cb; 1424 } 1425 retval = 1; 1426 #if RF_RECON_STATS > 0 1427 ctrl->reconCtrl->reconDesc->hsStallCount++; 1428 #endif /* RF_RECON_STATS > 0 */ 1429 } 1430 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1431 1432 return (retval); 1433 } 1434 /* checks to see if reconstruction has been either forced or blocked by a user operation. 1435 * if forced, we skip this RU entirely. 1436 * else if blocked, put ourselves on the wait list. 1437 * else return 0. 1438 * 1439 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1440 */ 1441 static int 1442 CheckForcedOrBlockedReconstruction( 1443 RF_Raid_t * raidPtr, 1444 RF_ReconParityStripeStatus_t * pssPtr, 1445 RF_PerDiskReconCtrl_t * ctrl, 1446 RF_RowCol_t row, 1447 RF_RowCol_t col, 1448 RF_StripeNum_t psid, 1449 RF_ReconUnitNum_t which_ru) 1450 { 1451 RF_CallbackDesc_t *cb; 1452 int retcode = 0; 1453 1454 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1455 retcode = RF_PSS_FORCED_ON_WRITE; 1456 else 1457 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1458 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1459 cb = rf_AllocCallbackDesc(); /* append ourselves to 1460 * the blockage-wait 1461 * list */ 1462 cb->row = row; 1463 cb->col = col; 1464 cb->next = pssPtr->blockWaitList; 1465 pssPtr->blockWaitList = cb; 1466 retcode = RF_PSS_RECON_BLOCKED; 1467 } 1468 if (!retcode) 1469 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1470 * reconstruction */ 1471 1472 return (retcode); 1473 } 1474 /* if reconstruction is currently ongoing for the indicated stripeID, reconstruction 1475 * is forced to completion and we return non-zero to indicate that the caller must 1476 * wait. If not, then reconstruction is blocked on the indicated stripe and the 1477 * routine returns zero. If and only if we return non-zero, we'll cause the cbFunc 1478 * to get invoked with the cbArg when the reconstruction has completed. 1479 */ 1480 int 1481 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1482 RF_Raid_t *raidPtr; 1483 RF_AccessStripeMap_t *asmap; 1484 void (*cbFunc) (RF_Raid_t *, void *); 1485 void *cbArg; 1486 { 1487 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1488 * we're working on */ 1489 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1490 * forcing recon on */ 1491 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1492 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1493 * stripe status structure */ 1494 RF_StripeNum_t psid; /* parity stripe id */ 1495 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1496 * offset */ 1497 RF_RowCol_t *diskids; 1498 RF_RowCol_t stripe; 1499 int tid; 1500 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1501 RF_RowCol_t fcol, diskno, i; 1502 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1503 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1504 RF_CallbackDesc_t *cb; 1505 int created = 0, nPromoted; 1506 1507 rf_get_threadid(tid); 1508 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1509 1510 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1511 1512 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1513 1514 /* if recon is not ongoing on this PS, just return */ 1515 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1516 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1517 return (0); 1518 } 1519 /* otherwise, we have to wait for reconstruction to complete on this 1520 * RU. */ 1521 /* In order to avoid waiting for a potentially large number of 1522 * low-priority accesses to complete, we force a normal-priority (i.e. 1523 * not low-priority) reconstruction on this RU. */ 1524 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1525 DDprintf1("Forcing recon on psid %ld\n", psid); 1526 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1527 * forced recon */ 1528 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1529 * that we just set */ 1530 fcol = raidPtr->reconControl[row]->fcol; 1531 1532 /* get a listing of the disks comprising the indicated stripe */ 1533 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1534 RF_ASSERT(row == stripe); 1535 1536 /* For previously issued reads, elevate them to normal 1537 * priority. If the I/O has already completed, it won't be 1538 * found in the queue, and hence this will be a no-op. For 1539 * unissued reads, allocate buffers and issue new reads. The 1540 * fact that we've set the FORCED bit means that the regular 1541 * recon procs will not re-issue these reqs */ 1542 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1543 if ((diskno = diskids[i]) != fcol) { 1544 if (pssPtr->issued[diskno]) { 1545 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1546 if (rf_reconDebug && nPromoted) 1547 printf("[%d] promoted read from row %d col %d\n", tid, row, diskno); 1548 } else { 1549 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1550 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1551 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1552 * location */ 1553 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1554 new_rbuf->which_ru = which_ru; 1555 new_rbuf->failedDiskSectorOffset = fd_offset; 1556 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1557 1558 /* use NULL b_proc b/c all addrs 1559 * should be in kernel space */ 1560 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1561 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1562 NULL, (void *) raidPtr, 0, NULL); 1563 1564 RF_ASSERT(req); /* XXX -- fix this -- 1565 * XXX */ 1566 1567 new_rbuf->arg = req; 1568 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1569 Dprintf3("[%d] Issued new read req on row %d col %d\n", tid, row, diskno); 1570 } 1571 } 1572 /* if the write is sitting in the disk queue, elevate its 1573 * priority */ 1574 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1575 printf("[%d] promoted write to row %d col %d\n", tid, row, fcol); 1576 } 1577 /* install a callback descriptor to be invoked when recon completes on 1578 * this parity stripe. */ 1579 cb = rf_AllocCallbackDesc(); 1580 /* XXX the following is bogus.. These functions don't really match!! 1581 * GO */ 1582 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1583 cb->callbackArg.p = (void *) cbArg; 1584 cb->next = pssPtr->procWaitList; 1585 pssPtr->procWaitList = cb; 1586 DDprintf2("[%d] Waiting for forced recon on psid %ld\n", tid, psid); 1587 1588 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1589 return (1); 1590 } 1591 /* called upon the completion of a forced reconstruction read. 1592 * all we do is schedule the FORCEDREADONE event. 1593 * called at interrupt context in the kernel, so don't do anything illegal here. 1594 */ 1595 static void 1596 ForceReconReadDoneProc(arg, status) 1597 void *arg; 1598 int status; 1599 { 1600 RF_ReconBuffer_t *rbuf = arg; 1601 1602 if (status) { 1603 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1604 * recon read 1605 * failed!\n"); */ 1606 RF_PANIC(); 1607 } 1608 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1609 } 1610 /* releases a block on the reconstruction of the indicated stripe */ 1611 int 1612 rf_UnblockRecon(raidPtr, asmap) 1613 RF_Raid_t *raidPtr; 1614 RF_AccessStripeMap_t *asmap; 1615 { 1616 RF_RowCol_t row = asmap->origRow; 1617 RF_StripeNum_t stripeID = asmap->stripeID; 1618 RF_ReconParityStripeStatus_t *pssPtr; 1619 RF_ReconUnitNum_t which_ru; 1620 RF_StripeNum_t psid; 1621 int tid, created = 0; 1622 RF_CallbackDesc_t *cb; 1623 1624 rf_get_threadid(tid); 1625 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1626 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1627 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1628 1629 /* When recon is forced, the pss desc can get deleted before we get 1630 * back to unblock recon. But, this can _only_ happen when recon is 1631 * forced. It would be good to put some kind of sanity check here, but 1632 * how to decide if recon was just forced or not? */ 1633 if (!pssPtr) { 1634 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1635 * RU %d\n",psid,which_ru); */ 1636 if (rf_reconDebug || rf_pssDebug) 1637 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1638 goto out; 1639 } 1640 pssPtr->blockCount--; 1641 Dprintf3("[%d] unblocking recon on psid %ld: blockcount is %d\n", tid, psid, pssPtr->blockCount); 1642 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1643 1644 /* unblock recon before calling CauseReconEvent in case 1645 * CauseReconEvent causes us to try to issue a new read before 1646 * returning here. */ 1647 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1648 1649 1650 while (pssPtr->blockWaitList) { /* spin through the block-wait 1651 * list and release all the 1652 * waiters */ 1653 cb = pssPtr->blockWaitList; 1654 pssPtr->blockWaitList = cb->next; 1655 cb->next = NULL; 1656 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1657 rf_FreeCallbackDesc(cb); 1658 } 1659 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was 1660 * requested while recon 1661 * was blocked */ 1662 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1663 } 1664 } 1665 out: 1666 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1667 return (0); 1668 } 1669