1 /* $NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 /************************************************************************** 162 * 163 * sets up the parameters that will be used by the reconstruction process 164 * currently there are none, except for those that the layout-specific 165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 166 * 167 * in the kernel, we fire off the recon thread. 168 * 169 **************************************************************************/ 170 static void 171 rf_ShutdownReconstruction(ignored) 172 void *ignored; 173 { 174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 176 } 177 178 int 179 rf_ConfigureReconstruction(listp) 180 RF_ShutdownList_t **listp; 181 { 182 int rc; 183 184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 186 if (rf_recond_freelist == NULL) 187 return (ENOMEM); 188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 190 if (rf_rdp_freelist == NULL) { 191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 192 return (ENOMEM); 193 } 194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 195 if (rc) { 196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 197 rf_ShutdownReconstruction(NULL); 198 return (rc); 199 } 200 return (0); 201 } 202 203 static RF_RaidReconDesc_t * 204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 205 RF_Raid_t *raidPtr; 206 RF_RowCol_t row; 207 RF_RowCol_t col; 208 RF_RaidDisk_t *spareDiskPtr; 209 int numDisksDone; 210 RF_RowCol_t srow; 211 RF_RowCol_t scol; 212 { 213 214 RF_RaidReconDesc_t *reconDesc; 215 216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 217 218 reconDesc->raidPtr = raidPtr; 219 reconDesc->row = row; 220 reconDesc->col = col; 221 reconDesc->spareDiskPtr = spareDiskPtr; 222 reconDesc->numDisksDone = numDisksDone; 223 reconDesc->srow = srow; 224 reconDesc->scol = scol; 225 reconDesc->state = 0; 226 reconDesc->next = NULL; 227 228 return (reconDesc); 229 } 230 231 static void 232 FreeReconDesc(reconDesc) 233 RF_RaidReconDesc_t *reconDesc; 234 { 235 #if RF_RECON_STATS > 0 236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 238 #endif /* RF_RECON_STATS > 0 */ 239 printf("RAIDframe: %lu max exec ticks\n", 240 (long) reconDesc->maxReconExecTicks); 241 #if (RF_RECON_STATS > 0) || defined(KERNEL) 242 printf("\n"); 243 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 245 } 246 247 248 /***************************************************************************** 249 * 250 * primary routine to reconstruct a failed disk. This should be called from 251 * within its own thread. It won't return until reconstruction completes, 252 * fails, or is aborted. 253 *****************************************************************************/ 254 int 255 rf_ReconstructFailedDisk(raidPtr, row, col) 256 RF_Raid_t *raidPtr; 257 RF_RowCol_t row; 258 RF_RowCol_t col; 259 { 260 RF_LayoutSW_t *lp; 261 int rc; 262 263 lp = raidPtr->Layout.map; 264 if (lp->SubmitReconBuffer) { 265 /* 266 * The current infrastructure only supports reconstructing one 267 * disk at a time for each array. 268 */ 269 RF_LOCK_MUTEX(raidPtr->mutex); 270 while (raidPtr->reconInProgress) { 271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 272 } 273 raidPtr->reconInProgress++; 274 RF_UNLOCK_MUTEX(raidPtr->mutex); 275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 276 RF_LOCK_MUTEX(raidPtr->mutex); 277 raidPtr->reconInProgress--; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 } else { 280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 281 lp->parityConfig); 282 rc = EIO; 283 } 284 RF_SIGNAL_COND(raidPtr->waitForReconCond); 285 return (rc); 286 } 287 288 int 289 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 290 RF_Raid_t *raidPtr; 291 RF_RowCol_t row; 292 RF_RowCol_t col; 293 { 294 RF_ComponentLabel_t c_label; 295 RF_RaidDisk_t *spareDiskPtr = NULL; 296 RF_RaidReconDesc_t *reconDesc; 297 RF_RowCol_t srow, scol; 298 int numDisksDone = 0, rc; 299 300 /* first look for a spare drive onto which to reconstruct the data */ 301 /* spare disk descriptors are stored in row 0. This may have to 302 * change eventually */ 303 304 RF_LOCK_MUTEX(raidPtr->mutex); 305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 306 307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 308 if (raidPtr->status[row] != rf_rs_degraded) { 309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 310 RF_UNLOCK_MUTEX(raidPtr->mutex); 311 return (EINVAL); 312 } 313 srow = row; 314 scol = (-1); 315 } else { 316 srow = 0; 317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 319 spareDiskPtr = &raidPtr->Disks[srow][scol]; 320 spareDiskPtr->status = rf_ds_used_spare; 321 break; 322 } 323 } 324 if (!spareDiskPtr) { 325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 326 RF_UNLOCK_MUTEX(raidPtr->mutex); 327 return (ENOSPC); 328 } 329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 330 } 331 RF_UNLOCK_MUTEX(raidPtr->mutex); 332 333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 334 raidPtr->reconDesc = (void *) reconDesc; 335 #if RF_RECON_STATS > 0 336 reconDesc->hsStallCount = 0; 337 reconDesc->numReconExecDelays = 0; 338 reconDesc->numReconEventWaits = 0; 339 #endif /* RF_RECON_STATS > 0 */ 340 reconDesc->reconExecTimerRunning = 0; 341 reconDesc->reconExecTicks = 0; 342 reconDesc->maxReconExecTicks = 0; 343 rc = rf_ContinueReconstructFailedDisk(reconDesc); 344 345 if (!rc) { 346 /* fix up the component label */ 347 /* Don't actually need the read here.. */ 348 raidread_component_label( 349 raidPtr->raid_cinfo[srow][scol].ci_dev, 350 raidPtr->raid_cinfo[srow][scol].ci_vp, 351 &c_label); 352 353 raid_init_component_label( raidPtr, &c_label); 354 c_label.row = row; 355 c_label.column = col; 356 c_label.clean = RF_RAID_DIRTY; 357 c_label.status = rf_ds_optimal; 358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 359 360 /* We've just done a rebuild based on all the other 361 disks, so at this point the parity is known to be 362 clean, even if it wasn't before. */ 363 364 /* XXX doesn't hold for RAID 6!!*/ 365 366 RF_LOCK_MUTEX(raidPtr->mutex); 367 raidPtr->parity_good = RF_RAID_CLEAN; 368 RF_UNLOCK_MUTEX(raidPtr->mutex); 369 370 /* XXXX MORE NEEDED HERE */ 371 372 raidwrite_component_label( 373 raidPtr->raid_cinfo[srow][scol].ci_dev, 374 raidPtr->raid_cinfo[srow][scol].ci_vp, 375 &c_label); 376 377 } 378 return (rc); 379 } 380 381 /* 382 383 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 384 and you don't get a spare until the next Monday. With this function 385 (and hot-swappable drives) you can now put your new disk containing 386 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 387 rebuild the data "on the spot". 388 389 */ 390 391 int 392 rf_ReconstructInPlace(raidPtr, row, col) 393 RF_Raid_t *raidPtr; 394 RF_RowCol_t row; 395 RF_RowCol_t col; 396 { 397 RF_RaidDisk_t *spareDiskPtr = NULL; 398 RF_RaidReconDesc_t *reconDesc; 399 RF_LayoutSW_t *lp; 400 RF_ComponentLabel_t c_label; 401 int numDisksDone = 0, rc; 402 struct partinfo dpart; 403 struct vnode *vp; 404 struct vattr va; 405 struct proc *proc; 406 int retcode; 407 int ac; 408 409 lp = raidPtr->Layout.map; 410 if (lp->SubmitReconBuffer) { 411 /* 412 * The current infrastructure only supports reconstructing one 413 * disk at a time for each array. 414 */ 415 RF_LOCK_MUTEX(raidPtr->mutex); 416 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 417 (raidPtr->numFailures > 0)) { 418 /* XXX 0 above shouldn't be constant!!! */ 419 /* some component other than this has failed. 420 Let's not make things worse than they already 421 are... */ 422 printf("raid%d: Unable to reconstruct to disk at:\n", 423 raidPtr->raidid); 424 printf("raid%d: Row: %d Col: %d Too many failures.\n", 425 raidPtr->raidid, row, col); 426 RF_UNLOCK_MUTEX(raidPtr->mutex); 427 return (EINVAL); 428 } 429 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 430 printf("raid%d: Unable to reconstruct to disk at:\n", 431 raidPtr->raidid); 432 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 433 434 RF_UNLOCK_MUTEX(raidPtr->mutex); 435 return (EINVAL); 436 } 437 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 438 RF_UNLOCK_MUTEX(raidPtr->mutex); 439 return (EINVAL); 440 } 441 442 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 443 /* "It's gone..." */ 444 raidPtr->numFailures++; 445 raidPtr->Disks[row][col].status = rf_ds_failed; 446 raidPtr->status[row] = rf_rs_degraded; 447 RF_UNLOCK_MUTEX(raidPtr->mutex); 448 rf_update_component_labels(raidPtr, 449 RF_NORMAL_COMPONENT_UPDATE); 450 RF_LOCK_MUTEX(raidPtr->mutex); 451 } 452 453 while (raidPtr->reconInProgress) { 454 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 455 } 456 457 raidPtr->reconInProgress++; 458 459 460 /* first look for a spare drive onto which to reconstruct 461 the data. spare disk descriptors are stored in row 0. 462 This may have to change eventually */ 463 464 /* Actually, we don't care if it's failed or not... 465 On a RAID set with correct parity, this function 466 should be callable on any component without ill affects. */ 467 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 468 */ 469 470 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 471 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 472 473 raidPtr->reconInProgress--; 474 RF_UNLOCK_MUTEX(raidPtr->mutex); 475 return (EINVAL); 476 } 477 478 proc = raidPtr->engine_thread; 479 480 /* This device may have been opened successfully the 481 first time. Close it before trying to open it again.. */ 482 483 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 484 #if 0 485 printf("Closed the open device: %s\n", 486 raidPtr->Disks[row][col].devname); 487 #endif 488 vp = raidPtr->raid_cinfo[row][col].ci_vp; 489 ac = raidPtr->Disks[row][col].auto_configured; 490 RF_UNLOCK_MUTEX(raidPtr->mutex); 491 rf_close_component(raidPtr, vp, ac); 492 RF_LOCK_MUTEX(raidPtr->mutex); 493 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 494 } 495 /* note that this disk was *not* auto_configured (any longer)*/ 496 raidPtr->Disks[row][col].auto_configured = 0; 497 498 #if 0 499 printf("About to (re-)open the device for rebuilding: %s\n", 500 raidPtr->Disks[row][col].devname); 501 #endif 502 RF_UNLOCK_MUTEX(raidPtr->mutex); 503 retcode = raidlookup(raidPtr->Disks[row][col].devname, 504 proc, &vp); 505 506 if (retcode) { 507 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 508 raidPtr->Disks[row][col].devname, retcode); 509 510 /* the component isn't responding properly... 511 must be still dead :-( */ 512 RF_LOCK_MUTEX(raidPtr->mutex); 513 raidPtr->reconInProgress--; 514 RF_UNLOCK_MUTEX(raidPtr->mutex); 515 return(retcode); 516 517 } else { 518 519 /* Ok, so we can at least do a lookup... 520 How about actually getting a vp for it? */ 521 522 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 523 proc)) != 0) { 524 RF_LOCK_MUTEX(raidPtr->mutex); 525 raidPtr->reconInProgress--; 526 RF_UNLOCK_MUTEX(raidPtr->mutex); 527 return(retcode); 528 } 529 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 530 FREAD, proc->p_ucred, proc); 531 if (retcode) { 532 RF_LOCK_MUTEX(raidPtr->mutex); 533 raidPtr->reconInProgress--; 534 RF_UNLOCK_MUTEX(raidPtr->mutex); 535 return(retcode); 536 } 537 RF_LOCK_MUTEX(raidPtr->mutex); 538 raidPtr->Disks[row][col].blockSize = 539 dpart.disklab->d_secsize; 540 541 raidPtr->Disks[row][col].numBlocks = 542 dpart.part->p_size - rf_protectedSectors; 543 544 raidPtr->raid_cinfo[row][col].ci_vp = vp; 545 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 546 547 raidPtr->Disks[row][col].dev = va.va_rdev; 548 549 /* we allow the user to specify that only a 550 fraction of the disks should be used this is 551 just for debug: it speeds up 552 * the parity scan */ 553 raidPtr->Disks[row][col].numBlocks = 554 raidPtr->Disks[row][col].numBlocks * 555 rf_sizePercentage / 100; 556 RF_UNLOCK_MUTEX(raidPtr->mutex); 557 } 558 559 560 561 spareDiskPtr = &raidPtr->Disks[row][col]; 562 spareDiskPtr->status = rf_ds_used_spare; 563 564 printf("raid%d: initiating in-place reconstruction on\n", 565 raidPtr->raidid); 566 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 567 raidPtr->raidid, row, col, row, col); 568 569 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 570 spareDiskPtr, numDisksDone, 571 row, col); 572 raidPtr->reconDesc = (void *) reconDesc; 573 #if RF_RECON_STATS > 0 574 reconDesc->hsStallCount = 0; 575 reconDesc->numReconExecDelays = 0; 576 reconDesc->numReconEventWaits = 0; 577 #endif /* RF_RECON_STATS > 0 */ 578 reconDesc->reconExecTimerRunning = 0; 579 reconDesc->reconExecTicks = 0; 580 reconDesc->maxReconExecTicks = 0; 581 rc = rf_ContinueReconstructFailedDisk(reconDesc); 582 583 RF_LOCK_MUTEX(raidPtr->mutex); 584 raidPtr->reconInProgress--; 585 RF_UNLOCK_MUTEX(raidPtr->mutex); 586 587 } else { 588 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 589 lp->parityConfig); 590 rc = EIO; 591 } 592 593 if (!rc) { 594 RF_LOCK_MUTEX(raidPtr->mutex); 595 /* Need to set these here, as at this point it'll be claiming 596 that the disk is in rf_ds_spared! But we know better :-) */ 597 598 raidPtr->Disks[row][col].status = rf_ds_optimal; 599 raidPtr->status[row] = rf_rs_optimal; 600 RF_UNLOCK_MUTEX(raidPtr->mutex); 601 602 /* fix up the component label */ 603 /* Don't actually need the read here.. */ 604 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 605 raidPtr->raid_cinfo[row][col].ci_vp, 606 &c_label); 607 608 RF_LOCK_MUTEX(raidPtr->mutex); 609 raid_init_component_label(raidPtr, &c_label); 610 611 c_label.row = row; 612 c_label.column = col; 613 614 /* We've just done a rebuild based on all the other 615 disks, so at this point the parity is known to be 616 clean, even if it wasn't before. */ 617 618 /* XXX doesn't hold for RAID 6!!*/ 619 620 raidPtr->parity_good = RF_RAID_CLEAN; 621 RF_UNLOCK_MUTEX(raidPtr->mutex); 622 623 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 624 raidPtr->raid_cinfo[row][col].ci_vp, 625 &c_label); 626 627 } 628 RF_SIGNAL_COND(raidPtr->waitForReconCond); 629 return (rc); 630 } 631 632 633 int 634 rf_ContinueReconstructFailedDisk(reconDesc) 635 RF_RaidReconDesc_t *reconDesc; 636 { 637 RF_Raid_t *raidPtr = reconDesc->raidPtr; 638 RF_RowCol_t row = reconDesc->row; 639 RF_RowCol_t col = reconDesc->col; 640 RF_RowCol_t srow = reconDesc->srow; 641 RF_RowCol_t scol = reconDesc->scol; 642 RF_ReconMap_t *mapPtr; 643 RF_ReconCtrl_t *tmp_reconctrl; 644 RF_ReconEvent_t *event; 645 struct timeval etime, elpsd; 646 unsigned long xor_s, xor_resid_us; 647 int retcode, i, ds; 648 649 switch (reconDesc->state) { 650 651 652 case 0: 653 654 raidPtr->accumXorTimeUs = 0; 655 656 /* create one trace record per physical disk */ 657 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 658 659 /* quiesce the array prior to starting recon. this is needed 660 * to assure no nasty interactions with pending user writes. 661 * We need to do this before we change the disk or row status. */ 662 reconDesc->state = 1; 663 664 Dprintf("RECON: begin request suspend\n"); 665 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 666 Dprintf("RECON: end request suspend\n"); 667 rf_StartUserStats(raidPtr); /* zero out the stats kept on 668 * user accs */ 669 670 /* fall through to state 1 */ 671 672 case 1: 673 674 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 675 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol); 676 677 RF_LOCK_MUTEX(raidPtr->mutex); 678 679 /* create the reconstruction control pointer and install it in 680 * the right slot */ 681 raidPtr->reconControl[row] = tmp_reconctrl; 682 mapPtr = raidPtr->reconControl[row]->reconMap; 683 raidPtr->status[row] = rf_rs_reconstructing; 684 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 685 raidPtr->Disks[row][col].spareRow = srow; 686 raidPtr->Disks[row][col].spareCol = scol; 687 688 RF_UNLOCK_MUTEX(raidPtr->mutex); 689 690 RF_GETTIME(raidPtr->reconControl[row]->starttime); 691 692 /* now start up the actual reconstruction: issue a read for 693 * each surviving disk */ 694 695 reconDesc->numDisksDone = 0; 696 for (i = 0; i < raidPtr->numCol; i++) { 697 if (i != col) { 698 /* find and issue the next I/O on the 699 * indicated disk */ 700 if (IssueNextReadRequest(raidPtr, row, i)) { 701 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 702 reconDesc->numDisksDone++; 703 } 704 } 705 } 706 707 case 2: 708 Dprintf("RECON: resume requests\n"); 709 rf_ResumeNewRequests(raidPtr); 710 711 712 reconDesc->state = 3; 713 714 case 3: 715 716 /* process reconstruction events until all disks report that 717 * they've completed all work */ 718 mapPtr = raidPtr->reconControl[row]->reconMap; 719 720 721 722 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 723 724 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 725 RF_ASSERT(event); 726 727 if (ProcessReconEvent(raidPtr, row, event)) 728 reconDesc->numDisksDone++; 729 raidPtr->reconControl[row]->numRUsTotal = 730 mapPtr->totalRUs; 731 raidPtr->reconControl[row]->numRUsComplete = 732 mapPtr->totalRUs - 733 rf_UnitsLeftToReconstruct(mapPtr); 734 735 raidPtr->reconControl[row]->percentComplete = 736 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 737 #if RF_DEBUG_RECON 738 if (rf_prReconSched) { 739 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 740 } 741 #endif 742 } 743 744 745 746 reconDesc->state = 4; 747 748 749 case 4: 750 mapPtr = raidPtr->reconControl[row]->reconMap; 751 if (rf_reconDebug) { 752 printf("RECON: all reads completed\n"); 753 } 754 /* at this point all the reads have completed. We now wait 755 * for any pending writes to complete, and then we're done */ 756 757 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 758 759 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 760 RF_ASSERT(event); 761 762 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 763 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 764 #if RF_DEBUG_RECON 765 if (rf_prReconSched) { 766 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 767 } 768 #endif 769 } 770 reconDesc->state = 5; 771 772 case 5: 773 /* Success: mark the dead disk as reconstructed. We quiesce 774 * the array here to assure no nasty interactions with pending 775 * user accesses when we free up the psstatus structure as 776 * part of FreeReconControl() */ 777 778 reconDesc->state = 6; 779 780 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 781 rf_StopUserStats(raidPtr); 782 rf_PrintUserStats(raidPtr); /* print out the stats on user 783 * accs accumulated during 784 * recon */ 785 786 /* fall through to state 6 */ 787 case 6: 788 789 790 791 RF_LOCK_MUTEX(raidPtr->mutex); 792 raidPtr->numFailures--; 793 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 794 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 795 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 796 RF_UNLOCK_MUTEX(raidPtr->mutex); 797 RF_GETTIME(etime); 798 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 799 800 /* XXX -- why is state 7 different from state 6 if there is no 801 * return() here? -- XXX Note that I set elpsd above & use it 802 * below, so if you put a return here you'll have to fix this. 803 * (also, FreeReconControl is called below) */ 804 805 case 7: 806 807 rf_ResumeNewRequests(raidPtr); 808 809 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 810 raidPtr->raidid, row, col); 811 xor_s = raidPtr->accumXorTimeUs / 1000000; 812 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 813 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 814 raidPtr->raidid, 815 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 816 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 817 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 818 raidPtr->raidid, 819 (int) raidPtr->reconControl[row]->starttime.tv_sec, 820 (int) raidPtr->reconControl[row]->starttime.tv_usec, 821 (int) etime.tv_sec, (int) etime.tv_usec); 822 823 #if RF_RECON_STATS > 0 824 printf("raid%d: Total head-sep stall count was %d\n", 825 raidPtr->raidid, (int) reconDesc->hsStallCount); 826 #endif /* RF_RECON_STATS > 0 */ 827 rf_FreeReconControl(raidPtr, row); 828 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 829 FreeReconDesc(reconDesc); 830 831 } 832 833 SignalReconDone(raidPtr); 834 return (0); 835 } 836 /***************************************************************************** 837 * do the right thing upon each reconstruction event. 838 * returns nonzero if and only if there is nothing left unread on the 839 * indicated disk 840 *****************************************************************************/ 841 static int 842 ProcessReconEvent(raidPtr, frow, event) 843 RF_Raid_t *raidPtr; 844 RF_RowCol_t frow; 845 RF_ReconEvent_t *event; 846 { 847 int retcode = 0, submitblocked; 848 RF_ReconBuffer_t *rbuf; 849 RF_SectorCount_t sectorsPerRU; 850 851 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 852 switch (event->type) { 853 854 /* a read I/O has completed */ 855 case RF_REVENT_READDONE: 856 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 857 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 858 frow, event->col, rbuf->parityStripeID); 859 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 860 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 861 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 862 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 863 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 864 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 865 if (!submitblocked) 866 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 867 break; 868 869 /* a write I/O has completed */ 870 case RF_REVENT_WRITEDONE: 871 #if RF_DEBUG_RECON 872 if (rf_floatingRbufDebug) { 873 rf_CheckFloatingRbufCount(raidPtr, 1); 874 } 875 #endif 876 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 877 rbuf = (RF_ReconBuffer_t *) event->arg; 878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 879 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 880 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 881 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 882 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 883 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 884 885 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 886 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 887 raidPtr->numFullReconBuffers--; 888 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 889 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 890 } else 891 if (rbuf->type == RF_RBUF_TYPE_FORCED) 892 rf_FreeReconBuffer(rbuf); 893 else 894 RF_ASSERT(0); 895 break; 896 897 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 898 * cleared */ 899 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 900 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 901 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 902 * BUFCLEAR event if we 903 * couldn't submit */ 904 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 905 break; 906 907 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 908 * blockage has been cleared */ 909 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 910 retcode = TryToRead(raidPtr, frow, event->col); 911 break; 912 913 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 914 * reconstruction blockage has been 915 * cleared */ 916 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 917 retcode = TryToRead(raidPtr, frow, event->col); 918 break; 919 920 /* a buffer has become ready to write */ 921 case RF_REVENT_BUFREADY: 922 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 923 retcode = IssueNextWriteRequest(raidPtr, frow); 924 #if RF_DEBUG_RECON 925 if (rf_floatingRbufDebug) { 926 rf_CheckFloatingRbufCount(raidPtr, 1); 927 } 928 #endif 929 break; 930 931 /* we need to skip the current RU entirely because it got 932 * recon'd while we were waiting for something else to happen */ 933 case RF_REVENT_SKIP: 934 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 935 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 936 break; 937 938 /* a forced-reconstruction read access has completed. Just 939 * submit the buffer */ 940 case RF_REVENT_FORCEDREADDONE: 941 rbuf = (RF_ReconBuffer_t *) event->arg; 942 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 943 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 944 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 945 RF_ASSERT(!submitblocked); 946 break; 947 948 default: 949 RF_PANIC(); 950 } 951 rf_FreeReconEventDesc(event); 952 return (retcode); 953 } 954 /***************************************************************************** 955 * 956 * find the next thing that's needed on the indicated disk, and issue 957 * a read request for it. We assume that the reconstruction buffer 958 * associated with this process is free to receive the data. If 959 * reconstruction is blocked on the indicated RU, we issue a 960 * blockage-release request instead of a physical disk read request. 961 * If the current disk gets too far ahead of the others, we issue a 962 * head-separation wait request and return. 963 * 964 * ctrl->{ru_count, curPSID, diskOffset} and 965 * rbuf->failedDiskSectorOffset are maintained to point to the unit 966 * we're currently accessing. Note that this deviates from the 967 * standard C idiom of having counters point to the next thing to be 968 * accessed. This allows us to easily retry when we're blocked by 969 * head separation or reconstruction-blockage events. 970 * 971 * returns nonzero if and only if there is nothing left unread on the 972 * indicated disk 973 * 974 *****************************************************************************/ 975 static int 976 IssueNextReadRequest(raidPtr, row, col) 977 RF_Raid_t *raidPtr; 978 RF_RowCol_t row; 979 RF_RowCol_t col; 980 { 981 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 982 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 983 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 984 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 985 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 986 int do_new_check = 0, retcode = 0, status; 987 988 /* if we are currently the slowest disk, mark that we have to do a new 989 * check */ 990 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 991 do_new_check = 1; 992 993 while (1) { 994 995 ctrl->ru_count++; 996 if (ctrl->ru_count < RUsPerPU) { 997 ctrl->diskOffset += sectorsPerRU; 998 rbuf->failedDiskSectorOffset += sectorsPerRU; 999 } else { 1000 ctrl->curPSID++; 1001 ctrl->ru_count = 0; 1002 /* code left over from when head-sep was based on 1003 * parity stripe id */ 1004 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 1005 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 1006 return (1); /* finito! */ 1007 } 1008 /* find the disk offsets of the start of the parity 1009 * stripe on both the current disk and the failed 1010 * disk. skip this entire parity stripe if either disk 1011 * does not appear in the indicated PS */ 1012 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1013 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1014 if (status) { 1015 ctrl->ru_count = RUsPerPU - 1; 1016 continue; 1017 } 1018 } 1019 rbuf->which_ru = ctrl->ru_count; 1020 1021 /* skip this RU if it's already been reconstructed */ 1022 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1023 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1024 continue; 1025 } 1026 break; 1027 } 1028 ctrl->headSepCounter++; 1029 if (do_new_check) 1030 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1031 1032 1033 /* at this point, we have definitely decided what to do, and we have 1034 * only to see if we can actually do it now */ 1035 rbuf->parityStripeID = ctrl->curPSID; 1036 rbuf->which_ru = ctrl->ru_count; 1037 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1038 sizeof(raidPtr->recon_tracerecs[col])); 1039 raidPtr->recon_tracerecs[col].reconacc = 1; 1040 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1041 retcode = TryToRead(raidPtr, row, col); 1042 return (retcode); 1043 } 1044 1045 /* 1046 * tries to issue the next read on the indicated disk. We may be 1047 * blocked by (a) the heads being too far apart, or (b) recon on the 1048 * indicated RU being blocked due to a write by a user thread. In 1049 * this case, we issue a head-sep or blockage wait request, which will 1050 * cause this same routine to be invoked again later when the blockage 1051 * has cleared. 1052 */ 1053 1054 static int 1055 TryToRead(raidPtr, row, col) 1056 RF_Raid_t *raidPtr; 1057 RF_RowCol_t row; 1058 RF_RowCol_t col; 1059 { 1060 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1061 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1062 RF_StripeNum_t psid = ctrl->curPSID; 1063 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1064 RF_DiskQueueData_t *req; 1065 int status, created = 0; 1066 RF_ReconParityStripeStatus_t *pssPtr; 1067 1068 /* if the current disk is too far ahead of the others, issue a 1069 * head-separation wait and return */ 1070 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1071 return (0); 1072 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1073 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1074 1075 /* if recon is blocked on the indicated parity stripe, issue a 1076 * block-wait request and return. this also must mark the indicated RU 1077 * in the stripe as under reconstruction if not blocked. */ 1078 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1079 if (status == RF_PSS_RECON_BLOCKED) { 1080 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1081 goto out; 1082 } else 1083 if (status == RF_PSS_FORCED_ON_WRITE) { 1084 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1085 goto out; 1086 } 1087 /* make one last check to be sure that the indicated RU didn't get 1088 * reconstructed while we were waiting for something else to happen. 1089 * This is unfortunate in that it causes us to make this check twice 1090 * in the normal case. Might want to make some attempt to re-work 1091 * this so that we only do this check if we've definitely blocked on 1092 * one of the above checks. When this condition is detected, we may 1093 * have just created a bogus status entry, which we need to delete. */ 1094 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1095 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1096 if (created) 1097 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1098 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1099 goto out; 1100 } 1101 /* found something to read. issue the I/O */ 1102 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1103 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1104 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1105 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1106 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1107 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1108 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1109 1110 /* should be ok to use a NULL proc pointer here, all the bufs we use 1111 * should be in kernel space */ 1112 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1113 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1114 1115 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1116 1117 ctrl->rbuf->arg = (void *) req; 1118 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1119 pssPtr->issued[col] = 1; 1120 1121 out: 1122 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1123 return (0); 1124 } 1125 1126 1127 /* 1128 * given a parity stripe ID, we want to find out whether both the 1129 * current disk and the failed disk exist in that parity stripe. If 1130 * not, we want to skip this whole PS. If so, we want to find the 1131 * disk offset of the start of the PS on both the current disk and the 1132 * failed disk. 1133 * 1134 * this works by getting a list of disks comprising the indicated 1135 * parity stripe, and searching the list for the current and failed 1136 * disks. Once we've decided they both exist in the parity stripe, we 1137 * need to decide whether each is data or parity, so that we'll know 1138 * which mapping function to call to get the corresponding disk 1139 * offsets. 1140 * 1141 * this is kind of unpleasant, but doing it this way allows the 1142 * reconstruction code to use parity stripe IDs rather than physical 1143 * disks address to march through the failed disk, which greatly 1144 * simplifies a lot of code, as well as eliminating the need for a 1145 * reverse-mapping function. I also think it will execute faster, 1146 * since the calls to the mapping module are kept to a minimum. 1147 * 1148 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1149 * THE STRIPE IN THE CORRECT ORDER */ 1150 1151 1152 static int 1153 ComputePSDiskOffsets( 1154 RF_Raid_t * raidPtr, /* raid descriptor */ 1155 RF_StripeNum_t psid, /* parity stripe identifier */ 1156 RF_RowCol_t row, /* row and column of disk to find the offsets 1157 * for */ 1158 RF_RowCol_t col, 1159 RF_SectorNum_t * outDiskOffset, 1160 RF_SectorNum_t * outFailedDiskSectorOffset, 1161 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1162 RF_RowCol_t * spCol, 1163 RF_SectorNum_t * spOffset) 1164 { /* OUT: offset into disk containing spare unit */ 1165 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1166 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1167 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1168 RF_RowCol_t *diskids; 1169 u_int i, j, k, i_offset, j_offset; 1170 RF_RowCol_t prow, pcol; 1171 int testcol, testrow; 1172 RF_RowCol_t stripe; 1173 RF_SectorNum_t poffset; 1174 char i_is_parity = 0, j_is_parity = 0; 1175 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1176 1177 /* get a listing of the disks comprising that stripe */ 1178 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1179 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1180 RF_ASSERT(diskids); 1181 1182 /* reject this entire parity stripe if it does not contain the 1183 * indicated disk or it does not contain the failed disk */ 1184 if (row != stripe) 1185 goto skipit; 1186 for (i = 0; i < stripeWidth; i++) { 1187 if (col == diskids[i]) 1188 break; 1189 } 1190 if (i == stripeWidth) 1191 goto skipit; 1192 for (j = 0; j < stripeWidth; j++) { 1193 if (fcol == diskids[j]) 1194 break; 1195 } 1196 if (j == stripeWidth) { 1197 goto skipit; 1198 } 1199 /* find out which disk the parity is on */ 1200 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1201 1202 /* find out if either the current RU or the failed RU is parity */ 1203 /* also, if the parity occurs in this stripe prior to the data and/or 1204 * failed col, we need to decrement i and/or j */ 1205 for (k = 0; k < stripeWidth; k++) 1206 if (diskids[k] == pcol) 1207 break; 1208 RF_ASSERT(k < stripeWidth); 1209 i_offset = i; 1210 j_offset = j; 1211 if (k < i) 1212 i_offset--; 1213 else 1214 if (k == i) { 1215 i_is_parity = 1; 1216 i_offset = 0; 1217 } /* set offsets to zero to disable multiply 1218 * below */ 1219 if (k < j) 1220 j_offset--; 1221 else 1222 if (k == j) { 1223 j_is_parity = 1; 1224 j_offset = 0; 1225 } 1226 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1227 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1228 * tells us how far into the stripe the [current,failed] disk is. */ 1229 1230 /* call the mapping routine to get the offset into the current disk, 1231 * repeat for failed disk. */ 1232 if (i_is_parity) 1233 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1234 else 1235 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1236 1237 RF_ASSERT(row == testrow && col == testcol); 1238 1239 if (j_is_parity) 1240 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1241 else 1242 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1243 RF_ASSERT(row == testrow && fcol == testcol); 1244 1245 /* now locate the spare unit for the failed unit */ 1246 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1247 if (j_is_parity) 1248 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1249 else 1250 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1251 } else { 1252 *spRow = raidPtr->reconControl[row]->spareRow; 1253 *spCol = raidPtr->reconControl[row]->spareCol; 1254 *spOffset = *outFailedDiskSectorOffset; 1255 } 1256 1257 return (0); 1258 1259 skipit: 1260 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1261 psid, row, col); 1262 return (1); 1263 } 1264 /* this is called when a buffer has become ready to write to the replacement disk */ 1265 static int 1266 IssueNextWriteRequest(raidPtr, row) 1267 RF_Raid_t *raidPtr; 1268 RF_RowCol_t row; 1269 { 1270 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1271 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1272 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1273 RF_ReconBuffer_t *rbuf; 1274 RF_DiskQueueData_t *req; 1275 1276 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1277 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1278 * have gotten the event that sent us here */ 1279 RF_ASSERT(rbuf->pssPtr); 1280 1281 rbuf->pssPtr->writeRbuf = rbuf; 1282 rbuf->pssPtr = NULL; 1283 1284 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1285 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1286 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1287 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1288 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1289 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1290 1291 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1292 * kernel space */ 1293 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1294 sectorsPerRU, rbuf->buffer, 1295 rbuf->parityStripeID, rbuf->which_ru, 1296 ReconWriteDoneProc, (void *) rbuf, NULL, 1297 &raidPtr->recon_tracerecs[fcol], 1298 (void *) raidPtr, 0, NULL); 1299 1300 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1301 1302 rbuf->arg = (void *) req; 1303 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1304 1305 return (0); 1306 } 1307 1308 /* 1309 * this gets called upon the completion of a reconstruction read 1310 * operation the arg is a pointer to the per-disk reconstruction 1311 * control structure for the process that just finished a read. 1312 * 1313 * called at interrupt context in the kernel, so don't do anything 1314 * illegal here. 1315 */ 1316 static int 1317 ReconReadDoneProc(arg, status) 1318 void *arg; 1319 int status; 1320 { 1321 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1322 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1323 1324 if (status) { 1325 /* 1326 * XXX 1327 */ 1328 printf("Recon read failed!\n"); 1329 RF_PANIC(); 1330 } 1331 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1332 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1333 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1334 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1335 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1336 1337 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1338 return (0); 1339 } 1340 /* this gets called upon the completion of a reconstruction write operation. 1341 * the arg is a pointer to the rbuf that was just written 1342 * 1343 * called at interrupt context in the kernel, so don't do anything illegal here. 1344 */ 1345 static int 1346 ReconWriteDoneProc(arg, status) 1347 void *arg; 1348 int status; 1349 { 1350 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1351 1352 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1353 if (status) { 1354 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1355 * write failed!\n"); */ 1356 RF_PANIC(); 1357 } 1358 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1359 return (0); 1360 } 1361 1362 1363 /* 1364 * computes a new minimum head sep, and wakes up anyone who needs to 1365 * be woken as a result 1366 */ 1367 static void 1368 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1369 RF_Raid_t *raidPtr; 1370 RF_RowCol_t row; 1371 RF_HeadSepLimit_t hsCtr; 1372 { 1373 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1374 RF_HeadSepLimit_t new_min; 1375 RF_RowCol_t i; 1376 RF_CallbackDesc_t *p; 1377 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1378 * of a minimum */ 1379 1380 1381 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1382 1383 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1384 for (i = 0; i < raidPtr->numCol; i++) 1385 if (i != reconCtrlPtr->fcol) { 1386 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1387 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1388 } 1389 /* set the new minimum and wake up anyone who can now run again */ 1390 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1391 reconCtrlPtr->minHeadSepCounter = new_min; 1392 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1393 while (reconCtrlPtr->headSepCBList) { 1394 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1395 break; 1396 p = reconCtrlPtr->headSepCBList; 1397 reconCtrlPtr->headSepCBList = p->next; 1398 p->next = NULL; 1399 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1400 rf_FreeCallbackDesc(p); 1401 } 1402 1403 } 1404 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1405 } 1406 1407 /* 1408 * checks to see that the maximum head separation will not be violated 1409 * if we initiate a reconstruction I/O on the indicated disk. 1410 * Limiting the maximum head separation between two disks eliminates 1411 * the nasty buffer-stall conditions that occur when one disk races 1412 * ahead of the others and consumes all of the floating recon buffers. 1413 * This code is complex and unpleasant but it's necessary to avoid 1414 * some very nasty, albeit fairly rare, reconstruction behavior. 1415 * 1416 * returns non-zero if and only if we have to stop working on the 1417 * indicated disk due to a head-separation delay. 1418 */ 1419 static int 1420 CheckHeadSeparation( 1421 RF_Raid_t * raidPtr, 1422 RF_PerDiskReconCtrl_t * ctrl, 1423 RF_RowCol_t row, 1424 RF_RowCol_t col, 1425 RF_HeadSepLimit_t hsCtr, 1426 RF_ReconUnitNum_t which_ru) 1427 { 1428 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1429 RF_CallbackDesc_t *cb, *p, *pt; 1430 int retval = 0; 1431 1432 /* if we're too far ahead of the slowest disk, stop working on this 1433 * disk until the slower ones catch up. We do this by scheduling a 1434 * wakeup callback for the time when the slowest disk has caught up. 1435 * We define "caught up" with 20% hysteresis, i.e. the head separation 1436 * must have fallen to at most 80% of the max allowable head 1437 * separation before we'll wake up. 1438 * 1439 */ 1440 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1441 if ((raidPtr->headSepLimit >= 0) && 1442 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1443 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1444 raidPtr->raidid, row, col, ctrl->headSepCounter, 1445 reconCtrlPtr->minHeadSepCounter, 1446 raidPtr->headSepLimit); 1447 cb = rf_AllocCallbackDesc(); 1448 /* the minHeadSepCounter value we have to get to before we'll 1449 * wake up. build in 20% hysteresis. */ 1450 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1451 cb->row = row; 1452 cb->col = col; 1453 cb->next = NULL; 1454 1455 /* insert this callback descriptor into the sorted list of 1456 * pending head-sep callbacks */ 1457 p = reconCtrlPtr->headSepCBList; 1458 if (!p) 1459 reconCtrlPtr->headSepCBList = cb; 1460 else 1461 if (cb->callbackArg.v < p->callbackArg.v) { 1462 cb->next = reconCtrlPtr->headSepCBList; 1463 reconCtrlPtr->headSepCBList = cb; 1464 } else { 1465 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1466 cb->next = p; 1467 pt->next = cb; 1468 } 1469 retval = 1; 1470 #if RF_RECON_STATS > 0 1471 ctrl->reconCtrl->reconDesc->hsStallCount++; 1472 #endif /* RF_RECON_STATS > 0 */ 1473 } 1474 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1475 1476 return (retval); 1477 } 1478 /* 1479 * checks to see if reconstruction has been either forced or blocked 1480 * by a user operation. if forced, we skip this RU entirely. else if 1481 * blocked, put ourselves on the wait list. else return 0. 1482 * 1483 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1484 */ 1485 static int 1486 CheckForcedOrBlockedReconstruction( 1487 RF_Raid_t * raidPtr, 1488 RF_ReconParityStripeStatus_t * pssPtr, 1489 RF_PerDiskReconCtrl_t * ctrl, 1490 RF_RowCol_t row, 1491 RF_RowCol_t col, 1492 RF_StripeNum_t psid, 1493 RF_ReconUnitNum_t which_ru) 1494 { 1495 RF_CallbackDesc_t *cb; 1496 int retcode = 0; 1497 1498 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1499 retcode = RF_PSS_FORCED_ON_WRITE; 1500 else 1501 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1502 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1503 cb = rf_AllocCallbackDesc(); /* append ourselves to 1504 * the blockage-wait 1505 * list */ 1506 cb->row = row; 1507 cb->col = col; 1508 cb->next = pssPtr->blockWaitList; 1509 pssPtr->blockWaitList = cb; 1510 retcode = RF_PSS_RECON_BLOCKED; 1511 } 1512 if (!retcode) 1513 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1514 * reconstruction */ 1515 1516 return (retcode); 1517 } 1518 /* 1519 * if reconstruction is currently ongoing for the indicated stripeID, 1520 * reconstruction is forced to completion and we return non-zero to 1521 * indicate that the caller must wait. If not, then reconstruction is 1522 * blocked on the indicated stripe and the routine returns zero. If 1523 * and only if we return non-zero, we'll cause the cbFunc to get 1524 * invoked with the cbArg when the reconstruction has completed. 1525 */ 1526 int 1527 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1528 RF_Raid_t *raidPtr; 1529 RF_AccessStripeMap_t *asmap; 1530 void (*cbFunc) (RF_Raid_t *, void *); 1531 void *cbArg; 1532 { 1533 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1534 * we're working on */ 1535 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1536 * forcing recon on */ 1537 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1538 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1539 * stripe status structure */ 1540 RF_StripeNum_t psid; /* parity stripe id */ 1541 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1542 * offset */ 1543 RF_RowCol_t *diskids; 1544 RF_RowCol_t stripe; 1545 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1546 RF_RowCol_t fcol, diskno, i; 1547 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1548 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1549 RF_CallbackDesc_t *cb; 1550 int created = 0, nPromoted; 1551 1552 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1553 1554 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1555 1556 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1557 1558 /* if recon is not ongoing on this PS, just return */ 1559 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1560 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1561 return (0); 1562 } 1563 /* otherwise, we have to wait for reconstruction to complete on this 1564 * RU. */ 1565 /* In order to avoid waiting for a potentially large number of 1566 * low-priority accesses to complete, we force a normal-priority (i.e. 1567 * not low-priority) reconstruction on this RU. */ 1568 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1569 DDprintf1("Forcing recon on psid %ld\n", psid); 1570 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1571 * forced recon */ 1572 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1573 * that we just set */ 1574 fcol = raidPtr->reconControl[row]->fcol; 1575 1576 /* get a listing of the disks comprising the indicated stripe */ 1577 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1578 RF_ASSERT(row == stripe); 1579 1580 /* For previously issued reads, elevate them to normal 1581 * priority. If the I/O has already completed, it won't be 1582 * found in the queue, and hence this will be a no-op. For 1583 * unissued reads, allocate buffers and issue new reads. The 1584 * fact that we've set the FORCED bit means that the regular 1585 * recon procs will not re-issue these reqs */ 1586 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1587 if ((diskno = diskids[i]) != fcol) { 1588 if (pssPtr->issued[diskno]) { 1589 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1590 if (rf_reconDebug && nPromoted) 1591 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1592 } else { 1593 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1594 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1595 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1596 * location */ 1597 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1598 new_rbuf->which_ru = which_ru; 1599 new_rbuf->failedDiskSectorOffset = fd_offset; 1600 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1601 1602 /* use NULL b_proc b/c all addrs 1603 * should be in kernel space */ 1604 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1605 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1606 NULL, (void *) raidPtr, 0, NULL); 1607 1608 RF_ASSERT(req); /* XXX -- fix this -- 1609 * XXX */ 1610 1611 new_rbuf->arg = req; 1612 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1613 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1614 } 1615 } 1616 /* if the write is sitting in the disk queue, elevate its 1617 * priority */ 1618 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1619 printf("raid%d: promoted write to row %d col %d\n", 1620 raidPtr->raidid, row, fcol); 1621 } 1622 /* install a callback descriptor to be invoked when recon completes on 1623 * this parity stripe. */ 1624 cb = rf_AllocCallbackDesc(); 1625 /* XXX the following is bogus.. These functions don't really match!! 1626 * GO */ 1627 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1628 cb->callbackArg.p = (void *) cbArg; 1629 cb->next = pssPtr->procWaitList; 1630 pssPtr->procWaitList = cb; 1631 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1632 raidPtr->raidid, psid); 1633 1634 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1635 return (1); 1636 } 1637 /* called upon the completion of a forced reconstruction read. 1638 * all we do is schedule the FORCEDREADONE event. 1639 * called at interrupt context in the kernel, so don't do anything illegal here. 1640 */ 1641 static void 1642 ForceReconReadDoneProc(arg, status) 1643 void *arg; 1644 int status; 1645 { 1646 RF_ReconBuffer_t *rbuf = arg; 1647 1648 if (status) { 1649 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1650 * recon read 1651 * failed!\n"); */ 1652 RF_PANIC(); 1653 } 1654 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1655 } 1656 /* releases a block on the reconstruction of the indicated stripe */ 1657 int 1658 rf_UnblockRecon(raidPtr, asmap) 1659 RF_Raid_t *raidPtr; 1660 RF_AccessStripeMap_t *asmap; 1661 { 1662 RF_RowCol_t row = asmap->origRow; 1663 RF_StripeNum_t stripeID = asmap->stripeID; 1664 RF_ReconParityStripeStatus_t *pssPtr; 1665 RF_ReconUnitNum_t which_ru; 1666 RF_StripeNum_t psid; 1667 int created = 0; 1668 RF_CallbackDesc_t *cb; 1669 1670 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1671 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1672 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1673 1674 /* When recon is forced, the pss desc can get deleted before we get 1675 * back to unblock recon. But, this can _only_ happen when recon is 1676 * forced. It would be good to put some kind of sanity check here, but 1677 * how to decide if recon was just forced or not? */ 1678 if (!pssPtr) { 1679 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1680 * RU %d\n",psid,which_ru); */ 1681 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1682 if (rf_reconDebug || rf_pssDebug) 1683 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1684 #endif 1685 goto out; 1686 } 1687 pssPtr->blockCount--; 1688 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1689 raidPtr->raidid, psid, pssPtr->blockCount); 1690 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1691 1692 /* unblock recon before calling CauseReconEvent in case 1693 * CauseReconEvent causes us to try to issue a new read before 1694 * returning here. */ 1695 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1696 1697 1698 while (pssPtr->blockWaitList) { 1699 /* spin through the block-wait list and 1700 release all the waiters */ 1701 cb = pssPtr->blockWaitList; 1702 pssPtr->blockWaitList = cb->next; 1703 cb->next = NULL; 1704 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1705 rf_FreeCallbackDesc(cb); 1706 } 1707 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1708 /* if no recon was requested while recon was blocked */ 1709 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1710 } 1711 } 1712 out: 1713 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1714 return (0); 1715 } 1716