xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*	$NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #if RF_DEBUG_RECON
70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78 
79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 
82 #else /* RF_DEBUG_RECON */
83 
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92 
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95 
96 #endif /* RF_DEBUG_RECON */
97 
98 
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND  4
101 #define RF_RECOND_INC       1
102 
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110     RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113     RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125     RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129     RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134     RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136 
137 static void rf_ShutdownReconstruction(void *);
138 
139 struct RF_ReconDoneProc_s {
140 	void    (*proc) (RF_Raid_t *, void *);
141 	void   *arg;
142 	RF_ReconDoneProc_t *next;
143 };
144 
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC      1
148 
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 	RF_ReconDoneProc_t *p;
153 
154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 		p->proc(raidPtr, p->arg);
157 	}
158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160 
161 /**************************************************************************
162  *
163  * sets up the parameters that will be used by the reconstruction process
164  * currently there are none, except for those that the layout-specific
165  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166  *
167  * in the kernel, we fire off the recon thread.
168  *
169  **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 	void   *ignored;
173 {
174 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177 
178 int
179 rf_ConfigureReconstruction(listp)
180 	RF_ShutdownList_t **listp;
181 {
182 	int     rc;
183 
184 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 	if (rf_recond_freelist == NULL)
187 		return (ENOMEM);
188 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 	if (rf_rdp_freelist == NULL) {
191 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 		return (ENOMEM);
193 	}
194 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 	if (rc) {
196 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 		rf_ShutdownReconstruction(NULL);
198 		return (rc);
199 	}
200 	return (0);
201 }
202 
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 	RF_Raid_t *raidPtr;
206 	RF_RowCol_t row;
207 	RF_RowCol_t col;
208 	RF_RaidDisk_t *spareDiskPtr;
209 	int     numDisksDone;
210 	RF_RowCol_t srow;
211 	RF_RowCol_t scol;
212 {
213 
214 	RF_RaidReconDesc_t *reconDesc;
215 
216 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217 
218 	reconDesc->raidPtr = raidPtr;
219 	reconDesc->row = row;
220 	reconDesc->col = col;
221 	reconDesc->spareDiskPtr = spareDiskPtr;
222 	reconDesc->numDisksDone = numDisksDone;
223 	reconDesc->srow = srow;
224 	reconDesc->scol = scol;
225 	reconDesc->state = 0;
226 	reconDesc->next = NULL;
227 
228 	return (reconDesc);
229 }
230 
231 static void
232 FreeReconDesc(reconDesc)
233 	RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
237 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
238 #endif				/* RF_RECON_STATS > 0 */
239 	printf("RAIDframe: %lu max exec ticks\n",
240 	    (long) reconDesc->maxReconExecTicks);
241 #if (RF_RECON_STATS > 0) || defined(KERNEL)
242 	printf("\n");
243 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
244 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
245 }
246 
247 
248 /*****************************************************************************
249  *
250  * primary routine to reconstruct a failed disk.  This should be called from
251  * within its own thread.  It won't return until reconstruction completes,
252  * fails, or is aborted.
253  *****************************************************************************/
254 int
255 rf_ReconstructFailedDisk(raidPtr, row, col)
256 	RF_Raid_t *raidPtr;
257 	RF_RowCol_t row;
258 	RF_RowCol_t col;
259 {
260 	RF_LayoutSW_t *lp;
261 	int     rc;
262 
263 	lp = raidPtr->Layout.map;
264 	if (lp->SubmitReconBuffer) {
265 		/*
266 	         * The current infrastructure only supports reconstructing one
267 	         * disk at a time for each array.
268 	         */
269 		RF_LOCK_MUTEX(raidPtr->mutex);
270 		while (raidPtr->reconInProgress) {
271 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
272 		}
273 		raidPtr->reconInProgress++;
274 		RF_UNLOCK_MUTEX(raidPtr->mutex);
275 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
276 		RF_LOCK_MUTEX(raidPtr->mutex);
277 		raidPtr->reconInProgress--;
278 		RF_UNLOCK_MUTEX(raidPtr->mutex);
279 	} else {
280 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
281 		    lp->parityConfig);
282 		rc = EIO;
283 	}
284 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
285 	return (rc);
286 }
287 
288 int
289 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
290 	RF_Raid_t *raidPtr;
291 	RF_RowCol_t row;
292 	RF_RowCol_t col;
293 {
294 	RF_ComponentLabel_t c_label;
295 	RF_RaidDisk_t *spareDiskPtr = NULL;
296 	RF_RaidReconDesc_t *reconDesc;
297 	RF_RowCol_t srow, scol;
298 	int     numDisksDone = 0, rc;
299 
300 	/* first look for a spare drive onto which to reconstruct the data */
301 	/* spare disk descriptors are stored in row 0.  This may have to
302 	 * change eventually */
303 
304 	RF_LOCK_MUTEX(raidPtr->mutex);
305 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
306 
307 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
308 		if (raidPtr->status[row] != rf_rs_degraded) {
309 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
310 			RF_UNLOCK_MUTEX(raidPtr->mutex);
311 			return (EINVAL);
312 		}
313 		srow = row;
314 		scol = (-1);
315 	} else {
316 		srow = 0;
317 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
318 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
319 				spareDiskPtr = &raidPtr->Disks[srow][scol];
320 				spareDiskPtr->status = rf_ds_used_spare;
321 				break;
322 			}
323 		}
324 		if (!spareDiskPtr) {
325 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
326 			RF_UNLOCK_MUTEX(raidPtr->mutex);
327 			return (ENOSPC);
328 		}
329 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
330 	}
331 	RF_UNLOCK_MUTEX(raidPtr->mutex);
332 
333 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
334 	raidPtr->reconDesc = (void *) reconDesc;
335 #if RF_RECON_STATS > 0
336 	reconDesc->hsStallCount = 0;
337 	reconDesc->numReconExecDelays = 0;
338 	reconDesc->numReconEventWaits = 0;
339 #endif				/* RF_RECON_STATS > 0 */
340 	reconDesc->reconExecTimerRunning = 0;
341 	reconDesc->reconExecTicks = 0;
342 	reconDesc->maxReconExecTicks = 0;
343 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
344 
345 	if (!rc) {
346 		/* fix up the component label */
347 		/* Don't actually need the read here.. */
348 		raidread_component_label(
349                         raidPtr->raid_cinfo[srow][scol].ci_dev,
350 			raidPtr->raid_cinfo[srow][scol].ci_vp,
351 			&c_label);
352 
353 		raid_init_component_label( raidPtr, &c_label);
354 		c_label.row = row;
355 		c_label.column = col;
356 		c_label.clean = RF_RAID_DIRTY;
357 		c_label.status = rf_ds_optimal;
358 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
359 
360 		/* We've just done a rebuild based on all the other
361 		   disks, so at this point the parity is known to be
362 		   clean, even if it wasn't before. */
363 
364 		/* XXX doesn't hold for RAID 6!!*/
365 
366 		RF_LOCK_MUTEX(raidPtr->mutex);
367 		raidPtr->parity_good = RF_RAID_CLEAN;
368 		RF_UNLOCK_MUTEX(raidPtr->mutex);
369 
370 		/* XXXX MORE NEEDED HERE */
371 
372 		raidwrite_component_label(
373                         raidPtr->raid_cinfo[srow][scol].ci_dev,
374 			raidPtr->raid_cinfo[srow][scol].ci_vp,
375 			&c_label);
376 
377 	}
378 	return (rc);
379 }
380 
381 /*
382 
383    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
384    and you don't get a spare until the next Monday.  With this function
385    (and hot-swappable drives) you can now put your new disk containing
386    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
387    rebuild the data "on the spot".
388 
389 */
390 
391 int
392 rf_ReconstructInPlace(raidPtr, row, col)
393 	RF_Raid_t *raidPtr;
394 	RF_RowCol_t row;
395 	RF_RowCol_t col;
396 {
397 	RF_RaidDisk_t *spareDiskPtr = NULL;
398 	RF_RaidReconDesc_t *reconDesc;
399 	RF_LayoutSW_t *lp;
400 	RF_ComponentLabel_t c_label;
401 	int     numDisksDone = 0, rc;
402 	struct partinfo dpart;
403 	struct vnode *vp;
404 	struct vattr va;
405 	struct proc *proc;
406 	int retcode;
407 	int ac;
408 
409 	lp = raidPtr->Layout.map;
410 	if (lp->SubmitReconBuffer) {
411 		/*
412 	         * The current infrastructure only supports reconstructing one
413 	         * disk at a time for each array.
414 	         */
415 		RF_LOCK_MUTEX(raidPtr->mutex);
416 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
417 		    (raidPtr->numFailures > 0)) {
418 			/* XXX 0 above shouldn't be constant!!! */
419 			/* some component other than this has failed.
420 			   Let's not make things worse than they already
421 			   are... */
422 			printf("raid%d: Unable to reconstruct to disk at:\n",
423 			       raidPtr->raidid);
424 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
425 			       raidPtr->raidid, row, col);
426 			RF_UNLOCK_MUTEX(raidPtr->mutex);
427 			return (EINVAL);
428 		}
429 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
430 			printf("raid%d: Unable to reconstruct to disk at:\n",
431 			       raidPtr->raidid);
432 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
433 
434 			RF_UNLOCK_MUTEX(raidPtr->mutex);
435 			return (EINVAL);
436 		}
437 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
438 			RF_UNLOCK_MUTEX(raidPtr->mutex);
439 			return (EINVAL);
440 		}
441 
442 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
443 			/* "It's gone..." */
444 			raidPtr->numFailures++;
445 			raidPtr->Disks[row][col].status = rf_ds_failed;
446 			raidPtr->status[row] = rf_rs_degraded;
447 			RF_UNLOCK_MUTEX(raidPtr->mutex);
448 			rf_update_component_labels(raidPtr,
449 						   RF_NORMAL_COMPONENT_UPDATE);
450 			RF_LOCK_MUTEX(raidPtr->mutex);
451 		}
452 
453 		while (raidPtr->reconInProgress) {
454 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
455 		}
456 
457 		raidPtr->reconInProgress++;
458 
459 
460 		/* first look for a spare drive onto which to reconstruct
461 		   the data.  spare disk descriptors are stored in row 0.
462 		   This may have to change eventually */
463 
464 		/* Actually, we don't care if it's failed or not...
465 		   On a RAID set with correct parity, this function
466 		   should be callable on any component without ill affects. */
467 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
468 		 */
469 
470 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
471 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
472 
473 			raidPtr->reconInProgress--;
474 			RF_UNLOCK_MUTEX(raidPtr->mutex);
475 			return (EINVAL);
476 		}
477 
478 		proc = raidPtr->engine_thread;
479 
480 		/* This device may have been opened successfully the
481 		   first time. Close it before trying to open it again.. */
482 
483 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
484 #if 0
485 			printf("Closed the open device: %s\n",
486 			       raidPtr->Disks[row][col].devname);
487 #endif
488 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
489 			ac = raidPtr->Disks[row][col].auto_configured;
490 			RF_UNLOCK_MUTEX(raidPtr->mutex);
491 			rf_close_component(raidPtr, vp, ac);
492 			RF_LOCK_MUTEX(raidPtr->mutex);
493 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
494 		}
495 		/* note that this disk was *not* auto_configured (any longer)*/
496 		raidPtr->Disks[row][col].auto_configured = 0;
497 
498 #if 0
499 		printf("About to (re-)open the device for rebuilding: %s\n",
500 		       raidPtr->Disks[row][col].devname);
501 #endif
502 		RF_UNLOCK_MUTEX(raidPtr->mutex);
503 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
504 				     proc, &vp);
505 
506 		if (retcode) {
507 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
508 			       raidPtr->Disks[row][col].devname, retcode);
509 
510 			/* the component isn't responding properly...
511 			   must be still dead :-( */
512 			RF_LOCK_MUTEX(raidPtr->mutex);
513 			raidPtr->reconInProgress--;
514 			RF_UNLOCK_MUTEX(raidPtr->mutex);
515 			return(retcode);
516 
517 		} else {
518 
519 			/* Ok, so we can at least do a lookup...
520 			   How about actually getting a vp for it? */
521 
522 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
523 						   proc)) != 0) {
524 				RF_LOCK_MUTEX(raidPtr->mutex);
525 				raidPtr->reconInProgress--;
526 				RF_UNLOCK_MUTEX(raidPtr->mutex);
527 				return(retcode);
528 			}
529 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
530 					    FREAD, proc->p_ucred, proc);
531 			if (retcode) {
532 				RF_LOCK_MUTEX(raidPtr->mutex);
533 				raidPtr->reconInProgress--;
534 				RF_UNLOCK_MUTEX(raidPtr->mutex);
535 				return(retcode);
536 			}
537 			RF_LOCK_MUTEX(raidPtr->mutex);
538 			raidPtr->Disks[row][col].blockSize =
539 				dpart.disklab->d_secsize;
540 
541 			raidPtr->Disks[row][col].numBlocks =
542 				dpart.part->p_size - rf_protectedSectors;
543 
544 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
545 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
546 
547 			raidPtr->Disks[row][col].dev = va.va_rdev;
548 
549 			/* we allow the user to specify that only a
550 			   fraction of the disks should be used this is
551 			   just for debug:  it speeds up
552 			 * the parity scan */
553 			raidPtr->Disks[row][col].numBlocks =
554 				raidPtr->Disks[row][col].numBlocks *
555 				rf_sizePercentage / 100;
556 			RF_UNLOCK_MUTEX(raidPtr->mutex);
557 		}
558 
559 
560 
561 		spareDiskPtr = &raidPtr->Disks[row][col];
562 		spareDiskPtr->status = rf_ds_used_spare;
563 
564 		printf("raid%d: initiating in-place reconstruction on\n",
565 		       raidPtr->raidid);
566 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
567 		       raidPtr->raidid, row, col, row, col);
568 
569 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
570 					       spareDiskPtr, numDisksDone,
571 					       row, col);
572 		raidPtr->reconDesc = (void *) reconDesc;
573 #if RF_RECON_STATS > 0
574 		reconDesc->hsStallCount = 0;
575 		reconDesc->numReconExecDelays = 0;
576 		reconDesc->numReconEventWaits = 0;
577 #endif				/* RF_RECON_STATS > 0 */
578 		reconDesc->reconExecTimerRunning = 0;
579 		reconDesc->reconExecTicks = 0;
580 		reconDesc->maxReconExecTicks = 0;
581 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
582 
583 		RF_LOCK_MUTEX(raidPtr->mutex);
584 		raidPtr->reconInProgress--;
585 		RF_UNLOCK_MUTEX(raidPtr->mutex);
586 
587 	} else {
588 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
589 			     lp->parityConfig);
590 		rc = EIO;
591 	}
592 
593 	if (!rc) {
594 		RF_LOCK_MUTEX(raidPtr->mutex);
595 		/* Need to set these here, as at this point it'll be claiming
596 		   that the disk is in rf_ds_spared!  But we know better :-) */
597 
598 		raidPtr->Disks[row][col].status = rf_ds_optimal;
599 		raidPtr->status[row] = rf_rs_optimal;
600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
601 
602 		/* fix up the component label */
603 		/* Don't actually need the read here.. */
604 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
605 					 raidPtr->raid_cinfo[row][col].ci_vp,
606 					 &c_label);
607 
608 		RF_LOCK_MUTEX(raidPtr->mutex);
609 		raid_init_component_label(raidPtr, &c_label);
610 
611 		c_label.row = row;
612 		c_label.column = col;
613 
614 		/* We've just done a rebuild based on all the other
615 		   disks, so at this point the parity is known to be
616 		   clean, even if it wasn't before. */
617 
618 		/* XXX doesn't hold for RAID 6!!*/
619 
620 		raidPtr->parity_good = RF_RAID_CLEAN;
621 		RF_UNLOCK_MUTEX(raidPtr->mutex);
622 
623 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
624 					  raidPtr->raid_cinfo[row][col].ci_vp,
625 					  &c_label);
626 
627 	}
628 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
629 	return (rc);
630 }
631 
632 
633 int
634 rf_ContinueReconstructFailedDisk(reconDesc)
635 	RF_RaidReconDesc_t *reconDesc;
636 {
637 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
638 	RF_RowCol_t row = reconDesc->row;
639 	RF_RowCol_t col = reconDesc->col;
640 	RF_RowCol_t srow = reconDesc->srow;
641 	RF_RowCol_t scol = reconDesc->scol;
642 	RF_ReconMap_t *mapPtr;
643 	RF_ReconCtrl_t *tmp_reconctrl;
644 	RF_ReconEvent_t *event;
645 	struct timeval etime, elpsd;
646 	unsigned long xor_s, xor_resid_us;
647 	int     retcode, i, ds;
648 
649 	switch (reconDesc->state) {
650 
651 
652 	case 0:
653 
654 		raidPtr->accumXorTimeUs = 0;
655 
656 		/* create one trace record per physical disk */
657 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
658 
659 		/* quiesce the array prior to starting recon.  this is needed
660 		 * to assure no nasty interactions with pending user writes.
661 		 * We need to do this before we change the disk or row status. */
662 		reconDesc->state = 1;
663 
664 		Dprintf("RECON: begin request suspend\n");
665 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
666 		Dprintf("RECON: end request suspend\n");
667 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
668 						 * user accs */
669 
670 		/* fall through to state 1 */
671 
672 	case 1:
673 
674 		/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
675 		tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
676 
677 		RF_LOCK_MUTEX(raidPtr->mutex);
678 
679 		/* create the reconstruction control pointer and install it in
680 		 * the right slot */
681 		raidPtr->reconControl[row] = tmp_reconctrl;
682 		mapPtr = raidPtr->reconControl[row]->reconMap;
683 		raidPtr->status[row] = rf_rs_reconstructing;
684 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
685 		raidPtr->Disks[row][col].spareRow = srow;
686 		raidPtr->Disks[row][col].spareCol = scol;
687 
688 		RF_UNLOCK_MUTEX(raidPtr->mutex);
689 
690 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
691 
692 		/* now start up the actual reconstruction: issue a read for
693 		 * each surviving disk */
694 
695 		reconDesc->numDisksDone = 0;
696 		for (i = 0; i < raidPtr->numCol; i++) {
697 			if (i != col) {
698 				/* find and issue the next I/O on the
699 				 * indicated disk */
700 				if (IssueNextReadRequest(raidPtr, row, i)) {
701 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
702 					reconDesc->numDisksDone++;
703 				}
704 			}
705 		}
706 
707 	case 2:
708 		Dprintf("RECON: resume requests\n");
709 		rf_ResumeNewRequests(raidPtr);
710 
711 
712 		reconDesc->state = 3;
713 
714 	case 3:
715 
716 		/* process reconstruction events until all disks report that
717 		 * they've completed all work */
718 		mapPtr = raidPtr->reconControl[row]->reconMap;
719 
720 
721 
722 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
723 
724 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
725 			RF_ASSERT(event);
726 
727 			if (ProcessReconEvent(raidPtr, row, event))
728 				reconDesc->numDisksDone++;
729 			raidPtr->reconControl[row]->numRUsTotal =
730 				mapPtr->totalRUs;
731 			raidPtr->reconControl[row]->numRUsComplete =
732 				mapPtr->totalRUs -
733 				rf_UnitsLeftToReconstruct(mapPtr);
734 
735 			raidPtr->reconControl[row]->percentComplete =
736 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
737 #if RF_DEBUG_RECON
738 			if (rf_prReconSched) {
739 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
740 			}
741 #endif
742 		}
743 
744 
745 
746 		reconDesc->state = 4;
747 
748 
749 	case 4:
750 		mapPtr = raidPtr->reconControl[row]->reconMap;
751 		if (rf_reconDebug) {
752 			printf("RECON: all reads completed\n");
753 		}
754 		/* at this point all the reads have completed.  We now wait
755 		 * for any pending writes to complete, and then we're done */
756 
757 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
758 
759 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
760 			RF_ASSERT(event);
761 
762 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
763 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
764 #if RF_DEBUG_RECON
765 			if (rf_prReconSched) {
766 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
767 			}
768 #endif
769 		}
770 		reconDesc->state = 5;
771 
772 	case 5:
773 		/* Success:  mark the dead disk as reconstructed.  We quiesce
774 		 * the array here to assure no nasty interactions with pending
775 		 * user accesses when we free up the psstatus structure as
776 		 * part of FreeReconControl() */
777 
778 		reconDesc->state = 6;
779 
780 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
781 		rf_StopUserStats(raidPtr);
782 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
783 						 * accs accumulated during
784 						 * recon */
785 
786 		/* fall through to state 6 */
787 	case 6:
788 
789 
790 
791 		RF_LOCK_MUTEX(raidPtr->mutex);
792 		raidPtr->numFailures--;
793 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
794 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
795 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
796 		RF_UNLOCK_MUTEX(raidPtr->mutex);
797 		RF_GETTIME(etime);
798 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
799 
800 		/* XXX -- why is state 7 different from state 6 if there is no
801 		 * return() here? -- XXX Note that I set elpsd above & use it
802 		 * below, so if you put a return here you'll have to fix this.
803 		 * (also, FreeReconControl is called below) */
804 
805 	case 7:
806 
807 		rf_ResumeNewRequests(raidPtr);
808 
809 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
810 		       raidPtr->raidid, row, col);
811 		xor_s = raidPtr->accumXorTimeUs / 1000000;
812 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
813 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
814 		       raidPtr->raidid,
815 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
816 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
817 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
818 		       raidPtr->raidid,
819 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
820 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
821 		       (int) etime.tv_sec, (int) etime.tv_usec);
822 
823 #if RF_RECON_STATS > 0
824 		printf("raid%d: Total head-sep stall count was %d\n",
825 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
826 #endif				/* RF_RECON_STATS > 0 */
827 		rf_FreeReconControl(raidPtr, row);
828 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
829 		FreeReconDesc(reconDesc);
830 
831 	}
832 
833 	SignalReconDone(raidPtr);
834 	return (0);
835 }
836 /*****************************************************************************
837  * do the right thing upon each reconstruction event.
838  * returns nonzero if and only if there is nothing left unread on the
839  * indicated disk
840  *****************************************************************************/
841 static int
842 ProcessReconEvent(raidPtr, frow, event)
843 	RF_Raid_t *raidPtr;
844 	RF_RowCol_t frow;
845 	RF_ReconEvent_t *event;
846 {
847 	int     retcode = 0, submitblocked;
848 	RF_ReconBuffer_t *rbuf;
849 	RF_SectorCount_t sectorsPerRU;
850 
851 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
852 	switch (event->type) {
853 
854 		/* a read I/O has completed */
855 	case RF_REVENT_READDONE:
856 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
857 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
858 		    frow, event->col, rbuf->parityStripeID);
859 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
860 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
861 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
862 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
863 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
864 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
865 		if (!submitblocked)
866 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
867 		break;
868 
869 		/* a write I/O has completed */
870 	case RF_REVENT_WRITEDONE:
871 #if RF_DEBUG_RECON
872 		if (rf_floatingRbufDebug) {
873 			rf_CheckFloatingRbufCount(raidPtr, 1);
874 		}
875 #endif
876 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
877 		rbuf = (RF_ReconBuffer_t *) event->arg;
878 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
880 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
881 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
882 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
883 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
884 
885 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
886 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
887 			raidPtr->numFullReconBuffers--;
888 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
889 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
890 		} else
891 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
892 				rf_FreeReconBuffer(rbuf);
893 			else
894 				RF_ASSERT(0);
895 		break;
896 
897 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
898 					 * cleared */
899 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
900 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
901 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
902 						 * BUFCLEAR event if we
903 						 * couldn't submit */
904 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
905 		break;
906 
907 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
908 					 * blockage has been cleared */
909 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
910 		retcode = TryToRead(raidPtr, frow, event->col);
911 		break;
912 
913 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
914 					 * reconstruction blockage has been
915 					 * cleared */
916 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
917 		retcode = TryToRead(raidPtr, frow, event->col);
918 		break;
919 
920 		/* a buffer has become ready to write */
921 	case RF_REVENT_BUFREADY:
922 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
923 		retcode = IssueNextWriteRequest(raidPtr, frow);
924 #if RF_DEBUG_RECON
925 		if (rf_floatingRbufDebug) {
926 			rf_CheckFloatingRbufCount(raidPtr, 1);
927 		}
928 #endif
929 		break;
930 
931 		/* we need to skip the current RU entirely because it got
932 		 * recon'd while we were waiting for something else to happen */
933 	case RF_REVENT_SKIP:
934 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
935 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
936 		break;
937 
938 		/* a forced-reconstruction read access has completed.  Just
939 		 * submit the buffer */
940 	case RF_REVENT_FORCEDREADDONE:
941 		rbuf = (RF_ReconBuffer_t *) event->arg;
942 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
943 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
944 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
945 		RF_ASSERT(!submitblocked);
946 		break;
947 
948 	default:
949 		RF_PANIC();
950 	}
951 	rf_FreeReconEventDesc(event);
952 	return (retcode);
953 }
954 /*****************************************************************************
955  *
956  * find the next thing that's needed on the indicated disk, and issue
957  * a read request for it.  We assume that the reconstruction buffer
958  * associated with this process is free to receive the data.  If
959  * reconstruction is blocked on the indicated RU, we issue a
960  * blockage-release request instead of a physical disk read request.
961  * If the current disk gets too far ahead of the others, we issue a
962  * head-separation wait request and return.
963  *
964  * ctrl->{ru_count, curPSID, diskOffset} and
965  * rbuf->failedDiskSectorOffset are maintained to point to the unit
966  * we're currently accessing.  Note that this deviates from the
967  * standard C idiom of having counters point to the next thing to be
968  * accessed.  This allows us to easily retry when we're blocked by
969  * head separation or reconstruction-blockage events.
970  *
971  * returns nonzero if and only if there is nothing left unread on the
972  * indicated disk
973  *
974  *****************************************************************************/
975 static int
976 IssueNextReadRequest(raidPtr, row, col)
977 	RF_Raid_t *raidPtr;
978 	RF_RowCol_t row;
979 	RF_RowCol_t col;
980 {
981 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
982 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
983 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
984 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
985 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
986 	int     do_new_check = 0, retcode = 0, status;
987 
988 	/* if we are currently the slowest disk, mark that we have to do a new
989 	 * check */
990 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
991 		do_new_check = 1;
992 
993 	while (1) {
994 
995 		ctrl->ru_count++;
996 		if (ctrl->ru_count < RUsPerPU) {
997 			ctrl->diskOffset += sectorsPerRU;
998 			rbuf->failedDiskSectorOffset += sectorsPerRU;
999 		} else {
1000 			ctrl->curPSID++;
1001 			ctrl->ru_count = 0;
1002 			/* code left over from when head-sep was based on
1003 			 * parity stripe id */
1004 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1005 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1006 				return (1);	/* finito! */
1007 			}
1008 			/* find the disk offsets of the start of the parity
1009 			 * stripe on both the current disk and the failed
1010 			 * disk. skip this entire parity stripe if either disk
1011 			 * does not appear in the indicated PS */
1012 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1013 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1014 			if (status) {
1015 				ctrl->ru_count = RUsPerPU - 1;
1016 				continue;
1017 			}
1018 		}
1019 		rbuf->which_ru = ctrl->ru_count;
1020 
1021 		/* skip this RU if it's already been reconstructed */
1022 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1023 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1024 			continue;
1025 		}
1026 		break;
1027 	}
1028 	ctrl->headSepCounter++;
1029 	if (do_new_check)
1030 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1031 
1032 
1033 	/* at this point, we have definitely decided what to do, and we have
1034 	 * only to see if we can actually do it now */
1035 	rbuf->parityStripeID = ctrl->curPSID;
1036 	rbuf->which_ru = ctrl->ru_count;
1037 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1038 	    sizeof(raidPtr->recon_tracerecs[col]));
1039 	raidPtr->recon_tracerecs[col].reconacc = 1;
1040 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1041 	retcode = TryToRead(raidPtr, row, col);
1042 	return (retcode);
1043 }
1044 
1045 /*
1046  * tries to issue the next read on the indicated disk.  We may be
1047  * blocked by (a) the heads being too far apart, or (b) recon on the
1048  * indicated RU being blocked due to a write by a user thread.  In
1049  * this case, we issue a head-sep or blockage wait request, which will
1050  * cause this same routine to be invoked again later when the blockage
1051  * has cleared.
1052  */
1053 
1054 static int
1055 TryToRead(raidPtr, row, col)
1056 	RF_Raid_t *raidPtr;
1057 	RF_RowCol_t row;
1058 	RF_RowCol_t col;
1059 {
1060 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1061 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1062 	RF_StripeNum_t psid = ctrl->curPSID;
1063 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1064 	RF_DiskQueueData_t *req;
1065 	int     status, created = 0;
1066 	RF_ReconParityStripeStatus_t *pssPtr;
1067 
1068 	/* if the current disk is too far ahead of the others, issue a
1069 	 * head-separation wait and return */
1070 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1071 		return (0);
1072 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1073 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1074 
1075 	/* if recon is blocked on the indicated parity stripe, issue a
1076 	 * block-wait request and return. this also must mark the indicated RU
1077 	 * in the stripe as under reconstruction if not blocked. */
1078 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1079 	if (status == RF_PSS_RECON_BLOCKED) {
1080 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1081 		goto out;
1082 	} else
1083 		if (status == RF_PSS_FORCED_ON_WRITE) {
1084 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1085 			goto out;
1086 		}
1087 	/* make one last check to be sure that the indicated RU didn't get
1088 	 * reconstructed while we were waiting for something else to happen.
1089 	 * This is unfortunate in that it causes us to make this check twice
1090 	 * in the normal case.  Might want to make some attempt to re-work
1091 	 * this so that we only do this check if we've definitely blocked on
1092 	 * one of the above checks.  When this condition is detected, we may
1093 	 * have just created a bogus status entry, which we need to delete. */
1094 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1095 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1096 		if (created)
1097 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1098 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1099 		goto out;
1100 	}
1101 	/* found something to read.  issue the I/O */
1102 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1103 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1104 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1105 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1106 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1107 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1108 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1109 
1110 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1111 	 * should be in kernel space */
1112 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1113 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1114 
1115 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1116 
1117 	ctrl->rbuf->arg = (void *) req;
1118 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1119 	pssPtr->issued[col] = 1;
1120 
1121 out:
1122 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1123 	return (0);
1124 }
1125 
1126 
1127 /*
1128  * given a parity stripe ID, we want to find out whether both the
1129  * current disk and the failed disk exist in that parity stripe.  If
1130  * not, we want to skip this whole PS.  If so, we want to find the
1131  * disk offset of the start of the PS on both the current disk and the
1132  * failed disk.
1133  *
1134  * this works by getting a list of disks comprising the indicated
1135  * parity stripe, and searching the list for the current and failed
1136  * disks.  Once we've decided they both exist in the parity stripe, we
1137  * need to decide whether each is data or parity, so that we'll know
1138  * which mapping function to call to get the corresponding disk
1139  * offsets.
1140  *
1141  * this is kind of unpleasant, but doing it this way allows the
1142  * reconstruction code to use parity stripe IDs rather than physical
1143  * disks address to march through the failed disk, which greatly
1144  * simplifies a lot of code, as well as eliminating the need for a
1145  * reverse-mapping function.  I also think it will execute faster,
1146  * since the calls to the mapping module are kept to a minimum.
1147  *
1148  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1149  * THE STRIPE IN THE CORRECT ORDER */
1150 
1151 
1152 static int
1153 ComputePSDiskOffsets(
1154     RF_Raid_t * raidPtr,	/* raid descriptor */
1155     RF_StripeNum_t psid,	/* parity stripe identifier */
1156     RF_RowCol_t row,		/* row and column of disk to find the offsets
1157 				 * for */
1158     RF_RowCol_t col,
1159     RF_SectorNum_t * outDiskOffset,
1160     RF_SectorNum_t * outFailedDiskSectorOffset,
1161     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1162     RF_RowCol_t * spCol,
1163     RF_SectorNum_t * spOffset)
1164 {				/* OUT: offset into disk containing spare unit */
1165 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1166 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1167 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1168 	RF_RowCol_t *diskids;
1169 	u_int   i, j, k, i_offset, j_offset;
1170 	RF_RowCol_t prow, pcol;
1171 	int     testcol, testrow;
1172 	RF_RowCol_t stripe;
1173 	RF_SectorNum_t poffset;
1174 	char    i_is_parity = 0, j_is_parity = 0;
1175 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1176 
1177 	/* get a listing of the disks comprising that stripe */
1178 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1179 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1180 	RF_ASSERT(diskids);
1181 
1182 	/* reject this entire parity stripe if it does not contain the
1183 	 * indicated disk or it does not contain the failed disk */
1184 	if (row != stripe)
1185 		goto skipit;
1186 	for (i = 0; i < stripeWidth; i++) {
1187 		if (col == diskids[i])
1188 			break;
1189 	}
1190 	if (i == stripeWidth)
1191 		goto skipit;
1192 	for (j = 0; j < stripeWidth; j++) {
1193 		if (fcol == diskids[j])
1194 			break;
1195 	}
1196 	if (j == stripeWidth) {
1197 		goto skipit;
1198 	}
1199 	/* find out which disk the parity is on */
1200 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1201 
1202 	/* find out if either the current RU or the failed RU is parity */
1203 	/* also, if the parity occurs in this stripe prior to the data and/or
1204 	 * failed col, we need to decrement i and/or j */
1205 	for (k = 0; k < stripeWidth; k++)
1206 		if (diskids[k] == pcol)
1207 			break;
1208 	RF_ASSERT(k < stripeWidth);
1209 	i_offset = i;
1210 	j_offset = j;
1211 	if (k < i)
1212 		i_offset--;
1213 	else
1214 		if (k == i) {
1215 			i_is_parity = 1;
1216 			i_offset = 0;
1217 		}		/* set offsets to zero to disable multiply
1218 				 * below */
1219 	if (k < j)
1220 		j_offset--;
1221 	else
1222 		if (k == j) {
1223 			j_is_parity = 1;
1224 			j_offset = 0;
1225 		}
1226 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1227 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1228 	 * tells us how far into the stripe the [current,failed] disk is. */
1229 
1230 	/* call the mapping routine to get the offset into the current disk,
1231 	 * repeat for failed disk. */
1232 	if (i_is_parity)
1233 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1234 	else
1235 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1236 
1237 	RF_ASSERT(row == testrow && col == testcol);
1238 
1239 	if (j_is_parity)
1240 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1241 	else
1242 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1243 	RF_ASSERT(row == testrow && fcol == testcol);
1244 
1245 	/* now locate the spare unit for the failed unit */
1246 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1247 		if (j_is_parity)
1248 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1249 		else
1250 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1251 	} else {
1252 		*spRow = raidPtr->reconControl[row]->spareRow;
1253 		*spCol = raidPtr->reconControl[row]->spareCol;
1254 		*spOffset = *outFailedDiskSectorOffset;
1255 	}
1256 
1257 	return (0);
1258 
1259 skipit:
1260 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1261 	    psid, row, col);
1262 	return (1);
1263 }
1264 /* this is called when a buffer has become ready to write to the replacement disk */
1265 static int
1266 IssueNextWriteRequest(raidPtr, row)
1267 	RF_Raid_t *raidPtr;
1268 	RF_RowCol_t row;
1269 {
1270 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1271 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1272 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1273 	RF_ReconBuffer_t *rbuf;
1274 	RF_DiskQueueData_t *req;
1275 
1276 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1277 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1278 				 * have gotten the event that sent us here */
1279 	RF_ASSERT(rbuf->pssPtr);
1280 
1281 	rbuf->pssPtr->writeRbuf = rbuf;
1282 	rbuf->pssPtr = NULL;
1283 
1284 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1285 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1286 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1287 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1288 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1289 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1290 
1291 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1292 	 * kernel space */
1293 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1294 	    sectorsPerRU, rbuf->buffer,
1295 	    rbuf->parityStripeID, rbuf->which_ru,
1296 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1297 	    &raidPtr->recon_tracerecs[fcol],
1298 	    (void *) raidPtr, 0, NULL);
1299 
1300 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1301 
1302 	rbuf->arg = (void *) req;
1303 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1304 
1305 	return (0);
1306 }
1307 
1308 /*
1309  * this gets called upon the completion of a reconstruction read
1310  * operation the arg is a pointer to the per-disk reconstruction
1311  * control structure for the process that just finished a read.
1312  *
1313  * called at interrupt context in the kernel, so don't do anything
1314  * illegal here.
1315  */
1316 static int
1317 ReconReadDoneProc(arg, status)
1318 	void   *arg;
1319 	int     status;
1320 {
1321 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1322 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1323 
1324 	if (status) {
1325 		/*
1326 	         * XXX
1327 	         */
1328 		printf("Recon read failed!\n");
1329 		RF_PANIC();
1330 	}
1331 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1332 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1333 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1334 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1335 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1336 
1337 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1338 	return (0);
1339 }
1340 /* this gets called upon the completion of a reconstruction write operation.
1341  * the arg is a pointer to the rbuf that was just written
1342  *
1343  * called at interrupt context in the kernel, so don't do anything illegal here.
1344  */
1345 static int
1346 ReconWriteDoneProc(arg, status)
1347 	void   *arg;
1348 	int     status;
1349 {
1350 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1351 
1352 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1353 	if (status) {
1354 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1355 							 * write failed!\n"); */
1356 		RF_PANIC();
1357 	}
1358 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1359 	return (0);
1360 }
1361 
1362 
1363 /*
1364  * computes a new minimum head sep, and wakes up anyone who needs to
1365  * be woken as a result
1366  */
1367 static void
1368 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1369 	RF_Raid_t *raidPtr;
1370 	RF_RowCol_t row;
1371 	RF_HeadSepLimit_t hsCtr;
1372 {
1373 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1374 	RF_HeadSepLimit_t new_min;
1375 	RF_RowCol_t i;
1376 	RF_CallbackDesc_t *p;
1377 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1378 								 * of a minimum */
1379 
1380 
1381 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1382 
1383 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1384 	for (i = 0; i < raidPtr->numCol; i++)
1385 		if (i != reconCtrlPtr->fcol) {
1386 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1387 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1388 		}
1389 	/* set the new minimum and wake up anyone who can now run again */
1390 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1391 		reconCtrlPtr->minHeadSepCounter = new_min;
1392 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1393 		while (reconCtrlPtr->headSepCBList) {
1394 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1395 				break;
1396 			p = reconCtrlPtr->headSepCBList;
1397 			reconCtrlPtr->headSepCBList = p->next;
1398 			p->next = NULL;
1399 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1400 			rf_FreeCallbackDesc(p);
1401 		}
1402 
1403 	}
1404 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1405 }
1406 
1407 /*
1408  * checks to see that the maximum head separation will not be violated
1409  * if we initiate a reconstruction I/O on the indicated disk.
1410  * Limiting the maximum head separation between two disks eliminates
1411  * the nasty buffer-stall conditions that occur when one disk races
1412  * ahead of the others and consumes all of the floating recon buffers.
1413  * This code is complex and unpleasant but it's necessary to avoid
1414  * some very nasty, albeit fairly rare, reconstruction behavior.
1415  *
1416  * returns non-zero if and only if we have to stop working on the
1417  * indicated disk due to a head-separation delay.
1418  */
1419 static int
1420 CheckHeadSeparation(
1421     RF_Raid_t * raidPtr,
1422     RF_PerDiskReconCtrl_t * ctrl,
1423     RF_RowCol_t row,
1424     RF_RowCol_t col,
1425     RF_HeadSepLimit_t hsCtr,
1426     RF_ReconUnitNum_t which_ru)
1427 {
1428 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1429 	RF_CallbackDesc_t *cb, *p, *pt;
1430 	int     retval = 0;
1431 
1432 	/* if we're too far ahead of the slowest disk, stop working on this
1433 	 * disk until the slower ones catch up.  We do this by scheduling a
1434 	 * wakeup callback for the time when the slowest disk has caught up.
1435 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1436 	 * must have fallen to at most 80% of the max allowable head
1437 	 * separation before we'll wake up.
1438 	 *
1439 	 */
1440 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1441 	if ((raidPtr->headSepLimit >= 0) &&
1442 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1443 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1444 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1445 			 reconCtrlPtr->minHeadSepCounter,
1446 			 raidPtr->headSepLimit);
1447 		cb = rf_AllocCallbackDesc();
1448 		/* the minHeadSepCounter value we have to get to before we'll
1449 		 * wake up.  build in 20% hysteresis. */
1450 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1451 		cb->row = row;
1452 		cb->col = col;
1453 		cb->next = NULL;
1454 
1455 		/* insert this callback descriptor into the sorted list of
1456 		 * pending head-sep callbacks */
1457 		p = reconCtrlPtr->headSepCBList;
1458 		if (!p)
1459 			reconCtrlPtr->headSepCBList = cb;
1460 		else
1461 			if (cb->callbackArg.v < p->callbackArg.v) {
1462 				cb->next = reconCtrlPtr->headSepCBList;
1463 				reconCtrlPtr->headSepCBList = cb;
1464 			} else {
1465 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1466 				cb->next = p;
1467 				pt->next = cb;
1468 			}
1469 		retval = 1;
1470 #if RF_RECON_STATS > 0
1471 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1472 #endif				/* RF_RECON_STATS > 0 */
1473 	}
1474 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1475 
1476 	return (retval);
1477 }
1478 /*
1479  * checks to see if reconstruction has been either forced or blocked
1480  * by a user operation.  if forced, we skip this RU entirely.  else if
1481  * blocked, put ourselves on the wait list.  else return 0.
1482  *
1483  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1484  */
1485 static int
1486 CheckForcedOrBlockedReconstruction(
1487     RF_Raid_t * raidPtr,
1488     RF_ReconParityStripeStatus_t * pssPtr,
1489     RF_PerDiskReconCtrl_t * ctrl,
1490     RF_RowCol_t row,
1491     RF_RowCol_t col,
1492     RF_StripeNum_t psid,
1493     RF_ReconUnitNum_t which_ru)
1494 {
1495 	RF_CallbackDesc_t *cb;
1496 	int     retcode = 0;
1497 
1498 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1499 		retcode = RF_PSS_FORCED_ON_WRITE;
1500 	else
1501 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1502 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1503 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1504 							 * the blockage-wait
1505 							 * list */
1506 			cb->row = row;
1507 			cb->col = col;
1508 			cb->next = pssPtr->blockWaitList;
1509 			pssPtr->blockWaitList = cb;
1510 			retcode = RF_PSS_RECON_BLOCKED;
1511 		}
1512 	if (!retcode)
1513 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1514 							 * reconstruction */
1515 
1516 	return (retcode);
1517 }
1518 /*
1519  * if reconstruction is currently ongoing for the indicated stripeID,
1520  * reconstruction is forced to completion and we return non-zero to
1521  * indicate that the caller must wait.  If not, then reconstruction is
1522  * blocked on the indicated stripe and the routine returns zero.  If
1523  * and only if we return non-zero, we'll cause the cbFunc to get
1524  * invoked with the cbArg when the reconstruction has completed.
1525  */
1526 int
1527 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1528 	RF_Raid_t *raidPtr;
1529 	RF_AccessStripeMap_t *asmap;
1530 	void    (*cbFunc) (RF_Raid_t *, void *);
1531 	void   *cbArg;
1532 {
1533 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1534 						 * we're working on */
1535 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1536 							 * forcing recon on */
1537 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1538 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1539 						 * stripe status structure */
1540 	RF_StripeNum_t psid;	/* parity stripe id */
1541 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1542 						 * offset */
1543 	RF_RowCol_t *diskids;
1544 	RF_RowCol_t stripe;
1545 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1546 	RF_RowCol_t fcol, diskno, i;
1547 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1548 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1549 	RF_CallbackDesc_t *cb;
1550 	int     created = 0, nPromoted;
1551 
1552 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1553 
1554 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1555 
1556 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1557 
1558 	/* if recon is not ongoing on this PS, just return */
1559 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1560 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1561 		return (0);
1562 	}
1563 	/* otherwise, we have to wait for reconstruction to complete on this
1564 	 * RU. */
1565 	/* In order to avoid waiting for a potentially large number of
1566 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1567 	 * not low-priority) reconstruction on this RU. */
1568 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1569 		DDprintf1("Forcing recon on psid %ld\n", psid);
1570 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1571 								 * forced recon */
1572 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1573 							 * that we just set */
1574 		fcol = raidPtr->reconControl[row]->fcol;
1575 
1576 		/* get a listing of the disks comprising the indicated stripe */
1577 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1578 		RF_ASSERT(row == stripe);
1579 
1580 		/* For previously issued reads, elevate them to normal
1581 		 * priority.  If the I/O has already completed, it won't be
1582 		 * found in the queue, and hence this will be a no-op. For
1583 		 * unissued reads, allocate buffers and issue new reads.  The
1584 		 * fact that we've set the FORCED bit means that the regular
1585 		 * recon procs will not re-issue these reqs */
1586 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1587 			if ((diskno = diskids[i]) != fcol) {
1588 				if (pssPtr->issued[diskno]) {
1589 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1590 					if (rf_reconDebug && nPromoted)
1591 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1592 				} else {
1593 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1594 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1595 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1596 													 * location */
1597 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1598 					new_rbuf->which_ru = which_ru;
1599 					new_rbuf->failedDiskSectorOffset = fd_offset;
1600 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1601 
1602 					/* use NULL b_proc b/c all addrs
1603 					 * should be in kernel space */
1604 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1605 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1606 					    NULL, (void *) raidPtr, 0, NULL);
1607 
1608 					RF_ASSERT(req);	/* XXX -- fix this --
1609 							 * XXX */
1610 
1611 					new_rbuf->arg = req;
1612 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1613 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1614 				}
1615 			}
1616 		/* if the write is sitting in the disk queue, elevate its
1617 		 * priority */
1618 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1619 			printf("raid%d: promoted write to row %d col %d\n",
1620 			       raidPtr->raidid, row, fcol);
1621 	}
1622 	/* install a callback descriptor to be invoked when recon completes on
1623 	 * this parity stripe. */
1624 	cb = rf_AllocCallbackDesc();
1625 	/* XXX the following is bogus.. These functions don't really match!!
1626 	 * GO */
1627 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1628 	cb->callbackArg.p = (void *) cbArg;
1629 	cb->next = pssPtr->procWaitList;
1630 	pssPtr->procWaitList = cb;
1631 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1632 		  raidPtr->raidid, psid);
1633 
1634 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1635 	return (1);
1636 }
1637 /* called upon the completion of a forced reconstruction read.
1638  * all we do is schedule the FORCEDREADONE event.
1639  * called at interrupt context in the kernel, so don't do anything illegal here.
1640  */
1641 static void
1642 ForceReconReadDoneProc(arg, status)
1643 	void   *arg;
1644 	int     status;
1645 {
1646 	RF_ReconBuffer_t *rbuf = arg;
1647 
1648 	if (status) {
1649 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1650 							 *  recon read
1651 							 * failed!\n"); */
1652 		RF_PANIC();
1653 	}
1654 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1655 }
1656 /* releases a block on the reconstruction of the indicated stripe */
1657 int
1658 rf_UnblockRecon(raidPtr, asmap)
1659 	RF_Raid_t *raidPtr;
1660 	RF_AccessStripeMap_t *asmap;
1661 {
1662 	RF_RowCol_t row = asmap->origRow;
1663 	RF_StripeNum_t stripeID = asmap->stripeID;
1664 	RF_ReconParityStripeStatus_t *pssPtr;
1665 	RF_ReconUnitNum_t which_ru;
1666 	RF_StripeNum_t psid;
1667 	int     created = 0;
1668 	RF_CallbackDesc_t *cb;
1669 
1670 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1671 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1672 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1673 
1674 	/* When recon is forced, the pss desc can get deleted before we get
1675 	 * back to unblock recon. But, this can _only_ happen when recon is
1676 	 * forced. It would be good to put some kind of sanity check here, but
1677 	 * how to decide if recon was just forced or not? */
1678 	if (!pssPtr) {
1679 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1680 		 * RU %d\n",psid,which_ru); */
1681 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1682 		if (rf_reconDebug || rf_pssDebug)
1683 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1684 #endif
1685 		goto out;
1686 	}
1687 	pssPtr->blockCount--;
1688 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1689 		 raidPtr->raidid, psid, pssPtr->blockCount);
1690 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1691 
1692 		/* unblock recon before calling CauseReconEvent in case
1693 		 * CauseReconEvent causes us to try to issue a new read before
1694 		 * returning here. */
1695 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1696 
1697 
1698 		while (pssPtr->blockWaitList) {
1699 			/* spin through the block-wait list and
1700 			   release all the waiters */
1701 			cb = pssPtr->blockWaitList;
1702 			pssPtr->blockWaitList = cb->next;
1703 			cb->next = NULL;
1704 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1705 			rf_FreeCallbackDesc(cb);
1706 		}
1707 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1708 			/* if no recon was requested while recon was blocked */
1709 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1710 		}
1711 	}
1712 out:
1713 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1714 	return (0);
1715 }
1716