xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 27578b9aac214cc7796ead81dcc5427e79d5f2a0)
1 /*	$NetBSD: rf_reconstruct.c,v 1.29 2001/07/18 06:45:34 thorpej Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63 
64 #include "rf_kintf.h"
65 
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67 
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND  4
82 #define RF_RECOND_INC       1
83 
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91     RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94     RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106     RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110     RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115     RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117 
118 static void rf_ShutdownReconstruction(void *);
119 
120 struct RF_ReconDoneProc_s {
121 	void    (*proc) (RF_Raid_t *, void *);
122 	void   *arg;
123 	RF_ReconDoneProc_t *next;
124 };
125 
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC      1
129 
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 	RF_ReconDoneProc_t *p;
134 
135 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 		p->proc(raidPtr, p->arg);
138 	}
139 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141 
142 int
143 rf_RegisterReconDoneProc(
144     RF_Raid_t * raidPtr,
145     void (*proc) (RF_Raid_t *, void *),
146     void *arg,
147     RF_ReconDoneProc_t ** handlep)
148 {
149 	RF_ReconDoneProc_t *p;
150 
151 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 	if (p == NULL)
153 		return (ENOMEM);
154 	p->proc = proc;
155 	p->arg = arg;
156 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 	p->next = raidPtr->recon_done_procs;
158 	raidPtr->recon_done_procs = p;
159 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 	if (handlep)
161 		*handlep = p;
162 	return (0);
163 }
164 /**************************************************************************
165  *
166  * sets up the parameters that will be used by the reconstruction process
167  * currently there are none, except for those that the layout-specific
168  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169  *
170  * in the kernel, we fire off the recon thread.
171  *
172  **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 	void   *ignored;
176 {
177 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180 
181 int
182 rf_ConfigureReconstruction(listp)
183 	RF_ShutdownList_t **listp;
184 {
185 	int     rc;
186 
187 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 	if (rf_recond_freelist == NULL)
190 		return (ENOMEM);
191 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 	if (rf_rdp_freelist == NULL) {
194 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 		return (ENOMEM);
196 	}
197 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 	if (rc) {
199 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 		    __FILE__, __LINE__, rc);
201 		rf_ShutdownReconstruction(NULL);
202 		return (rc);
203 	}
204 	return (0);
205 }
206 
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 	RF_Raid_t *raidPtr;
210 	RF_RowCol_t row;
211 	RF_RowCol_t col;
212 	RF_RaidDisk_t *spareDiskPtr;
213 	int     numDisksDone;
214 	RF_RowCol_t srow;
215 	RF_RowCol_t scol;
216 {
217 
218 	RF_RaidReconDesc_t *reconDesc;
219 
220 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221 
222 	reconDesc->raidPtr = raidPtr;
223 	reconDesc->row = row;
224 	reconDesc->col = col;
225 	reconDesc->spareDiskPtr = spareDiskPtr;
226 	reconDesc->numDisksDone = numDisksDone;
227 	reconDesc->srow = srow;
228 	reconDesc->scol = scol;
229 	reconDesc->state = 0;
230 	reconDesc->next = NULL;
231 
232 	return (reconDesc);
233 }
234 
235 static void
236 FreeReconDesc(reconDesc)
237 	RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif				/* RF_RECON_STATS > 0 */
243 	printf("RAIDframe: %lu max exec ticks\n",
244 	    (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 	printf("\n");
247 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
248 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250 
251 
252 /*****************************************************************************
253  *
254  * primary routine to reconstruct a failed disk.  This should be called from
255  * within its own thread.  It won't return until reconstruction completes,
256  * fails, or is aborted.
257  *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 	RF_Raid_t *raidPtr;
261 	RF_RowCol_t row;
262 	RF_RowCol_t col;
263 {
264 	RF_LayoutSW_t *lp;
265 	int     rc;
266 
267 	lp = raidPtr->Layout.map;
268 	if (lp->SubmitReconBuffer) {
269 		/*
270 	         * The current infrastructure only supports reconstructing one
271 	         * disk at a time for each array.
272 	         */
273 		RF_LOCK_MUTEX(raidPtr->mutex);
274 		while (raidPtr->reconInProgress) {
275 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 		}
277 		raidPtr->reconInProgress++;
278 		RF_UNLOCK_MUTEX(raidPtr->mutex);
279 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 		RF_LOCK_MUTEX(raidPtr->mutex);
281 		raidPtr->reconInProgress--;
282 		RF_UNLOCK_MUTEX(raidPtr->mutex);
283 	} else {
284 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 		    lp->parityConfig);
286 		rc = EIO;
287 	}
288 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 	wakeup(&raidPtr->waitForReconCond);	/* XXX Methinks this will be
290 						 * needed at some point... GO */
291 	return (rc);
292 }
293 
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 	RF_Raid_t *raidPtr;
297 	RF_RowCol_t row;
298 	RF_RowCol_t col;
299 {
300 	RF_ComponentLabel_t c_label;
301 	RF_RaidDisk_t *spareDiskPtr = NULL;
302 	RF_RaidReconDesc_t *reconDesc;
303 	RF_RowCol_t srow, scol;
304 	int     numDisksDone = 0, rc;
305 
306 	/* first look for a spare drive onto which to reconstruct the data */
307 	/* spare disk descriptors are stored in row 0.  This may have to
308 	 * change eventually */
309 
310 	RF_LOCK_MUTEX(raidPtr->mutex);
311 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312 
313 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 		if (raidPtr->status[row] != rf_rs_degraded) {
315 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 			RF_UNLOCK_MUTEX(raidPtr->mutex);
317 			return (EINVAL);
318 		}
319 		srow = row;
320 		scol = (-1);
321 	} else {
322 		srow = 0;
323 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 				spareDiskPtr = &raidPtr->Disks[srow][scol];
326 				spareDiskPtr->status = rf_ds_used_spare;
327 				break;
328 			}
329 		}
330 		if (!spareDiskPtr) {
331 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 			RF_UNLOCK_MUTEX(raidPtr->mutex);
333 			return (ENOSPC);
334 		}
335 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 	}
337 	RF_UNLOCK_MUTEX(raidPtr->mutex);
338 
339 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 	raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 	reconDesc->hsStallCount = 0;
343 	reconDesc->numReconExecDelays = 0;
344 	reconDesc->numReconEventWaits = 0;
345 #endif				/* RF_RECON_STATS > 0 */
346 	reconDesc->reconExecTimerRunning = 0;
347 	reconDesc->reconExecTicks = 0;
348 	reconDesc->maxReconExecTicks = 0;
349 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
350 
351 	if (!rc) {
352 		/* fix up the component label */
353 		/* Don't actually need the read here.. */
354 		raidread_component_label(
355                         raidPtr->raid_cinfo[srow][scol].ci_dev,
356 			raidPtr->raid_cinfo[srow][scol].ci_vp,
357 			&c_label);
358 
359 		raid_init_component_label( raidPtr, &c_label);
360 		c_label.row = row;
361 		c_label.column = col;
362 		c_label.clean = RF_RAID_DIRTY;
363 		c_label.status = rf_ds_optimal;
364 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
365 
366 		/* We've just done a rebuild based on all the other
367 		   disks, so at this point the parity is known to be
368 		   clean, even if it wasn't before. */
369 
370 		/* XXX doesn't hold for RAID 6!!*/
371 
372 		raidPtr->parity_good = RF_RAID_CLEAN;
373 
374 		/* XXXX MORE NEEDED HERE */
375 
376 		raidwrite_component_label(
377                         raidPtr->raid_cinfo[srow][scol].ci_dev,
378 			raidPtr->raid_cinfo[srow][scol].ci_vp,
379 			&c_label);
380 
381 	}
382 	return (rc);
383 }
384 
385 /*
386 
387    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
388    and you don't get a spare until the next Monday.  With this function
389    (and hot-swappable drives) you can now put your new disk containing
390    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
391    rebuild the data "on the spot".
392 
393 */
394 
395 int
396 rf_ReconstructInPlace(raidPtr, row, col)
397 	RF_Raid_t *raidPtr;
398 	RF_RowCol_t row;
399 	RF_RowCol_t col;
400 {
401 	RF_RaidDisk_t *spareDiskPtr = NULL;
402 	RF_RaidReconDesc_t *reconDesc;
403 	RF_LayoutSW_t *lp;
404 	RF_RaidDisk_t *badDisk;
405 	RF_ComponentLabel_t c_label;
406 	int     numDisksDone = 0, rc;
407 	struct partinfo dpart;
408 	struct vnode *vp;
409 	struct vattr va;
410 	struct proc *proc;
411 	int retcode;
412 	int ac;
413 
414 	lp = raidPtr->Layout.map;
415 	if (lp->SubmitReconBuffer) {
416 		/*
417 	         * The current infrastructure only supports reconstructing one
418 	         * disk at a time for each array.
419 	         */
420 		RF_LOCK_MUTEX(raidPtr->mutex);
421 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
422 		    (raidPtr->numFailures > 0)) {
423 			/* XXX 0 above shouldn't be constant!!! */
424 			/* some component other than this has failed.
425 			   Let's not make things worse than they already
426 			   are... */
427 			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
428 			printf("      Row: %d Col: %d   Too many failures.\n",
429 			       row, col);
430 			RF_UNLOCK_MUTEX(raidPtr->mutex);
431 			return (EINVAL);
432 		}
433 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
434 			printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
435 			printf("      Row: %d Col: %d   Reconstruction already occuring!\n", row, col);
436 
437 			RF_UNLOCK_MUTEX(raidPtr->mutex);
438 			return (EINVAL);
439 		}
440 
441 
442 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
443 			/* "It's gone..." */
444 			raidPtr->numFailures++;
445 			raidPtr->Disks[row][col].status = rf_ds_failed;
446 			raidPtr->status[row] = rf_rs_degraded;
447 			rf_update_component_labels(raidPtr,
448 						   RF_NORMAL_COMPONENT_UPDATE);
449 		}
450 
451 		while (raidPtr->reconInProgress) {
452 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
453 		}
454 
455 		raidPtr->reconInProgress++;
456 
457 
458 		/* first look for a spare drive onto which to reconstruct
459 		   the data.  spare disk descriptors are stored in row 0.
460 		   This may have to change eventually */
461 
462 		/* Actually, we don't care if it's failed or not...
463 		   On a RAID set with correct parity, this function
464 		   should be callable on any component without ill affects. */
465 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
466 		 */
467 
468 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
469 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
470 
471 			raidPtr->reconInProgress--;
472 			RF_UNLOCK_MUTEX(raidPtr->mutex);
473 			return (EINVAL);
474 		}
475 
476 		/* XXX need goop here to see if the disk is alive,
477 		   and, if not, make it so...  */
478 
479 
480 
481 		badDisk = &raidPtr->Disks[row][col];
482 
483 		proc = raidPtr->engine_thread;
484 
485 		/* This device may have been opened successfully the
486 		   first time. Close it before trying to open it again.. */
487 
488 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
489 			printf("Closed the open device: %s\n",
490 			       raidPtr->Disks[row][col].devname);
491 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
492 			ac = raidPtr->Disks[row][col].auto_configured;
493 			rf_close_component(raidPtr, vp, ac);
494 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
495 		}
496 		/* note that this disk was *not* auto_configured (any longer)*/
497 		raidPtr->Disks[row][col].auto_configured = 0;
498 
499 		printf("About to (re-)open the device for rebuilding: %s\n",
500 		       raidPtr->Disks[row][col].devname);
501 
502 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
503 				     proc, &vp);
504 
505 		if (retcode) {
506 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
507 			       raidPtr->Disks[row][col].devname, retcode);
508 
509 			/* XXX the component isn't responding properly...
510 			   must be still dead :-( */
511 			raidPtr->reconInProgress--;
512 			RF_UNLOCK_MUTEX(raidPtr->mutex);
513 			return(retcode);
514 
515 		} else {
516 
517 			/* Ok, so we can at least do a lookup...
518 			   How about actually getting a vp for it? */
519 
520 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
521 						   proc)) != 0) {
522 				raidPtr->reconInProgress--;
523 				RF_UNLOCK_MUTEX(raidPtr->mutex);
524 				return(retcode);
525 			}
526 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
527 					    FREAD, proc->p_ucred, proc);
528 			if (retcode) {
529 				raidPtr->reconInProgress--;
530 				RF_UNLOCK_MUTEX(raidPtr->mutex);
531 				return(retcode);
532 			}
533 			raidPtr->Disks[row][col].blockSize =
534 				dpart.disklab->d_secsize;
535 
536 			raidPtr->Disks[row][col].numBlocks =
537 				dpart.part->p_size - rf_protectedSectors;
538 
539 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
540 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
541 
542 			raidPtr->Disks[row][col].dev = va.va_rdev;
543 
544 			/* we allow the user to specify that only a
545 			   fraction of the disks should be used this is
546 			   just for debug:  it speeds up
547 			 * the parity scan */
548 			raidPtr->Disks[row][col].numBlocks =
549 				raidPtr->Disks[row][col].numBlocks *
550 				rf_sizePercentage / 100;
551 		}
552 
553 
554 
555 		spareDiskPtr = &raidPtr->Disks[row][col];
556 		spareDiskPtr->status = rf_ds_used_spare;
557 
558 		printf("RECON: initiating in-place reconstruction on\n");
559 		printf("       row %d col %d -> spare at row %d col %d\n",
560 		       row, col, row, col);
561 
562 		RF_UNLOCK_MUTEX(raidPtr->mutex);
563 
564 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
565 					       spareDiskPtr, numDisksDone,
566 					       row, col);
567 		raidPtr->reconDesc = (void *) reconDesc;
568 #if RF_RECON_STATS > 0
569 		reconDesc->hsStallCount = 0;
570 		reconDesc->numReconExecDelays = 0;
571 		reconDesc->numReconEventWaits = 0;
572 #endif				/* RF_RECON_STATS > 0 */
573 		reconDesc->reconExecTimerRunning = 0;
574 		reconDesc->reconExecTicks = 0;
575 		reconDesc->maxReconExecTicks = 0;
576 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
577 
578 		RF_LOCK_MUTEX(raidPtr->mutex);
579 		raidPtr->reconInProgress--;
580 		RF_UNLOCK_MUTEX(raidPtr->mutex);
581 
582 	} else {
583 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
584 			     lp->parityConfig);
585 		rc = EIO;
586 	}
587 	RF_LOCK_MUTEX(raidPtr->mutex);
588 
589 	if (!rc) {
590 		/* Need to set these here, as at this point it'll be claiming
591 		   that the disk is in rf_ds_spared!  But we know better :-) */
592 
593 		raidPtr->Disks[row][col].status = rf_ds_optimal;
594 		raidPtr->status[row] = rf_rs_optimal;
595 
596 		/* fix up the component label */
597 		/* Don't actually need the read here.. */
598 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
599 					 raidPtr->raid_cinfo[row][col].ci_vp,
600 					 &c_label);
601 
602 		raid_init_component_label(raidPtr, &c_label);
603 
604 		c_label.row = row;
605 		c_label.column = col;
606 
607 		/* We've just done a rebuild based on all the other
608 		   disks, so at this point the parity is known to be
609 		   clean, even if it wasn't before. */
610 
611 		/* XXX doesn't hold for RAID 6!!*/
612 
613 		raidPtr->parity_good = RF_RAID_CLEAN;
614 
615 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
616 					  raidPtr->raid_cinfo[row][col].ci_vp,
617 					  &c_label);
618 
619 	}
620 	RF_UNLOCK_MUTEX(raidPtr->mutex);
621 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
622 	wakeup(&raidPtr->waitForReconCond);
623 	return (rc);
624 }
625 
626 
627 int
628 rf_ContinueReconstructFailedDisk(reconDesc)
629 	RF_RaidReconDesc_t *reconDesc;
630 {
631 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
632 	RF_RowCol_t row = reconDesc->row;
633 	RF_RowCol_t col = reconDesc->col;
634 	RF_RowCol_t srow = reconDesc->srow;
635 	RF_RowCol_t scol = reconDesc->scol;
636 	RF_ReconMap_t *mapPtr;
637 
638 	RF_ReconEvent_t *event;
639 	struct timeval etime, elpsd;
640 	unsigned long xor_s, xor_resid_us;
641 	int     retcode, i, ds;
642 
643 	switch (reconDesc->state) {
644 
645 
646 	case 0:
647 
648 		raidPtr->accumXorTimeUs = 0;
649 
650 		/* create one trace record per physical disk */
651 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
652 
653 		/* quiesce the array prior to starting recon.  this is needed
654 		 * to assure no nasty interactions with pending user writes.
655 		 * We need to do this before we change the disk or row status. */
656 		reconDesc->state = 1;
657 
658 		Dprintf("RECON: begin request suspend\n");
659 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
660 		Dprintf("RECON: end request suspend\n");
661 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
662 						 * user accs */
663 
664 		/* fall through to state 1 */
665 
666 	case 1:
667 
668 		RF_LOCK_MUTEX(raidPtr->mutex);
669 
670 		/* create the reconstruction control pointer and install it in
671 		 * the right slot */
672 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
673 		mapPtr = raidPtr->reconControl[row]->reconMap;
674 		raidPtr->status[row] = rf_rs_reconstructing;
675 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
676 		raidPtr->Disks[row][col].spareRow = srow;
677 		raidPtr->Disks[row][col].spareCol = scol;
678 
679 		RF_UNLOCK_MUTEX(raidPtr->mutex);
680 
681 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
682 
683 		/* now start up the actual reconstruction: issue a read for
684 		 * each surviving disk */
685 
686 		reconDesc->numDisksDone = 0;
687 		for (i = 0; i < raidPtr->numCol; i++) {
688 			if (i != col) {
689 				/* find and issue the next I/O on the
690 				 * indicated disk */
691 				if (IssueNextReadRequest(raidPtr, row, i)) {
692 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
693 					reconDesc->numDisksDone++;
694 				}
695 			}
696 		}
697 
698 	case 2:
699 		Dprintf("RECON: resume requests\n");
700 		rf_ResumeNewRequests(raidPtr);
701 
702 
703 		reconDesc->state = 3;
704 
705 	case 3:
706 
707 		/* process reconstruction events until all disks report that
708 		 * they've completed all work */
709 		mapPtr = raidPtr->reconControl[row]->reconMap;
710 
711 
712 
713 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
714 
715 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
716 			RF_ASSERT(event);
717 
718 			if (ProcessReconEvent(raidPtr, row, event))
719 				reconDesc->numDisksDone++;
720 			raidPtr->reconControl[row]->numRUsTotal =
721 				mapPtr->totalRUs;
722 			raidPtr->reconControl[row]->numRUsComplete =
723 				mapPtr->totalRUs -
724 				rf_UnitsLeftToReconstruct(mapPtr);
725 
726 			raidPtr->reconControl[row]->percentComplete =
727 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
728 			if (rf_prReconSched) {
729 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
730 			}
731 		}
732 
733 
734 
735 		reconDesc->state = 4;
736 
737 
738 	case 4:
739 		mapPtr = raidPtr->reconControl[row]->reconMap;
740 		if (rf_reconDebug) {
741 			printf("RECON: all reads completed\n");
742 		}
743 		/* at this point all the reads have completed.  We now wait
744 		 * for any pending writes to complete, and then we're done */
745 
746 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
747 
748 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
749 			RF_ASSERT(event);
750 
751 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
752 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
753 			if (rf_prReconSched) {
754 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
755 			}
756 		}
757 		reconDesc->state = 5;
758 
759 	case 5:
760 		/* Success:  mark the dead disk as reconstructed.  We quiesce
761 		 * the array here to assure no nasty interactions with pending
762 		 * user accesses when we free up the psstatus structure as
763 		 * part of FreeReconControl() */
764 
765 		reconDesc->state = 6;
766 
767 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
768 		rf_StopUserStats(raidPtr);
769 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
770 						 * accs accumulated during
771 						 * recon */
772 
773 		/* fall through to state 6 */
774 	case 6:
775 
776 
777 
778 		RF_LOCK_MUTEX(raidPtr->mutex);
779 		raidPtr->numFailures--;
780 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
781 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
782 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
783 		RF_UNLOCK_MUTEX(raidPtr->mutex);
784 		RF_GETTIME(etime);
785 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
786 
787 		/* XXX -- why is state 7 different from state 6 if there is no
788 		 * return() here? -- XXX Note that I set elpsd above & use it
789 		 * below, so if you put a return here you'll have to fix this.
790 		 * (also, FreeReconControl is called below) */
791 
792 	case 7:
793 
794 		rf_ResumeNewRequests(raidPtr);
795 
796 		printf("Reconstruction of disk at row %d col %d completed\n",
797 		       row, col);
798 		xor_s = raidPtr->accumXorTimeUs / 1000000;
799 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
800 		printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
801 		    (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
802 		printf("  (start time %d sec %d usec, end time %d sec %d usec)\n",
803 		    (int) raidPtr->reconControl[row]->starttime.tv_sec,
804 		    (int) raidPtr->reconControl[row]->starttime.tv_usec,
805 		    (int) etime.tv_sec, (int) etime.tv_usec);
806 
807 #if RF_RECON_STATS > 0
808 		printf("Total head-sep stall count was %d\n",
809 		    (int) reconDesc->hsStallCount);
810 #endif				/* RF_RECON_STATS > 0 */
811 		rf_FreeReconControl(raidPtr, row);
812 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
813 		FreeReconDesc(reconDesc);
814 
815 	}
816 
817 	SignalReconDone(raidPtr);
818 	return (0);
819 }
820 /*****************************************************************************
821  * do the right thing upon each reconstruction event.
822  * returns nonzero if and only if there is nothing left unread on the
823  * indicated disk
824  *****************************************************************************/
825 static int
826 ProcessReconEvent(raidPtr, frow, event)
827 	RF_Raid_t *raidPtr;
828 	RF_RowCol_t frow;
829 	RF_ReconEvent_t *event;
830 {
831 	int     retcode = 0, submitblocked;
832 	RF_ReconBuffer_t *rbuf;
833 	RF_SectorCount_t sectorsPerRU;
834 
835 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
836 	switch (event->type) {
837 
838 		/* a read I/O has completed */
839 	case RF_REVENT_READDONE:
840 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
841 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
842 		    frow, event->col, rbuf->parityStripeID);
843 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
844 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
845 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
846 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
847 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
848 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
849 		if (!submitblocked)
850 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
851 		break;
852 
853 		/* a write I/O has completed */
854 	case RF_REVENT_WRITEDONE:
855 		if (rf_floatingRbufDebug) {
856 			rf_CheckFloatingRbufCount(raidPtr, 1);
857 		}
858 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
859 		rbuf = (RF_ReconBuffer_t *) event->arg;
860 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
861 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
862 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
863 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
864 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
865 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
866 
867 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
868 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
869 			raidPtr->numFullReconBuffers--;
870 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
871 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
872 		} else
873 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
874 				rf_FreeReconBuffer(rbuf);
875 			else
876 				RF_ASSERT(0);
877 		break;
878 
879 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
880 					 * cleared */
881 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
882 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
883 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
884 						 * BUFCLEAR event if we
885 						 * couldn't submit */
886 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
887 		break;
888 
889 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
890 					 * blockage has been cleared */
891 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
892 		retcode = TryToRead(raidPtr, frow, event->col);
893 		break;
894 
895 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
896 					 * reconstruction blockage has been
897 					 * cleared */
898 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
899 		retcode = TryToRead(raidPtr, frow, event->col);
900 		break;
901 
902 		/* a buffer has become ready to write */
903 	case RF_REVENT_BUFREADY:
904 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
905 		retcode = IssueNextWriteRequest(raidPtr, frow);
906 		if (rf_floatingRbufDebug) {
907 			rf_CheckFloatingRbufCount(raidPtr, 1);
908 		}
909 		break;
910 
911 		/* we need to skip the current RU entirely because it got
912 		 * recon'd while we were waiting for something else to happen */
913 	case RF_REVENT_SKIP:
914 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
915 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
916 		break;
917 
918 		/* a forced-reconstruction read access has completed.  Just
919 		 * submit the buffer */
920 	case RF_REVENT_FORCEDREADDONE:
921 		rbuf = (RF_ReconBuffer_t *) event->arg;
922 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
923 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
924 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
925 		RF_ASSERT(!submitblocked);
926 		break;
927 
928 	default:
929 		RF_PANIC();
930 	}
931 	rf_FreeReconEventDesc(event);
932 	return (retcode);
933 }
934 /*****************************************************************************
935  *
936  * find the next thing that's needed on the indicated disk, and issue
937  * a read request for it.  We assume that the reconstruction buffer
938  * associated with this process is free to receive the data.  If
939  * reconstruction is blocked on the indicated RU, we issue a
940  * blockage-release request instead of a physical disk read request.
941  * If the current disk gets too far ahead of the others, we issue a
942  * head-separation wait request and return.
943  *
944  * ctrl->{ru_count, curPSID, diskOffset} and
945  * rbuf->failedDiskSectorOffset are maintained to point to the unit
946  * we're currently accessing.  Note that this deviates from the
947  * standard C idiom of having counters point to the next thing to be
948  * accessed.  This allows us to easily retry when we're blocked by
949  * head separation or reconstruction-blockage events.
950  *
951  * returns nonzero if and only if there is nothing left unread on the
952  * indicated disk
953  *
954  *****************************************************************************/
955 static int
956 IssueNextReadRequest(raidPtr, row, col)
957 	RF_Raid_t *raidPtr;
958 	RF_RowCol_t row;
959 	RF_RowCol_t col;
960 {
961 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
962 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
963 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
964 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
965 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
966 	int     do_new_check = 0, retcode = 0, status;
967 
968 	/* if we are currently the slowest disk, mark that we have to do a new
969 	 * check */
970 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
971 		do_new_check = 1;
972 
973 	while (1) {
974 
975 		ctrl->ru_count++;
976 		if (ctrl->ru_count < RUsPerPU) {
977 			ctrl->diskOffset += sectorsPerRU;
978 			rbuf->failedDiskSectorOffset += sectorsPerRU;
979 		} else {
980 			ctrl->curPSID++;
981 			ctrl->ru_count = 0;
982 			/* code left over from when head-sep was based on
983 			 * parity stripe id */
984 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
985 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
986 				return (1);	/* finito! */
987 			}
988 			/* find the disk offsets of the start of the parity
989 			 * stripe on both the current disk and the failed
990 			 * disk. skip this entire parity stripe if either disk
991 			 * does not appear in the indicated PS */
992 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
993 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
994 			if (status) {
995 				ctrl->ru_count = RUsPerPU - 1;
996 				continue;
997 			}
998 		}
999 		rbuf->which_ru = ctrl->ru_count;
1000 
1001 		/* skip this RU if it's already been reconstructed */
1002 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1003 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1004 			continue;
1005 		}
1006 		break;
1007 	}
1008 	ctrl->headSepCounter++;
1009 	if (do_new_check)
1010 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1011 
1012 
1013 	/* at this point, we have definitely decided what to do, and we have
1014 	 * only to see if we can actually do it now */
1015 	rbuf->parityStripeID = ctrl->curPSID;
1016 	rbuf->which_ru = ctrl->ru_count;
1017 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1018 	    sizeof(raidPtr->recon_tracerecs[col]));
1019 	raidPtr->recon_tracerecs[col].reconacc = 1;
1020 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1021 	retcode = TryToRead(raidPtr, row, col);
1022 	return (retcode);
1023 }
1024 
1025 /*
1026  * tries to issue the next read on the indicated disk.  We may be
1027  * blocked by (a) the heads being too far apart, or (b) recon on the
1028  * indicated RU being blocked due to a write by a user thread.  In
1029  * this case, we issue a head-sep or blockage wait request, which will
1030  * cause this same routine to be invoked again later when the blockage
1031  * has cleared.
1032  */
1033 
1034 static int
1035 TryToRead(raidPtr, row, col)
1036 	RF_Raid_t *raidPtr;
1037 	RF_RowCol_t row;
1038 	RF_RowCol_t col;
1039 {
1040 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1041 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1042 	RF_StripeNum_t psid = ctrl->curPSID;
1043 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1044 	RF_DiskQueueData_t *req;
1045 	int     status, created = 0;
1046 	RF_ReconParityStripeStatus_t *pssPtr;
1047 
1048 	/* if the current disk is too far ahead of the others, issue a
1049 	 * head-separation wait and return */
1050 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1051 		return (0);
1052 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1053 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1054 
1055 	/* if recon is blocked on the indicated parity stripe, issue a
1056 	 * block-wait request and return. this also must mark the indicated RU
1057 	 * in the stripe as under reconstruction if not blocked. */
1058 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1059 	if (status == RF_PSS_RECON_BLOCKED) {
1060 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1061 		goto out;
1062 	} else
1063 		if (status == RF_PSS_FORCED_ON_WRITE) {
1064 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1065 			goto out;
1066 		}
1067 	/* make one last check to be sure that the indicated RU didn't get
1068 	 * reconstructed while we were waiting for something else to happen.
1069 	 * This is unfortunate in that it causes us to make this check twice
1070 	 * in the normal case.  Might want to make some attempt to re-work
1071 	 * this so that we only do this check if we've definitely blocked on
1072 	 * one of the above checks.  When this condition is detected, we may
1073 	 * have just created a bogus status entry, which we need to delete. */
1074 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1075 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1076 		if (created)
1077 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1078 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1079 		goto out;
1080 	}
1081 	/* found something to read.  issue the I/O */
1082 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1083 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1084 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1085 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1086 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1087 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1088 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1089 
1090 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1091 	 * should be in kernel space */
1092 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1093 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1094 
1095 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1096 
1097 	ctrl->rbuf->arg = (void *) req;
1098 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1099 	pssPtr->issued[col] = 1;
1100 
1101 out:
1102 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1103 	return (0);
1104 }
1105 
1106 
1107 /*
1108  * given a parity stripe ID, we want to find out whether both the
1109  * current disk and the failed disk exist in that parity stripe.  If
1110  * not, we want to skip this whole PS.  If so, we want to find the
1111  * disk offset of the start of the PS on both the current disk and the
1112  * failed disk.
1113  *
1114  * this works by getting a list of disks comprising the indicated
1115  * parity stripe, and searching the list for the current and failed
1116  * disks.  Once we've decided they both exist in the parity stripe, we
1117  * need to decide whether each is data or parity, so that we'll know
1118  * which mapping function to call to get the corresponding disk
1119  * offsets.
1120  *
1121  * this is kind of unpleasant, but doing it this way allows the
1122  * reconstruction code to use parity stripe IDs rather than physical
1123  * disks address to march through the failed disk, which greatly
1124  * simplifies a lot of code, as well as eliminating the need for a
1125  * reverse-mapping function.  I also think it will execute faster,
1126  * since the calls to the mapping module are kept to a minimum.
1127  *
1128  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1129  * THE STRIPE IN THE CORRECT ORDER */
1130 
1131 
1132 static int
1133 ComputePSDiskOffsets(
1134     RF_Raid_t * raidPtr,	/* raid descriptor */
1135     RF_StripeNum_t psid,	/* parity stripe identifier */
1136     RF_RowCol_t row,		/* row and column of disk to find the offsets
1137 				 * for */
1138     RF_RowCol_t col,
1139     RF_SectorNum_t * outDiskOffset,
1140     RF_SectorNum_t * outFailedDiskSectorOffset,
1141     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1142     RF_RowCol_t * spCol,
1143     RF_SectorNum_t * spOffset)
1144 {				/* OUT: offset into disk containing spare unit */
1145 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1146 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1147 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1148 	RF_RowCol_t *diskids;
1149 	u_int   i, j, k, i_offset, j_offset;
1150 	RF_RowCol_t prow, pcol;
1151 	int     testcol, testrow;
1152 	RF_RowCol_t stripe;
1153 	RF_SectorNum_t poffset;
1154 	char    i_is_parity = 0, j_is_parity = 0;
1155 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1156 
1157 	/* get a listing of the disks comprising that stripe */
1158 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1159 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1160 	RF_ASSERT(diskids);
1161 
1162 	/* reject this entire parity stripe if it does not contain the
1163 	 * indicated disk or it does not contain the failed disk */
1164 	if (row != stripe)
1165 		goto skipit;
1166 	for (i = 0; i < stripeWidth; i++) {
1167 		if (col == diskids[i])
1168 			break;
1169 	}
1170 	if (i == stripeWidth)
1171 		goto skipit;
1172 	for (j = 0; j < stripeWidth; j++) {
1173 		if (fcol == diskids[j])
1174 			break;
1175 	}
1176 	if (j == stripeWidth) {
1177 		goto skipit;
1178 	}
1179 	/* find out which disk the parity is on */
1180 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1181 
1182 	/* find out if either the current RU or the failed RU is parity */
1183 	/* also, if the parity occurs in this stripe prior to the data and/or
1184 	 * failed col, we need to decrement i and/or j */
1185 	for (k = 0; k < stripeWidth; k++)
1186 		if (diskids[k] == pcol)
1187 			break;
1188 	RF_ASSERT(k < stripeWidth);
1189 	i_offset = i;
1190 	j_offset = j;
1191 	if (k < i)
1192 		i_offset--;
1193 	else
1194 		if (k == i) {
1195 			i_is_parity = 1;
1196 			i_offset = 0;
1197 		}		/* set offsets to zero to disable multiply
1198 				 * below */
1199 	if (k < j)
1200 		j_offset--;
1201 	else
1202 		if (k == j) {
1203 			j_is_parity = 1;
1204 			j_offset = 0;
1205 		}
1206 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1207 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1208 	 * tells us how far into the stripe the [current,failed] disk is. */
1209 
1210 	/* call the mapping routine to get the offset into the current disk,
1211 	 * repeat for failed disk. */
1212 	if (i_is_parity)
1213 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1214 	else
1215 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1216 
1217 	RF_ASSERT(row == testrow && col == testcol);
1218 
1219 	if (j_is_parity)
1220 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1221 	else
1222 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1223 	RF_ASSERT(row == testrow && fcol == testcol);
1224 
1225 	/* now locate the spare unit for the failed unit */
1226 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1227 		if (j_is_parity)
1228 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1229 		else
1230 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1231 	} else {
1232 		*spRow = raidPtr->reconControl[row]->spareRow;
1233 		*spCol = raidPtr->reconControl[row]->spareCol;
1234 		*spOffset = *outFailedDiskSectorOffset;
1235 	}
1236 
1237 	return (0);
1238 
1239 skipit:
1240 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1241 	    psid, row, col);
1242 	return (1);
1243 }
1244 /* this is called when a buffer has become ready to write to the replacement disk */
1245 static int
1246 IssueNextWriteRequest(raidPtr, row)
1247 	RF_Raid_t *raidPtr;
1248 	RF_RowCol_t row;
1249 {
1250 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1251 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1252 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1253 	RF_ReconBuffer_t *rbuf;
1254 	RF_DiskQueueData_t *req;
1255 
1256 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1257 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1258 				 * have gotten the event that sent us here */
1259 	RF_ASSERT(rbuf->pssPtr);
1260 
1261 	rbuf->pssPtr->writeRbuf = rbuf;
1262 	rbuf->pssPtr = NULL;
1263 
1264 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1265 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1266 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1267 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1268 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1269 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1270 
1271 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1272 	 * kernel space */
1273 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1274 	    sectorsPerRU, rbuf->buffer,
1275 	    rbuf->parityStripeID, rbuf->which_ru,
1276 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1277 	    &raidPtr->recon_tracerecs[fcol],
1278 	    (void *) raidPtr, 0, NULL);
1279 
1280 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1281 
1282 	rbuf->arg = (void *) req;
1283 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1284 
1285 	return (0);
1286 }
1287 
1288 /*
1289  * this gets called upon the completion of a reconstruction read
1290  * operation the arg is a pointer to the per-disk reconstruction
1291  * control structure for the process that just finished a read.
1292  *
1293  * called at interrupt context in the kernel, so don't do anything
1294  * illegal here.
1295  */
1296 static int
1297 ReconReadDoneProc(arg, status)
1298 	void   *arg;
1299 	int     status;
1300 {
1301 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1302 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1303 
1304 	if (status) {
1305 		/*
1306 	         * XXX
1307 	         */
1308 		printf("Recon read failed!\n");
1309 		RF_PANIC();
1310 	}
1311 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1312 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1313 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1314 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1315 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1316 
1317 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1318 	return (0);
1319 }
1320 /* this gets called upon the completion of a reconstruction write operation.
1321  * the arg is a pointer to the rbuf that was just written
1322  *
1323  * called at interrupt context in the kernel, so don't do anything illegal here.
1324  */
1325 static int
1326 ReconWriteDoneProc(arg, status)
1327 	void   *arg;
1328 	int     status;
1329 {
1330 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1331 
1332 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1333 	if (status) {
1334 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1335 							 * write failed!\n"); */
1336 		RF_PANIC();
1337 	}
1338 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1339 	return (0);
1340 }
1341 
1342 
1343 /*
1344  * computes a new minimum head sep, and wakes up anyone who needs to
1345  * be woken as a result
1346  */
1347 static void
1348 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1349 	RF_Raid_t *raidPtr;
1350 	RF_RowCol_t row;
1351 	RF_HeadSepLimit_t hsCtr;
1352 {
1353 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1354 	RF_HeadSepLimit_t new_min;
1355 	RF_RowCol_t i;
1356 	RF_CallbackDesc_t *p;
1357 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1358 								 * of a minimum */
1359 
1360 
1361 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1362 
1363 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1364 	for (i = 0; i < raidPtr->numCol; i++)
1365 		if (i != reconCtrlPtr->fcol) {
1366 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1367 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1368 		}
1369 	/* set the new minimum and wake up anyone who can now run again */
1370 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1371 		reconCtrlPtr->minHeadSepCounter = new_min;
1372 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1373 		while (reconCtrlPtr->headSepCBList) {
1374 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1375 				break;
1376 			p = reconCtrlPtr->headSepCBList;
1377 			reconCtrlPtr->headSepCBList = p->next;
1378 			p->next = NULL;
1379 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1380 			rf_FreeCallbackDesc(p);
1381 		}
1382 
1383 	}
1384 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1385 }
1386 
1387 /*
1388  * checks to see that the maximum head separation will not be violated
1389  * if we initiate a reconstruction I/O on the indicated disk.
1390  * Limiting the maximum head separation between two disks eliminates
1391  * the nasty buffer-stall conditions that occur when one disk races
1392  * ahead of the others and consumes all of the floating recon buffers.
1393  * This code is complex and unpleasant but it's necessary to avoid
1394  * some very nasty, albeit fairly rare, reconstruction behavior.
1395  *
1396  * returns non-zero if and only if we have to stop working on the
1397  * indicated disk due to a head-separation delay.
1398  */
1399 static int
1400 CheckHeadSeparation(
1401     RF_Raid_t * raidPtr,
1402     RF_PerDiskReconCtrl_t * ctrl,
1403     RF_RowCol_t row,
1404     RF_RowCol_t col,
1405     RF_HeadSepLimit_t hsCtr,
1406     RF_ReconUnitNum_t which_ru)
1407 {
1408 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1409 	RF_CallbackDesc_t *cb, *p, *pt;
1410 	int     retval = 0;
1411 
1412 	/* if we're too far ahead of the slowest disk, stop working on this
1413 	 * disk until the slower ones catch up.  We do this by scheduling a
1414 	 * wakeup callback for the time when the slowest disk has caught up.
1415 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1416 	 * must have fallen to at most 80% of the max allowable head
1417 	 * separation before we'll wake up.
1418 	 *
1419 	 */
1420 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1421 	if ((raidPtr->headSepLimit >= 0) &&
1422 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1423 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1424 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1425 			 reconCtrlPtr->minHeadSepCounter,
1426 			 raidPtr->headSepLimit);
1427 		cb = rf_AllocCallbackDesc();
1428 		/* the minHeadSepCounter value we have to get to before we'll
1429 		 * wake up.  build in 20% hysteresis. */
1430 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1431 		cb->row = row;
1432 		cb->col = col;
1433 		cb->next = NULL;
1434 
1435 		/* insert this callback descriptor into the sorted list of
1436 		 * pending head-sep callbacks */
1437 		p = reconCtrlPtr->headSepCBList;
1438 		if (!p)
1439 			reconCtrlPtr->headSepCBList = cb;
1440 		else
1441 			if (cb->callbackArg.v < p->callbackArg.v) {
1442 				cb->next = reconCtrlPtr->headSepCBList;
1443 				reconCtrlPtr->headSepCBList = cb;
1444 			} else {
1445 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1446 				cb->next = p;
1447 				pt->next = cb;
1448 			}
1449 		retval = 1;
1450 #if RF_RECON_STATS > 0
1451 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1452 #endif				/* RF_RECON_STATS > 0 */
1453 	}
1454 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1455 
1456 	return (retval);
1457 }
1458 /*
1459  * checks to see if reconstruction has been either forced or blocked
1460  * by a user operation.  if forced, we skip this RU entirely.  else if
1461  * blocked, put ourselves on the wait list.  else return 0.
1462  *
1463  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1464  */
1465 static int
1466 CheckForcedOrBlockedReconstruction(
1467     RF_Raid_t * raidPtr,
1468     RF_ReconParityStripeStatus_t * pssPtr,
1469     RF_PerDiskReconCtrl_t * ctrl,
1470     RF_RowCol_t row,
1471     RF_RowCol_t col,
1472     RF_StripeNum_t psid,
1473     RF_ReconUnitNum_t which_ru)
1474 {
1475 	RF_CallbackDesc_t *cb;
1476 	int     retcode = 0;
1477 
1478 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1479 		retcode = RF_PSS_FORCED_ON_WRITE;
1480 	else
1481 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1482 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1483 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1484 							 * the blockage-wait
1485 							 * list */
1486 			cb->row = row;
1487 			cb->col = col;
1488 			cb->next = pssPtr->blockWaitList;
1489 			pssPtr->blockWaitList = cb;
1490 			retcode = RF_PSS_RECON_BLOCKED;
1491 		}
1492 	if (!retcode)
1493 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1494 							 * reconstruction */
1495 
1496 	return (retcode);
1497 }
1498 /*
1499  * if reconstruction is currently ongoing for the indicated stripeID,
1500  * reconstruction is forced to completion and we return non-zero to
1501  * indicate that the caller must wait.  If not, then reconstruction is
1502  * blocked on the indicated stripe and the routine returns zero.  If
1503  * and only if we return non-zero, we'll cause the cbFunc to get
1504  * invoked with the cbArg when the reconstruction has completed.
1505  */
1506 int
1507 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1508 	RF_Raid_t *raidPtr;
1509 	RF_AccessStripeMap_t *asmap;
1510 	void    (*cbFunc) (RF_Raid_t *, void *);
1511 	void   *cbArg;
1512 {
1513 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1514 						 * we're working on */
1515 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1516 							 * forcing recon on */
1517 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1518 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1519 						 * stripe status structure */
1520 	RF_StripeNum_t psid;	/* parity stripe id */
1521 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1522 						 * offset */
1523 	RF_RowCol_t *diskids;
1524 	RF_RowCol_t stripe;
1525 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1526 	RF_RowCol_t fcol, diskno, i;
1527 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1528 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1529 	RF_CallbackDesc_t *cb;
1530 	int     created = 0, nPromoted;
1531 
1532 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1533 
1534 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1535 
1536 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1537 
1538 	/* if recon is not ongoing on this PS, just return */
1539 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1540 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1541 		return (0);
1542 	}
1543 	/* otherwise, we have to wait for reconstruction to complete on this
1544 	 * RU. */
1545 	/* In order to avoid waiting for a potentially large number of
1546 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1547 	 * not low-priority) reconstruction on this RU. */
1548 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1549 		DDprintf1("Forcing recon on psid %ld\n", psid);
1550 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1551 								 * forced recon */
1552 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1553 							 * that we just set */
1554 		fcol = raidPtr->reconControl[row]->fcol;
1555 
1556 		/* get a listing of the disks comprising the indicated stripe */
1557 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1558 		RF_ASSERT(row == stripe);
1559 
1560 		/* For previously issued reads, elevate them to normal
1561 		 * priority.  If the I/O has already completed, it won't be
1562 		 * found in the queue, and hence this will be a no-op. For
1563 		 * unissued reads, allocate buffers and issue new reads.  The
1564 		 * fact that we've set the FORCED bit means that the regular
1565 		 * recon procs will not re-issue these reqs */
1566 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1567 			if ((diskno = diskids[i]) != fcol) {
1568 				if (pssPtr->issued[diskno]) {
1569 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1570 					if (rf_reconDebug && nPromoted)
1571 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1572 				} else {
1573 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1574 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1575 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1576 													 * location */
1577 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1578 					new_rbuf->which_ru = which_ru;
1579 					new_rbuf->failedDiskSectorOffset = fd_offset;
1580 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1581 
1582 					/* use NULL b_proc b/c all addrs
1583 					 * should be in kernel space */
1584 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1585 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1586 					    NULL, (void *) raidPtr, 0, NULL);
1587 
1588 					RF_ASSERT(req);	/* XXX -- fix this --
1589 							 * XXX */
1590 
1591 					new_rbuf->arg = req;
1592 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1593 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1594 				}
1595 			}
1596 		/* if the write is sitting in the disk queue, elevate its
1597 		 * priority */
1598 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1599 			printf("raid%d: promoted write to row %d col %d\n",
1600 			       raidPtr->raidid, row, fcol);
1601 	}
1602 	/* install a callback descriptor to be invoked when recon completes on
1603 	 * this parity stripe. */
1604 	cb = rf_AllocCallbackDesc();
1605 	/* XXX the following is bogus.. These functions don't really match!!
1606 	 * GO */
1607 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1608 	cb->callbackArg.p = (void *) cbArg;
1609 	cb->next = pssPtr->procWaitList;
1610 	pssPtr->procWaitList = cb;
1611 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1612 		  raidPtr->raidid, psid);
1613 
1614 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1615 	return (1);
1616 }
1617 /* called upon the completion of a forced reconstruction read.
1618  * all we do is schedule the FORCEDREADONE event.
1619  * called at interrupt context in the kernel, so don't do anything illegal here.
1620  */
1621 static void
1622 ForceReconReadDoneProc(arg, status)
1623 	void   *arg;
1624 	int     status;
1625 {
1626 	RF_ReconBuffer_t *rbuf = arg;
1627 
1628 	if (status) {
1629 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1630 							 *  recon read
1631 							 * failed!\n"); */
1632 		RF_PANIC();
1633 	}
1634 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1635 }
1636 /* releases a block on the reconstruction of the indicated stripe */
1637 int
1638 rf_UnblockRecon(raidPtr, asmap)
1639 	RF_Raid_t *raidPtr;
1640 	RF_AccessStripeMap_t *asmap;
1641 {
1642 	RF_RowCol_t row = asmap->origRow;
1643 	RF_StripeNum_t stripeID = asmap->stripeID;
1644 	RF_ReconParityStripeStatus_t *pssPtr;
1645 	RF_ReconUnitNum_t which_ru;
1646 	RF_StripeNum_t psid;
1647 	int     created = 0;
1648 	RF_CallbackDesc_t *cb;
1649 
1650 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1651 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1652 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1653 
1654 	/* When recon is forced, the pss desc can get deleted before we get
1655 	 * back to unblock recon. But, this can _only_ happen when recon is
1656 	 * forced. It would be good to put some kind of sanity check here, but
1657 	 * how to decide if recon was just forced or not? */
1658 	if (!pssPtr) {
1659 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1660 		 * RU %d\n",psid,which_ru); */
1661 		if (rf_reconDebug || rf_pssDebug)
1662 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1663 		goto out;
1664 	}
1665 	pssPtr->blockCount--;
1666 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1667 		 raidPtr->raidid, psid, pssPtr->blockCount);
1668 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1669 
1670 		/* unblock recon before calling CauseReconEvent in case
1671 		 * CauseReconEvent causes us to try to issue a new read before
1672 		 * returning here. */
1673 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1674 
1675 
1676 		while (pssPtr->blockWaitList) {
1677 			/* spin through the block-wait list and
1678 			   release all the waiters */
1679 			cb = pssPtr->blockWaitList;
1680 			pssPtr->blockWaitList = cb->next;
1681 			cb->next = NULL;
1682 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1683 			rf_FreeCallbackDesc(cb);
1684 		}
1685 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1686 			/* if no recon was requested while recon was blocked */
1687 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1688 		}
1689 	}
1690 out:
1691 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1692 	return (0);
1693 }
1694