xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: rf_reconstruct.c,v 1.101 2008/01/26 20:45:06 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.101 2008/01/26 20:45:06 oster Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/buf.h>
41 #include <sys/errno.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47 #include <dev/raidframe/raidframevar.h>
48 
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_debugprint.h"
58 #include "rf_general.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62 
63 #include "rf_kintf.h"
64 
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66 
67 #if RF_DEBUG_RECON
68 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76 
77 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79 
80 #else /* RF_DEBUG_RECON */
81 
82 #define Dprintf(s) {}
83 #define Dprintf1(s,a) {}
84 #define Dprintf2(s,a,b) {}
85 #define Dprintf3(s,a,b,c) {}
86 #define Dprintf4(s,a,b,c,d) {}
87 #define Dprintf5(s,a,b,c,d,e) {}
88 #define Dprintf6(s,a,b,c,d,e,f) {}
89 #define Dprintf7(s,a,b,c,d,e,f,g) {}
90 
91 #define DDprintf1(s,a) {}
92 #define DDprintf2(s,a,b) {}
93 
94 #endif /* RF_DEBUG_RECON */
95 
96 #define RF_RECON_DONE_READS   1
97 #define RF_RECON_READ_ERROR   2
98 #define RF_RECON_WRITE_ERROR  3
99 #define RF_RECON_READ_STOPPED 4
100 
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103 
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 					      RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 				RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 			       RF_RowCol_t, RF_HeadSepLimit_t,
119 			       RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 					      RF_ReconParityStripeStatus_t *,
122 					      RF_PerDiskReconCtrl_t *,
123 					      RF_RowCol_t, RF_StripeNum_t,
124 					      RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127 
128 struct RF_ReconDoneProc_s {
129 	void    (*proc) (RF_Raid_t *, void *);
130 	void   *arg;
131 	RF_ReconDoneProc_t *next;
132 };
133 
134 /**************************************************************************
135  *
136  * sets up the parameters that will be used by the reconstruction process
137  * currently there are none, except for those that the layout-specific
138  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139  *
140  * in the kernel, we fire off the recon thread.
141  *
142  **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 	pool_destroy(&rf_pools.reconbuffer);
147 }
148 
149 int
150 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
151 {
152 
153 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
154 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
155 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
156 
157 	return (0);
158 }
159 
160 static RF_RaidReconDesc_t *
161 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
162 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
163 		   RF_RowCol_t scol)
164 {
165 
166 	RF_RaidReconDesc_t *reconDesc;
167 
168 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
169 		  (RF_RaidReconDesc_t *));
170 	reconDesc->raidPtr = raidPtr;
171 	reconDesc->col = col;
172 	reconDesc->spareDiskPtr = spareDiskPtr;
173 	reconDesc->numDisksDone = numDisksDone;
174 	reconDesc->scol = scol;
175 	reconDesc->next = NULL;
176 
177 	return (reconDesc);
178 }
179 
180 static void
181 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
182 {
183 #if RF_RECON_STATS > 0
184 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
185 	       reconDesc->raidPtr->raidid,
186 	       (long) reconDesc->numReconEventWaits,
187 	       (long) reconDesc->numReconExecDelays);
188 #endif				/* RF_RECON_STATS > 0 */
189 	printf("raid%d: %lu max exec ticks\n",
190 	       reconDesc->raidPtr->raidid,
191 	       (long) reconDesc->maxReconExecTicks);
192 #if (RF_RECON_STATS > 0) || defined(KERNEL)
193 	printf("\n");
194 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
195 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
196 }
197 
198 
199 /*****************************************************************************
200  *
201  * primary routine to reconstruct a failed disk.  This should be called from
202  * within its own thread.  It won't return until reconstruction completes,
203  * fails, or is aborted.
204  *****************************************************************************/
205 int
206 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
207 {
208 	const RF_LayoutSW_t *lp;
209 	int     rc;
210 
211 	lp = raidPtr->Layout.map;
212 	if (lp->SubmitReconBuffer) {
213 		/*
214 	         * The current infrastructure only supports reconstructing one
215 	         * disk at a time for each array.
216 	         */
217 		RF_LOCK_MUTEX(raidPtr->mutex);
218 		while (raidPtr->reconInProgress) {
219 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
220 		}
221 		raidPtr->reconInProgress++;
222 		RF_UNLOCK_MUTEX(raidPtr->mutex);
223 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
224 		RF_LOCK_MUTEX(raidPtr->mutex);
225 		raidPtr->reconInProgress--;
226 		RF_UNLOCK_MUTEX(raidPtr->mutex);
227 	} else {
228 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
229 		    lp->parityConfig);
230 		rc = EIO;
231 	}
232 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
233 	return (rc);
234 }
235 
236 int
237 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
238 {
239 	RF_ComponentLabel_t c_label;
240 	RF_RaidDisk_t *spareDiskPtr = NULL;
241 	RF_RaidReconDesc_t *reconDesc;
242 	RF_RowCol_t scol;
243 	int     numDisksDone = 0, rc;
244 
245 	/* first look for a spare drive onto which to reconstruct the data */
246 	/* spare disk descriptors are stored in row 0.  This may have to
247 	 * change eventually */
248 
249 	RF_LOCK_MUTEX(raidPtr->mutex);
250 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
251 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
252 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
253 		if (raidPtr->status != rf_rs_degraded) {
254 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
255 			RF_UNLOCK_MUTEX(raidPtr->mutex);
256 			return (EINVAL);
257 		}
258 		scol = (-1);
259 	} else {
260 #endif
261 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
262 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
263 				spareDiskPtr = &raidPtr->Disks[scol];
264 				spareDiskPtr->status = rf_ds_used_spare;
265 				break;
266 			}
267 		}
268 		if (!spareDiskPtr) {
269 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
270 			RF_UNLOCK_MUTEX(raidPtr->mutex);
271 			return (ENOSPC);
272 		}
273 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
274 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
275 	}
276 #endif
277 	RF_UNLOCK_MUTEX(raidPtr->mutex);
278 
279 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
280 	raidPtr->reconDesc = (void *) reconDesc;
281 #if RF_RECON_STATS > 0
282 	reconDesc->hsStallCount = 0;
283 	reconDesc->numReconExecDelays = 0;
284 	reconDesc->numReconEventWaits = 0;
285 #endif				/* RF_RECON_STATS > 0 */
286 	reconDesc->reconExecTimerRunning = 0;
287 	reconDesc->reconExecTicks = 0;
288 	reconDesc->maxReconExecTicks = 0;
289 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
290 
291 	if (!rc) {
292 		/* fix up the component label */
293 		/* Don't actually need the read here.. */
294 		raidread_component_label(
295                         raidPtr->raid_cinfo[scol].ci_dev,
296 			raidPtr->raid_cinfo[scol].ci_vp,
297 			&c_label);
298 
299 		raid_init_component_label( raidPtr, &c_label);
300 		c_label.row = 0;
301 		c_label.column = col;
302 		c_label.clean = RF_RAID_DIRTY;
303 		c_label.status = rf_ds_optimal;
304 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
305 
306 		/* We've just done a rebuild based on all the other
307 		   disks, so at this point the parity is known to be
308 		   clean, even if it wasn't before. */
309 
310 		/* XXX doesn't hold for RAID 6!!*/
311 
312 		RF_LOCK_MUTEX(raidPtr->mutex);
313 		raidPtr->parity_good = RF_RAID_CLEAN;
314 		RF_UNLOCK_MUTEX(raidPtr->mutex);
315 
316 		/* XXXX MORE NEEDED HERE */
317 
318 		raidwrite_component_label(
319                         raidPtr->raid_cinfo[scol].ci_dev,
320 			raidPtr->raid_cinfo[scol].ci_vp,
321 			&c_label);
322 
323 	} else {
324 		/* Reconstruct failed. */
325 
326 		RF_LOCK_MUTEX(raidPtr->mutex);
327 		/* Failed disk goes back to "failed" status */
328 		raidPtr->Disks[col].status = rf_ds_failed;
329 
330 		/* Spare disk goes back to "spare" status. */
331 		spareDiskPtr->status = rf_ds_spare;
332 		RF_UNLOCK_MUTEX(raidPtr->mutex);
333 
334 	}
335 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
336 	return (rc);
337 }
338 
339 /*
340 
341    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
342    and you don't get a spare until the next Monday.  With this function
343    (and hot-swappable drives) you can now put your new disk containing
344    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
345    rebuild the data "on the spot".
346 
347 */
348 
349 int
350 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
351 {
352 	RF_RaidDisk_t *spareDiskPtr = NULL;
353 	RF_RaidReconDesc_t *reconDesc;
354 	const RF_LayoutSW_t *lp;
355 	RF_ComponentLabel_t c_label;
356 	int     numDisksDone = 0, rc;
357 	struct partinfo dpart;
358 	struct vnode *vp;
359 	struct vattr va;
360 	int retcode;
361 	int ac;
362 
363 	lp = raidPtr->Layout.map;
364 	if (!lp->SubmitReconBuffer) {
365 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
366 			     lp->parityConfig);
367 		/* wakeup anyone who might be waiting to do a reconstruct */
368 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
369 		return(EIO);
370 	}
371 
372 	/*
373 	 * The current infrastructure only supports reconstructing one
374 	 * disk at a time for each array.
375 	 */
376 	RF_LOCK_MUTEX(raidPtr->mutex);
377 
378 	if (raidPtr->Disks[col].status != rf_ds_failed) {
379 		/* "It's gone..." */
380 		raidPtr->numFailures++;
381 		raidPtr->Disks[col].status = rf_ds_failed;
382 		raidPtr->status = rf_rs_degraded;
383 		RF_UNLOCK_MUTEX(raidPtr->mutex);
384 		rf_update_component_labels(raidPtr,
385 					   RF_NORMAL_COMPONENT_UPDATE);
386 		RF_LOCK_MUTEX(raidPtr->mutex);
387 	}
388 
389 	while (raidPtr->reconInProgress) {
390 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
391 	}
392 
393 	raidPtr->reconInProgress++;
394 
395 	/* first look for a spare drive onto which to reconstruct the
396 	   data.  spare disk descriptors are stored in row 0.  This
397 	   may have to change eventually */
398 
399 	/* Actually, we don't care if it's failed or not...  On a RAID
400 	   set with correct parity, this function should be callable
401 	   on any component without ill effects. */
402 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
403 
404 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
405 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
406 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
407 
408 		raidPtr->reconInProgress--;
409 		RF_UNLOCK_MUTEX(raidPtr->mutex);
410 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
411 		return (EINVAL);
412 	}
413 #endif
414 
415 	/* This device may have been opened successfully the
416 	   first time. Close it before trying to open it again.. */
417 
418 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
419 #if 0
420 		printf("Closed the open device: %s\n",
421 		       raidPtr->Disks[col].devname);
422 #endif
423 		vp = raidPtr->raid_cinfo[col].ci_vp;
424 		ac = raidPtr->Disks[col].auto_configured;
425 		RF_UNLOCK_MUTEX(raidPtr->mutex);
426 		rf_close_component(raidPtr, vp, ac);
427 		RF_LOCK_MUTEX(raidPtr->mutex);
428 		raidPtr->raid_cinfo[col].ci_vp = NULL;
429 	}
430 	/* note that this disk was *not* auto_configured (any longer)*/
431 	raidPtr->Disks[col].auto_configured = 0;
432 
433 #if 0
434 	printf("About to (re-)open the device for rebuilding: %s\n",
435 	       raidPtr->Disks[col].devname);
436 #endif
437 	RF_UNLOCK_MUTEX(raidPtr->mutex);
438 	retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE);
439 
440 	if (retcode) {
441 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
442 		       raidPtr->Disks[col].devname, retcode);
443 
444 		/* the component isn't responding properly...
445 		   must be still dead :-( */
446 		RF_LOCK_MUTEX(raidPtr->mutex);
447 		raidPtr->reconInProgress--;
448 		RF_UNLOCK_MUTEX(raidPtr->mutex);
449 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
450 		return(retcode);
451 	}
452 
453 	/* Ok, so we can at least do a lookup...
454 	   How about actually getting a vp for it? */
455 
456 	if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) {
457 		RF_LOCK_MUTEX(raidPtr->mutex);
458 		raidPtr->reconInProgress--;
459 		RF_UNLOCK_MUTEX(raidPtr->mutex);
460 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
461 		return(retcode);
462 	}
463 
464 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred);
465 	if (retcode) {
466 		RF_LOCK_MUTEX(raidPtr->mutex);
467 		raidPtr->reconInProgress--;
468 		RF_UNLOCK_MUTEX(raidPtr->mutex);
469 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
470 		return(retcode);
471 	}
472 	RF_LOCK_MUTEX(raidPtr->mutex);
473 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
474 
475 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
476 		rf_protectedSectors;
477 
478 	raidPtr->raid_cinfo[col].ci_vp = vp;
479 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
480 
481 	raidPtr->Disks[col].dev = va.va_rdev;
482 
483 	/* we allow the user to specify that only a fraction
484 	   of the disks should be used this is just for debug:
485 	   it speeds up * the parity scan */
486 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
487 		rf_sizePercentage / 100;
488 	RF_UNLOCK_MUTEX(raidPtr->mutex);
489 
490 	spareDiskPtr = &raidPtr->Disks[col];
491 	spareDiskPtr->status = rf_ds_used_spare;
492 
493 	printf("raid%d: initiating in-place reconstruction on column %d\n",
494 	       raidPtr->raidid, col);
495 
496 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
497 				       numDisksDone, col);
498 	raidPtr->reconDesc = (void *) reconDesc;
499 #if RF_RECON_STATS > 0
500 	reconDesc->hsStallCount = 0;
501 	reconDesc->numReconExecDelays = 0;
502 	reconDesc->numReconEventWaits = 0;
503 #endif				/* RF_RECON_STATS > 0 */
504 	reconDesc->reconExecTimerRunning = 0;
505 	reconDesc->reconExecTicks = 0;
506 	reconDesc->maxReconExecTicks = 0;
507 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
508 
509 	if (!rc) {
510 		RF_LOCK_MUTEX(raidPtr->mutex);
511 		/* Need to set these here, as at this point it'll be claiming
512 		   that the disk is in rf_ds_spared!  But we know better :-) */
513 
514 		raidPtr->Disks[col].status = rf_ds_optimal;
515 		raidPtr->status = rf_rs_optimal;
516 		RF_UNLOCK_MUTEX(raidPtr->mutex);
517 
518 		/* fix up the component label */
519 		/* Don't actually need the read here.. */
520 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
521 					 raidPtr->raid_cinfo[col].ci_vp,
522 					 &c_label);
523 
524 		RF_LOCK_MUTEX(raidPtr->mutex);
525 		raid_init_component_label(raidPtr, &c_label);
526 
527 		c_label.row = 0;
528 		c_label.column = col;
529 
530 		/* We've just done a rebuild based on all the other
531 		   disks, so at this point the parity is known to be
532 		   clean, even if it wasn't before. */
533 
534 		/* XXX doesn't hold for RAID 6!!*/
535 
536 		raidPtr->parity_good = RF_RAID_CLEAN;
537 		RF_UNLOCK_MUTEX(raidPtr->mutex);
538 
539 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
540 					  raidPtr->raid_cinfo[col].ci_vp,
541 					  &c_label);
542 
543 	} else {
544 		/* Reconstruct-in-place failed.  Disk goes back to
545 		   "failed" status, regardless of what it was before.  */
546 		RF_LOCK_MUTEX(raidPtr->mutex);
547 		raidPtr->Disks[col].status = rf_ds_failed;
548 		RF_UNLOCK_MUTEX(raidPtr->mutex);
549 	}
550 
551 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
552 
553 	RF_LOCK_MUTEX(raidPtr->mutex);
554 	raidPtr->reconInProgress--;
555 	RF_UNLOCK_MUTEX(raidPtr->mutex);
556 
557 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
558 	return (rc);
559 }
560 
561 
562 int
563 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
564 {
565 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
566 	RF_RowCol_t col = reconDesc->col;
567 	RF_RowCol_t scol = reconDesc->scol;
568 	RF_ReconMap_t *mapPtr;
569 	RF_ReconCtrl_t *tmp_reconctrl;
570 	RF_ReconEvent_t *event;
571 	RF_CallbackDesc_t *p;
572 	struct timeval etime, elpsd;
573 	unsigned long xor_s, xor_resid_us;
574 	int     i, ds;
575 	int status;
576 	int recon_error, write_error;
577 
578 	raidPtr->accumXorTimeUs = 0;
579 #if RF_ACC_TRACE > 0
580 	/* create one trace record per physical disk */
581 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
582 #endif
583 
584 	/* quiesce the array prior to starting recon.  this is needed
585 	 * to assure no nasty interactions with pending user writes.
586 	 * We need to do this before we change the disk or row status. */
587 
588 	Dprintf("RECON: begin request suspend\n");
589 	rf_SuspendNewRequestsAndWait(raidPtr);
590 	Dprintf("RECON: end request suspend\n");
591 
592 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
593 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
594 
595 	RF_LOCK_MUTEX(raidPtr->mutex);
596 
597 	/* create the reconstruction control pointer and install it in
598 	 * the right slot */
599 	raidPtr->reconControl = tmp_reconctrl;
600 	mapPtr = raidPtr->reconControl->reconMap;
601 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
602 	raidPtr->reconControl->numRUsComplete =	0;
603 	raidPtr->status = rf_rs_reconstructing;
604 	raidPtr->Disks[col].status = rf_ds_reconstructing;
605 	raidPtr->Disks[col].spareCol = scol;
606 
607 	RF_UNLOCK_MUTEX(raidPtr->mutex);
608 
609 	RF_GETTIME(raidPtr->reconControl->starttime);
610 
611 	/* now start up the actual reconstruction: issue a read for
612 	 * each surviving disk */
613 
614 	reconDesc->numDisksDone = 0;
615 	for (i = 0; i < raidPtr->numCol; i++) {
616 		if (i != col) {
617 			/* find and issue the next I/O on the
618 			 * indicated disk */
619 			if (IssueNextReadRequest(raidPtr, i)) {
620 				Dprintf1("RECON: done issuing for c%d\n", i);
621 				reconDesc->numDisksDone++;
622 			}
623 		}
624 	}
625 
626 	Dprintf("RECON: resume requests\n");
627 	rf_ResumeNewRequests(raidPtr);
628 
629 	/* process reconstruction events until all disks report that
630 	 * they've completed all work */
631 
632 	mapPtr = raidPtr->reconControl->reconMap;
633 	recon_error = 0;
634 	write_error = 0;
635 
636 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
637 
638 		event = rf_GetNextReconEvent(reconDesc);
639 		status = ProcessReconEvent(raidPtr, event);
640 
641 		/* the normal case is that a read completes, and all is well. */
642 		if (status == RF_RECON_DONE_READS) {
643 			reconDesc->numDisksDone++;
644 		} else if ((status == RF_RECON_READ_ERROR) ||
645 			   (status == RF_RECON_WRITE_ERROR)) {
646 			/* an error was encountered while reconstructing...
647 			   Pretend we've finished this disk.
648 			*/
649 			recon_error = 1;
650 			raidPtr->reconControl->error = 1;
651 
652 			/* bump the numDisksDone count for reads,
653 			   but not for writes */
654 			if (status == RF_RECON_READ_ERROR)
655 				reconDesc->numDisksDone++;
656 
657 			/* write errors are special -- when we are
658 			   done dealing with the reads that are
659 			   finished, we don't want to wait for any
660 			   writes */
661 			if (status == RF_RECON_WRITE_ERROR)
662 				write_error = 1;
663 
664 		} else if (status == RF_RECON_READ_STOPPED) {
665 			/* count this component as being "done" */
666 			reconDesc->numDisksDone++;
667 		}
668 
669 		if (recon_error) {
670 
671 			/* make sure any stragglers are woken up so that
672 			   their theads will complete, and we can get out
673 			   of here with all IO processed */
674 
675 			while (raidPtr->reconControl->headSepCBList) {
676 				p = raidPtr->reconControl->headSepCBList;
677 				raidPtr->reconControl->headSepCBList = p->next;
678 				p->next = NULL;
679 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
680 				rf_FreeCallbackDesc(p);
681 			}
682 		}
683 
684 		raidPtr->reconControl->numRUsTotal =
685 			mapPtr->totalRUs;
686 		raidPtr->reconControl->numRUsComplete =
687 			mapPtr->totalRUs -
688 			rf_UnitsLeftToReconstruct(mapPtr);
689 
690 #if RF_DEBUG_RECON
691 		raidPtr->reconControl->percentComplete =
692 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
693 		if (rf_prReconSched) {
694 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
695 		}
696 #endif
697 	}
698 
699 	mapPtr = raidPtr->reconControl->reconMap;
700 	if (rf_reconDebug) {
701 		printf("RECON: all reads completed\n");
702 	}
703 	/* at this point all the reads have completed.  We now wait
704 	 * for any pending writes to complete, and then we're done */
705 
706 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
707 
708 		event = rf_GetNextReconEvent(reconDesc);
709 		status = ProcessReconEvent(raidPtr, event);
710 
711 		if (status == RF_RECON_WRITE_ERROR) {
712 			recon_error = 1;
713 			raidPtr->reconControl->error = 1;
714 			/* an error was encountered at the very end... bail */
715 		} else {
716 #if RF_DEBUG_RECON
717 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
718 			if (rf_prReconSched) {
719 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
720 			}
721 #endif
722 		}
723 	}
724 
725 	if (recon_error) {
726 		/* we've encountered an error in reconstructing. */
727 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
728 
729 		/* we start by blocking IO to the RAID set. */
730 		rf_SuspendNewRequestsAndWait(raidPtr);
731 
732 		RF_LOCK_MUTEX(raidPtr->mutex);
733 		/* mark set as being degraded, rather than
734 		   rf_rs_reconstructing as we were before the problem.
735 		   After this is done we can update status of the
736 		   component disks without worrying about someone
737 		   trying to read from a failed component.
738 		*/
739 		raidPtr->status = rf_rs_degraded;
740 		RF_UNLOCK_MUTEX(raidPtr->mutex);
741 
742 		/* resume IO */
743 		rf_ResumeNewRequests(raidPtr);
744 
745 		/* At this point there are two cases:
746 		   1) If we've experienced a read error, then we've
747 		   already waited for all the reads we're going to get,
748 		   and we just need to wait for the writes.
749 
750 		   2) If we've experienced a write error, we've also
751 		   already waited for all the reads to complete,
752 		   but there is little point in waiting for the writes --
753 		   when they do complete, they will just be ignored.
754 
755 		   So we just wait for writes to complete if we didn't have a
756 		   write error.
757 		*/
758 
759 		if (!write_error) {
760 			/* wait for writes to complete */
761 			while (raidPtr->reconControl->pending_writes > 0) {
762 
763 				event = rf_GetNextReconEvent(reconDesc);
764 				status = ProcessReconEvent(raidPtr, event);
765 
766 				if (status == RF_RECON_WRITE_ERROR) {
767 					raidPtr->reconControl->error = 1;
768 					/* an error was encountered at the very end... bail.
769 					   This will be very bad news for the user, since
770 					   at this point there will have been a read error
771 					   on one component, and a write error on another!
772 					*/
773 					break;
774 				}
775 			}
776 		}
777 
778 
779 		/* cleanup */
780 
781 		/* drain the event queue - after waiting for the writes above,
782 		   there shouldn't be much (if anything!) left in the queue. */
783 
784 		rf_DrainReconEventQueue(reconDesc);
785 
786 		/* XXX  As much as we'd like to free the recon control structure
787 		   and the reconDesc, we have no way of knowing if/when those will
788 		   be touched by IO that has yet to occur.  It is rather poor to be
789 		   basically causing a 'memory leak' here, but there doesn't seem to be
790 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
791 		   gets a makeover this problem will go away.
792 		*/
793 #if 0
794 		rf_FreeReconControl(raidPtr);
795 #endif
796 
797 #if RF_ACC_TRACE > 0
798 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
799 #endif
800 		/* XXX see comment above */
801 #if 0
802 		FreeReconDesc(reconDesc);
803 #endif
804 
805 		return (1);
806 	}
807 
808 	/* Success:  mark the dead disk as reconstructed.  We quiesce
809 	 * the array here to assure no nasty interactions with pending
810 	 * user accesses when we free up the psstatus structure as
811 	 * part of FreeReconControl() */
812 
813 	rf_SuspendNewRequestsAndWait(raidPtr);
814 
815 	RF_LOCK_MUTEX(raidPtr->mutex);
816 	raidPtr->numFailures--;
817 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
818 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
819 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
820 	RF_UNLOCK_MUTEX(raidPtr->mutex);
821 	RF_GETTIME(etime);
822 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
823 
824 	rf_ResumeNewRequests(raidPtr);
825 
826 	printf("raid%d: Reconstruction of disk at col %d completed\n",
827 	       raidPtr->raidid, col);
828 	xor_s = raidPtr->accumXorTimeUs / 1000000;
829 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
830 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
831 	       raidPtr->raidid,
832 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
833 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
834 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
835 	       raidPtr->raidid,
836 	       (int) raidPtr->reconControl->starttime.tv_sec,
837 	       (int) raidPtr->reconControl->starttime.tv_usec,
838 	       (int) etime.tv_sec, (int) etime.tv_usec);
839 #if RF_RECON_STATS > 0
840 	printf("raid%d: Total head-sep stall count was %d\n",
841 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
842 #endif				/* RF_RECON_STATS > 0 */
843 	rf_FreeReconControl(raidPtr);
844 #if RF_ACC_TRACE > 0
845 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
846 #endif
847 	FreeReconDesc(reconDesc);
848 
849 	return (0);
850 
851 }
852 /*****************************************************************************
853  * do the right thing upon each reconstruction event.
854  *****************************************************************************/
855 static int
856 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
857 {
858 	int     retcode = 0, submitblocked;
859 	RF_ReconBuffer_t *rbuf;
860 	RF_SectorCount_t sectorsPerRU;
861 
862 	retcode = RF_RECON_READ_STOPPED;
863 
864 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
865 	switch (event->type) {
866 
867 		/* a read I/O has completed */
868 	case RF_REVENT_READDONE:
869 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
870 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
871 		    event->col, rbuf->parityStripeID);
872 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
873 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
874 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
875 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
876 		if (!raidPtr->reconControl->error) {
877 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
878 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
879 			if (!submitblocked)
880 				retcode = IssueNextReadRequest(raidPtr, event->col);
881 			else
882 				retcode = 0;
883 		}
884 		break;
885 
886 		/* a write I/O has completed */
887 	case RF_REVENT_WRITEDONE:
888 #if RF_DEBUG_RECON
889 		if (rf_floatingRbufDebug) {
890 			rf_CheckFloatingRbufCount(raidPtr, 1);
891 		}
892 #endif
893 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
894 		rbuf = (RF_ReconBuffer_t *) event->arg;
895 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
896 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
897 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
898 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
899 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
900 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
901 
902 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
903 		raidPtr->reconControl->pending_writes--;
904 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
905 
906 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
907 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
908 			while(raidPtr->reconControl->rb_lock) {
909 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
910 					&raidPtr->reconControl->rb_mutex);
911 			}
912 			raidPtr->reconControl->rb_lock = 1;
913 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
914 
915 			raidPtr->numFullReconBuffers--;
916 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
917 
918 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
919 			raidPtr->reconControl->rb_lock = 0;
920 			wakeup(&raidPtr->reconControl->rb_lock);
921 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
922 		} else
923 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
924 				rf_FreeReconBuffer(rbuf);
925 			else
926 				RF_ASSERT(0);
927 		retcode = 0;
928 		break;
929 
930 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
931 					 * cleared */
932 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
933 		if (!raidPtr->reconControl->error) {
934 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
935 							     0, (int) (long) event->arg);
936 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
937 							 * BUFCLEAR event if we
938 							 * couldn't submit */
939 			retcode = IssueNextReadRequest(raidPtr, event->col);
940 		}
941 		break;
942 
943 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
944 					 * blockage has been cleared */
945 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
946 		if (!raidPtr->reconControl->error) {
947 			retcode = TryToRead(raidPtr, event->col);
948 		}
949 		break;
950 
951 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
952 					 * reconstruction blockage has been
953 					 * cleared */
954 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
955 		if (!raidPtr->reconControl->error) {
956 			retcode = TryToRead(raidPtr, event->col);
957 		}
958 		break;
959 
960 		/* a buffer has become ready to write */
961 	case RF_REVENT_BUFREADY:
962 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
963 		if (!raidPtr->reconControl->error) {
964 			retcode = IssueNextWriteRequest(raidPtr);
965 #if RF_DEBUG_RECON
966 			if (rf_floatingRbufDebug) {
967 				rf_CheckFloatingRbufCount(raidPtr, 1);
968 			}
969 #endif
970 		}
971 		break;
972 
973 		/* we need to skip the current RU entirely because it got
974 		 * recon'd while we were waiting for something else to happen */
975 	case RF_REVENT_SKIP:
976 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
977 		if (!raidPtr->reconControl->error) {
978 			retcode = IssueNextReadRequest(raidPtr, event->col);
979 		}
980 		break;
981 
982 		/* a forced-reconstruction read access has completed.  Just
983 		 * submit the buffer */
984 	case RF_REVENT_FORCEDREADDONE:
985 		rbuf = (RF_ReconBuffer_t *) event->arg;
986 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
987 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
988 		if (!raidPtr->reconControl->error) {
989 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
990 			RF_ASSERT(!submitblocked);
991 		}
992 		break;
993 
994 		/* A read I/O failed to complete */
995 	case RF_REVENT_READ_FAILED:
996 		retcode = RF_RECON_READ_ERROR;
997 		break;
998 
999 		/* A write I/O failed to complete */
1000 	case RF_REVENT_WRITE_FAILED:
1001 		retcode = RF_RECON_WRITE_ERROR;
1002 
1003 		rbuf = (RF_ReconBuffer_t *) event->arg;
1004 
1005 		/* cleanup the disk queue data */
1006 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1007 
1008 		/* At this point we're erroring out, badly, and floatingRbufs
1009 		   may not even be valid.  Rather than putting this back onto
1010 		   the floatingRbufs list, just arrange for its immediate
1011 		   destruction.
1012 		*/
1013 		rf_FreeReconBuffer(rbuf);
1014 		break;
1015 
1016 		/* a forced read I/O failed to complete */
1017 	case RF_REVENT_FORCEDREAD_FAILED:
1018 		retcode = RF_RECON_READ_ERROR;
1019 		break;
1020 
1021 	default:
1022 		RF_PANIC();
1023 	}
1024 	rf_FreeReconEventDesc(event);
1025 	return (retcode);
1026 }
1027 /*****************************************************************************
1028  *
1029  * find the next thing that's needed on the indicated disk, and issue
1030  * a read request for it.  We assume that the reconstruction buffer
1031  * associated with this process is free to receive the data.  If
1032  * reconstruction is blocked on the indicated RU, we issue a
1033  * blockage-release request instead of a physical disk read request.
1034  * If the current disk gets too far ahead of the others, we issue a
1035  * head-separation wait request and return.
1036  *
1037  * ctrl->{ru_count, curPSID, diskOffset} and
1038  * rbuf->failedDiskSectorOffset are maintained to point to the unit
1039  * we're currently accessing.  Note that this deviates from the
1040  * standard C idiom of having counters point to the next thing to be
1041  * accessed.  This allows us to easily retry when we're blocked by
1042  * head separation or reconstruction-blockage events.
1043  *
1044  *****************************************************************************/
1045 static int
1046 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1047 {
1048 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1049 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1050 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1051 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1052 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1053 	int     do_new_check = 0, retcode = 0, status;
1054 
1055 	/* if we are currently the slowest disk, mark that we have to do a new
1056 	 * check */
1057 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1058 		do_new_check = 1;
1059 
1060 	while (1) {
1061 
1062 		ctrl->ru_count++;
1063 		if (ctrl->ru_count < RUsPerPU) {
1064 			ctrl->diskOffset += sectorsPerRU;
1065 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1066 		} else {
1067 			ctrl->curPSID++;
1068 			ctrl->ru_count = 0;
1069 			/* code left over from when head-sep was based on
1070 			 * parity stripe id */
1071 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1072 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1073 				return (RF_RECON_DONE_READS);	/* finito! */
1074 			}
1075 			/* find the disk offsets of the start of the parity
1076 			 * stripe on both the current disk and the failed
1077 			 * disk. skip this entire parity stripe if either disk
1078 			 * does not appear in the indicated PS */
1079 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1080 			    &rbuf->spCol, &rbuf->spOffset);
1081 			if (status) {
1082 				ctrl->ru_count = RUsPerPU - 1;
1083 				continue;
1084 			}
1085 		}
1086 		rbuf->which_ru = ctrl->ru_count;
1087 
1088 		/* skip this RU if it's already been reconstructed */
1089 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1090 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1091 			continue;
1092 		}
1093 		break;
1094 	}
1095 	ctrl->headSepCounter++;
1096 	if (do_new_check)
1097 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
1098 
1099 
1100 	/* at this point, we have definitely decided what to do, and we have
1101 	 * only to see if we can actually do it now */
1102 	rbuf->parityStripeID = ctrl->curPSID;
1103 	rbuf->which_ru = ctrl->ru_count;
1104 #if RF_ACC_TRACE > 0
1105 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1106 	    sizeof(raidPtr->recon_tracerecs[col]));
1107 	raidPtr->recon_tracerecs[col].reconacc = 1;
1108 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1109 #endif
1110 	retcode = TryToRead(raidPtr, col);
1111 	return (retcode);
1112 }
1113 
1114 /*
1115  * tries to issue the next read on the indicated disk.  We may be
1116  * blocked by (a) the heads being too far apart, or (b) recon on the
1117  * indicated RU being blocked due to a write by a user thread.  In
1118  * this case, we issue a head-sep or blockage wait request, which will
1119  * cause this same routine to be invoked again later when the blockage
1120  * has cleared.
1121  */
1122 
1123 static int
1124 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1125 {
1126 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1127 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1128 	RF_StripeNum_t psid = ctrl->curPSID;
1129 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1130 	RF_DiskQueueData_t *req;
1131 	int     status;
1132 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1133 
1134 	/* if the current disk is too far ahead of the others, issue a
1135 	 * head-separation wait and return */
1136 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1137 		return (0);
1138 
1139 	/* allocate a new PSS in case we need it */
1140 	newpssPtr = rf_AllocPSStatus(raidPtr);
1141 
1142 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1143 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1144 
1145 	if (pssPtr != newpssPtr) {
1146 		rf_FreePSStatus(raidPtr, newpssPtr);
1147 	}
1148 
1149 	/* if recon is blocked on the indicated parity stripe, issue a
1150 	 * block-wait request and return. this also must mark the indicated RU
1151 	 * in the stripe as under reconstruction if not blocked. */
1152 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1153 	if (status == RF_PSS_RECON_BLOCKED) {
1154 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1155 		goto out;
1156 	} else
1157 		if (status == RF_PSS_FORCED_ON_WRITE) {
1158 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1159 			goto out;
1160 		}
1161 	/* make one last check to be sure that the indicated RU didn't get
1162 	 * reconstructed while we were waiting for something else to happen.
1163 	 * This is unfortunate in that it causes us to make this check twice
1164 	 * in the normal case.  Might want to make some attempt to re-work
1165 	 * this so that we only do this check if we've definitely blocked on
1166 	 * one of the above checks.  When this condition is detected, we may
1167 	 * have just created a bogus status entry, which we need to delete. */
1168 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1169 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1170 		if (pssPtr == newpssPtr)
1171 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1172 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1173 		goto out;
1174 	}
1175 	/* found something to read.  issue the I/O */
1176 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1177 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1178 #if RF_ACC_TRACE > 0
1179 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1180 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1181 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1182 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1183 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1184 #endif
1185 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1186 	 * should be in kernel space */
1187 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1188 	    ReconReadDoneProc, (void *) ctrl,
1189 #if RF_ACC_TRACE > 0
1190 				     &raidPtr->recon_tracerecs[col],
1191 #else
1192 				     NULL,
1193 #endif
1194 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
1195 
1196 	ctrl->rbuf->arg = (void *) req;
1197 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1198 	pssPtr->issued[col] = 1;
1199 
1200 out:
1201 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1202 	return (0);
1203 }
1204 
1205 
1206 /*
1207  * given a parity stripe ID, we want to find out whether both the
1208  * current disk and the failed disk exist in that parity stripe.  If
1209  * not, we want to skip this whole PS.  If so, we want to find the
1210  * disk offset of the start of the PS on both the current disk and the
1211  * failed disk.
1212  *
1213  * this works by getting a list of disks comprising the indicated
1214  * parity stripe, and searching the list for the current and failed
1215  * disks.  Once we've decided they both exist in the parity stripe, we
1216  * need to decide whether each is data or parity, so that we'll know
1217  * which mapping function to call to get the corresponding disk
1218  * offsets.
1219  *
1220  * this is kind of unpleasant, but doing it this way allows the
1221  * reconstruction code to use parity stripe IDs rather than physical
1222  * disks address to march through the failed disk, which greatly
1223  * simplifies a lot of code, as well as eliminating the need for a
1224  * reverse-mapping function.  I also think it will execute faster,
1225  * since the calls to the mapping module are kept to a minimum.
1226  *
1227  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1228  * THE STRIPE IN THE CORRECT ORDER
1229  *
1230  * raidPtr          - raid descriptor
1231  * psid             - parity stripe identifier
1232  * col              - column of disk to find the offsets for
1233  * spCol            - out: col of spare unit for failed unit
1234  * spOffset         - out: offset into disk containing spare unit
1235  *
1236  */
1237 
1238 
1239 static int
1240 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1241 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1242 		     RF_SectorNum_t *outFailedDiskSectorOffset,
1243 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1244 {
1245 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1246 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1247 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1248 	RF_RowCol_t *diskids;
1249 	u_int   i, j, k, i_offset, j_offset;
1250 	RF_RowCol_t pcol;
1251 	int     testcol;
1252 	RF_SectorNum_t poffset;
1253 	char    i_is_parity = 0, j_is_parity = 0;
1254 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1255 
1256 	/* get a listing of the disks comprising that stripe */
1257 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1258 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1259 	RF_ASSERT(diskids);
1260 
1261 	/* reject this entire parity stripe if it does not contain the
1262 	 * indicated disk or it does not contain the failed disk */
1263 
1264 	for (i = 0; i < stripeWidth; i++) {
1265 		if (col == diskids[i])
1266 			break;
1267 	}
1268 	if (i == stripeWidth)
1269 		goto skipit;
1270 	for (j = 0; j < stripeWidth; j++) {
1271 		if (fcol == diskids[j])
1272 			break;
1273 	}
1274 	if (j == stripeWidth) {
1275 		goto skipit;
1276 	}
1277 	/* find out which disk the parity is on */
1278 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1279 
1280 	/* find out if either the current RU or the failed RU is parity */
1281 	/* also, if the parity occurs in this stripe prior to the data and/or
1282 	 * failed col, we need to decrement i and/or j */
1283 	for (k = 0; k < stripeWidth; k++)
1284 		if (diskids[k] == pcol)
1285 			break;
1286 	RF_ASSERT(k < stripeWidth);
1287 	i_offset = i;
1288 	j_offset = j;
1289 	if (k < i)
1290 		i_offset--;
1291 	else
1292 		if (k == i) {
1293 			i_is_parity = 1;
1294 			i_offset = 0;
1295 		}		/* set offsets to zero to disable multiply
1296 				 * below */
1297 	if (k < j)
1298 		j_offset--;
1299 	else
1300 		if (k == j) {
1301 			j_is_parity = 1;
1302 			j_offset = 0;
1303 		}
1304 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1305 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1306 	 * tells us how far into the stripe the [current,failed] disk is. */
1307 
1308 	/* call the mapping routine to get the offset into the current disk,
1309 	 * repeat for failed disk. */
1310 	if (i_is_parity)
1311 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1312 	else
1313 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1314 
1315 	RF_ASSERT(col == testcol);
1316 
1317 	if (j_is_parity)
1318 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1319 	else
1320 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1321 	RF_ASSERT(fcol == testcol);
1322 
1323 	/* now locate the spare unit for the failed unit */
1324 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1325 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1326 		if (j_is_parity)
1327 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1328 		else
1329 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1330 	} else {
1331 #endif
1332 		*spCol = raidPtr->reconControl->spareCol;
1333 		*spOffset = *outFailedDiskSectorOffset;
1334 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1335 	}
1336 #endif
1337 	return (0);
1338 
1339 skipit:
1340 	Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n",
1341 	    psid, col);
1342 	return (1);
1343 }
1344 /* this is called when a buffer has become ready to write to the replacement disk */
1345 static int
1346 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1347 {
1348 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1349 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1350 #if RF_ACC_TRACE > 0
1351 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1352 #endif
1353 	RF_ReconBuffer_t *rbuf;
1354 	RF_DiskQueueData_t *req;
1355 
1356 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1357 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1358 				 * have gotten the event that sent us here */
1359 	RF_ASSERT(rbuf->pssPtr);
1360 
1361 	rbuf->pssPtr->writeRbuf = rbuf;
1362 	rbuf->pssPtr = NULL;
1363 
1364 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1365 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1366 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1367 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1368 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1369 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1370 
1371 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1372 	 * kernel space */
1373 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1374 	    sectorsPerRU, rbuf->buffer,
1375 	    rbuf->parityStripeID, rbuf->which_ru,
1376 	    ReconWriteDoneProc, (void *) rbuf,
1377 #if RF_ACC_TRACE > 0
1378 	    &raidPtr->recon_tracerecs[fcol],
1379 #else
1380 				     NULL,
1381 #endif
1382 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
1383 
1384 	rbuf->arg = (void *) req;
1385 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1386 	raidPtr->reconControl->pending_writes++;
1387 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1388 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1389 
1390 	return (0);
1391 }
1392 
1393 /*
1394  * this gets called upon the completion of a reconstruction read
1395  * operation the arg is a pointer to the per-disk reconstruction
1396  * control structure for the process that just finished a read.
1397  *
1398  * called at interrupt context in the kernel, so don't do anything
1399  * illegal here.
1400  */
1401 static int
1402 ReconReadDoneProc(void *arg, int status)
1403 {
1404 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1405 	RF_Raid_t *raidPtr;
1406 
1407 	/* Detect that reconCtrl is no longer valid, and if that
1408 	   is the case, bail without calling rf_CauseReconEvent().
1409 	   There won't be anyone listening for this event anyway */
1410 
1411 	if (ctrl->reconCtrl == NULL)
1412 		return(0);
1413 
1414 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1415 
1416 	if (status) {
1417 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1418 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1419 		return(0);
1420 	}
1421 #if RF_ACC_TRACE > 0
1422 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1423 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1424 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1425 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1426 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1427 #endif
1428 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1429 	return (0);
1430 }
1431 /* this gets called upon the completion of a reconstruction write operation.
1432  * the arg is a pointer to the rbuf that was just written
1433  *
1434  * called at interrupt context in the kernel, so don't do anything illegal here.
1435  */
1436 static int
1437 ReconWriteDoneProc(void *arg, int status)
1438 {
1439 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1440 
1441 	/* Detect that reconControl is no longer valid, and if that
1442 	   is the case, bail without calling rf_CauseReconEvent().
1443 	   There won't be anyone listening for this event anyway */
1444 
1445 	if (rbuf->raidPtr->reconControl == NULL)
1446 		return(0);
1447 
1448 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1449 	if (status) {
1450 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1451 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1452 		return(0);
1453 	}
1454 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1455 	return (0);
1456 }
1457 
1458 
1459 /*
1460  * computes a new minimum head sep, and wakes up anyone who needs to
1461  * be woken as a result
1462  */
1463 static void
1464 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1465 {
1466 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1467 	RF_HeadSepLimit_t new_min;
1468 	RF_RowCol_t i;
1469 	RF_CallbackDesc_t *p;
1470 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1471 								 * of a minimum */
1472 
1473 
1474 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1475 	while(reconCtrlPtr->rb_lock) {
1476 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1477 	}
1478 	reconCtrlPtr->rb_lock = 1;
1479 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1480 
1481 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1482 	for (i = 0; i < raidPtr->numCol; i++)
1483 		if (i != reconCtrlPtr->fcol) {
1484 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1485 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1486 		}
1487 	/* set the new minimum and wake up anyone who can now run again */
1488 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1489 		reconCtrlPtr->minHeadSepCounter = new_min;
1490 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1491 		while (reconCtrlPtr->headSepCBList) {
1492 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1493 				break;
1494 			p = reconCtrlPtr->headSepCBList;
1495 			reconCtrlPtr->headSepCBList = p->next;
1496 			p->next = NULL;
1497 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1498 			rf_FreeCallbackDesc(p);
1499 		}
1500 
1501 	}
1502 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1503 	reconCtrlPtr->rb_lock = 0;
1504 	wakeup(&reconCtrlPtr->rb_lock);
1505 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1506 }
1507 
1508 /*
1509  * checks to see that the maximum head separation will not be violated
1510  * if we initiate a reconstruction I/O on the indicated disk.
1511  * Limiting the maximum head separation between two disks eliminates
1512  * the nasty buffer-stall conditions that occur when one disk races
1513  * ahead of the others and consumes all of the floating recon buffers.
1514  * This code is complex and unpleasant but it's necessary to avoid
1515  * some very nasty, albeit fairly rare, reconstruction behavior.
1516  *
1517  * returns non-zero if and only if we have to stop working on the
1518  * indicated disk due to a head-separation delay.
1519  */
1520 static int
1521 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1522 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1523 		    RF_ReconUnitNum_t which_ru)
1524 {
1525 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1526 	RF_CallbackDesc_t *cb, *p, *pt;
1527 	int     retval = 0;
1528 
1529 	/* if we're too far ahead of the slowest disk, stop working on this
1530 	 * disk until the slower ones catch up.  We do this by scheduling a
1531 	 * wakeup callback for the time when the slowest disk has caught up.
1532 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1533 	 * must have fallen to at most 80% of the max allowable head
1534 	 * separation before we'll wake up.
1535 	 *
1536 	 */
1537 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1538 	while(reconCtrlPtr->rb_lock) {
1539 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1540 	}
1541 	reconCtrlPtr->rb_lock = 1;
1542 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1543 	if ((raidPtr->headSepLimit >= 0) &&
1544 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1545 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1546 			 raidPtr->raidid, col, ctrl->headSepCounter,
1547 			 reconCtrlPtr->minHeadSepCounter,
1548 			 raidPtr->headSepLimit);
1549 		cb = rf_AllocCallbackDesc();
1550 		/* the minHeadSepCounter value we have to get to before we'll
1551 		 * wake up.  build in 20% hysteresis. */
1552 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1553 		cb->col = col;
1554 		cb->next = NULL;
1555 
1556 		/* insert this callback descriptor into the sorted list of
1557 		 * pending head-sep callbacks */
1558 		p = reconCtrlPtr->headSepCBList;
1559 		if (!p)
1560 			reconCtrlPtr->headSepCBList = cb;
1561 		else
1562 			if (cb->callbackArg.v < p->callbackArg.v) {
1563 				cb->next = reconCtrlPtr->headSepCBList;
1564 				reconCtrlPtr->headSepCBList = cb;
1565 			} else {
1566 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1567 				cb->next = p;
1568 				pt->next = cb;
1569 			}
1570 		retval = 1;
1571 #if RF_RECON_STATS > 0
1572 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1573 #endif				/* RF_RECON_STATS > 0 */
1574 	}
1575 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1576 	reconCtrlPtr->rb_lock = 0;
1577 	wakeup(&reconCtrlPtr->rb_lock);
1578 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1579 
1580 	return (retval);
1581 }
1582 /*
1583  * checks to see if reconstruction has been either forced or blocked
1584  * by a user operation.  if forced, we skip this RU entirely.  else if
1585  * blocked, put ourselves on the wait list.  else return 0.
1586  *
1587  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1588  */
1589 static int
1590 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1591 				   RF_ReconParityStripeStatus_t *pssPtr,
1592 				   RF_PerDiskReconCtrl_t *ctrl,
1593 				   RF_RowCol_t col,
1594 				   RF_StripeNum_t psid,
1595 				   RF_ReconUnitNum_t which_ru)
1596 {
1597 	RF_CallbackDesc_t *cb;
1598 	int     retcode = 0;
1599 
1600 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1601 		retcode = RF_PSS_FORCED_ON_WRITE;
1602 	else
1603 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1604 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1605 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1606 							 * the blockage-wait
1607 							 * list */
1608 			cb->col = col;
1609 			cb->next = pssPtr->blockWaitList;
1610 			pssPtr->blockWaitList = cb;
1611 			retcode = RF_PSS_RECON_BLOCKED;
1612 		}
1613 	if (!retcode)
1614 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1615 							 * reconstruction */
1616 
1617 	return (retcode);
1618 }
1619 /*
1620  * if reconstruction is currently ongoing for the indicated stripeID,
1621  * reconstruction is forced to completion and we return non-zero to
1622  * indicate that the caller must wait.  If not, then reconstruction is
1623  * blocked on the indicated stripe and the routine returns zero.  If
1624  * and only if we return non-zero, we'll cause the cbFunc to get
1625  * invoked with the cbArg when the reconstruction has completed.
1626  */
1627 int
1628 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1629 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1630 {
1631 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1632 							 * forcing recon on */
1633 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1634 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1635 						 * stripe status structure */
1636 	RF_StripeNum_t psid;	/* parity stripe id */
1637 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1638 						 * offset */
1639 	RF_RowCol_t *diskids;
1640 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1641 	RF_RowCol_t fcol, diskno, i;
1642 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1643 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1644 	RF_CallbackDesc_t *cb;
1645 	int     nPromoted;
1646 
1647 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1648 
1649 	/* allocate a new PSS in case we need it */
1650         newpssPtr = rf_AllocPSStatus(raidPtr);
1651 
1652 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1653 
1654 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1655 
1656         if (pssPtr != newpssPtr) {
1657                 rf_FreePSStatus(raidPtr, newpssPtr);
1658         }
1659 
1660 	/* if recon is not ongoing on this PS, just return */
1661 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1662 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1663 		return (0);
1664 	}
1665 	/* otherwise, we have to wait for reconstruction to complete on this
1666 	 * RU. */
1667 	/* In order to avoid waiting for a potentially large number of
1668 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1669 	 * not low-priority) reconstruction on this RU. */
1670 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1671 		DDprintf1("Forcing recon on psid %ld\n", psid);
1672 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1673 								 * forced recon */
1674 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1675 							 * that we just set */
1676 		fcol = raidPtr->reconControl->fcol;
1677 
1678 		/* get a listing of the disks comprising the indicated stripe */
1679 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1680 
1681 		/* For previously issued reads, elevate them to normal
1682 		 * priority.  If the I/O has already completed, it won't be
1683 		 * found in the queue, and hence this will be a no-op. For
1684 		 * unissued reads, allocate buffers and issue new reads.  The
1685 		 * fact that we've set the FORCED bit means that the regular
1686 		 * recon procs will not re-issue these reqs */
1687 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1688 			if ((diskno = diskids[i]) != fcol) {
1689 				if (pssPtr->issued[diskno]) {
1690 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1691 					if (rf_reconDebug && nPromoted)
1692 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1693 				} else {
1694 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1695 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1696 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1697 													 * location */
1698 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1699 					new_rbuf->which_ru = which_ru;
1700 					new_rbuf->failedDiskSectorOffset = fd_offset;
1701 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1702 
1703 					/* use NULL b_proc b/c all addrs
1704 					 * should be in kernel space */
1705 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1706 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1707 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1708 
1709 					new_rbuf->arg = req;
1710 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1711 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1712 				}
1713 			}
1714 		/* if the write is sitting in the disk queue, elevate its
1715 		 * priority */
1716 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1717 			printf("raid%d: promoted write to col %d\n",
1718 			       raidPtr->raidid, fcol);
1719 	}
1720 	/* install a callback descriptor to be invoked when recon completes on
1721 	 * this parity stripe. */
1722 	cb = rf_AllocCallbackDesc();
1723 	/* XXX the following is bogus.. These functions don't really match!!
1724 	 * GO */
1725 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1726 	cb->callbackArg.p = (void *) cbArg;
1727 	cb->next = pssPtr->procWaitList;
1728 	pssPtr->procWaitList = cb;
1729 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1730 		  raidPtr->raidid, psid);
1731 
1732 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1733 	return (1);
1734 }
1735 /* called upon the completion of a forced reconstruction read.
1736  * all we do is schedule the FORCEDREADONE event.
1737  * called at interrupt context in the kernel, so don't do anything illegal here.
1738  */
1739 static void
1740 ForceReconReadDoneProc(void *arg, int status)
1741 {
1742 	RF_ReconBuffer_t *rbuf = arg;
1743 
1744 	/* Detect that reconControl is no longer valid, and if that
1745 	   is the case, bail without calling rf_CauseReconEvent().
1746 	   There won't be anyone listening for this event anyway */
1747 
1748 	if (rbuf->raidPtr->reconControl == NULL)
1749 		return;
1750 
1751 	if (status) {
1752 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1753 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1754 		return;
1755 	}
1756 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1757 }
1758 /* releases a block on the reconstruction of the indicated stripe */
1759 int
1760 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1761 {
1762 	RF_StripeNum_t stripeID = asmap->stripeID;
1763 	RF_ReconParityStripeStatus_t *pssPtr;
1764 	RF_ReconUnitNum_t which_ru;
1765 	RF_StripeNum_t psid;
1766 	RF_CallbackDesc_t *cb;
1767 
1768 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1769 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1770 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1771 
1772 	/* When recon is forced, the pss desc can get deleted before we get
1773 	 * back to unblock recon. But, this can _only_ happen when recon is
1774 	 * forced. It would be good to put some kind of sanity check here, but
1775 	 * how to decide if recon was just forced or not? */
1776 	if (!pssPtr) {
1777 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1778 		 * RU %d\n",psid,which_ru); */
1779 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1780 		if (rf_reconDebug || rf_pssDebug)
1781 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1782 #endif
1783 		goto out;
1784 	}
1785 	pssPtr->blockCount--;
1786 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1787 		 raidPtr->raidid, psid, pssPtr->blockCount);
1788 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1789 
1790 		/* unblock recon before calling CauseReconEvent in case
1791 		 * CauseReconEvent causes us to try to issue a new read before
1792 		 * returning here. */
1793 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1794 
1795 
1796 		while (pssPtr->blockWaitList) {
1797 			/* spin through the block-wait list and
1798 			   release all the waiters */
1799 			cb = pssPtr->blockWaitList;
1800 			pssPtr->blockWaitList = cb->next;
1801 			cb->next = NULL;
1802 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1803 			rf_FreeCallbackDesc(cb);
1804 		}
1805 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1806 			/* if no recon was requested while recon was blocked */
1807 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1808 		}
1809 	}
1810 out:
1811 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1812 	return (0);
1813 }
1814