1 /* $NetBSD: rf_reconstruct.c,v 1.108 2009/11/17 18:54:26 jld Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.108 2009/11/17 18:54:26 jld Exp $"); 37 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/buf.h> 41 #include <sys/errno.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 #include <dev/raidframe/raidframevar.h> 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_debugprint.h" 58 #include "rf_general.h" 59 #include "rf_driver.h" 60 #include "rf_utils.h" 61 #include "rf_shutdown.h" 62 63 #include "rf_kintf.h" 64 65 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 66 67 #if RF_DEBUG_RECON 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 #else /* RF_DEBUG_RECON */ 81 82 #define Dprintf(s) {} 83 #define Dprintf1(s,a) {} 84 #define Dprintf2(s,a,b) {} 85 #define Dprintf3(s,a,b,c) {} 86 #define Dprintf4(s,a,b,c,d) {} 87 #define Dprintf5(s,a,b,c,d,e) {} 88 #define Dprintf6(s,a,b,c,d,e,f) {} 89 #define Dprintf7(s,a,b,c,d,e,f,g) {} 90 91 #define DDprintf1(s,a) {} 92 #define DDprintf2(s,a,b) {} 93 94 #endif /* RF_DEBUG_RECON */ 95 96 #define RF_RECON_DONE_READS 1 97 #define RF_RECON_READ_ERROR 2 98 #define RF_RECON_WRITE_ERROR 3 99 #define RF_RECON_READ_STOPPED 4 100 #define RF_RECON_WRITE_DONE 5 101 102 #define RF_MAX_FREE_RECONBUFFER 32 103 #define RF_MIN_FREE_RECONBUFFER 16 104 105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t, 106 RF_RaidDisk_t *, int, RF_RowCol_t); 107 static void FreeReconDesc(RF_RaidReconDesc_t *); 108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *); 109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t); 110 static int TryToRead(RF_Raid_t *, RF_RowCol_t); 111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t, 112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *, 113 RF_SectorNum_t *); 114 static int IssueNextWriteRequest(RF_Raid_t *); 115 static int ReconReadDoneProc(void *, int); 116 static int ReconWriteDoneProc(void *, int); 117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t); 118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *, 119 RF_RowCol_t, RF_HeadSepLimit_t, 120 RF_ReconUnitNum_t); 121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *, 122 RF_ReconParityStripeStatus_t *, 123 RF_PerDiskReconCtrl_t *, 124 RF_RowCol_t, RF_StripeNum_t, 125 RF_ReconUnitNum_t); 126 static void ForceReconReadDoneProc(void *, int); 127 static void rf_ShutdownReconstruction(void *); 128 129 struct RF_ReconDoneProc_s { 130 void (*proc) (RF_Raid_t *, void *); 131 void *arg; 132 RF_ReconDoneProc_t *next; 133 }; 134 135 /************************************************************************** 136 * 137 * sets up the parameters that will be used by the reconstruction process 138 * currently there are none, except for those that the layout-specific 139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 140 * 141 * in the kernel, we fire off the recon thread. 142 * 143 **************************************************************************/ 144 static void 145 rf_ShutdownReconstruction(void *ignored) 146 { 147 pool_destroy(&rf_pools.reconbuffer); 148 } 149 150 int 151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp) 152 { 153 154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t), 155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER); 156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 157 158 return (0); 159 } 160 161 static RF_RaidReconDesc_t * 162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col, 163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone, 164 RF_RowCol_t scol) 165 { 166 167 RF_RaidReconDesc_t *reconDesc; 168 169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t), 170 (RF_RaidReconDesc_t *)); 171 reconDesc->raidPtr = raidPtr; 172 reconDesc->col = col; 173 reconDesc->spareDiskPtr = spareDiskPtr; 174 reconDesc->numDisksDone = numDisksDone; 175 reconDesc->scol = scol; 176 reconDesc->next = NULL; 177 178 return (reconDesc); 179 } 180 181 static void 182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc) 183 { 184 #if RF_RECON_STATS > 0 185 printf("raid%d: %lu recon event waits, %lu recon delays\n", 186 reconDesc->raidPtr->raidid, 187 (long) reconDesc->numReconEventWaits, 188 (long) reconDesc->numReconExecDelays); 189 #endif /* RF_RECON_STATS > 0 */ 190 printf("raid%d: %lu max exec ticks\n", 191 reconDesc->raidPtr->raidid, 192 (long) reconDesc->maxReconExecTicks); 193 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t)); 194 } 195 196 197 /***************************************************************************** 198 * 199 * primary routine to reconstruct a failed disk. This should be called from 200 * within its own thread. It won't return until reconstruction completes, 201 * fails, or is aborted. 202 *****************************************************************************/ 203 int 204 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col) 205 { 206 const RF_LayoutSW_t *lp; 207 int rc; 208 209 lp = raidPtr->Layout.map; 210 if (lp->SubmitReconBuffer) { 211 /* 212 * The current infrastructure only supports reconstructing one 213 * disk at a time for each array. 214 */ 215 RF_LOCK_MUTEX(raidPtr->mutex); 216 while (raidPtr->reconInProgress) { 217 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 218 } 219 raidPtr->reconInProgress++; 220 RF_UNLOCK_MUTEX(raidPtr->mutex); 221 rc = rf_ReconstructFailedDiskBasic(raidPtr, col); 222 RF_LOCK_MUTEX(raidPtr->mutex); 223 raidPtr->reconInProgress--; 224 RF_UNLOCK_MUTEX(raidPtr->mutex); 225 } else { 226 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 227 lp->parityConfig); 228 rc = EIO; 229 } 230 RF_SIGNAL_COND(raidPtr->waitForReconCond); 231 return (rc); 232 } 233 234 int 235 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col) 236 { 237 RF_ComponentLabel_t *c_label; 238 RF_RaidDisk_t *spareDiskPtr = NULL; 239 RF_RaidReconDesc_t *reconDesc; 240 RF_RowCol_t scol; 241 int numDisksDone = 0, rc; 242 243 /* first look for a spare drive onto which to reconstruct the data */ 244 /* spare disk descriptors are stored in row 0. This may have to 245 * change eventually */ 246 247 RF_LOCK_MUTEX(raidPtr->mutex); 248 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); 249 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 250 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 251 if (raidPtr->status != rf_rs_degraded) { 252 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); 253 RF_UNLOCK_MUTEX(raidPtr->mutex); 254 return (EINVAL); 255 } 256 scol = (-1); 257 } else { 258 #endif 259 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 260 if (raidPtr->Disks[scol].status == rf_ds_spare) { 261 spareDiskPtr = &raidPtr->Disks[scol]; 262 spareDiskPtr->status = rf_ds_used_spare; 263 break; 264 } 265 } 266 if (!spareDiskPtr) { 267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); 268 RF_UNLOCK_MUTEX(raidPtr->mutex); 269 return (ENOSPC); 270 } 271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); 272 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 273 } 274 #endif 275 RF_UNLOCK_MUTEX(raidPtr->mutex); 276 277 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); 278 raidPtr->reconDesc = (void *) reconDesc; 279 #if RF_RECON_STATS > 0 280 reconDesc->hsStallCount = 0; 281 reconDesc->numReconExecDelays = 0; 282 reconDesc->numReconEventWaits = 0; 283 #endif /* RF_RECON_STATS > 0 */ 284 reconDesc->reconExecTimerRunning = 0; 285 reconDesc->reconExecTicks = 0; 286 reconDesc->maxReconExecTicks = 0; 287 rc = rf_ContinueReconstructFailedDisk(reconDesc); 288 289 if (!rc) { 290 /* fix up the component label */ 291 /* Don't actually need the read here.. */ 292 c_label = raidget_component_label(raidPtr, scol); 293 294 raid_init_component_label(raidPtr, c_label); 295 c_label->row = 0; 296 c_label->column = col; 297 c_label->clean = RF_RAID_DIRTY; 298 c_label->status = rf_ds_optimal; 299 c_label->partitionSize = raidPtr->Disks[scol].partitionSize; 300 301 /* We've just done a rebuild based on all the other 302 disks, so at this point the parity is known to be 303 clean, even if it wasn't before. */ 304 305 /* XXX doesn't hold for RAID 6!!*/ 306 307 RF_LOCK_MUTEX(raidPtr->mutex); 308 raidPtr->parity_good = RF_RAID_CLEAN; 309 RF_UNLOCK_MUTEX(raidPtr->mutex); 310 311 /* XXXX MORE NEEDED HERE */ 312 313 raidflush_component_label(raidPtr, scol); 314 } else { 315 /* Reconstruct failed. */ 316 317 RF_LOCK_MUTEX(raidPtr->mutex); 318 /* Failed disk goes back to "failed" status */ 319 raidPtr->Disks[col].status = rf_ds_failed; 320 321 /* Spare disk goes back to "spare" status. */ 322 spareDiskPtr->status = rf_ds_spare; 323 RF_UNLOCK_MUTEX(raidPtr->mutex); 324 325 } 326 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 327 return (rc); 328 } 329 330 /* 331 332 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 333 and you don't get a spare until the next Monday. With this function 334 (and hot-swappable drives) you can now put your new disk containing 335 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 336 rebuild the data "on the spot". 337 338 */ 339 340 int 341 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col) 342 { 343 RF_RaidDisk_t *spareDiskPtr = NULL; 344 RF_RaidReconDesc_t *reconDesc; 345 const RF_LayoutSW_t *lp; 346 RF_ComponentLabel_t *c_label; 347 int numDisksDone = 0, rc; 348 struct partinfo dpart; 349 struct vnode *vp; 350 struct vattr va; 351 int retcode; 352 int ac; 353 354 lp = raidPtr->Layout.map; 355 if (!lp->SubmitReconBuffer) { 356 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 357 lp->parityConfig); 358 /* wakeup anyone who might be waiting to do a reconstruct */ 359 RF_SIGNAL_COND(raidPtr->waitForReconCond); 360 return(EIO); 361 } 362 363 /* 364 * The current infrastructure only supports reconstructing one 365 * disk at a time for each array. 366 */ 367 RF_LOCK_MUTEX(raidPtr->mutex); 368 369 if (raidPtr->Disks[col].status != rf_ds_failed) { 370 /* "It's gone..." */ 371 raidPtr->numFailures++; 372 raidPtr->Disks[col].status = rf_ds_failed; 373 raidPtr->status = rf_rs_degraded; 374 RF_UNLOCK_MUTEX(raidPtr->mutex); 375 rf_update_component_labels(raidPtr, 376 RF_NORMAL_COMPONENT_UPDATE); 377 RF_LOCK_MUTEX(raidPtr->mutex); 378 } 379 380 while (raidPtr->reconInProgress) { 381 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 382 } 383 384 raidPtr->reconInProgress++; 385 386 /* first look for a spare drive onto which to reconstruct the 387 data. spare disk descriptors are stored in row 0. This 388 may have to change eventually */ 389 390 /* Actually, we don't care if it's failed or not... On a RAID 391 set with correct parity, this function should be callable 392 on any component without ill effects. */ 393 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ 394 395 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 396 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 397 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); 398 399 raidPtr->reconInProgress--; 400 RF_UNLOCK_MUTEX(raidPtr->mutex); 401 RF_SIGNAL_COND(raidPtr->waitForReconCond); 402 return (EINVAL); 403 } 404 #endif 405 406 /* This device may have been opened successfully the 407 first time. Close it before trying to open it again.. */ 408 409 if (raidPtr->raid_cinfo[col].ci_vp != NULL) { 410 #if 0 411 printf("Closed the open device: %s\n", 412 raidPtr->Disks[col].devname); 413 #endif 414 vp = raidPtr->raid_cinfo[col].ci_vp; 415 ac = raidPtr->Disks[col].auto_configured; 416 RF_UNLOCK_MUTEX(raidPtr->mutex); 417 rf_close_component(raidPtr, vp, ac); 418 RF_LOCK_MUTEX(raidPtr->mutex); 419 raidPtr->raid_cinfo[col].ci_vp = NULL; 420 } 421 /* note that this disk was *not* auto_configured (any longer)*/ 422 raidPtr->Disks[col].auto_configured = 0; 423 424 #if 0 425 printf("About to (re-)open the device for rebuilding: %s\n", 426 raidPtr->Disks[col].devname); 427 #endif 428 RF_UNLOCK_MUTEX(raidPtr->mutex); 429 retcode = dk_lookup(raidPtr->Disks[col].devname, curlwp, &vp, UIO_SYSSPACE); 430 431 if (retcode) { 432 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid, 433 raidPtr->Disks[col].devname, retcode); 434 435 /* the component isn't responding properly... 436 must be still dead :-( */ 437 RF_LOCK_MUTEX(raidPtr->mutex); 438 raidPtr->reconInProgress--; 439 RF_UNLOCK_MUTEX(raidPtr->mutex); 440 RF_SIGNAL_COND(raidPtr->waitForReconCond); 441 return(retcode); 442 } 443 444 /* Ok, so we can at least do a lookup... 445 How about actually getting a vp for it? */ 446 447 if ((retcode = VOP_GETATTR(vp, &va, curlwp->l_cred)) != 0) { 448 RF_LOCK_MUTEX(raidPtr->mutex); 449 raidPtr->reconInProgress--; 450 RF_UNLOCK_MUTEX(raidPtr->mutex); 451 RF_SIGNAL_COND(raidPtr->waitForReconCond); 452 return(retcode); 453 } 454 455 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, curlwp->l_cred); 456 if (retcode) { 457 RF_LOCK_MUTEX(raidPtr->mutex); 458 raidPtr->reconInProgress--; 459 RF_UNLOCK_MUTEX(raidPtr->mutex); 460 RF_SIGNAL_COND(raidPtr->waitForReconCond); 461 return(retcode); 462 } 463 RF_LOCK_MUTEX(raidPtr->mutex); 464 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; 465 466 raidPtr->Disks[col].numBlocks = dpart.part->p_size - 467 rf_protectedSectors; 468 469 raidPtr->raid_cinfo[col].ci_vp = vp; 470 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; 471 472 raidPtr->Disks[col].dev = va.va_rdev; 473 474 /* we allow the user to specify that only a fraction 475 of the disks should be used this is just for debug: 476 it speeds up * the parity scan */ 477 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * 478 rf_sizePercentage / 100; 479 RF_UNLOCK_MUTEX(raidPtr->mutex); 480 481 spareDiskPtr = &raidPtr->Disks[col]; 482 spareDiskPtr->status = rf_ds_used_spare; 483 484 printf("raid%d: initiating in-place reconstruction on column %d\n", 485 raidPtr->raidid, col); 486 487 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, 488 numDisksDone, col); 489 raidPtr->reconDesc = (void *) reconDesc; 490 #if RF_RECON_STATS > 0 491 reconDesc->hsStallCount = 0; 492 reconDesc->numReconExecDelays = 0; 493 reconDesc->numReconEventWaits = 0; 494 #endif /* RF_RECON_STATS > 0 */ 495 reconDesc->reconExecTimerRunning = 0; 496 reconDesc->reconExecTicks = 0; 497 reconDesc->maxReconExecTicks = 0; 498 rc = rf_ContinueReconstructFailedDisk(reconDesc); 499 500 if (!rc) { 501 RF_LOCK_MUTEX(raidPtr->mutex); 502 /* Need to set these here, as at this point it'll be claiming 503 that the disk is in rf_ds_spared! But we know better :-) */ 504 505 raidPtr->Disks[col].status = rf_ds_optimal; 506 raidPtr->status = rf_rs_optimal; 507 RF_UNLOCK_MUTEX(raidPtr->mutex); 508 509 /* fix up the component label */ 510 /* Don't actually need the read here.. */ 511 c_label = raidget_component_label(raidPtr, col); 512 513 RF_LOCK_MUTEX(raidPtr->mutex); 514 raid_init_component_label(raidPtr, c_label); 515 516 c_label->row = 0; 517 c_label->column = col; 518 519 /* We've just done a rebuild based on all the other 520 disks, so at this point the parity is known to be 521 clean, even if it wasn't before. */ 522 523 /* XXX doesn't hold for RAID 6!!*/ 524 525 raidPtr->parity_good = RF_RAID_CLEAN; 526 RF_UNLOCK_MUTEX(raidPtr->mutex); 527 528 raidflush_component_label(raidPtr, col); 529 } else { 530 /* Reconstruct-in-place failed. Disk goes back to 531 "failed" status, regardless of what it was before. */ 532 RF_LOCK_MUTEX(raidPtr->mutex); 533 raidPtr->Disks[col].status = rf_ds_failed; 534 RF_UNLOCK_MUTEX(raidPtr->mutex); 535 } 536 537 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); 538 539 RF_LOCK_MUTEX(raidPtr->mutex); 540 raidPtr->reconInProgress--; 541 RF_UNLOCK_MUTEX(raidPtr->mutex); 542 543 RF_SIGNAL_COND(raidPtr->waitForReconCond); 544 return (rc); 545 } 546 547 548 int 549 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc) 550 { 551 RF_Raid_t *raidPtr = reconDesc->raidPtr; 552 RF_RowCol_t col = reconDesc->col; 553 RF_RowCol_t scol = reconDesc->scol; 554 RF_ReconMap_t *mapPtr; 555 RF_ReconCtrl_t *tmp_reconctrl; 556 RF_ReconEvent_t *event; 557 RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev; 558 RF_ReconUnitCount_t RUsPerPU; 559 struct timeval etime, elpsd; 560 unsigned long xor_s, xor_resid_us; 561 int i, ds; 562 int status, done; 563 int recon_error, write_error; 564 565 raidPtr->accumXorTimeUs = 0; 566 #if RF_ACC_TRACE > 0 567 /* create one trace record per physical disk */ 568 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 569 #endif 570 571 /* quiesce the array prior to starting recon. this is needed 572 * to assure no nasty interactions with pending user writes. 573 * We need to do this before we change the disk or row status. */ 574 575 Dprintf("RECON: begin request suspend\n"); 576 rf_SuspendNewRequestsAndWait(raidPtr); 577 Dprintf("RECON: end request suspend\n"); 578 579 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 580 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); 581 582 RF_LOCK_MUTEX(raidPtr->mutex); 583 584 /* create the reconstruction control pointer and install it in 585 * the right slot */ 586 raidPtr->reconControl = tmp_reconctrl; 587 mapPtr = raidPtr->reconControl->reconMap; 588 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; 589 raidPtr->reconControl->numRUsComplete = 0; 590 raidPtr->status = rf_rs_reconstructing; 591 raidPtr->Disks[col].status = rf_ds_reconstructing; 592 raidPtr->Disks[col].spareCol = scol; 593 594 RF_UNLOCK_MUTEX(raidPtr->mutex); 595 596 RF_GETTIME(raidPtr->reconControl->starttime); 597 598 Dprintf("RECON: resume requests\n"); 599 rf_ResumeNewRequests(raidPtr); 600 601 602 mapPtr = raidPtr->reconControl->reconMap; 603 604 incPSID = RF_RECONMAP_SIZE; 605 lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU; 606 RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU; 607 recon_error = 0; 608 write_error = 0; 609 pending_writes = incPSID; 610 raidPtr->reconControl->lastPSID = incPSID; 611 612 /* start the actual reconstruction */ 613 614 done = 0; 615 while (!done) { 616 617 if (raidPtr->waitShutdown) { 618 /* someone is unconfiguring this array... bail on the reconstruct.. */ 619 recon_error = 1; 620 break; 621 } 622 623 num_writes = 0; 624 625 /* issue a read for each surviving disk */ 626 627 reconDesc->numDisksDone = 0; 628 for (i = 0; i < raidPtr->numCol; i++) { 629 if (i != col) { 630 /* find and issue the next I/O on the 631 * indicated disk */ 632 if (IssueNextReadRequest(raidPtr, i)) { 633 Dprintf1("RECON: done issuing for c%d\n", i); 634 reconDesc->numDisksDone++; 635 } 636 } 637 } 638 639 /* process reconstruction events until all disks report that 640 * they've completed all work */ 641 642 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 643 644 event = rf_GetNextReconEvent(reconDesc); 645 status = ProcessReconEvent(raidPtr, event); 646 647 /* the normal case is that a read completes, and all is well. */ 648 if (status == RF_RECON_DONE_READS) { 649 reconDesc->numDisksDone++; 650 } else if ((status == RF_RECON_READ_ERROR) || 651 (status == RF_RECON_WRITE_ERROR)) { 652 /* an error was encountered while reconstructing... 653 Pretend we've finished this disk. 654 */ 655 recon_error = 1; 656 raidPtr->reconControl->error = 1; 657 658 /* bump the numDisksDone count for reads, 659 but not for writes */ 660 if (status == RF_RECON_READ_ERROR) 661 reconDesc->numDisksDone++; 662 663 /* write errors are special -- when we are 664 done dealing with the reads that are 665 finished, we don't want to wait for any 666 writes */ 667 if (status == RF_RECON_WRITE_ERROR) { 668 write_error = 1; 669 num_writes++; 670 } 671 672 } else if (status == RF_RECON_READ_STOPPED) { 673 /* count this component as being "done" */ 674 reconDesc->numDisksDone++; 675 } else if (status == RF_RECON_WRITE_DONE) { 676 num_writes++; 677 } 678 679 if (recon_error) { 680 /* make sure any stragglers are woken up so that 681 their theads will complete, and we can get out 682 of here with all IO processed */ 683 684 rf_WakeupHeadSepCBWaiters(raidPtr); 685 } 686 687 raidPtr->reconControl->numRUsTotal = 688 mapPtr->totalRUs; 689 raidPtr->reconControl->numRUsComplete = 690 mapPtr->totalRUs - 691 rf_UnitsLeftToReconstruct(mapPtr); 692 693 #if RF_DEBUG_RECON 694 raidPtr->reconControl->percentComplete = 695 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 696 if (rf_prReconSched) { 697 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 698 } 699 #endif 700 } 701 702 /* reads done, wakup any waiters, and then wait for writes */ 703 704 rf_WakeupHeadSepCBWaiters(raidPtr); 705 706 while (!recon_error && (num_writes < pending_writes)) { 707 event = rf_GetNextReconEvent(reconDesc); 708 status = ProcessReconEvent(raidPtr, event); 709 710 if (status == RF_RECON_WRITE_ERROR) { 711 num_writes++; 712 recon_error = 1; 713 raidPtr->reconControl->error = 1; 714 /* an error was encountered at the very end... bail */ 715 } else if (status == RF_RECON_WRITE_DONE) { 716 num_writes++; 717 } /* else it's something else, and we don't care */ 718 } 719 if (recon_error || 720 (raidPtr->reconControl->lastPSID == lastPSID)) { 721 done = 1; 722 break; 723 } 724 725 prev = raidPtr->reconControl->lastPSID; 726 raidPtr->reconControl->lastPSID += incPSID; 727 728 if (raidPtr->reconControl->lastPSID > lastPSID) { 729 pending_writes = lastPSID - prev; 730 raidPtr->reconControl->lastPSID = lastPSID; 731 } 732 733 /* back down curPSID to get ready for the next round... */ 734 for (i = 0; i < raidPtr->numCol; i++) { 735 if (i != col) { 736 raidPtr->reconControl->perDiskInfo[i].curPSID--; 737 raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1; 738 } 739 } 740 } 741 742 mapPtr = raidPtr->reconControl->reconMap; 743 if (rf_reconDebug) { 744 printf("RECON: all reads completed\n"); 745 } 746 /* at this point all the reads have completed. We now wait 747 * for any pending writes to complete, and then we're done */ 748 749 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { 750 751 event = rf_GetNextReconEvent(reconDesc); 752 status = ProcessReconEvent(raidPtr, event); 753 754 if (status == RF_RECON_WRITE_ERROR) { 755 recon_error = 1; 756 raidPtr->reconControl->error = 1; 757 /* an error was encountered at the very end... bail */ 758 } else { 759 #if RF_DEBUG_RECON 760 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 761 if (rf_prReconSched) { 762 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); 763 } 764 #endif 765 } 766 } 767 768 if (recon_error) { 769 /* we've encountered an error in reconstructing. */ 770 printf("raid%d: reconstruction failed.\n", raidPtr->raidid); 771 772 /* we start by blocking IO to the RAID set. */ 773 rf_SuspendNewRequestsAndWait(raidPtr); 774 775 RF_LOCK_MUTEX(raidPtr->mutex); 776 /* mark set as being degraded, rather than 777 rf_rs_reconstructing as we were before the problem. 778 After this is done we can update status of the 779 component disks without worrying about someone 780 trying to read from a failed component. 781 */ 782 raidPtr->status = rf_rs_degraded; 783 RF_UNLOCK_MUTEX(raidPtr->mutex); 784 785 /* resume IO */ 786 rf_ResumeNewRequests(raidPtr); 787 788 /* At this point there are two cases: 789 1) If we've experienced a read error, then we've 790 already waited for all the reads we're going to get, 791 and we just need to wait for the writes. 792 793 2) If we've experienced a write error, we've also 794 already waited for all the reads to complete, 795 but there is little point in waiting for the writes -- 796 when they do complete, they will just be ignored. 797 798 So we just wait for writes to complete if we didn't have a 799 write error. 800 */ 801 802 if (!write_error) { 803 /* wait for writes to complete */ 804 while (raidPtr->reconControl->pending_writes > 0) { 805 806 event = rf_GetNextReconEvent(reconDesc); 807 status = ProcessReconEvent(raidPtr, event); 808 809 if (status == RF_RECON_WRITE_ERROR) { 810 raidPtr->reconControl->error = 1; 811 /* an error was encountered at the very end... bail. 812 This will be very bad news for the user, since 813 at this point there will have been a read error 814 on one component, and a write error on another! 815 */ 816 break; 817 } 818 } 819 } 820 821 822 /* cleanup */ 823 824 /* drain the event queue - after waiting for the writes above, 825 there shouldn't be much (if anything!) left in the queue. */ 826 827 rf_DrainReconEventQueue(reconDesc); 828 829 /* XXX As much as we'd like to free the recon control structure 830 and the reconDesc, we have no way of knowing if/when those will 831 be touched by IO that has yet to occur. It is rather poor to be 832 basically causing a 'memory leak' here, but there doesn't seem to be 833 a cleaner alternative at this time. Perhaps when the reconstruct code 834 gets a makeover this problem will go away. 835 */ 836 #if 0 837 rf_FreeReconControl(raidPtr); 838 #endif 839 840 #if RF_ACC_TRACE > 0 841 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 842 #endif 843 /* XXX see comment above */ 844 #if 0 845 FreeReconDesc(reconDesc); 846 #endif 847 848 return (1); 849 } 850 851 /* Success: mark the dead disk as reconstructed. We quiesce 852 * the array here to assure no nasty interactions with pending 853 * user accesses when we free up the psstatus structure as 854 * part of FreeReconControl() */ 855 856 rf_SuspendNewRequestsAndWait(raidPtr); 857 858 RF_LOCK_MUTEX(raidPtr->mutex); 859 raidPtr->numFailures--; 860 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 861 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 862 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 863 RF_UNLOCK_MUTEX(raidPtr->mutex); 864 RF_GETTIME(etime); 865 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); 866 867 rf_ResumeNewRequests(raidPtr); 868 869 printf("raid%d: Reconstruction of disk at col %d completed\n", 870 raidPtr->raidid, col); 871 xor_s = raidPtr->accumXorTimeUs / 1000000; 872 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 873 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 874 raidPtr->raidid, 875 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 876 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 877 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 878 raidPtr->raidid, 879 (int) raidPtr->reconControl->starttime.tv_sec, 880 (int) raidPtr->reconControl->starttime.tv_usec, 881 (int) etime.tv_sec, (int) etime.tv_usec); 882 #if RF_RECON_STATS > 0 883 printf("raid%d: Total head-sep stall count was %d\n", 884 raidPtr->raidid, (int) reconDesc->hsStallCount); 885 #endif /* RF_RECON_STATS > 0 */ 886 rf_FreeReconControl(raidPtr); 887 #if RF_ACC_TRACE > 0 888 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 889 #endif 890 FreeReconDesc(reconDesc); 891 892 return (0); 893 894 } 895 /***************************************************************************** 896 * do the right thing upon each reconstruction event. 897 *****************************************************************************/ 898 static int 899 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event) 900 { 901 int retcode = 0, submitblocked; 902 RF_ReconBuffer_t *rbuf; 903 RF_SectorCount_t sectorsPerRU; 904 905 retcode = RF_RECON_READ_STOPPED; 906 907 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 908 909 switch (event->type) { 910 911 /* a read I/O has completed */ 912 case RF_REVENT_READDONE: 913 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; 914 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", 915 event->col, rbuf->parityStripeID); 916 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 917 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 918 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 919 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 920 if (!raidPtr->reconControl->error) { 921 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 922 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 923 if (!submitblocked) 924 retcode = IssueNextReadRequest(raidPtr, event->col); 925 else 926 retcode = 0; 927 } 928 break; 929 930 /* a write I/O has completed */ 931 case RF_REVENT_WRITEDONE: 932 #if RF_DEBUG_RECON 933 if (rf_floatingRbufDebug) { 934 rf_CheckFloatingRbufCount(raidPtr, 1); 935 } 936 #endif 937 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 938 rbuf = (RF_ReconBuffer_t *) event->arg; 939 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 940 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 941 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); 942 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, 943 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 944 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); 945 946 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 947 raidPtr->reconControl->pending_writes--; 948 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 949 950 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 951 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 952 while(raidPtr->reconControl->rb_lock) { 953 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0, 954 &raidPtr->reconControl->rb_mutex); 955 } 956 raidPtr->reconControl->rb_lock = 1; 957 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 958 959 raidPtr->numFullReconBuffers--; 960 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); 961 962 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 963 raidPtr->reconControl->rb_lock = 0; 964 wakeup(&raidPtr->reconControl->rb_lock); 965 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 966 } else 967 if (rbuf->type == RF_RBUF_TYPE_FORCED) 968 rf_FreeReconBuffer(rbuf); 969 else 970 RF_ASSERT(0); 971 retcode = RF_RECON_WRITE_DONE; 972 break; 973 974 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 975 * cleared */ 976 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); 977 if (!raidPtr->reconControl->error) { 978 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 979 0, (int) (long) event->arg); 980 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 981 * BUFCLEAR event if we 982 * couldn't submit */ 983 retcode = IssueNextReadRequest(raidPtr, event->col); 984 } 985 break; 986 987 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 988 * blockage has been cleared */ 989 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); 990 if (!raidPtr->reconControl->error) { 991 retcode = TryToRead(raidPtr, event->col); 992 } 993 break; 994 995 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 996 * reconstruction blockage has been 997 * cleared */ 998 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); 999 if (!raidPtr->reconControl->error) { 1000 retcode = TryToRead(raidPtr, event->col); 1001 } 1002 break; 1003 1004 /* a buffer has become ready to write */ 1005 case RF_REVENT_BUFREADY: 1006 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); 1007 if (!raidPtr->reconControl->error) { 1008 retcode = IssueNextWriteRequest(raidPtr); 1009 #if RF_DEBUG_RECON 1010 if (rf_floatingRbufDebug) { 1011 rf_CheckFloatingRbufCount(raidPtr, 1); 1012 } 1013 #endif 1014 } 1015 break; 1016 1017 /* we need to skip the current RU entirely because it got 1018 * recon'd while we were waiting for something else to happen */ 1019 case RF_REVENT_SKIP: 1020 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); 1021 if (!raidPtr->reconControl->error) { 1022 retcode = IssueNextReadRequest(raidPtr, event->col); 1023 } 1024 break; 1025 1026 /* a forced-reconstruction read access has completed. Just 1027 * submit the buffer */ 1028 case RF_REVENT_FORCEDREADDONE: 1029 rbuf = (RF_ReconBuffer_t *) event->arg; 1030 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1031 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); 1032 if (!raidPtr->reconControl->error) { 1033 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 1034 RF_ASSERT(!submitblocked); 1035 retcode = 0; 1036 } 1037 break; 1038 1039 /* A read I/O failed to complete */ 1040 case RF_REVENT_READ_FAILED: 1041 retcode = RF_RECON_READ_ERROR; 1042 break; 1043 1044 /* A write I/O failed to complete */ 1045 case RF_REVENT_WRITE_FAILED: 1046 retcode = RF_RECON_WRITE_ERROR; 1047 1048 /* This is an error, but it was a pending write. 1049 Account for it. */ 1050 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1051 raidPtr->reconControl->pending_writes--; 1052 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1053 1054 rbuf = (RF_ReconBuffer_t *) event->arg; 1055 1056 /* cleanup the disk queue data */ 1057 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 1058 1059 /* At this point we're erroring out, badly, and floatingRbufs 1060 may not even be valid. Rather than putting this back onto 1061 the floatingRbufs list, just arrange for its immediate 1062 destruction. 1063 */ 1064 rf_FreeReconBuffer(rbuf); 1065 break; 1066 1067 /* a forced read I/O failed to complete */ 1068 case RF_REVENT_FORCEDREAD_FAILED: 1069 retcode = RF_RECON_READ_ERROR; 1070 break; 1071 1072 default: 1073 RF_PANIC(); 1074 } 1075 rf_FreeReconEventDesc(event); 1076 return (retcode); 1077 } 1078 /***************************************************************************** 1079 * 1080 * find the next thing that's needed on the indicated disk, and issue 1081 * a read request for it. We assume that the reconstruction buffer 1082 * associated with this process is free to receive the data. If 1083 * reconstruction is blocked on the indicated RU, we issue a 1084 * blockage-release request instead of a physical disk read request. 1085 * If the current disk gets too far ahead of the others, we issue a 1086 * head-separation wait request and return. 1087 * 1088 * ctrl->{ru_count, curPSID, diskOffset} and 1089 * rbuf->failedDiskSectorOffset are maintained to point to the unit 1090 * we're currently accessing. Note that this deviates from the 1091 * standard C idiom of having counters point to the next thing to be 1092 * accessed. This allows us to easily retry when we're blocked by 1093 * head separation or reconstruction-blockage events. 1094 * 1095 *****************************************************************************/ 1096 static int 1097 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col) 1098 { 1099 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1100 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1101 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 1102 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 1103 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1104 int do_new_check = 0, retcode = 0, status; 1105 1106 /* if we are currently the slowest disk, mark that we have to do a new 1107 * check */ 1108 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) 1109 do_new_check = 1; 1110 1111 while (1) { 1112 1113 ctrl->ru_count++; 1114 if (ctrl->ru_count < RUsPerPU) { 1115 ctrl->diskOffset += sectorsPerRU; 1116 rbuf->failedDiskSectorOffset += sectorsPerRU; 1117 } else { 1118 ctrl->curPSID++; 1119 ctrl->ru_count = 0; 1120 /* code left over from when head-sep was based on 1121 * parity stripe id */ 1122 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { 1123 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); 1124 return (RF_RECON_DONE_READS); /* finito! */ 1125 } 1126 /* find the disk offsets of the start of the parity 1127 * stripe on both the current disk and the failed 1128 * disk. skip this entire parity stripe if either disk 1129 * does not appear in the indicated PS */ 1130 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1131 &rbuf->spCol, &rbuf->spOffset); 1132 if (status) { 1133 ctrl->ru_count = RUsPerPU - 1; 1134 continue; 1135 } 1136 } 1137 rbuf->which_ru = ctrl->ru_count; 1138 1139 /* skip this RU if it's already been reconstructed */ 1140 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { 1141 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1142 continue; 1143 } 1144 break; 1145 } 1146 ctrl->headSepCounter++; 1147 if (do_new_check) 1148 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ 1149 1150 1151 /* at this point, we have definitely decided what to do, and we have 1152 * only to see if we can actually do it now */ 1153 rbuf->parityStripeID = ctrl->curPSID; 1154 rbuf->which_ru = ctrl->ru_count; 1155 #if RF_ACC_TRACE > 0 1156 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1157 sizeof(raidPtr->recon_tracerecs[col])); 1158 raidPtr->recon_tracerecs[col].reconacc = 1; 1159 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1160 #endif 1161 retcode = TryToRead(raidPtr, col); 1162 return (retcode); 1163 } 1164 1165 /* 1166 * tries to issue the next read on the indicated disk. We may be 1167 * blocked by (a) the heads being too far apart, or (b) recon on the 1168 * indicated RU being blocked due to a write by a user thread. In 1169 * this case, we issue a head-sep or blockage wait request, which will 1170 * cause this same routine to be invoked again later when the blockage 1171 * has cleared. 1172 */ 1173 1174 static int 1175 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col) 1176 { 1177 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; 1178 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1179 RF_StripeNum_t psid = ctrl->curPSID; 1180 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1181 RF_DiskQueueData_t *req; 1182 int status; 1183 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; 1184 1185 /* if the current disk is too far ahead of the others, issue a 1186 * head-separation wait and return */ 1187 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) 1188 return (0); 1189 1190 /* allocate a new PSS in case we need it */ 1191 newpssPtr = rf_AllocPSStatus(raidPtr); 1192 1193 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1194 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr); 1195 1196 if (pssPtr != newpssPtr) { 1197 rf_FreePSStatus(raidPtr, newpssPtr); 1198 } 1199 1200 /* if recon is blocked on the indicated parity stripe, issue a 1201 * block-wait request and return. this also must mark the indicated RU 1202 * in the stripe as under reconstruction if not blocked. */ 1203 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); 1204 if (status == RF_PSS_RECON_BLOCKED) { 1205 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1206 goto out; 1207 } else 1208 if (status == RF_PSS_FORCED_ON_WRITE) { 1209 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1210 goto out; 1211 } 1212 /* make one last check to be sure that the indicated RU didn't get 1213 * reconstructed while we were waiting for something else to happen. 1214 * This is unfortunate in that it causes us to make this check twice 1215 * in the normal case. Might want to make some attempt to re-work 1216 * this so that we only do this check if we've definitely blocked on 1217 * one of the above checks. When this condition is detected, we may 1218 * have just created a bogus status entry, which we need to delete. */ 1219 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1220 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1221 if (pssPtr == newpssPtr) 1222 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1223 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); 1224 goto out; 1225 } 1226 /* found something to read. issue the I/O */ 1227 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", 1228 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1229 #if RF_ACC_TRACE > 0 1230 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1231 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1232 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1233 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1234 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1235 #endif 1236 /* should be ok to use a NULL proc pointer here, all the bufs we use 1237 * should be in kernel space */ 1238 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1239 ReconReadDoneProc, (void *) ctrl, 1240 #if RF_ACC_TRACE > 0 1241 &raidPtr->recon_tracerecs[col], 1242 #else 1243 NULL, 1244 #endif 1245 (void *) raidPtr, 0, NULL, PR_WAITOK); 1246 1247 ctrl->rbuf->arg = (void *) req; 1248 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); 1249 pssPtr->issued[col] = 1; 1250 1251 out: 1252 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1253 return (0); 1254 } 1255 1256 1257 /* 1258 * given a parity stripe ID, we want to find out whether both the 1259 * current disk and the failed disk exist in that parity stripe. If 1260 * not, we want to skip this whole PS. If so, we want to find the 1261 * disk offset of the start of the PS on both the current disk and the 1262 * failed disk. 1263 * 1264 * this works by getting a list of disks comprising the indicated 1265 * parity stripe, and searching the list for the current and failed 1266 * disks. Once we've decided they both exist in the parity stripe, we 1267 * need to decide whether each is data or parity, so that we'll know 1268 * which mapping function to call to get the corresponding disk 1269 * offsets. 1270 * 1271 * this is kind of unpleasant, but doing it this way allows the 1272 * reconstruction code to use parity stripe IDs rather than physical 1273 * disks address to march through the failed disk, which greatly 1274 * simplifies a lot of code, as well as eliminating the need for a 1275 * reverse-mapping function. I also think it will execute faster, 1276 * since the calls to the mapping module are kept to a minimum. 1277 * 1278 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1279 * THE STRIPE IN THE CORRECT ORDER 1280 * 1281 * raidPtr - raid descriptor 1282 * psid - parity stripe identifier 1283 * col - column of disk to find the offsets for 1284 * spCol - out: col of spare unit for failed unit 1285 * spOffset - out: offset into disk containing spare unit 1286 * 1287 */ 1288 1289 1290 static int 1291 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid, 1292 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset, 1293 RF_SectorNum_t *outFailedDiskSectorOffset, 1294 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset) 1295 { 1296 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1297 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1298 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1299 RF_RowCol_t *diskids; 1300 u_int i, j, k, i_offset, j_offset; 1301 RF_RowCol_t pcol; 1302 int testcol; 1303 RF_SectorNum_t poffset; 1304 char i_is_parity = 0, j_is_parity = 0; 1305 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1306 1307 /* get a listing of the disks comprising that stripe */ 1308 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1309 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); 1310 RF_ASSERT(diskids); 1311 1312 /* reject this entire parity stripe if it does not contain the 1313 * indicated disk or it does not contain the failed disk */ 1314 1315 for (i = 0; i < stripeWidth; i++) { 1316 if (col == diskids[i]) 1317 break; 1318 } 1319 if (i == stripeWidth) 1320 goto skipit; 1321 for (j = 0; j < stripeWidth; j++) { 1322 if (fcol == diskids[j]) 1323 break; 1324 } 1325 if (j == stripeWidth) { 1326 goto skipit; 1327 } 1328 /* find out which disk the parity is on */ 1329 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); 1330 1331 /* find out if either the current RU or the failed RU is parity */ 1332 /* also, if the parity occurs in this stripe prior to the data and/or 1333 * failed col, we need to decrement i and/or j */ 1334 for (k = 0; k < stripeWidth; k++) 1335 if (diskids[k] == pcol) 1336 break; 1337 RF_ASSERT(k < stripeWidth); 1338 i_offset = i; 1339 j_offset = j; 1340 if (k < i) 1341 i_offset--; 1342 else 1343 if (k == i) { 1344 i_is_parity = 1; 1345 i_offset = 0; 1346 } /* set offsets to zero to disable multiply 1347 * below */ 1348 if (k < j) 1349 j_offset--; 1350 else 1351 if (k == j) { 1352 j_is_parity = 1; 1353 j_offset = 0; 1354 } 1355 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1356 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1357 * tells us how far into the stripe the [current,failed] disk is. */ 1358 1359 /* call the mapping routine to get the offset into the current disk, 1360 * repeat for failed disk. */ 1361 if (i_is_parity) 1362 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1363 else 1364 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); 1365 1366 RF_ASSERT(col == testcol); 1367 1368 if (j_is_parity) 1369 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1370 else 1371 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1372 RF_ASSERT(fcol == testcol); 1373 1374 /* now locate the spare unit for the failed unit */ 1375 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1376 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1377 if (j_is_parity) 1378 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1379 else 1380 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); 1381 } else { 1382 #endif 1383 *spCol = raidPtr->reconControl->spareCol; 1384 *spOffset = *outFailedDiskSectorOffset; 1385 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0 1386 } 1387 #endif 1388 return (0); 1389 1390 skipit: 1391 Dprintf2("RECON: Skipping psid %ld: nothing needed from c%d\n", 1392 psid, col); 1393 return (1); 1394 } 1395 /* this is called when a buffer has become ready to write to the replacement disk */ 1396 static int 1397 IssueNextWriteRequest(RF_Raid_t *raidPtr) 1398 { 1399 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1400 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1401 #if RF_ACC_TRACE > 0 1402 RF_RowCol_t fcol = raidPtr->reconControl->fcol; 1403 #endif 1404 RF_ReconBuffer_t *rbuf; 1405 RF_DiskQueueData_t *req; 1406 1407 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); 1408 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1409 * have gotten the event that sent us here */ 1410 RF_ASSERT(rbuf->pssPtr); 1411 1412 rbuf->pssPtr->writeRbuf = rbuf; 1413 rbuf->pssPtr = NULL; 1414 1415 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1416 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1417 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1418 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1419 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1420 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1421 1422 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1423 * kernel space */ 1424 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1425 sectorsPerRU, rbuf->buffer, 1426 rbuf->parityStripeID, rbuf->which_ru, 1427 ReconWriteDoneProc, (void *) rbuf, 1428 #if RF_ACC_TRACE > 0 1429 &raidPtr->recon_tracerecs[fcol], 1430 #else 1431 NULL, 1432 #endif 1433 (void *) raidPtr, 0, NULL, PR_WAITOK); 1434 1435 rbuf->arg = (void *) req; 1436 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1437 raidPtr->reconControl->pending_writes++; 1438 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1439 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1440 1441 return (0); 1442 } 1443 1444 /* 1445 * this gets called upon the completion of a reconstruction read 1446 * operation the arg is a pointer to the per-disk reconstruction 1447 * control structure for the process that just finished a read. 1448 * 1449 * called at interrupt context in the kernel, so don't do anything 1450 * illegal here. 1451 */ 1452 static int 1453 ReconReadDoneProc(void *arg, int status) 1454 { 1455 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1456 RF_Raid_t *raidPtr; 1457 1458 /* Detect that reconCtrl is no longer valid, and if that 1459 is the case, bail without calling rf_CauseReconEvent(). 1460 There won't be anyone listening for this event anyway */ 1461 1462 if (ctrl->reconCtrl == NULL) 1463 return(0); 1464 1465 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1466 1467 if (status) { 1468 printf("raid%d: Recon read failed: %d\n", raidPtr->raidid, status); 1469 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED); 1470 return(0); 1471 } 1472 #if RF_ACC_TRACE > 0 1473 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1474 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1475 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1476 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1477 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1478 #endif 1479 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); 1480 return (0); 1481 } 1482 /* this gets called upon the completion of a reconstruction write operation. 1483 * the arg is a pointer to the rbuf that was just written 1484 * 1485 * called at interrupt context in the kernel, so don't do anything illegal here. 1486 */ 1487 static int 1488 ReconWriteDoneProc(void *arg, int status) 1489 { 1490 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1491 1492 /* Detect that reconControl is no longer valid, and if that 1493 is the case, bail without calling rf_CauseReconEvent(). 1494 There won't be anyone listening for this event anyway */ 1495 1496 if (rbuf->raidPtr->reconControl == NULL) 1497 return(0); 1498 1499 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1500 if (status) { 1501 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid); 1502 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED); 1503 return(0); 1504 } 1505 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); 1506 return (0); 1507 } 1508 1509 1510 /* 1511 * computes a new minimum head sep, and wakes up anyone who needs to 1512 * be woken as a result 1513 */ 1514 static void 1515 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr) 1516 { 1517 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1518 RF_HeadSepLimit_t new_min; 1519 RF_RowCol_t i; 1520 RF_CallbackDesc_t *p; 1521 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1522 * of a minimum */ 1523 1524 1525 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1526 while(reconCtrlPtr->rb_lock) { 1527 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 1528 } 1529 reconCtrlPtr->rb_lock = 1; 1530 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1531 1532 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1533 for (i = 0; i < raidPtr->numCol; i++) 1534 if (i != reconCtrlPtr->fcol) { 1535 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1536 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1537 } 1538 /* set the new minimum and wake up anyone who can now run again */ 1539 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1540 reconCtrlPtr->minHeadSepCounter = new_min; 1541 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1542 while (reconCtrlPtr->headSepCBList) { 1543 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1544 break; 1545 p = reconCtrlPtr->headSepCBList; 1546 reconCtrlPtr->headSepCBList = p->next; 1547 p->next = NULL; 1548 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1549 rf_FreeCallbackDesc(p); 1550 } 1551 1552 } 1553 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1554 reconCtrlPtr->rb_lock = 0; 1555 wakeup(&reconCtrlPtr->rb_lock); 1556 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1557 } 1558 1559 /* 1560 * checks to see that the maximum head separation will not be violated 1561 * if we initiate a reconstruction I/O on the indicated disk. 1562 * Limiting the maximum head separation between two disks eliminates 1563 * the nasty buffer-stall conditions that occur when one disk races 1564 * ahead of the others and consumes all of the floating recon buffers. 1565 * This code is complex and unpleasant but it's necessary to avoid 1566 * some very nasty, albeit fairly rare, reconstruction behavior. 1567 * 1568 * returns non-zero if and only if we have to stop working on the 1569 * indicated disk due to a head-separation delay. 1570 */ 1571 static int 1572 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl, 1573 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 1574 RF_ReconUnitNum_t which_ru) 1575 { 1576 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; 1577 RF_CallbackDesc_t *cb, *p, *pt; 1578 int retval = 0; 1579 1580 /* if we're too far ahead of the slowest disk, stop working on this 1581 * disk until the slower ones catch up. We do this by scheduling a 1582 * wakeup callback for the time when the slowest disk has caught up. 1583 * We define "caught up" with 20% hysteresis, i.e. the head separation 1584 * must have fallen to at most 80% of the max allowable head 1585 * separation before we'll wake up. 1586 * 1587 */ 1588 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1589 while(reconCtrlPtr->rb_lock) { 1590 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex); 1591 } 1592 reconCtrlPtr->rb_lock = 1; 1593 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1594 if ((raidPtr->headSepLimit >= 0) && 1595 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1596 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1597 raidPtr->raidid, col, ctrl->headSepCounter, 1598 reconCtrlPtr->minHeadSepCounter, 1599 raidPtr->headSepLimit); 1600 cb = rf_AllocCallbackDesc(); 1601 /* the minHeadSepCounter value we have to get to before we'll 1602 * wake up. build in 20% hysteresis. */ 1603 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1604 cb->col = col; 1605 cb->next = NULL; 1606 1607 /* insert this callback descriptor into the sorted list of 1608 * pending head-sep callbacks */ 1609 p = reconCtrlPtr->headSepCBList; 1610 if (!p) 1611 reconCtrlPtr->headSepCBList = cb; 1612 else 1613 if (cb->callbackArg.v < p->callbackArg.v) { 1614 cb->next = reconCtrlPtr->headSepCBList; 1615 reconCtrlPtr->headSepCBList = cb; 1616 } else { 1617 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1618 cb->next = p; 1619 pt->next = cb; 1620 } 1621 retval = 1; 1622 #if RF_RECON_STATS > 0 1623 ctrl->reconCtrl->reconDesc->hsStallCount++; 1624 #endif /* RF_RECON_STATS > 0 */ 1625 } 1626 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1627 reconCtrlPtr->rb_lock = 0; 1628 wakeup(&reconCtrlPtr->rb_lock); 1629 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1630 1631 return (retval); 1632 } 1633 /* 1634 * checks to see if reconstruction has been either forced or blocked 1635 * by a user operation. if forced, we skip this RU entirely. else if 1636 * blocked, put ourselves on the wait list. else return 0. 1637 * 1638 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1639 */ 1640 static int 1641 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr, 1642 RF_ReconParityStripeStatus_t *pssPtr, 1643 RF_PerDiskReconCtrl_t *ctrl, 1644 RF_RowCol_t col, 1645 RF_StripeNum_t psid, 1646 RF_ReconUnitNum_t which_ru) 1647 { 1648 RF_CallbackDesc_t *cb; 1649 int retcode = 0; 1650 1651 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1652 retcode = RF_PSS_FORCED_ON_WRITE; 1653 else 1654 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1655 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); 1656 cb = rf_AllocCallbackDesc(); /* append ourselves to 1657 * the blockage-wait 1658 * list */ 1659 cb->col = col; 1660 cb->next = pssPtr->blockWaitList; 1661 pssPtr->blockWaitList = cb; 1662 retcode = RF_PSS_RECON_BLOCKED; 1663 } 1664 if (!retcode) 1665 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1666 * reconstruction */ 1667 1668 return (retcode); 1669 } 1670 /* 1671 * if reconstruction is currently ongoing for the indicated stripeID, 1672 * reconstruction is forced to completion and we return non-zero to 1673 * indicate that the caller must wait. If not, then reconstruction is 1674 * blocked on the indicated stripe and the routine returns zero. If 1675 * and only if we return non-zero, we'll cause the cbFunc to get 1676 * invoked with the cbArg when the reconstruction has completed. 1677 */ 1678 int 1679 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap, 1680 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg) 1681 { 1682 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1683 * forcing recon on */ 1684 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1685 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity 1686 * stripe status structure */ 1687 RF_StripeNum_t psid; /* parity stripe id */ 1688 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1689 * offset */ 1690 RF_RowCol_t *diskids; 1691 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1692 RF_RowCol_t fcol, diskno, i; 1693 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1694 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1695 RF_CallbackDesc_t *cb; 1696 int nPromoted; 1697 1698 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1699 1700 /* allocate a new PSS in case we need it */ 1701 newpssPtr = rf_AllocPSStatus(raidPtr); 1702 1703 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1704 1705 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr); 1706 1707 if (pssPtr != newpssPtr) { 1708 rf_FreePSStatus(raidPtr, newpssPtr); 1709 } 1710 1711 /* if recon is not ongoing on this PS, just return */ 1712 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1713 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1714 return (0); 1715 } 1716 /* otherwise, we have to wait for reconstruction to complete on this 1717 * RU. */ 1718 /* In order to avoid waiting for a potentially large number of 1719 * low-priority accesses to complete, we force a normal-priority (i.e. 1720 * not low-priority) reconstruction on this RU. */ 1721 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1722 DDprintf1("Forcing recon on psid %ld\n", psid); 1723 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1724 * forced recon */ 1725 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1726 * that we just set */ 1727 fcol = raidPtr->reconControl->fcol; 1728 1729 /* get a listing of the disks comprising the indicated stripe */ 1730 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); 1731 1732 /* For previously issued reads, elevate them to normal 1733 * priority. If the I/O has already completed, it won't be 1734 * found in the queue, and hence this will be a no-op. For 1735 * unissued reads, allocate buffers and issue new reads. The 1736 * fact that we've set the FORCED bit means that the regular 1737 * recon procs will not re-issue these reqs */ 1738 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1739 if ((diskno = diskids[i]) != fcol) { 1740 if (pssPtr->issued[diskno]) { 1741 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); 1742 if (rf_reconDebug && nPromoted) 1743 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); 1744 } else { 1745 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1746 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, 1747 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1748 * location */ 1749 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1750 new_rbuf->which_ru = which_ru; 1751 new_rbuf->failedDiskSectorOffset = fd_offset; 1752 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1753 1754 /* use NULL b_proc b/c all addrs 1755 * should be in kernel space */ 1756 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1757 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, 1758 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK); 1759 1760 new_rbuf->arg = req; 1761 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1762 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); 1763 } 1764 } 1765 /* if the write is sitting in the disk queue, elevate its 1766 * priority */ 1767 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) 1768 if (rf_reconDebug) 1769 printf("raid%d: promoted write to col %d\n", 1770 raidPtr->raidid, fcol); 1771 } 1772 /* install a callback descriptor to be invoked when recon completes on 1773 * this parity stripe. */ 1774 cb = rf_AllocCallbackDesc(); 1775 /* XXX the following is bogus.. These functions don't really match!! 1776 * GO */ 1777 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1778 cb->callbackArg.p = (void *) cbArg; 1779 cb->next = pssPtr->procWaitList; 1780 pssPtr->procWaitList = cb; 1781 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1782 raidPtr->raidid, psid); 1783 1784 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1785 return (1); 1786 } 1787 /* called upon the completion of a forced reconstruction read. 1788 * all we do is schedule the FORCEDREADONE event. 1789 * called at interrupt context in the kernel, so don't do anything illegal here. 1790 */ 1791 static void 1792 ForceReconReadDoneProc(void *arg, int status) 1793 { 1794 RF_ReconBuffer_t *rbuf = arg; 1795 1796 /* Detect that reconControl is no longer valid, and if that 1797 is the case, bail without calling rf_CauseReconEvent(). 1798 There won't be anyone listening for this event anyway */ 1799 1800 if (rbuf->raidPtr->reconControl == NULL) 1801 return; 1802 1803 if (status) { 1804 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid); 1805 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED); 1806 return; 1807 } 1808 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1809 } 1810 /* releases a block on the reconstruction of the indicated stripe */ 1811 int 1812 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) 1813 { 1814 RF_StripeNum_t stripeID = asmap->stripeID; 1815 RF_ReconParityStripeStatus_t *pssPtr; 1816 RF_ReconUnitNum_t which_ru; 1817 RF_StripeNum_t psid; 1818 RF_CallbackDesc_t *cb; 1819 1820 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1821 RF_LOCK_PSS_MUTEX(raidPtr, psid); 1822 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL); 1823 1824 /* When recon is forced, the pss desc can get deleted before we get 1825 * back to unblock recon. But, this can _only_ happen when recon is 1826 * forced. It would be good to put some kind of sanity check here, but 1827 * how to decide if recon was just forced or not? */ 1828 if (!pssPtr) { 1829 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1830 * RU %d\n",psid,which_ru); */ 1831 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1832 if (rf_reconDebug || rf_pssDebug) 1833 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1834 #endif 1835 goto out; 1836 } 1837 pssPtr->blockCount--; 1838 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1839 raidPtr->raidid, psid, pssPtr->blockCount); 1840 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1841 1842 /* unblock recon before calling CauseReconEvent in case 1843 * CauseReconEvent causes us to try to issue a new read before 1844 * returning here. */ 1845 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1846 1847 1848 while (pssPtr->blockWaitList) { 1849 /* spin through the block-wait list and 1850 release all the waiters */ 1851 cb = pssPtr->blockWaitList; 1852 pssPtr->blockWaitList = cb->next; 1853 cb->next = NULL; 1854 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1855 rf_FreeCallbackDesc(cb); 1856 } 1857 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1858 /* if no recon was requested while recon was blocked */ 1859 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); 1860 } 1861 } 1862 out: 1863 RF_UNLOCK_PSS_MUTEX(raidPtr, psid); 1864 return (0); 1865 } 1866 1867 void 1868 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr) 1869 { 1870 RF_CallbackDesc_t *p; 1871 1872 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1873 while(raidPtr->reconControl->rb_lock) { 1874 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, 1875 "rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex); 1876 } 1877 1878 raidPtr->reconControl->rb_lock = 1; 1879 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1880 1881 while (raidPtr->reconControl->headSepCBList) { 1882 p = raidPtr->reconControl->headSepCBList; 1883 raidPtr->reconControl->headSepCBList = p->next; 1884 p->next = NULL; 1885 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1886 rf_FreeCallbackDesc(p); 1887 } 1888 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1889 raidPtr->reconControl->rb_lock = 0; 1890 wakeup(&raidPtr->reconControl->rb_lock); 1891 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); 1892 1893 } 1894 1895