1 /* $NetBSD: rf_reconstruct.c,v 1.27 2001/01/26 02:16:24 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include "rf_types.h" 36 #include <sys/time.h> 37 #include <sys/buf.h> 38 #include <sys/errno.h> 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/ioctl.h> 45 #include <sys/fcntl.h> 46 #include <sys/vnode.h> 47 48 49 #include "rf_raid.h" 50 #include "rf_reconutil.h" 51 #include "rf_revent.h" 52 #include "rf_reconbuffer.h" 53 #include "rf_acctrace.h" 54 #include "rf_etimer.h" 55 #include "rf_dag.h" 56 #include "rf_desc.h" 57 #include "rf_general.h" 58 #include "rf_freelist.h" 59 #include "rf_debugprint.h" 60 #include "rf_driver.h" 61 #include "rf_utils.h" 62 #include "rf_shutdown.h" 63 64 #include "rf_kintf.h" 65 66 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 67 68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 76 77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 79 80 static RF_FreeList_t *rf_recond_freelist; 81 #define RF_MAX_FREE_RECOND 4 82 #define RF_RECOND_INC 1 83 84 static RF_RaidReconDesc_t * 85 AllocRaidReconDesc(RF_Raid_t * raidPtr, 86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 89 static int 90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 91 RF_ReconEvent_t * event); 92 static int 93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 94 RF_RowCol_t col); 95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 96 static int 97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 102 static int ReconReadDoneProc(void *arg, int status); 103 static int ReconWriteDoneProc(void *arg, int status); 104 static void 105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 106 RF_HeadSepLimit_t hsCtr); 107 static int 108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 110 RF_ReconUnitNum_t which_ru); 111 static int 112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 115 RF_ReconUnitNum_t which_ru); 116 static void ForceReconReadDoneProc(void *arg, int status); 117 118 static void rf_ShutdownReconstruction(void *); 119 120 struct RF_ReconDoneProc_s { 121 void (*proc) (RF_Raid_t *, void *); 122 void *arg; 123 RF_ReconDoneProc_t *next; 124 }; 125 126 static RF_FreeList_t *rf_rdp_freelist; 127 #define RF_MAX_FREE_RDP 4 128 #define RF_RDP_INC 1 129 130 static void 131 SignalReconDone(RF_Raid_t * raidPtr) 132 { 133 RF_ReconDoneProc_t *p; 134 135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 136 for (p = raidPtr->recon_done_procs; p; p = p->next) { 137 p->proc(raidPtr, p->arg); 138 } 139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 140 } 141 142 int 143 rf_RegisterReconDoneProc( 144 RF_Raid_t * raidPtr, 145 void (*proc) (RF_Raid_t *, void *), 146 void *arg, 147 RF_ReconDoneProc_t ** handlep) 148 { 149 RF_ReconDoneProc_t *p; 150 151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 152 if (p == NULL) 153 return (ENOMEM); 154 p->proc = proc; 155 p->arg = arg; 156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 157 p->next = raidPtr->recon_done_procs; 158 raidPtr->recon_done_procs = p; 159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 160 if (handlep) 161 *handlep = p; 162 return (0); 163 } 164 /************************************************************************** 165 * 166 * sets up the parameters that will be used by the reconstruction process 167 * currently there are none, except for those that the layout-specific 168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 169 * 170 * in the kernel, we fire off the recon thread. 171 * 172 **************************************************************************/ 173 static void 174 rf_ShutdownReconstruction(ignored) 175 void *ignored; 176 { 177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 179 } 180 181 int 182 rf_ConfigureReconstruction(listp) 183 RF_ShutdownList_t **listp; 184 { 185 int rc; 186 187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 189 if (rf_recond_freelist == NULL) 190 return (ENOMEM); 191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 193 if (rf_rdp_freelist == NULL) { 194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 195 return (ENOMEM); 196 } 197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 198 if (rc) { 199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", 200 __FILE__, __LINE__, rc); 201 rf_ShutdownReconstruction(NULL); 202 return (rc); 203 } 204 return (0); 205 } 206 207 static RF_RaidReconDesc_t * 208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 209 RF_Raid_t *raidPtr; 210 RF_RowCol_t row; 211 RF_RowCol_t col; 212 RF_RaidDisk_t *spareDiskPtr; 213 int numDisksDone; 214 RF_RowCol_t srow; 215 RF_RowCol_t scol; 216 { 217 218 RF_RaidReconDesc_t *reconDesc; 219 220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 221 222 reconDesc->raidPtr = raidPtr; 223 reconDesc->row = row; 224 reconDesc->col = col; 225 reconDesc->spareDiskPtr = spareDiskPtr; 226 reconDesc->numDisksDone = numDisksDone; 227 reconDesc->srow = srow; 228 reconDesc->scol = scol; 229 reconDesc->state = 0; 230 reconDesc->next = NULL; 231 232 return (reconDesc); 233 } 234 235 static void 236 FreeReconDesc(reconDesc) 237 RF_RaidReconDesc_t *reconDesc; 238 { 239 #if RF_RECON_STATS > 0 240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 242 #endif /* RF_RECON_STATS > 0 */ 243 printf("RAIDframe: %lu max exec ticks\n", 244 (long) reconDesc->maxReconExecTicks); 245 #if (RF_RECON_STATS > 0) || defined(KERNEL) 246 printf("\n"); 247 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 249 } 250 251 252 /***************************************************************************** 253 * 254 * primary routine to reconstruct a failed disk. This should be called from 255 * within its own thread. It won't return until reconstruction completes, 256 * fails, or is aborted. 257 *****************************************************************************/ 258 int 259 rf_ReconstructFailedDisk(raidPtr, row, col) 260 RF_Raid_t *raidPtr; 261 RF_RowCol_t row; 262 RF_RowCol_t col; 263 { 264 RF_LayoutSW_t *lp; 265 int rc; 266 267 lp = raidPtr->Layout.map; 268 if (lp->SubmitReconBuffer) { 269 /* 270 * The current infrastructure only supports reconstructing one 271 * disk at a time for each array. 272 */ 273 RF_LOCK_MUTEX(raidPtr->mutex); 274 while (raidPtr->reconInProgress) { 275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 276 } 277 raidPtr->reconInProgress++; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 280 RF_LOCK_MUTEX(raidPtr->mutex); 281 raidPtr->reconInProgress--; 282 RF_UNLOCK_MUTEX(raidPtr->mutex); 283 } else { 284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 285 lp->parityConfig); 286 rc = EIO; 287 } 288 RF_SIGNAL_COND(raidPtr->waitForReconCond); 289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be 290 * needed at some point... GO */ 291 return (rc); 292 } 293 294 int 295 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 296 RF_Raid_t *raidPtr; 297 RF_RowCol_t row; 298 RF_RowCol_t col; 299 { 300 RF_ComponentLabel_t c_label; 301 RF_RaidDisk_t *spareDiskPtr = NULL; 302 RF_RaidReconDesc_t *reconDesc; 303 RF_RowCol_t srow, scol; 304 int numDisksDone = 0, rc; 305 306 /* first look for a spare drive onto which to reconstruct the data */ 307 /* spare disk descriptors are stored in row 0. This may have to 308 * change eventually */ 309 310 RF_LOCK_MUTEX(raidPtr->mutex); 311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 312 313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 314 if (raidPtr->status[row] != rf_rs_degraded) { 315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 316 RF_UNLOCK_MUTEX(raidPtr->mutex); 317 return (EINVAL); 318 } 319 srow = row; 320 scol = (-1); 321 } else { 322 srow = 0; 323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 325 spareDiskPtr = &raidPtr->Disks[srow][scol]; 326 spareDiskPtr->status = rf_ds_used_spare; 327 break; 328 } 329 } 330 if (!spareDiskPtr) { 331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 332 RF_UNLOCK_MUTEX(raidPtr->mutex); 333 return (ENOSPC); 334 } 335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 336 } 337 RF_UNLOCK_MUTEX(raidPtr->mutex); 338 339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 340 raidPtr->reconDesc = (void *) reconDesc; 341 #if RF_RECON_STATS > 0 342 reconDesc->hsStallCount = 0; 343 reconDesc->numReconExecDelays = 0; 344 reconDesc->numReconEventWaits = 0; 345 #endif /* RF_RECON_STATS > 0 */ 346 reconDesc->reconExecTimerRunning = 0; 347 reconDesc->reconExecTicks = 0; 348 reconDesc->maxReconExecTicks = 0; 349 rc = rf_ContinueReconstructFailedDisk(reconDesc); 350 351 if (!rc) { 352 /* fix up the component label */ 353 /* Don't actually need the read here.. */ 354 raidread_component_label( 355 raidPtr->raid_cinfo[srow][scol].ci_dev, 356 raidPtr->raid_cinfo[srow][scol].ci_vp, 357 &c_label); 358 359 raid_init_component_label( raidPtr, &c_label); 360 c_label.row = row; 361 c_label.column = col; 362 c_label.clean = RF_RAID_DIRTY; 363 c_label.status = rf_ds_optimal; 364 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 365 366 /* XXXX MORE NEEDED HERE */ 367 368 raidwrite_component_label( 369 raidPtr->raid_cinfo[srow][scol].ci_dev, 370 raidPtr->raid_cinfo[srow][scol].ci_vp, 371 &c_label); 372 373 } 374 return (rc); 375 } 376 377 /* 378 379 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 380 and you don't get a spare until the next Monday. With this function 381 (and hot-swappable drives) you can now put your new disk containing 382 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 383 rebuild the data "on the spot". 384 385 */ 386 387 int 388 rf_ReconstructInPlace(raidPtr, row, col) 389 RF_Raid_t *raidPtr; 390 RF_RowCol_t row; 391 RF_RowCol_t col; 392 { 393 RF_RaidDisk_t *spareDiskPtr = NULL; 394 RF_RaidReconDesc_t *reconDesc; 395 RF_LayoutSW_t *lp; 396 RF_RaidDisk_t *badDisk; 397 RF_ComponentLabel_t c_label; 398 int numDisksDone = 0, rc; 399 struct partinfo dpart; 400 struct vnode *vp; 401 struct vattr va; 402 struct proc *proc; 403 int retcode; 404 int ac; 405 406 lp = raidPtr->Layout.map; 407 if (lp->SubmitReconBuffer) { 408 /* 409 * The current infrastructure only supports reconstructing one 410 * disk at a time for each array. 411 */ 412 RF_LOCK_MUTEX(raidPtr->mutex); 413 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 414 (raidPtr->numFailures > 0)) { 415 /* XXX 0 above shouldn't be constant!!! */ 416 /* some component other than this has failed. 417 Let's not make things worse than they already 418 are... */ 419 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 420 printf(" Row: %d Col: %d Too many failures.\n", 421 row, col); 422 RF_UNLOCK_MUTEX(raidPtr->mutex); 423 return (EINVAL); 424 } 425 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 426 printf("RAIDFRAME: Unable to reconstruct to disk at:\n"); 427 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col); 428 429 RF_UNLOCK_MUTEX(raidPtr->mutex); 430 return (EINVAL); 431 } 432 433 434 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 435 /* "It's gone..." */ 436 raidPtr->numFailures++; 437 raidPtr->Disks[row][col].status = rf_ds_failed; 438 raidPtr->status[row] = rf_rs_degraded; 439 rf_update_component_labels(raidPtr, 440 RF_NORMAL_COMPONENT_UPDATE); 441 } 442 443 while (raidPtr->reconInProgress) { 444 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 445 } 446 447 raidPtr->reconInProgress++; 448 449 450 /* first look for a spare drive onto which to reconstruct 451 the data. spare disk descriptors are stored in row 0. 452 This may have to change eventually */ 453 454 /* Actually, we don't care if it's failed or not... 455 On a RAID set with correct parity, this function 456 should be callable on any component without ill affects. */ 457 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 458 */ 459 460 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 461 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 462 463 raidPtr->reconInProgress--; 464 RF_UNLOCK_MUTEX(raidPtr->mutex); 465 return (EINVAL); 466 } 467 468 /* XXX need goop here to see if the disk is alive, 469 and, if not, make it so... */ 470 471 472 473 badDisk = &raidPtr->Disks[row][col]; 474 475 proc = raidPtr->engine_thread; 476 477 /* This device may have been opened successfully the 478 first time. Close it before trying to open it again.. */ 479 480 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 481 printf("Closed the open device: %s\n", 482 raidPtr->Disks[row][col].devname); 483 vp = raidPtr->raid_cinfo[row][col].ci_vp; 484 ac = raidPtr->Disks[row][col].auto_configured; 485 rf_close_component(raidPtr, vp, ac); 486 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 487 } 488 /* note that this disk was *not* auto_configured (any longer)*/ 489 raidPtr->Disks[row][col].auto_configured = 0; 490 491 printf("About to (re-)open the device for rebuilding: %s\n", 492 raidPtr->Disks[row][col].devname); 493 494 retcode = raidlookup(raidPtr->Disks[row][col].devname, 495 proc, &vp); 496 497 if (retcode) { 498 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 499 raidPtr->Disks[row][col].devname, retcode); 500 501 /* XXX the component isn't responding properly... 502 must be still dead :-( */ 503 raidPtr->reconInProgress--; 504 RF_UNLOCK_MUTEX(raidPtr->mutex); 505 return(retcode); 506 507 } else { 508 509 /* Ok, so we can at least do a lookup... 510 How about actually getting a vp for it? */ 511 512 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 513 proc)) != 0) { 514 raidPtr->reconInProgress--; 515 RF_UNLOCK_MUTEX(raidPtr->mutex); 516 return(retcode); 517 } 518 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 519 FREAD, proc->p_ucred, proc); 520 if (retcode) { 521 raidPtr->reconInProgress--; 522 RF_UNLOCK_MUTEX(raidPtr->mutex); 523 return(retcode); 524 } 525 raidPtr->Disks[row][col].blockSize = 526 dpart.disklab->d_secsize; 527 528 raidPtr->Disks[row][col].numBlocks = 529 dpart.part->p_size - rf_protectedSectors; 530 531 raidPtr->raid_cinfo[row][col].ci_vp = vp; 532 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 533 534 raidPtr->Disks[row][col].dev = va.va_rdev; 535 536 /* we allow the user to specify that only a 537 fraction of the disks should be used this is 538 just for debug: it speeds up 539 * the parity scan */ 540 raidPtr->Disks[row][col].numBlocks = 541 raidPtr->Disks[row][col].numBlocks * 542 rf_sizePercentage / 100; 543 } 544 545 546 547 spareDiskPtr = &raidPtr->Disks[row][col]; 548 spareDiskPtr->status = rf_ds_used_spare; 549 550 printf("RECON: initiating in-place reconstruction on\n"); 551 printf(" row %d col %d -> spare at row %d col %d\n", 552 row, col, row, col); 553 554 RF_UNLOCK_MUTEX(raidPtr->mutex); 555 556 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 557 spareDiskPtr, numDisksDone, 558 row, col); 559 raidPtr->reconDesc = (void *) reconDesc; 560 #if RF_RECON_STATS > 0 561 reconDesc->hsStallCount = 0; 562 reconDesc->numReconExecDelays = 0; 563 reconDesc->numReconEventWaits = 0; 564 #endif /* RF_RECON_STATS > 0 */ 565 reconDesc->reconExecTimerRunning = 0; 566 reconDesc->reconExecTicks = 0; 567 reconDesc->maxReconExecTicks = 0; 568 rc = rf_ContinueReconstructFailedDisk(reconDesc); 569 570 RF_LOCK_MUTEX(raidPtr->mutex); 571 raidPtr->reconInProgress--; 572 RF_UNLOCK_MUTEX(raidPtr->mutex); 573 574 } else { 575 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 576 lp->parityConfig); 577 rc = EIO; 578 } 579 RF_LOCK_MUTEX(raidPtr->mutex); 580 581 if (!rc) { 582 /* Need to set these here, as at this point it'll be claiming 583 that the disk is in rf_ds_spared! But we know better :-) */ 584 585 raidPtr->Disks[row][col].status = rf_ds_optimal; 586 raidPtr->status[row] = rf_rs_optimal; 587 588 /* fix up the component label */ 589 /* Don't actually need the read here.. */ 590 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 591 raidPtr->raid_cinfo[row][col].ci_vp, 592 &c_label); 593 594 raid_init_component_label(raidPtr, &c_label); 595 596 c_label.row = row; 597 c_label.column = col; 598 599 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 600 raidPtr->raid_cinfo[row][col].ci_vp, 601 &c_label); 602 603 } 604 RF_UNLOCK_MUTEX(raidPtr->mutex); 605 RF_SIGNAL_COND(raidPtr->waitForReconCond); 606 wakeup(&raidPtr->waitForReconCond); 607 return (rc); 608 } 609 610 611 int 612 rf_ContinueReconstructFailedDisk(reconDesc) 613 RF_RaidReconDesc_t *reconDesc; 614 { 615 RF_Raid_t *raidPtr = reconDesc->raidPtr; 616 RF_RowCol_t row = reconDesc->row; 617 RF_RowCol_t col = reconDesc->col; 618 RF_RowCol_t srow = reconDesc->srow; 619 RF_RowCol_t scol = reconDesc->scol; 620 RF_ReconMap_t *mapPtr; 621 622 RF_ReconEvent_t *event; 623 struct timeval etime, elpsd; 624 unsigned long xor_s, xor_resid_us; 625 int retcode, i, ds; 626 627 switch (reconDesc->state) { 628 629 630 case 0: 631 632 raidPtr->accumXorTimeUs = 0; 633 634 /* create one trace record per physical disk */ 635 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 636 637 /* quiesce the array prior to starting recon. this is needed 638 * to assure no nasty interactions with pending user writes. 639 * We need to do this before we change the disk or row status. */ 640 reconDesc->state = 1; 641 642 Dprintf("RECON: begin request suspend\n"); 643 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 644 Dprintf("RECON: end request suspend\n"); 645 rf_StartUserStats(raidPtr); /* zero out the stats kept on 646 * user accs */ 647 648 /* fall through to state 1 */ 649 650 case 1: 651 652 RF_LOCK_MUTEX(raidPtr->mutex); 653 654 /* create the reconstruction control pointer and install it in 655 * the right slot */ 656 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 657 mapPtr = raidPtr->reconControl[row]->reconMap; 658 raidPtr->status[row] = rf_rs_reconstructing; 659 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 660 raidPtr->Disks[row][col].spareRow = srow; 661 raidPtr->Disks[row][col].spareCol = scol; 662 663 RF_UNLOCK_MUTEX(raidPtr->mutex); 664 665 RF_GETTIME(raidPtr->reconControl[row]->starttime); 666 667 /* now start up the actual reconstruction: issue a read for 668 * each surviving disk */ 669 670 reconDesc->numDisksDone = 0; 671 for (i = 0; i < raidPtr->numCol; i++) { 672 if (i != col) { 673 /* find and issue the next I/O on the 674 * indicated disk */ 675 if (IssueNextReadRequest(raidPtr, row, i)) { 676 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 677 reconDesc->numDisksDone++; 678 } 679 } 680 } 681 682 case 2: 683 Dprintf("RECON: resume requests\n"); 684 rf_ResumeNewRequests(raidPtr); 685 686 687 reconDesc->state = 3; 688 689 case 3: 690 691 /* process reconstruction events until all disks report that 692 * they've completed all work */ 693 mapPtr = raidPtr->reconControl[row]->reconMap; 694 695 696 697 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 698 699 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 700 RF_ASSERT(event); 701 702 if (ProcessReconEvent(raidPtr, row, event)) 703 reconDesc->numDisksDone++; 704 raidPtr->reconControl[row]->numRUsTotal = 705 mapPtr->totalRUs; 706 raidPtr->reconControl[row]->numRUsComplete = 707 mapPtr->totalRUs - 708 rf_UnitsLeftToReconstruct(mapPtr); 709 710 raidPtr->reconControl[row]->percentComplete = 711 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 712 if (rf_prReconSched) { 713 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 714 } 715 } 716 717 718 719 reconDesc->state = 4; 720 721 722 case 4: 723 mapPtr = raidPtr->reconControl[row]->reconMap; 724 if (rf_reconDebug) { 725 printf("RECON: all reads completed\n"); 726 } 727 /* at this point all the reads have completed. We now wait 728 * for any pending writes to complete, and then we're done */ 729 730 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 731 732 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 733 RF_ASSERT(event); 734 735 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 736 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 737 if (rf_prReconSched) { 738 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 739 } 740 } 741 reconDesc->state = 5; 742 743 case 5: 744 /* Success: mark the dead disk as reconstructed. We quiesce 745 * the array here to assure no nasty interactions with pending 746 * user accesses when we free up the psstatus structure as 747 * part of FreeReconControl() */ 748 749 reconDesc->state = 6; 750 751 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 752 rf_StopUserStats(raidPtr); 753 rf_PrintUserStats(raidPtr); /* print out the stats on user 754 * accs accumulated during 755 * recon */ 756 757 /* fall through to state 6 */ 758 case 6: 759 760 761 762 RF_LOCK_MUTEX(raidPtr->mutex); 763 raidPtr->numFailures--; 764 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 765 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 766 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 767 RF_UNLOCK_MUTEX(raidPtr->mutex); 768 RF_GETTIME(etime); 769 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 770 771 /* XXX -- why is state 7 different from state 6 if there is no 772 * return() here? -- XXX Note that I set elpsd above & use it 773 * below, so if you put a return here you'll have to fix this. 774 * (also, FreeReconControl is called below) */ 775 776 case 7: 777 778 rf_ResumeNewRequests(raidPtr); 779 780 printf("Reconstruction of disk at row %d col %d completed\n", 781 row, col); 782 xor_s = raidPtr->accumXorTimeUs / 1000000; 783 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 784 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 785 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 786 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n", 787 (int) raidPtr->reconControl[row]->starttime.tv_sec, 788 (int) raidPtr->reconControl[row]->starttime.tv_usec, 789 (int) etime.tv_sec, (int) etime.tv_usec); 790 791 #if RF_RECON_STATS > 0 792 printf("Total head-sep stall count was %d\n", 793 (int) reconDesc->hsStallCount); 794 #endif /* RF_RECON_STATS > 0 */ 795 rf_FreeReconControl(raidPtr, row); 796 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 797 FreeReconDesc(reconDesc); 798 799 } 800 801 SignalReconDone(raidPtr); 802 return (0); 803 } 804 /***************************************************************************** 805 * do the right thing upon each reconstruction event. 806 * returns nonzero if and only if there is nothing left unread on the 807 * indicated disk 808 *****************************************************************************/ 809 static int 810 ProcessReconEvent(raidPtr, frow, event) 811 RF_Raid_t *raidPtr; 812 RF_RowCol_t frow; 813 RF_ReconEvent_t *event; 814 { 815 int retcode = 0, submitblocked; 816 RF_ReconBuffer_t *rbuf; 817 RF_SectorCount_t sectorsPerRU; 818 819 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 820 switch (event->type) { 821 822 /* a read I/O has completed */ 823 case RF_REVENT_READDONE: 824 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 825 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 826 frow, event->col, rbuf->parityStripeID); 827 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 828 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 829 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 830 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 831 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 832 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 833 if (!submitblocked) 834 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 835 break; 836 837 /* a write I/O has completed */ 838 case RF_REVENT_WRITEDONE: 839 if (rf_floatingRbufDebug) { 840 rf_CheckFloatingRbufCount(raidPtr, 1); 841 } 842 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 843 rbuf = (RF_ReconBuffer_t *) event->arg; 844 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 845 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 846 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 847 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 848 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 849 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 850 851 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 852 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 853 raidPtr->numFullReconBuffers--; 854 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 855 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 856 } else 857 if (rbuf->type == RF_RBUF_TYPE_FORCED) 858 rf_FreeReconBuffer(rbuf); 859 else 860 RF_ASSERT(0); 861 break; 862 863 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 864 * cleared */ 865 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 866 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 867 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 868 * BUFCLEAR event if we 869 * couldn't submit */ 870 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 871 break; 872 873 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 874 * blockage has been cleared */ 875 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 876 retcode = TryToRead(raidPtr, frow, event->col); 877 break; 878 879 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 880 * reconstruction blockage has been 881 * cleared */ 882 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 883 retcode = TryToRead(raidPtr, frow, event->col); 884 break; 885 886 /* a buffer has become ready to write */ 887 case RF_REVENT_BUFREADY: 888 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 889 retcode = IssueNextWriteRequest(raidPtr, frow); 890 if (rf_floatingRbufDebug) { 891 rf_CheckFloatingRbufCount(raidPtr, 1); 892 } 893 break; 894 895 /* we need to skip the current RU entirely because it got 896 * recon'd while we were waiting for something else to happen */ 897 case RF_REVENT_SKIP: 898 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 899 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 900 break; 901 902 /* a forced-reconstruction read access has completed. Just 903 * submit the buffer */ 904 case RF_REVENT_FORCEDREADDONE: 905 rbuf = (RF_ReconBuffer_t *) event->arg; 906 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 907 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 908 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 909 RF_ASSERT(!submitblocked); 910 break; 911 912 default: 913 RF_PANIC(); 914 } 915 rf_FreeReconEventDesc(event); 916 return (retcode); 917 } 918 /***************************************************************************** 919 * 920 * find the next thing that's needed on the indicated disk, and issue 921 * a read request for it. We assume that the reconstruction buffer 922 * associated with this process is free to receive the data. If 923 * reconstruction is blocked on the indicated RU, we issue a 924 * blockage-release request instead of a physical disk read request. 925 * If the current disk gets too far ahead of the others, we issue a 926 * head-separation wait request and return. 927 * 928 * ctrl->{ru_count, curPSID, diskOffset} and 929 * rbuf->failedDiskSectorOffset are maintained to point to the unit 930 * we're currently accessing. Note that this deviates from the 931 * standard C idiom of having counters point to the next thing to be 932 * accessed. This allows us to easily retry when we're blocked by 933 * head separation or reconstruction-blockage events. 934 * 935 * returns nonzero if and only if there is nothing left unread on the 936 * indicated disk 937 * 938 *****************************************************************************/ 939 static int 940 IssueNextReadRequest(raidPtr, row, col) 941 RF_Raid_t *raidPtr; 942 RF_RowCol_t row; 943 RF_RowCol_t col; 944 { 945 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 946 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 947 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 948 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 949 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 950 int do_new_check = 0, retcode = 0, status; 951 952 /* if we are currently the slowest disk, mark that we have to do a new 953 * check */ 954 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 955 do_new_check = 1; 956 957 while (1) { 958 959 ctrl->ru_count++; 960 if (ctrl->ru_count < RUsPerPU) { 961 ctrl->diskOffset += sectorsPerRU; 962 rbuf->failedDiskSectorOffset += sectorsPerRU; 963 } else { 964 ctrl->curPSID++; 965 ctrl->ru_count = 0; 966 /* code left over from when head-sep was based on 967 * parity stripe id */ 968 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 969 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 970 return (1); /* finito! */ 971 } 972 /* find the disk offsets of the start of the parity 973 * stripe on both the current disk and the failed 974 * disk. skip this entire parity stripe if either disk 975 * does not appear in the indicated PS */ 976 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 977 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 978 if (status) { 979 ctrl->ru_count = RUsPerPU - 1; 980 continue; 981 } 982 } 983 rbuf->which_ru = ctrl->ru_count; 984 985 /* skip this RU if it's already been reconstructed */ 986 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 987 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 988 continue; 989 } 990 break; 991 } 992 ctrl->headSepCounter++; 993 if (do_new_check) 994 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 995 996 997 /* at this point, we have definitely decided what to do, and we have 998 * only to see if we can actually do it now */ 999 rbuf->parityStripeID = ctrl->curPSID; 1000 rbuf->which_ru = ctrl->ru_count; 1001 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col])); 1002 raidPtr->recon_tracerecs[col].reconacc = 1; 1003 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1004 retcode = TryToRead(raidPtr, row, col); 1005 return (retcode); 1006 } 1007 1008 /* 1009 * tries to issue the next read on the indicated disk. We may be 1010 * blocked by (a) the heads being too far apart, or (b) recon on the 1011 * indicated RU being blocked due to a write by a user thread. In 1012 * this case, we issue a head-sep or blockage wait request, which will 1013 * cause this same routine to be invoked again later when the blockage 1014 * has cleared. 1015 */ 1016 1017 static int 1018 TryToRead(raidPtr, row, col) 1019 RF_Raid_t *raidPtr; 1020 RF_RowCol_t row; 1021 RF_RowCol_t col; 1022 { 1023 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1024 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1025 RF_StripeNum_t psid = ctrl->curPSID; 1026 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1027 RF_DiskQueueData_t *req; 1028 int status, created = 0; 1029 RF_ReconParityStripeStatus_t *pssPtr; 1030 1031 /* if the current disk is too far ahead of the others, issue a 1032 * head-separation wait and return */ 1033 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1034 return (0); 1035 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1036 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1037 1038 /* if recon is blocked on the indicated parity stripe, issue a 1039 * block-wait request and return. this also must mark the indicated RU 1040 * in the stripe as under reconstruction if not blocked. */ 1041 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1042 if (status == RF_PSS_RECON_BLOCKED) { 1043 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1044 goto out; 1045 } else 1046 if (status == RF_PSS_FORCED_ON_WRITE) { 1047 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1048 goto out; 1049 } 1050 /* make one last check to be sure that the indicated RU didn't get 1051 * reconstructed while we were waiting for something else to happen. 1052 * This is unfortunate in that it causes us to make this check twice 1053 * in the normal case. Might want to make some attempt to re-work 1054 * this so that we only do this check if we've definitely blocked on 1055 * one of the above checks. When this condition is detected, we may 1056 * have just created a bogus status entry, which we need to delete. */ 1057 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1058 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1059 if (created) 1060 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1061 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1062 goto out; 1063 } 1064 /* found something to read. issue the I/O */ 1065 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1066 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1067 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1068 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1069 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1070 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1071 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1072 1073 /* should be ok to use a NULL proc pointer here, all the bufs we use 1074 * should be in kernel space */ 1075 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1076 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1077 1078 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1079 1080 ctrl->rbuf->arg = (void *) req; 1081 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1082 pssPtr->issued[col] = 1; 1083 1084 out: 1085 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1086 return (0); 1087 } 1088 1089 1090 /* 1091 * given a parity stripe ID, we want to find out whether both the 1092 * current disk and the failed disk exist in that parity stripe. If 1093 * not, we want to skip this whole PS. If so, we want to find the 1094 * disk offset of the start of the PS on both the current disk and the 1095 * failed disk. 1096 * 1097 * this works by getting a list of disks comprising the indicated 1098 * parity stripe, and searching the list for the current and failed 1099 * disks. Once we've decided they both exist in the parity stripe, we 1100 * need to decide whether each is data or parity, so that we'll know 1101 * which mapping function to call to get the corresponding disk 1102 * offsets. 1103 * 1104 * this is kind of unpleasant, but doing it this way allows the 1105 * reconstruction code to use parity stripe IDs rather than physical 1106 * disks address to march through the failed disk, which greatly 1107 * simplifies a lot of code, as well as eliminating the need for a 1108 * reverse-mapping function. I also think it will execute faster, 1109 * since the calls to the mapping module are kept to a minimum. 1110 * 1111 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1112 * THE STRIPE IN THE CORRECT ORDER */ 1113 1114 1115 static int 1116 ComputePSDiskOffsets( 1117 RF_Raid_t * raidPtr, /* raid descriptor */ 1118 RF_StripeNum_t psid, /* parity stripe identifier */ 1119 RF_RowCol_t row, /* row and column of disk to find the offsets 1120 * for */ 1121 RF_RowCol_t col, 1122 RF_SectorNum_t * outDiskOffset, 1123 RF_SectorNum_t * outFailedDiskSectorOffset, 1124 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1125 RF_RowCol_t * spCol, 1126 RF_SectorNum_t * spOffset) 1127 { /* OUT: offset into disk containing spare unit */ 1128 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1129 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1130 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1131 RF_RowCol_t *diskids; 1132 u_int i, j, k, i_offset, j_offset; 1133 RF_RowCol_t prow, pcol; 1134 int testcol, testrow; 1135 RF_RowCol_t stripe; 1136 RF_SectorNum_t poffset; 1137 char i_is_parity = 0, j_is_parity = 0; 1138 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1139 1140 /* get a listing of the disks comprising that stripe */ 1141 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1142 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1143 RF_ASSERT(diskids); 1144 1145 /* reject this entire parity stripe if it does not contain the 1146 * indicated disk or it does not contain the failed disk */ 1147 if (row != stripe) 1148 goto skipit; 1149 for (i = 0; i < stripeWidth; i++) { 1150 if (col == diskids[i]) 1151 break; 1152 } 1153 if (i == stripeWidth) 1154 goto skipit; 1155 for (j = 0; j < stripeWidth; j++) { 1156 if (fcol == diskids[j]) 1157 break; 1158 } 1159 if (j == stripeWidth) { 1160 goto skipit; 1161 } 1162 /* find out which disk the parity is on */ 1163 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1164 1165 /* find out if either the current RU or the failed RU is parity */ 1166 /* also, if the parity occurs in this stripe prior to the data and/or 1167 * failed col, we need to decrement i and/or j */ 1168 for (k = 0; k < stripeWidth; k++) 1169 if (diskids[k] == pcol) 1170 break; 1171 RF_ASSERT(k < stripeWidth); 1172 i_offset = i; 1173 j_offset = j; 1174 if (k < i) 1175 i_offset--; 1176 else 1177 if (k == i) { 1178 i_is_parity = 1; 1179 i_offset = 0; 1180 } /* set offsets to zero to disable multiply 1181 * below */ 1182 if (k < j) 1183 j_offset--; 1184 else 1185 if (k == j) { 1186 j_is_parity = 1; 1187 j_offset = 0; 1188 } 1189 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1190 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1191 * tells us how far into the stripe the [current,failed] disk is. */ 1192 1193 /* call the mapping routine to get the offset into the current disk, 1194 * repeat for failed disk. */ 1195 if (i_is_parity) 1196 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1197 else 1198 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1199 1200 RF_ASSERT(row == testrow && col == testcol); 1201 1202 if (j_is_parity) 1203 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1204 else 1205 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1206 RF_ASSERT(row == testrow && fcol == testcol); 1207 1208 /* now locate the spare unit for the failed unit */ 1209 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1210 if (j_is_parity) 1211 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1212 else 1213 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1214 } else { 1215 *spRow = raidPtr->reconControl[row]->spareRow; 1216 *spCol = raidPtr->reconControl[row]->spareCol; 1217 *spOffset = *outFailedDiskSectorOffset; 1218 } 1219 1220 return (0); 1221 1222 skipit: 1223 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1224 psid, row, col); 1225 return (1); 1226 } 1227 /* this is called when a buffer has become ready to write to the replacement disk */ 1228 static int 1229 IssueNextWriteRequest(raidPtr, row) 1230 RF_Raid_t *raidPtr; 1231 RF_RowCol_t row; 1232 { 1233 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1234 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1235 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1236 RF_ReconBuffer_t *rbuf; 1237 RF_DiskQueueData_t *req; 1238 1239 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1240 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1241 * have gotten the event that sent us here */ 1242 RF_ASSERT(rbuf->pssPtr); 1243 1244 rbuf->pssPtr->writeRbuf = rbuf; 1245 rbuf->pssPtr = NULL; 1246 1247 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1248 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1249 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1250 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1251 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1252 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1253 1254 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1255 * kernel space */ 1256 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1257 sectorsPerRU, rbuf->buffer, 1258 rbuf->parityStripeID, rbuf->which_ru, 1259 ReconWriteDoneProc, (void *) rbuf, NULL, 1260 &raidPtr->recon_tracerecs[fcol], 1261 (void *) raidPtr, 0, NULL); 1262 1263 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1264 1265 rbuf->arg = (void *) req; 1266 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1267 1268 return (0); 1269 } 1270 1271 /* 1272 * this gets called upon the completion of a reconstruction read 1273 * operation the arg is a pointer to the per-disk reconstruction 1274 * control structure for the process that just finished a read. 1275 * 1276 * called at interrupt context in the kernel, so don't do anything 1277 * illegal here. 1278 */ 1279 static int 1280 ReconReadDoneProc(arg, status) 1281 void *arg; 1282 int status; 1283 { 1284 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1285 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1286 1287 if (status) { 1288 /* 1289 * XXX 1290 */ 1291 printf("Recon read failed!\n"); 1292 RF_PANIC(); 1293 } 1294 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1295 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1296 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1297 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1298 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1299 1300 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1301 return (0); 1302 } 1303 /* this gets called upon the completion of a reconstruction write operation. 1304 * the arg is a pointer to the rbuf that was just written 1305 * 1306 * called at interrupt context in the kernel, so don't do anything illegal here. 1307 */ 1308 static int 1309 ReconWriteDoneProc(arg, status) 1310 void *arg; 1311 int status; 1312 { 1313 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1314 1315 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1316 if (status) { 1317 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1318 * write failed!\n"); */ 1319 RF_PANIC(); 1320 } 1321 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1322 return (0); 1323 } 1324 1325 1326 /* 1327 * computes a new minimum head sep, and wakes up anyone who needs to 1328 * be woken as a result 1329 */ 1330 static void 1331 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1332 RF_Raid_t *raidPtr; 1333 RF_RowCol_t row; 1334 RF_HeadSepLimit_t hsCtr; 1335 { 1336 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1337 RF_HeadSepLimit_t new_min; 1338 RF_RowCol_t i; 1339 RF_CallbackDesc_t *p; 1340 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1341 * of a minimum */ 1342 1343 1344 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1345 1346 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1347 for (i = 0; i < raidPtr->numCol; i++) 1348 if (i != reconCtrlPtr->fcol) { 1349 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1350 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1351 } 1352 /* set the new minimum and wake up anyone who can now run again */ 1353 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1354 reconCtrlPtr->minHeadSepCounter = new_min; 1355 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1356 while (reconCtrlPtr->headSepCBList) { 1357 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1358 break; 1359 p = reconCtrlPtr->headSepCBList; 1360 reconCtrlPtr->headSepCBList = p->next; 1361 p->next = NULL; 1362 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1363 rf_FreeCallbackDesc(p); 1364 } 1365 1366 } 1367 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1368 } 1369 1370 /* 1371 * checks to see that the maximum head separation will not be violated 1372 * if we initiate a reconstruction I/O on the indicated disk. 1373 * Limiting the maximum head separation between two disks eliminates 1374 * the nasty buffer-stall conditions that occur when one disk races 1375 * ahead of the others and consumes all of the floating recon buffers. 1376 * This code is complex and unpleasant but it's necessary to avoid 1377 * some very nasty, albeit fairly rare, reconstruction behavior. 1378 * 1379 * returns non-zero if and only if we have to stop working on the 1380 * indicated disk due to a head-separation delay. 1381 */ 1382 static int 1383 CheckHeadSeparation( 1384 RF_Raid_t * raidPtr, 1385 RF_PerDiskReconCtrl_t * ctrl, 1386 RF_RowCol_t row, 1387 RF_RowCol_t col, 1388 RF_HeadSepLimit_t hsCtr, 1389 RF_ReconUnitNum_t which_ru) 1390 { 1391 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1392 RF_CallbackDesc_t *cb, *p, *pt; 1393 int retval = 0; 1394 1395 /* if we're too far ahead of the slowest disk, stop working on this 1396 * disk until the slower ones catch up. We do this by scheduling a 1397 * wakeup callback for the time when the slowest disk has caught up. 1398 * We define "caught up" with 20% hysteresis, i.e. the head separation 1399 * must have fallen to at most 80% of the max allowable head 1400 * separation before we'll wake up. 1401 * 1402 */ 1403 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1404 if ((raidPtr->headSepLimit >= 0) && 1405 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1406 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1407 raidPtr->raidid, row, col, ctrl->headSepCounter, 1408 reconCtrlPtr->minHeadSepCounter, 1409 raidPtr->headSepLimit); 1410 cb = rf_AllocCallbackDesc(); 1411 /* the minHeadSepCounter value we have to get to before we'll 1412 * wake up. build in 20% hysteresis. */ 1413 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1414 cb->row = row; 1415 cb->col = col; 1416 cb->next = NULL; 1417 1418 /* insert this callback descriptor into the sorted list of 1419 * pending head-sep callbacks */ 1420 p = reconCtrlPtr->headSepCBList; 1421 if (!p) 1422 reconCtrlPtr->headSepCBList = cb; 1423 else 1424 if (cb->callbackArg.v < p->callbackArg.v) { 1425 cb->next = reconCtrlPtr->headSepCBList; 1426 reconCtrlPtr->headSepCBList = cb; 1427 } else { 1428 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1429 cb->next = p; 1430 pt->next = cb; 1431 } 1432 retval = 1; 1433 #if RF_RECON_STATS > 0 1434 ctrl->reconCtrl->reconDesc->hsStallCount++; 1435 #endif /* RF_RECON_STATS > 0 */ 1436 } 1437 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1438 1439 return (retval); 1440 } 1441 /* 1442 * checks to see if reconstruction has been either forced or blocked 1443 * by a user operation. if forced, we skip this RU entirely. else if 1444 * blocked, put ourselves on the wait list. else return 0. 1445 * 1446 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1447 */ 1448 static int 1449 CheckForcedOrBlockedReconstruction( 1450 RF_Raid_t * raidPtr, 1451 RF_ReconParityStripeStatus_t * pssPtr, 1452 RF_PerDiskReconCtrl_t * ctrl, 1453 RF_RowCol_t row, 1454 RF_RowCol_t col, 1455 RF_StripeNum_t psid, 1456 RF_ReconUnitNum_t which_ru) 1457 { 1458 RF_CallbackDesc_t *cb; 1459 int retcode = 0; 1460 1461 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1462 retcode = RF_PSS_FORCED_ON_WRITE; 1463 else 1464 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1465 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1466 cb = rf_AllocCallbackDesc(); /* append ourselves to 1467 * the blockage-wait 1468 * list */ 1469 cb->row = row; 1470 cb->col = col; 1471 cb->next = pssPtr->blockWaitList; 1472 pssPtr->blockWaitList = cb; 1473 retcode = RF_PSS_RECON_BLOCKED; 1474 } 1475 if (!retcode) 1476 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1477 * reconstruction */ 1478 1479 return (retcode); 1480 } 1481 /* 1482 * if reconstruction is currently ongoing for the indicated stripeID, 1483 * reconstruction is forced to completion and we return non-zero to 1484 * indicate that the caller must wait. If not, then reconstruction is 1485 * blocked on the indicated stripe and the routine returns zero. If 1486 * and only if we return non-zero, we'll cause the cbFunc to get 1487 * invoked with the cbArg when the reconstruction has completed. 1488 */ 1489 int 1490 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1491 RF_Raid_t *raidPtr; 1492 RF_AccessStripeMap_t *asmap; 1493 void (*cbFunc) (RF_Raid_t *, void *); 1494 void *cbArg; 1495 { 1496 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1497 * we're working on */ 1498 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1499 * forcing recon on */ 1500 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1501 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1502 * stripe status structure */ 1503 RF_StripeNum_t psid; /* parity stripe id */ 1504 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1505 * offset */ 1506 RF_RowCol_t *diskids; 1507 RF_RowCol_t stripe; 1508 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1509 RF_RowCol_t fcol, diskno, i; 1510 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1511 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1512 RF_CallbackDesc_t *cb; 1513 int created = 0, nPromoted; 1514 1515 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1516 1517 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1518 1519 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1520 1521 /* if recon is not ongoing on this PS, just return */ 1522 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1523 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1524 return (0); 1525 } 1526 /* otherwise, we have to wait for reconstruction to complete on this 1527 * RU. */ 1528 /* In order to avoid waiting for a potentially large number of 1529 * low-priority accesses to complete, we force a normal-priority (i.e. 1530 * not low-priority) reconstruction on this RU. */ 1531 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1532 DDprintf1("Forcing recon on psid %ld\n", psid); 1533 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1534 * forced recon */ 1535 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1536 * that we just set */ 1537 fcol = raidPtr->reconControl[row]->fcol; 1538 1539 /* get a listing of the disks comprising the indicated stripe */ 1540 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1541 RF_ASSERT(row == stripe); 1542 1543 /* For previously issued reads, elevate them to normal 1544 * priority. If the I/O has already completed, it won't be 1545 * found in the queue, and hence this will be a no-op. For 1546 * unissued reads, allocate buffers and issue new reads. The 1547 * fact that we've set the FORCED bit means that the regular 1548 * recon procs will not re-issue these reqs */ 1549 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1550 if ((diskno = diskids[i]) != fcol) { 1551 if (pssPtr->issued[diskno]) { 1552 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1553 if (rf_reconDebug && nPromoted) 1554 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1555 } else { 1556 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1557 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1558 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1559 * location */ 1560 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1561 new_rbuf->which_ru = which_ru; 1562 new_rbuf->failedDiskSectorOffset = fd_offset; 1563 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1564 1565 /* use NULL b_proc b/c all addrs 1566 * should be in kernel space */ 1567 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1568 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1569 NULL, (void *) raidPtr, 0, NULL); 1570 1571 RF_ASSERT(req); /* XXX -- fix this -- 1572 * XXX */ 1573 1574 new_rbuf->arg = req; 1575 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1576 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1577 } 1578 } 1579 /* if the write is sitting in the disk queue, elevate its 1580 * priority */ 1581 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1582 printf("raid%d: promoted write to row %d col %d\n", 1583 raidPtr->raidid, row, fcol); 1584 } 1585 /* install a callback descriptor to be invoked when recon completes on 1586 * this parity stripe. */ 1587 cb = rf_AllocCallbackDesc(); 1588 /* XXX the following is bogus.. These functions don't really match!! 1589 * GO */ 1590 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1591 cb->callbackArg.p = (void *) cbArg; 1592 cb->next = pssPtr->procWaitList; 1593 pssPtr->procWaitList = cb; 1594 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1595 raidPtr->raidid, psid); 1596 1597 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1598 return (1); 1599 } 1600 /* called upon the completion of a forced reconstruction read. 1601 * all we do is schedule the FORCEDREADONE event. 1602 * called at interrupt context in the kernel, so don't do anything illegal here. 1603 */ 1604 static void 1605 ForceReconReadDoneProc(arg, status) 1606 void *arg; 1607 int status; 1608 { 1609 RF_ReconBuffer_t *rbuf = arg; 1610 1611 if (status) { 1612 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1613 * recon read 1614 * failed!\n"); */ 1615 RF_PANIC(); 1616 } 1617 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1618 } 1619 /* releases a block on the reconstruction of the indicated stripe */ 1620 int 1621 rf_UnblockRecon(raidPtr, asmap) 1622 RF_Raid_t *raidPtr; 1623 RF_AccessStripeMap_t *asmap; 1624 { 1625 RF_RowCol_t row = asmap->origRow; 1626 RF_StripeNum_t stripeID = asmap->stripeID; 1627 RF_ReconParityStripeStatus_t *pssPtr; 1628 RF_ReconUnitNum_t which_ru; 1629 RF_StripeNum_t psid; 1630 int created = 0; 1631 RF_CallbackDesc_t *cb; 1632 1633 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1634 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1635 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1636 1637 /* When recon is forced, the pss desc can get deleted before we get 1638 * back to unblock recon. But, this can _only_ happen when recon is 1639 * forced. It would be good to put some kind of sanity check here, but 1640 * how to decide if recon was just forced or not? */ 1641 if (!pssPtr) { 1642 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1643 * RU %d\n",psid,which_ru); */ 1644 if (rf_reconDebug || rf_pssDebug) 1645 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1646 goto out; 1647 } 1648 pssPtr->blockCount--; 1649 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1650 raidPtr->raidid, psid, pssPtr->blockCount); 1651 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1652 1653 /* unblock recon before calling CauseReconEvent in case 1654 * CauseReconEvent causes us to try to issue a new read before 1655 * returning here. */ 1656 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1657 1658 1659 while (pssPtr->blockWaitList) { 1660 /* spin through the block-wait list and 1661 release all the waiters */ 1662 cb = pssPtr->blockWaitList; 1663 pssPtr->blockWaitList = cb->next; 1664 cb->next = NULL; 1665 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1666 rf_FreeCallbackDesc(cb); 1667 } 1668 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1669 /* if no recon was requested while recon was blocked */ 1670 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1671 } 1672 } 1673 out: 1674 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1675 return (0); 1676 } 1677