1 /* $NetBSD: rf_reconstruct.c,v 1.50 2002/11/16 16:59:58 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.50 2002/11/16 16:59:58 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 /************************************************************************** 162 * 163 * sets up the parameters that will be used by the reconstruction process 164 * currently there are none, except for those that the layout-specific 165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 166 * 167 * in the kernel, we fire off the recon thread. 168 * 169 **************************************************************************/ 170 static void 171 rf_ShutdownReconstruction(ignored) 172 void *ignored; 173 { 174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 176 } 177 178 int 179 rf_ConfigureReconstruction(listp) 180 RF_ShutdownList_t **listp; 181 { 182 int rc; 183 184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 186 if (rf_recond_freelist == NULL) 187 return (ENOMEM); 188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 190 if (rf_rdp_freelist == NULL) { 191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 192 return (ENOMEM); 193 } 194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 195 if (rc) { 196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 197 rf_ShutdownReconstruction(NULL); 198 return (rc); 199 } 200 return (0); 201 } 202 203 static RF_RaidReconDesc_t * 204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 205 RF_Raid_t *raidPtr; 206 RF_RowCol_t row; 207 RF_RowCol_t col; 208 RF_RaidDisk_t *spareDiskPtr; 209 int numDisksDone; 210 RF_RowCol_t srow; 211 RF_RowCol_t scol; 212 { 213 214 RF_RaidReconDesc_t *reconDesc; 215 216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 217 218 reconDesc->raidPtr = raidPtr; 219 reconDesc->row = row; 220 reconDesc->col = col; 221 reconDesc->spareDiskPtr = spareDiskPtr; 222 reconDesc->numDisksDone = numDisksDone; 223 reconDesc->srow = srow; 224 reconDesc->scol = scol; 225 reconDesc->state = 0; 226 reconDesc->next = NULL; 227 228 return (reconDesc); 229 } 230 231 static void 232 FreeReconDesc(reconDesc) 233 RF_RaidReconDesc_t *reconDesc; 234 { 235 #if RF_RECON_STATS > 0 236 printf("raid%d: %lu recon event waits, %lu recon delays\n", 237 reconDesc->raidPtr->raidid, 238 (long) reconDesc->numReconEventWaits, 239 (long) reconDesc->numReconExecDelays); 240 #endif /* RF_RECON_STATS > 0 */ 241 printf("raid%d: %lu max exec ticks\n", 242 reconDesc->raidPtr->raidid, 243 (long) reconDesc->maxReconExecTicks); 244 #if (RF_RECON_STATS > 0) || defined(KERNEL) 245 printf("\n"); 246 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 247 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 248 } 249 250 251 /***************************************************************************** 252 * 253 * primary routine to reconstruct a failed disk. This should be called from 254 * within its own thread. It won't return until reconstruction completes, 255 * fails, or is aborted. 256 *****************************************************************************/ 257 int 258 rf_ReconstructFailedDisk(raidPtr, row, col) 259 RF_Raid_t *raidPtr; 260 RF_RowCol_t row; 261 RF_RowCol_t col; 262 { 263 RF_LayoutSW_t *lp; 264 int rc; 265 266 lp = raidPtr->Layout.map; 267 if (lp->SubmitReconBuffer) { 268 /* 269 * The current infrastructure only supports reconstructing one 270 * disk at a time for each array. 271 */ 272 RF_LOCK_MUTEX(raidPtr->mutex); 273 while (raidPtr->reconInProgress) { 274 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 275 } 276 raidPtr->reconInProgress++; 277 RF_UNLOCK_MUTEX(raidPtr->mutex); 278 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 279 RF_LOCK_MUTEX(raidPtr->mutex); 280 raidPtr->reconInProgress--; 281 RF_UNLOCK_MUTEX(raidPtr->mutex); 282 } else { 283 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 284 lp->parityConfig); 285 rc = EIO; 286 } 287 RF_SIGNAL_COND(raidPtr->waitForReconCond); 288 return (rc); 289 } 290 291 int 292 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 293 RF_Raid_t *raidPtr; 294 RF_RowCol_t row; 295 RF_RowCol_t col; 296 { 297 RF_ComponentLabel_t c_label; 298 RF_RaidDisk_t *spareDiskPtr = NULL; 299 RF_RaidReconDesc_t *reconDesc; 300 RF_RowCol_t srow, scol; 301 int numDisksDone = 0, rc; 302 303 /* first look for a spare drive onto which to reconstruct the data */ 304 /* spare disk descriptors are stored in row 0. This may have to 305 * change eventually */ 306 307 RF_LOCK_MUTEX(raidPtr->mutex); 308 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 309 310 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 311 if (raidPtr->status[row] != rf_rs_degraded) { 312 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 313 RF_UNLOCK_MUTEX(raidPtr->mutex); 314 return (EINVAL); 315 } 316 srow = row; 317 scol = (-1); 318 } else { 319 srow = 0; 320 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 321 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 322 spareDiskPtr = &raidPtr->Disks[srow][scol]; 323 spareDiskPtr->status = rf_ds_used_spare; 324 break; 325 } 326 } 327 if (!spareDiskPtr) { 328 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 329 RF_UNLOCK_MUTEX(raidPtr->mutex); 330 return (ENOSPC); 331 } 332 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 333 } 334 RF_UNLOCK_MUTEX(raidPtr->mutex); 335 336 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 337 raidPtr->reconDesc = (void *) reconDesc; 338 #if RF_RECON_STATS > 0 339 reconDesc->hsStallCount = 0; 340 reconDesc->numReconExecDelays = 0; 341 reconDesc->numReconEventWaits = 0; 342 #endif /* RF_RECON_STATS > 0 */ 343 reconDesc->reconExecTimerRunning = 0; 344 reconDesc->reconExecTicks = 0; 345 reconDesc->maxReconExecTicks = 0; 346 rc = rf_ContinueReconstructFailedDisk(reconDesc); 347 348 if (!rc) { 349 /* fix up the component label */ 350 /* Don't actually need the read here.. */ 351 raidread_component_label( 352 raidPtr->raid_cinfo[srow][scol].ci_dev, 353 raidPtr->raid_cinfo[srow][scol].ci_vp, 354 &c_label); 355 356 raid_init_component_label( raidPtr, &c_label); 357 c_label.row = row; 358 c_label.column = col; 359 c_label.clean = RF_RAID_DIRTY; 360 c_label.status = rf_ds_optimal; 361 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 362 363 /* We've just done a rebuild based on all the other 364 disks, so at this point the parity is known to be 365 clean, even if it wasn't before. */ 366 367 /* XXX doesn't hold for RAID 6!!*/ 368 369 RF_LOCK_MUTEX(raidPtr->mutex); 370 raidPtr->parity_good = RF_RAID_CLEAN; 371 RF_UNLOCK_MUTEX(raidPtr->mutex); 372 373 /* XXXX MORE NEEDED HERE */ 374 375 raidwrite_component_label( 376 raidPtr->raid_cinfo[srow][scol].ci_dev, 377 raidPtr->raid_cinfo[srow][scol].ci_vp, 378 &c_label); 379 380 381 rf_update_component_labels(raidPtr, 382 RF_NORMAL_COMPONENT_UPDATE); 383 384 } 385 return (rc); 386 } 387 388 /* 389 390 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 391 and you don't get a spare until the next Monday. With this function 392 (and hot-swappable drives) you can now put your new disk containing 393 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 394 rebuild the data "on the spot". 395 396 */ 397 398 int 399 rf_ReconstructInPlace(raidPtr, row, col) 400 RF_Raid_t *raidPtr; 401 RF_RowCol_t row; 402 RF_RowCol_t col; 403 { 404 RF_RaidDisk_t *spareDiskPtr = NULL; 405 RF_RaidReconDesc_t *reconDesc; 406 RF_LayoutSW_t *lp; 407 RF_ComponentLabel_t c_label; 408 int numDisksDone = 0, rc; 409 struct partinfo dpart; 410 struct vnode *vp; 411 struct vattr va; 412 struct proc *proc; 413 int retcode; 414 int ac; 415 416 lp = raidPtr->Layout.map; 417 if (lp->SubmitReconBuffer) { 418 /* 419 * The current infrastructure only supports reconstructing one 420 * disk at a time for each array. 421 */ 422 RF_LOCK_MUTEX(raidPtr->mutex); 423 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 424 (raidPtr->numFailures > 0)) { 425 /* XXX 0 above shouldn't be constant!!! */ 426 /* some component other than this has failed. 427 Let's not make things worse than they already 428 are... */ 429 printf("raid%d: Unable to reconstruct to disk at:\n", 430 raidPtr->raidid); 431 printf("raid%d: Row: %d Col: %d Too many failures.\n", 432 raidPtr->raidid, row, col); 433 RF_UNLOCK_MUTEX(raidPtr->mutex); 434 return (EINVAL); 435 } 436 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 437 printf("raid%d: Unable to reconstruct to disk at:\n", 438 raidPtr->raidid); 439 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 440 441 RF_UNLOCK_MUTEX(raidPtr->mutex); 442 return (EINVAL); 443 } 444 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 445 RF_UNLOCK_MUTEX(raidPtr->mutex); 446 return (EINVAL); 447 } 448 449 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 450 /* "It's gone..." */ 451 raidPtr->numFailures++; 452 raidPtr->Disks[row][col].status = rf_ds_failed; 453 raidPtr->status[row] = rf_rs_degraded; 454 RF_UNLOCK_MUTEX(raidPtr->mutex); 455 rf_update_component_labels(raidPtr, 456 RF_NORMAL_COMPONENT_UPDATE); 457 RF_LOCK_MUTEX(raidPtr->mutex); 458 } 459 460 while (raidPtr->reconInProgress) { 461 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 462 } 463 464 raidPtr->reconInProgress++; 465 466 467 /* first look for a spare drive onto which to reconstruct 468 the data. spare disk descriptors are stored in row 0. 469 This may have to change eventually */ 470 471 /* Actually, we don't care if it's failed or not... 472 On a RAID set with correct parity, this function 473 should be callable on any component without ill affects. */ 474 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 475 */ 476 477 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 478 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 479 480 raidPtr->reconInProgress--; 481 RF_UNLOCK_MUTEX(raidPtr->mutex); 482 return (EINVAL); 483 } 484 485 proc = raidPtr->engine_thread; 486 487 /* This device may have been opened successfully the 488 first time. Close it before trying to open it again.. */ 489 490 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 491 #if 0 492 printf("Closed the open device: %s\n", 493 raidPtr->Disks[row][col].devname); 494 #endif 495 vp = raidPtr->raid_cinfo[row][col].ci_vp; 496 ac = raidPtr->Disks[row][col].auto_configured; 497 RF_UNLOCK_MUTEX(raidPtr->mutex); 498 rf_close_component(raidPtr, vp, ac); 499 RF_LOCK_MUTEX(raidPtr->mutex); 500 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 501 } 502 /* note that this disk was *not* auto_configured (any longer)*/ 503 raidPtr->Disks[row][col].auto_configured = 0; 504 505 #if 0 506 printf("About to (re-)open the device for rebuilding: %s\n", 507 raidPtr->Disks[row][col].devname); 508 #endif 509 RF_UNLOCK_MUTEX(raidPtr->mutex); 510 retcode = raidlookup(raidPtr->Disks[row][col].devname, 511 proc, &vp); 512 513 if (retcode) { 514 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 515 raidPtr->Disks[row][col].devname, retcode); 516 517 /* the component isn't responding properly... 518 must be still dead :-( */ 519 RF_LOCK_MUTEX(raidPtr->mutex); 520 raidPtr->reconInProgress--; 521 RF_UNLOCK_MUTEX(raidPtr->mutex); 522 return(retcode); 523 524 } else { 525 526 /* Ok, so we can at least do a lookup... 527 How about actually getting a vp for it? */ 528 529 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 530 proc)) != 0) { 531 RF_LOCK_MUTEX(raidPtr->mutex); 532 raidPtr->reconInProgress--; 533 RF_UNLOCK_MUTEX(raidPtr->mutex); 534 return(retcode); 535 } 536 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 537 FREAD, proc->p_ucred, proc); 538 if (retcode) { 539 RF_LOCK_MUTEX(raidPtr->mutex); 540 raidPtr->reconInProgress--; 541 RF_UNLOCK_MUTEX(raidPtr->mutex); 542 return(retcode); 543 } 544 RF_LOCK_MUTEX(raidPtr->mutex); 545 raidPtr->Disks[row][col].blockSize = 546 dpart.disklab->d_secsize; 547 548 raidPtr->Disks[row][col].numBlocks = 549 dpart.part->p_size - rf_protectedSectors; 550 551 raidPtr->raid_cinfo[row][col].ci_vp = vp; 552 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 553 554 raidPtr->Disks[row][col].dev = va.va_rdev; 555 556 /* we allow the user to specify that only a 557 fraction of the disks should be used this is 558 just for debug: it speeds up 559 * the parity scan */ 560 raidPtr->Disks[row][col].numBlocks = 561 raidPtr->Disks[row][col].numBlocks * 562 rf_sizePercentage / 100; 563 RF_UNLOCK_MUTEX(raidPtr->mutex); 564 } 565 566 567 568 spareDiskPtr = &raidPtr->Disks[row][col]; 569 spareDiskPtr->status = rf_ds_used_spare; 570 571 printf("raid%d: initiating in-place reconstruction on\n", 572 raidPtr->raidid); 573 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 574 raidPtr->raidid, row, col, row, col); 575 576 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 577 spareDiskPtr, numDisksDone, 578 row, col); 579 raidPtr->reconDesc = (void *) reconDesc; 580 #if RF_RECON_STATS > 0 581 reconDesc->hsStallCount = 0; 582 reconDesc->numReconExecDelays = 0; 583 reconDesc->numReconEventWaits = 0; 584 #endif /* RF_RECON_STATS > 0 */ 585 reconDesc->reconExecTimerRunning = 0; 586 reconDesc->reconExecTicks = 0; 587 reconDesc->maxReconExecTicks = 0; 588 rc = rf_ContinueReconstructFailedDisk(reconDesc); 589 590 RF_LOCK_MUTEX(raidPtr->mutex); 591 raidPtr->reconInProgress--; 592 RF_UNLOCK_MUTEX(raidPtr->mutex); 593 594 } else { 595 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 596 lp->parityConfig); 597 rc = EIO; 598 } 599 600 if (!rc) { 601 RF_LOCK_MUTEX(raidPtr->mutex); 602 /* Need to set these here, as at this point it'll be claiming 603 that the disk is in rf_ds_spared! But we know better :-) */ 604 605 raidPtr->Disks[row][col].status = rf_ds_optimal; 606 raidPtr->status[row] = rf_rs_optimal; 607 RF_UNLOCK_MUTEX(raidPtr->mutex); 608 609 /* fix up the component label */ 610 /* Don't actually need the read here.. */ 611 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 612 raidPtr->raid_cinfo[row][col].ci_vp, 613 &c_label); 614 615 RF_LOCK_MUTEX(raidPtr->mutex); 616 raid_init_component_label(raidPtr, &c_label); 617 618 c_label.row = row; 619 c_label.column = col; 620 621 /* We've just done a rebuild based on all the other 622 disks, so at this point the parity is known to be 623 clean, even if it wasn't before. */ 624 625 /* XXX doesn't hold for RAID 6!!*/ 626 627 raidPtr->parity_good = RF_RAID_CLEAN; 628 RF_UNLOCK_MUTEX(raidPtr->mutex); 629 630 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 631 raidPtr->raid_cinfo[row][col].ci_vp, 632 &c_label); 633 634 rf_update_component_labels(raidPtr, 635 RF_NORMAL_COMPONENT_UPDATE); 636 637 } 638 RF_SIGNAL_COND(raidPtr->waitForReconCond); 639 return (rc); 640 } 641 642 643 int 644 rf_ContinueReconstructFailedDisk(reconDesc) 645 RF_RaidReconDesc_t *reconDesc; 646 { 647 RF_Raid_t *raidPtr = reconDesc->raidPtr; 648 RF_RowCol_t row = reconDesc->row; 649 RF_RowCol_t col = reconDesc->col; 650 RF_RowCol_t srow = reconDesc->srow; 651 RF_RowCol_t scol = reconDesc->scol; 652 RF_ReconMap_t *mapPtr; 653 RF_ReconCtrl_t *tmp_reconctrl; 654 RF_ReconEvent_t *event; 655 struct timeval etime, elpsd; 656 unsigned long xor_s, xor_resid_us; 657 int retcode, i, ds; 658 659 switch (reconDesc->state) { 660 661 662 case 0: 663 664 raidPtr->accumXorTimeUs = 0; 665 666 /* create one trace record per physical disk */ 667 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 668 669 /* quiesce the array prior to starting recon. this is needed 670 * to assure no nasty interactions with pending user writes. 671 * We need to do this before we change the disk or row status. */ 672 reconDesc->state = 1; 673 674 Dprintf("RECON: begin request suspend\n"); 675 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 676 Dprintf("RECON: end request suspend\n"); 677 rf_StartUserStats(raidPtr); /* zero out the stats kept on 678 * user accs */ 679 680 /* fall through to state 1 */ 681 682 case 1: 683 684 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 685 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol); 686 687 RF_LOCK_MUTEX(raidPtr->mutex); 688 689 /* create the reconstruction control pointer and install it in 690 * the right slot */ 691 raidPtr->reconControl[row] = tmp_reconctrl; 692 mapPtr = raidPtr->reconControl[row]->reconMap; 693 raidPtr->status[row] = rf_rs_reconstructing; 694 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 695 raidPtr->Disks[row][col].spareRow = srow; 696 raidPtr->Disks[row][col].spareCol = scol; 697 698 RF_UNLOCK_MUTEX(raidPtr->mutex); 699 700 RF_GETTIME(raidPtr->reconControl[row]->starttime); 701 702 /* now start up the actual reconstruction: issue a read for 703 * each surviving disk */ 704 705 reconDesc->numDisksDone = 0; 706 for (i = 0; i < raidPtr->numCol; i++) { 707 if (i != col) { 708 /* find and issue the next I/O on the 709 * indicated disk */ 710 if (IssueNextReadRequest(raidPtr, row, i)) { 711 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 712 reconDesc->numDisksDone++; 713 } 714 } 715 } 716 717 case 2: 718 Dprintf("RECON: resume requests\n"); 719 rf_ResumeNewRequests(raidPtr); 720 721 722 reconDesc->state = 3; 723 724 case 3: 725 726 /* process reconstruction events until all disks report that 727 * they've completed all work */ 728 mapPtr = raidPtr->reconControl[row]->reconMap; 729 730 731 732 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 733 734 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 735 RF_ASSERT(event); 736 737 if (ProcessReconEvent(raidPtr, row, event)) 738 reconDesc->numDisksDone++; 739 raidPtr->reconControl[row]->numRUsTotal = 740 mapPtr->totalRUs; 741 raidPtr->reconControl[row]->numRUsComplete = 742 mapPtr->totalRUs - 743 rf_UnitsLeftToReconstruct(mapPtr); 744 745 raidPtr->reconControl[row]->percentComplete = 746 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 747 #if RF_DEBUG_RECON 748 if (rf_prReconSched) { 749 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 750 } 751 #endif 752 } 753 754 755 756 reconDesc->state = 4; 757 758 759 case 4: 760 mapPtr = raidPtr->reconControl[row]->reconMap; 761 if (rf_reconDebug) { 762 printf("RECON: all reads completed\n"); 763 } 764 /* at this point all the reads have completed. We now wait 765 * for any pending writes to complete, and then we're done */ 766 767 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 768 769 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 770 RF_ASSERT(event); 771 772 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 773 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 774 #if RF_DEBUG_RECON 775 if (rf_prReconSched) { 776 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 777 } 778 #endif 779 } 780 reconDesc->state = 5; 781 782 case 5: 783 /* Success: mark the dead disk as reconstructed. We quiesce 784 * the array here to assure no nasty interactions with pending 785 * user accesses when we free up the psstatus structure as 786 * part of FreeReconControl() */ 787 788 reconDesc->state = 6; 789 790 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 791 rf_StopUserStats(raidPtr); 792 rf_PrintUserStats(raidPtr); /* print out the stats on user 793 * accs accumulated during 794 * recon */ 795 796 /* fall through to state 6 */ 797 case 6: 798 799 800 801 RF_LOCK_MUTEX(raidPtr->mutex); 802 raidPtr->numFailures--; 803 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 804 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 805 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 806 RF_UNLOCK_MUTEX(raidPtr->mutex); 807 RF_GETTIME(etime); 808 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 809 810 /* XXX -- why is state 7 different from state 6 if there is no 811 * return() here? -- XXX Note that I set elpsd above & use it 812 * below, so if you put a return here you'll have to fix this. 813 * (also, FreeReconControl is called below) */ 814 815 case 7: 816 817 rf_ResumeNewRequests(raidPtr); 818 819 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 820 raidPtr->raidid, row, col); 821 xor_s = raidPtr->accumXorTimeUs / 1000000; 822 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 823 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 824 raidPtr->raidid, 825 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 826 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 827 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 828 raidPtr->raidid, 829 (int) raidPtr->reconControl[row]->starttime.tv_sec, 830 (int) raidPtr->reconControl[row]->starttime.tv_usec, 831 (int) etime.tv_sec, (int) etime.tv_usec); 832 833 #if RF_RECON_STATS > 0 834 printf("raid%d: Total head-sep stall count was %d\n", 835 raidPtr->raidid, (int) reconDesc->hsStallCount); 836 #endif /* RF_RECON_STATS > 0 */ 837 rf_FreeReconControl(raidPtr, row); 838 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 839 FreeReconDesc(reconDesc); 840 841 } 842 843 SignalReconDone(raidPtr); 844 return (0); 845 } 846 /***************************************************************************** 847 * do the right thing upon each reconstruction event. 848 * returns nonzero if and only if there is nothing left unread on the 849 * indicated disk 850 *****************************************************************************/ 851 static int 852 ProcessReconEvent(raidPtr, frow, event) 853 RF_Raid_t *raidPtr; 854 RF_RowCol_t frow; 855 RF_ReconEvent_t *event; 856 { 857 int retcode = 0, submitblocked; 858 RF_ReconBuffer_t *rbuf; 859 RF_SectorCount_t sectorsPerRU; 860 861 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 862 switch (event->type) { 863 864 /* a read I/O has completed */ 865 case RF_REVENT_READDONE: 866 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 867 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 868 frow, event->col, rbuf->parityStripeID); 869 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 870 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 871 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 872 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 873 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 874 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 875 if (!submitblocked) 876 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 877 break; 878 879 /* a write I/O has completed */ 880 case RF_REVENT_WRITEDONE: 881 #if RF_DEBUG_RECON 882 if (rf_floatingRbufDebug) { 883 rf_CheckFloatingRbufCount(raidPtr, 1); 884 } 885 #endif 886 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 887 rbuf = (RF_ReconBuffer_t *) event->arg; 888 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 889 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 890 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 891 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 892 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 893 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 894 895 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 896 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 897 raidPtr->numFullReconBuffers--; 898 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 899 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 900 } else 901 if (rbuf->type == RF_RBUF_TYPE_FORCED) 902 rf_FreeReconBuffer(rbuf); 903 else 904 RF_ASSERT(0); 905 break; 906 907 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 908 * cleared */ 909 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 910 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 911 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 912 * BUFCLEAR event if we 913 * couldn't submit */ 914 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 915 break; 916 917 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 918 * blockage has been cleared */ 919 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 920 retcode = TryToRead(raidPtr, frow, event->col); 921 break; 922 923 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 924 * reconstruction blockage has been 925 * cleared */ 926 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 927 retcode = TryToRead(raidPtr, frow, event->col); 928 break; 929 930 /* a buffer has become ready to write */ 931 case RF_REVENT_BUFREADY: 932 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 933 retcode = IssueNextWriteRequest(raidPtr, frow); 934 #if RF_DEBUG_RECON 935 if (rf_floatingRbufDebug) { 936 rf_CheckFloatingRbufCount(raidPtr, 1); 937 } 938 #endif 939 break; 940 941 /* we need to skip the current RU entirely because it got 942 * recon'd while we were waiting for something else to happen */ 943 case RF_REVENT_SKIP: 944 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 945 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 946 break; 947 948 /* a forced-reconstruction read access has completed. Just 949 * submit the buffer */ 950 case RF_REVENT_FORCEDREADDONE: 951 rbuf = (RF_ReconBuffer_t *) event->arg; 952 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 953 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 954 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 955 RF_ASSERT(!submitblocked); 956 break; 957 958 default: 959 RF_PANIC(); 960 } 961 rf_FreeReconEventDesc(event); 962 return (retcode); 963 } 964 /***************************************************************************** 965 * 966 * find the next thing that's needed on the indicated disk, and issue 967 * a read request for it. We assume that the reconstruction buffer 968 * associated with this process is free to receive the data. If 969 * reconstruction is blocked on the indicated RU, we issue a 970 * blockage-release request instead of a physical disk read request. 971 * If the current disk gets too far ahead of the others, we issue a 972 * head-separation wait request and return. 973 * 974 * ctrl->{ru_count, curPSID, diskOffset} and 975 * rbuf->failedDiskSectorOffset are maintained to point to the unit 976 * we're currently accessing. Note that this deviates from the 977 * standard C idiom of having counters point to the next thing to be 978 * accessed. This allows us to easily retry when we're blocked by 979 * head separation or reconstruction-blockage events. 980 * 981 * returns nonzero if and only if there is nothing left unread on the 982 * indicated disk 983 * 984 *****************************************************************************/ 985 static int 986 IssueNextReadRequest(raidPtr, row, col) 987 RF_Raid_t *raidPtr; 988 RF_RowCol_t row; 989 RF_RowCol_t col; 990 { 991 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 992 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 993 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 994 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 995 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 996 int do_new_check = 0, retcode = 0, status; 997 998 /* if we are currently the slowest disk, mark that we have to do a new 999 * check */ 1000 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 1001 do_new_check = 1; 1002 1003 while (1) { 1004 1005 ctrl->ru_count++; 1006 if (ctrl->ru_count < RUsPerPU) { 1007 ctrl->diskOffset += sectorsPerRU; 1008 rbuf->failedDiskSectorOffset += sectorsPerRU; 1009 } else { 1010 ctrl->curPSID++; 1011 ctrl->ru_count = 0; 1012 /* code left over from when head-sep was based on 1013 * parity stripe id */ 1014 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 1015 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 1016 return (1); /* finito! */ 1017 } 1018 /* find the disk offsets of the start of the parity 1019 * stripe on both the current disk and the failed 1020 * disk. skip this entire parity stripe if either disk 1021 * does not appear in the indicated PS */ 1022 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1023 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1024 if (status) { 1025 ctrl->ru_count = RUsPerPU - 1; 1026 continue; 1027 } 1028 } 1029 rbuf->which_ru = ctrl->ru_count; 1030 1031 /* skip this RU if it's already been reconstructed */ 1032 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1033 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1034 continue; 1035 } 1036 break; 1037 } 1038 ctrl->headSepCounter++; 1039 if (do_new_check) 1040 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1041 1042 1043 /* at this point, we have definitely decided what to do, and we have 1044 * only to see if we can actually do it now */ 1045 rbuf->parityStripeID = ctrl->curPSID; 1046 rbuf->which_ru = ctrl->ru_count; 1047 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1048 sizeof(raidPtr->recon_tracerecs[col])); 1049 raidPtr->recon_tracerecs[col].reconacc = 1; 1050 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1051 retcode = TryToRead(raidPtr, row, col); 1052 return (retcode); 1053 } 1054 1055 /* 1056 * tries to issue the next read on the indicated disk. We may be 1057 * blocked by (a) the heads being too far apart, or (b) recon on the 1058 * indicated RU being blocked due to a write by a user thread. In 1059 * this case, we issue a head-sep or blockage wait request, which will 1060 * cause this same routine to be invoked again later when the blockage 1061 * has cleared. 1062 */ 1063 1064 static int 1065 TryToRead(raidPtr, row, col) 1066 RF_Raid_t *raidPtr; 1067 RF_RowCol_t row; 1068 RF_RowCol_t col; 1069 { 1070 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1071 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1072 RF_StripeNum_t psid = ctrl->curPSID; 1073 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1074 RF_DiskQueueData_t *req; 1075 int status, created = 0; 1076 RF_ReconParityStripeStatus_t *pssPtr; 1077 1078 /* if the current disk is too far ahead of the others, issue a 1079 * head-separation wait and return */ 1080 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1081 return (0); 1082 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1083 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1084 1085 /* if recon is blocked on the indicated parity stripe, issue a 1086 * block-wait request and return. this also must mark the indicated RU 1087 * in the stripe as under reconstruction if not blocked. */ 1088 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1089 if (status == RF_PSS_RECON_BLOCKED) { 1090 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1091 goto out; 1092 } else 1093 if (status == RF_PSS_FORCED_ON_WRITE) { 1094 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1095 goto out; 1096 } 1097 /* make one last check to be sure that the indicated RU didn't get 1098 * reconstructed while we were waiting for something else to happen. 1099 * This is unfortunate in that it causes us to make this check twice 1100 * in the normal case. Might want to make some attempt to re-work 1101 * this so that we only do this check if we've definitely blocked on 1102 * one of the above checks. When this condition is detected, we may 1103 * have just created a bogus status entry, which we need to delete. */ 1104 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1105 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1106 if (created) 1107 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1108 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1109 goto out; 1110 } 1111 /* found something to read. issue the I/O */ 1112 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1113 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1114 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1115 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1116 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1117 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1118 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1119 1120 /* should be ok to use a NULL proc pointer here, all the bufs we use 1121 * should be in kernel space */ 1122 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1123 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1124 1125 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1126 1127 ctrl->rbuf->arg = (void *) req; 1128 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1129 pssPtr->issued[col] = 1; 1130 1131 out: 1132 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1133 return (0); 1134 } 1135 1136 1137 /* 1138 * given a parity stripe ID, we want to find out whether both the 1139 * current disk and the failed disk exist in that parity stripe. If 1140 * not, we want to skip this whole PS. If so, we want to find the 1141 * disk offset of the start of the PS on both the current disk and the 1142 * failed disk. 1143 * 1144 * this works by getting a list of disks comprising the indicated 1145 * parity stripe, and searching the list for the current and failed 1146 * disks. Once we've decided they both exist in the parity stripe, we 1147 * need to decide whether each is data or parity, so that we'll know 1148 * which mapping function to call to get the corresponding disk 1149 * offsets. 1150 * 1151 * this is kind of unpleasant, but doing it this way allows the 1152 * reconstruction code to use parity stripe IDs rather than physical 1153 * disks address to march through the failed disk, which greatly 1154 * simplifies a lot of code, as well as eliminating the need for a 1155 * reverse-mapping function. I also think it will execute faster, 1156 * since the calls to the mapping module are kept to a minimum. 1157 * 1158 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1159 * THE STRIPE IN THE CORRECT ORDER */ 1160 1161 1162 static int 1163 ComputePSDiskOffsets( 1164 RF_Raid_t * raidPtr, /* raid descriptor */ 1165 RF_StripeNum_t psid, /* parity stripe identifier */ 1166 RF_RowCol_t row, /* row and column of disk to find the offsets 1167 * for */ 1168 RF_RowCol_t col, 1169 RF_SectorNum_t * outDiskOffset, 1170 RF_SectorNum_t * outFailedDiskSectorOffset, 1171 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1172 RF_RowCol_t * spCol, 1173 RF_SectorNum_t * spOffset) 1174 { /* OUT: offset into disk containing spare unit */ 1175 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1176 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1177 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1178 RF_RowCol_t *diskids; 1179 u_int i, j, k, i_offset, j_offset; 1180 RF_RowCol_t prow, pcol; 1181 int testcol, testrow; 1182 RF_RowCol_t stripe; 1183 RF_SectorNum_t poffset; 1184 char i_is_parity = 0, j_is_parity = 0; 1185 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1186 1187 /* get a listing of the disks comprising that stripe */ 1188 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1189 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1190 RF_ASSERT(diskids); 1191 1192 /* reject this entire parity stripe if it does not contain the 1193 * indicated disk or it does not contain the failed disk */ 1194 if (row != stripe) 1195 goto skipit; 1196 for (i = 0; i < stripeWidth; i++) { 1197 if (col == diskids[i]) 1198 break; 1199 } 1200 if (i == stripeWidth) 1201 goto skipit; 1202 for (j = 0; j < stripeWidth; j++) { 1203 if (fcol == diskids[j]) 1204 break; 1205 } 1206 if (j == stripeWidth) { 1207 goto skipit; 1208 } 1209 /* find out which disk the parity is on */ 1210 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1211 1212 /* find out if either the current RU or the failed RU is parity */ 1213 /* also, if the parity occurs in this stripe prior to the data and/or 1214 * failed col, we need to decrement i and/or j */ 1215 for (k = 0; k < stripeWidth; k++) 1216 if (diskids[k] == pcol) 1217 break; 1218 RF_ASSERT(k < stripeWidth); 1219 i_offset = i; 1220 j_offset = j; 1221 if (k < i) 1222 i_offset--; 1223 else 1224 if (k == i) { 1225 i_is_parity = 1; 1226 i_offset = 0; 1227 } /* set offsets to zero to disable multiply 1228 * below */ 1229 if (k < j) 1230 j_offset--; 1231 else 1232 if (k == j) { 1233 j_is_parity = 1; 1234 j_offset = 0; 1235 } 1236 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1237 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1238 * tells us how far into the stripe the [current,failed] disk is. */ 1239 1240 /* call the mapping routine to get the offset into the current disk, 1241 * repeat for failed disk. */ 1242 if (i_is_parity) 1243 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1244 else 1245 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1246 1247 RF_ASSERT(row == testrow && col == testcol); 1248 1249 if (j_is_parity) 1250 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1251 else 1252 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1253 RF_ASSERT(row == testrow && fcol == testcol); 1254 1255 /* now locate the spare unit for the failed unit */ 1256 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1257 if (j_is_parity) 1258 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1259 else 1260 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1261 } else { 1262 *spRow = raidPtr->reconControl[row]->spareRow; 1263 *spCol = raidPtr->reconControl[row]->spareCol; 1264 *spOffset = *outFailedDiskSectorOffset; 1265 } 1266 1267 return (0); 1268 1269 skipit: 1270 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1271 psid, row, col); 1272 return (1); 1273 } 1274 /* this is called when a buffer has become ready to write to the replacement disk */ 1275 static int 1276 IssueNextWriteRequest(raidPtr, row) 1277 RF_Raid_t *raidPtr; 1278 RF_RowCol_t row; 1279 { 1280 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1281 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1282 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1283 RF_ReconBuffer_t *rbuf; 1284 RF_DiskQueueData_t *req; 1285 1286 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1287 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1288 * have gotten the event that sent us here */ 1289 RF_ASSERT(rbuf->pssPtr); 1290 1291 rbuf->pssPtr->writeRbuf = rbuf; 1292 rbuf->pssPtr = NULL; 1293 1294 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1295 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1296 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1297 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1298 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1299 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1300 1301 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1302 * kernel space */ 1303 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1304 sectorsPerRU, rbuf->buffer, 1305 rbuf->parityStripeID, rbuf->which_ru, 1306 ReconWriteDoneProc, (void *) rbuf, NULL, 1307 &raidPtr->recon_tracerecs[fcol], 1308 (void *) raidPtr, 0, NULL); 1309 1310 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1311 1312 rbuf->arg = (void *) req; 1313 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1314 1315 return (0); 1316 } 1317 1318 /* 1319 * this gets called upon the completion of a reconstruction read 1320 * operation the arg is a pointer to the per-disk reconstruction 1321 * control structure for the process that just finished a read. 1322 * 1323 * called at interrupt context in the kernel, so don't do anything 1324 * illegal here. 1325 */ 1326 static int 1327 ReconReadDoneProc(arg, status) 1328 void *arg; 1329 int status; 1330 { 1331 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1332 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1333 1334 if (status) { 1335 /* 1336 * XXX 1337 */ 1338 printf("Recon read failed!\n"); 1339 RF_PANIC(); 1340 } 1341 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1342 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1343 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1344 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1345 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1346 1347 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1348 return (0); 1349 } 1350 /* this gets called upon the completion of a reconstruction write operation. 1351 * the arg is a pointer to the rbuf that was just written 1352 * 1353 * called at interrupt context in the kernel, so don't do anything illegal here. 1354 */ 1355 static int 1356 ReconWriteDoneProc(arg, status) 1357 void *arg; 1358 int status; 1359 { 1360 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1361 1362 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1363 if (status) { 1364 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1365 * write failed!\n"); */ 1366 RF_PANIC(); 1367 } 1368 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1369 return (0); 1370 } 1371 1372 1373 /* 1374 * computes a new minimum head sep, and wakes up anyone who needs to 1375 * be woken as a result 1376 */ 1377 static void 1378 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1379 RF_Raid_t *raidPtr; 1380 RF_RowCol_t row; 1381 RF_HeadSepLimit_t hsCtr; 1382 { 1383 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1384 RF_HeadSepLimit_t new_min; 1385 RF_RowCol_t i; 1386 RF_CallbackDesc_t *p; 1387 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1388 * of a minimum */ 1389 1390 1391 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1392 1393 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1394 for (i = 0; i < raidPtr->numCol; i++) 1395 if (i != reconCtrlPtr->fcol) { 1396 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1397 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1398 } 1399 /* set the new minimum and wake up anyone who can now run again */ 1400 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1401 reconCtrlPtr->minHeadSepCounter = new_min; 1402 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1403 while (reconCtrlPtr->headSepCBList) { 1404 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1405 break; 1406 p = reconCtrlPtr->headSepCBList; 1407 reconCtrlPtr->headSepCBList = p->next; 1408 p->next = NULL; 1409 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1410 rf_FreeCallbackDesc(p); 1411 } 1412 1413 } 1414 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1415 } 1416 1417 /* 1418 * checks to see that the maximum head separation will not be violated 1419 * if we initiate a reconstruction I/O on the indicated disk. 1420 * Limiting the maximum head separation between two disks eliminates 1421 * the nasty buffer-stall conditions that occur when one disk races 1422 * ahead of the others and consumes all of the floating recon buffers. 1423 * This code is complex and unpleasant but it's necessary to avoid 1424 * some very nasty, albeit fairly rare, reconstruction behavior. 1425 * 1426 * returns non-zero if and only if we have to stop working on the 1427 * indicated disk due to a head-separation delay. 1428 */ 1429 static int 1430 CheckHeadSeparation( 1431 RF_Raid_t * raidPtr, 1432 RF_PerDiskReconCtrl_t * ctrl, 1433 RF_RowCol_t row, 1434 RF_RowCol_t col, 1435 RF_HeadSepLimit_t hsCtr, 1436 RF_ReconUnitNum_t which_ru) 1437 { 1438 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1439 RF_CallbackDesc_t *cb, *p, *pt; 1440 int retval = 0; 1441 1442 /* if we're too far ahead of the slowest disk, stop working on this 1443 * disk until the slower ones catch up. We do this by scheduling a 1444 * wakeup callback for the time when the slowest disk has caught up. 1445 * We define "caught up" with 20% hysteresis, i.e. the head separation 1446 * must have fallen to at most 80% of the max allowable head 1447 * separation before we'll wake up. 1448 * 1449 */ 1450 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1451 if ((raidPtr->headSepLimit >= 0) && 1452 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1453 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1454 raidPtr->raidid, row, col, ctrl->headSepCounter, 1455 reconCtrlPtr->minHeadSepCounter, 1456 raidPtr->headSepLimit); 1457 cb = rf_AllocCallbackDesc(); 1458 /* the minHeadSepCounter value we have to get to before we'll 1459 * wake up. build in 20% hysteresis. */ 1460 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1461 cb->row = row; 1462 cb->col = col; 1463 cb->next = NULL; 1464 1465 /* insert this callback descriptor into the sorted list of 1466 * pending head-sep callbacks */ 1467 p = reconCtrlPtr->headSepCBList; 1468 if (!p) 1469 reconCtrlPtr->headSepCBList = cb; 1470 else 1471 if (cb->callbackArg.v < p->callbackArg.v) { 1472 cb->next = reconCtrlPtr->headSepCBList; 1473 reconCtrlPtr->headSepCBList = cb; 1474 } else { 1475 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1476 cb->next = p; 1477 pt->next = cb; 1478 } 1479 retval = 1; 1480 #if RF_RECON_STATS > 0 1481 ctrl->reconCtrl->reconDesc->hsStallCount++; 1482 #endif /* RF_RECON_STATS > 0 */ 1483 } 1484 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1485 1486 return (retval); 1487 } 1488 /* 1489 * checks to see if reconstruction has been either forced or blocked 1490 * by a user operation. if forced, we skip this RU entirely. else if 1491 * blocked, put ourselves on the wait list. else return 0. 1492 * 1493 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1494 */ 1495 static int 1496 CheckForcedOrBlockedReconstruction( 1497 RF_Raid_t * raidPtr, 1498 RF_ReconParityStripeStatus_t * pssPtr, 1499 RF_PerDiskReconCtrl_t * ctrl, 1500 RF_RowCol_t row, 1501 RF_RowCol_t col, 1502 RF_StripeNum_t psid, 1503 RF_ReconUnitNum_t which_ru) 1504 { 1505 RF_CallbackDesc_t *cb; 1506 int retcode = 0; 1507 1508 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1509 retcode = RF_PSS_FORCED_ON_WRITE; 1510 else 1511 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1512 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1513 cb = rf_AllocCallbackDesc(); /* append ourselves to 1514 * the blockage-wait 1515 * list */ 1516 cb->row = row; 1517 cb->col = col; 1518 cb->next = pssPtr->blockWaitList; 1519 pssPtr->blockWaitList = cb; 1520 retcode = RF_PSS_RECON_BLOCKED; 1521 } 1522 if (!retcode) 1523 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1524 * reconstruction */ 1525 1526 return (retcode); 1527 } 1528 /* 1529 * if reconstruction is currently ongoing for the indicated stripeID, 1530 * reconstruction is forced to completion and we return non-zero to 1531 * indicate that the caller must wait. If not, then reconstruction is 1532 * blocked on the indicated stripe and the routine returns zero. If 1533 * and only if we return non-zero, we'll cause the cbFunc to get 1534 * invoked with the cbArg when the reconstruction has completed. 1535 */ 1536 int 1537 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1538 RF_Raid_t *raidPtr; 1539 RF_AccessStripeMap_t *asmap; 1540 void (*cbFunc) (RF_Raid_t *, void *); 1541 void *cbArg; 1542 { 1543 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1544 * we're working on */ 1545 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1546 * forcing recon on */ 1547 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1548 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1549 * stripe status structure */ 1550 RF_StripeNum_t psid; /* parity stripe id */ 1551 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1552 * offset */ 1553 RF_RowCol_t *diskids; 1554 RF_RowCol_t stripe; 1555 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1556 RF_RowCol_t fcol, diskno, i; 1557 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1558 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1559 RF_CallbackDesc_t *cb; 1560 int created = 0, nPromoted; 1561 1562 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1563 1564 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1565 1566 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1567 1568 /* if recon is not ongoing on this PS, just return */ 1569 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1570 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1571 return (0); 1572 } 1573 /* otherwise, we have to wait for reconstruction to complete on this 1574 * RU. */ 1575 /* In order to avoid waiting for a potentially large number of 1576 * low-priority accesses to complete, we force a normal-priority (i.e. 1577 * not low-priority) reconstruction on this RU. */ 1578 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1579 DDprintf1("Forcing recon on psid %ld\n", psid); 1580 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1581 * forced recon */ 1582 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1583 * that we just set */ 1584 fcol = raidPtr->reconControl[row]->fcol; 1585 1586 /* get a listing of the disks comprising the indicated stripe */ 1587 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1588 RF_ASSERT(row == stripe); 1589 1590 /* For previously issued reads, elevate them to normal 1591 * priority. If the I/O has already completed, it won't be 1592 * found in the queue, and hence this will be a no-op. For 1593 * unissued reads, allocate buffers and issue new reads. The 1594 * fact that we've set the FORCED bit means that the regular 1595 * recon procs will not re-issue these reqs */ 1596 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1597 if ((diskno = diskids[i]) != fcol) { 1598 if (pssPtr->issued[diskno]) { 1599 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1600 if (rf_reconDebug && nPromoted) 1601 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1602 } else { 1603 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1604 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1605 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1606 * location */ 1607 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1608 new_rbuf->which_ru = which_ru; 1609 new_rbuf->failedDiskSectorOffset = fd_offset; 1610 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1611 1612 /* use NULL b_proc b/c all addrs 1613 * should be in kernel space */ 1614 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1615 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1616 NULL, (void *) raidPtr, 0, NULL); 1617 1618 RF_ASSERT(req); /* XXX -- fix this -- 1619 * XXX */ 1620 1621 new_rbuf->arg = req; 1622 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1623 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1624 } 1625 } 1626 /* if the write is sitting in the disk queue, elevate its 1627 * priority */ 1628 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1629 printf("raid%d: promoted write to row %d col %d\n", 1630 raidPtr->raidid, row, fcol); 1631 } 1632 /* install a callback descriptor to be invoked when recon completes on 1633 * this parity stripe. */ 1634 cb = rf_AllocCallbackDesc(); 1635 /* XXX the following is bogus.. These functions don't really match!! 1636 * GO */ 1637 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1638 cb->callbackArg.p = (void *) cbArg; 1639 cb->next = pssPtr->procWaitList; 1640 pssPtr->procWaitList = cb; 1641 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1642 raidPtr->raidid, psid); 1643 1644 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1645 return (1); 1646 } 1647 /* called upon the completion of a forced reconstruction read. 1648 * all we do is schedule the FORCEDREADONE event. 1649 * called at interrupt context in the kernel, so don't do anything illegal here. 1650 */ 1651 static void 1652 ForceReconReadDoneProc(arg, status) 1653 void *arg; 1654 int status; 1655 { 1656 RF_ReconBuffer_t *rbuf = arg; 1657 1658 if (status) { 1659 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1660 * recon read 1661 * failed!\n"); */ 1662 RF_PANIC(); 1663 } 1664 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1665 } 1666 /* releases a block on the reconstruction of the indicated stripe */ 1667 int 1668 rf_UnblockRecon(raidPtr, asmap) 1669 RF_Raid_t *raidPtr; 1670 RF_AccessStripeMap_t *asmap; 1671 { 1672 RF_RowCol_t row = asmap->origRow; 1673 RF_StripeNum_t stripeID = asmap->stripeID; 1674 RF_ReconParityStripeStatus_t *pssPtr; 1675 RF_ReconUnitNum_t which_ru; 1676 RF_StripeNum_t psid; 1677 int created = 0; 1678 RF_CallbackDesc_t *cb; 1679 1680 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1681 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1682 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1683 1684 /* When recon is forced, the pss desc can get deleted before we get 1685 * back to unblock recon. But, this can _only_ happen when recon is 1686 * forced. It would be good to put some kind of sanity check here, but 1687 * how to decide if recon was just forced or not? */ 1688 if (!pssPtr) { 1689 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1690 * RU %d\n",psid,which_ru); */ 1691 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1692 if (rf_reconDebug || rf_pssDebug) 1693 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1694 #endif 1695 goto out; 1696 } 1697 pssPtr->blockCount--; 1698 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1699 raidPtr->raidid, psid, pssPtr->blockCount); 1700 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1701 1702 /* unblock recon before calling CauseReconEvent in case 1703 * CauseReconEvent causes us to try to issue a new read before 1704 * returning here. */ 1705 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1706 1707 1708 while (pssPtr->blockWaitList) { 1709 /* spin through the block-wait list and 1710 release all the waiters */ 1711 cb = pssPtr->blockWaitList; 1712 pssPtr->blockWaitList = cb->next; 1713 cb->next = NULL; 1714 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1715 rf_FreeCallbackDesc(cb); 1716 } 1717 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1718 /* if no recon was requested while recon was blocked */ 1719 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1720 } 1721 } 1722 out: 1723 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1724 return (0); 1725 } 1726