1 /* $NetBSD: rf_reconstruct.c,v 1.41 2002/09/17 03:30:33 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.41 2002/09/17 03:30:33 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 int 162 rf_RegisterReconDoneProc( 163 RF_Raid_t * raidPtr, 164 void (*proc) (RF_Raid_t *, void *), 165 void *arg, 166 RF_ReconDoneProc_t ** handlep) 167 { 168 RF_ReconDoneProc_t *p; 169 170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *)); 171 if (p == NULL) 172 return (ENOMEM); 173 p->proc = proc; 174 p->arg = arg; 175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 176 p->next = raidPtr->recon_done_procs; 177 raidPtr->recon_done_procs = p; 178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 179 if (handlep) 180 *handlep = p; 181 return (0); 182 } 183 /************************************************************************** 184 * 185 * sets up the parameters that will be used by the reconstruction process 186 * currently there are none, except for those that the layout-specific 187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 188 * 189 * in the kernel, we fire off the recon thread. 190 * 191 **************************************************************************/ 192 static void 193 rf_ShutdownReconstruction(ignored) 194 void *ignored; 195 { 196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 198 } 199 200 int 201 rf_ConfigureReconstruction(listp) 202 RF_ShutdownList_t **listp; 203 { 204 int rc; 205 206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 208 if (rf_recond_freelist == NULL) 209 return (ENOMEM); 210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 212 if (rf_rdp_freelist == NULL) { 213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 214 return (ENOMEM); 215 } 216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 217 if (rc) { 218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 219 rf_ShutdownReconstruction(NULL); 220 return (rc); 221 } 222 return (0); 223 } 224 225 static RF_RaidReconDesc_t * 226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 227 RF_Raid_t *raidPtr; 228 RF_RowCol_t row; 229 RF_RowCol_t col; 230 RF_RaidDisk_t *spareDiskPtr; 231 int numDisksDone; 232 RF_RowCol_t srow; 233 RF_RowCol_t scol; 234 { 235 236 RF_RaidReconDesc_t *reconDesc; 237 238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 239 240 reconDesc->raidPtr = raidPtr; 241 reconDesc->row = row; 242 reconDesc->col = col; 243 reconDesc->spareDiskPtr = spareDiskPtr; 244 reconDesc->numDisksDone = numDisksDone; 245 reconDesc->srow = srow; 246 reconDesc->scol = scol; 247 reconDesc->state = 0; 248 reconDesc->next = NULL; 249 250 return (reconDesc); 251 } 252 253 static void 254 FreeReconDesc(reconDesc) 255 RF_RaidReconDesc_t *reconDesc; 256 { 257 #if RF_RECON_STATS > 0 258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 260 #endif /* RF_RECON_STATS > 0 */ 261 printf("RAIDframe: %lu max exec ticks\n", 262 (long) reconDesc->maxReconExecTicks); 263 #if (RF_RECON_STATS > 0) || defined(KERNEL) 264 printf("\n"); 265 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 267 } 268 269 270 /***************************************************************************** 271 * 272 * primary routine to reconstruct a failed disk. This should be called from 273 * within its own thread. It won't return until reconstruction completes, 274 * fails, or is aborted. 275 *****************************************************************************/ 276 int 277 rf_ReconstructFailedDisk(raidPtr, row, col) 278 RF_Raid_t *raidPtr; 279 RF_RowCol_t row; 280 RF_RowCol_t col; 281 { 282 RF_LayoutSW_t *lp; 283 int rc; 284 285 lp = raidPtr->Layout.map; 286 if (lp->SubmitReconBuffer) { 287 /* 288 * The current infrastructure only supports reconstructing one 289 * disk at a time for each array. 290 */ 291 RF_LOCK_MUTEX(raidPtr->mutex); 292 while (raidPtr->reconInProgress) { 293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 294 } 295 raidPtr->reconInProgress++; 296 RF_UNLOCK_MUTEX(raidPtr->mutex); 297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 298 RF_LOCK_MUTEX(raidPtr->mutex); 299 raidPtr->reconInProgress--; 300 RF_UNLOCK_MUTEX(raidPtr->mutex); 301 } else { 302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 303 lp->parityConfig); 304 rc = EIO; 305 } 306 RF_SIGNAL_COND(raidPtr->waitForReconCond); 307 return (rc); 308 } 309 310 int 311 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 312 RF_Raid_t *raidPtr; 313 RF_RowCol_t row; 314 RF_RowCol_t col; 315 { 316 RF_ComponentLabel_t c_label; 317 RF_RaidDisk_t *spareDiskPtr = NULL; 318 RF_RaidReconDesc_t *reconDesc; 319 RF_RowCol_t srow, scol; 320 int numDisksDone = 0, rc; 321 322 /* first look for a spare drive onto which to reconstruct the data */ 323 /* spare disk descriptors are stored in row 0. This may have to 324 * change eventually */ 325 326 RF_LOCK_MUTEX(raidPtr->mutex); 327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 328 329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 330 if (raidPtr->status[row] != rf_rs_degraded) { 331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 332 RF_UNLOCK_MUTEX(raidPtr->mutex); 333 return (EINVAL); 334 } 335 srow = row; 336 scol = (-1); 337 } else { 338 srow = 0; 339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 341 spareDiskPtr = &raidPtr->Disks[srow][scol]; 342 spareDiskPtr->status = rf_ds_used_spare; 343 break; 344 } 345 } 346 if (!spareDiskPtr) { 347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 348 RF_UNLOCK_MUTEX(raidPtr->mutex); 349 return (ENOSPC); 350 } 351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 352 } 353 RF_UNLOCK_MUTEX(raidPtr->mutex); 354 355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 356 raidPtr->reconDesc = (void *) reconDesc; 357 #if RF_RECON_STATS > 0 358 reconDesc->hsStallCount = 0; 359 reconDesc->numReconExecDelays = 0; 360 reconDesc->numReconEventWaits = 0; 361 #endif /* RF_RECON_STATS > 0 */ 362 reconDesc->reconExecTimerRunning = 0; 363 reconDesc->reconExecTicks = 0; 364 reconDesc->maxReconExecTicks = 0; 365 rc = rf_ContinueReconstructFailedDisk(reconDesc); 366 367 if (!rc) { 368 /* fix up the component label */ 369 /* Don't actually need the read here.. */ 370 raidread_component_label( 371 raidPtr->raid_cinfo[srow][scol].ci_dev, 372 raidPtr->raid_cinfo[srow][scol].ci_vp, 373 &c_label); 374 375 raid_init_component_label( raidPtr, &c_label); 376 c_label.row = row; 377 c_label.column = col; 378 c_label.clean = RF_RAID_DIRTY; 379 c_label.status = rf_ds_optimal; 380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 381 382 /* We've just done a rebuild based on all the other 383 disks, so at this point the parity is known to be 384 clean, even if it wasn't before. */ 385 386 /* XXX doesn't hold for RAID 6!!*/ 387 388 raidPtr->parity_good = RF_RAID_CLEAN; 389 390 /* XXXX MORE NEEDED HERE */ 391 392 raidwrite_component_label( 393 raidPtr->raid_cinfo[srow][scol].ci_dev, 394 raidPtr->raid_cinfo[srow][scol].ci_vp, 395 &c_label); 396 397 } 398 return (rc); 399 } 400 401 /* 402 403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 404 and you don't get a spare until the next Monday. With this function 405 (and hot-swappable drives) you can now put your new disk containing 406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 407 rebuild the data "on the spot". 408 409 */ 410 411 int 412 rf_ReconstructInPlace(raidPtr, row, col) 413 RF_Raid_t *raidPtr; 414 RF_RowCol_t row; 415 RF_RowCol_t col; 416 { 417 RF_RaidDisk_t *spareDiskPtr = NULL; 418 RF_RaidReconDesc_t *reconDesc; 419 RF_LayoutSW_t *lp; 420 RF_RaidDisk_t *badDisk; 421 RF_ComponentLabel_t c_label; 422 int numDisksDone = 0, rc; 423 struct partinfo dpart; 424 struct vnode *vp; 425 struct vattr va; 426 struct proc *proc; 427 int retcode; 428 int ac; 429 430 lp = raidPtr->Layout.map; 431 if (lp->SubmitReconBuffer) { 432 /* 433 * The current infrastructure only supports reconstructing one 434 * disk at a time for each array. 435 */ 436 RF_LOCK_MUTEX(raidPtr->mutex); 437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 438 (raidPtr->numFailures > 0)) { 439 /* XXX 0 above shouldn't be constant!!! */ 440 /* some component other than this has failed. 441 Let's not make things worse than they already 442 are... */ 443 printf("raid%d: Unable to reconstruct to disk at:\n", 444 raidPtr->raidid); 445 printf("raid%d: Row: %d Col: %d Too many failures.\n", 446 raidPtr->raidid, row, col); 447 RF_UNLOCK_MUTEX(raidPtr->mutex); 448 return (EINVAL); 449 } 450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 451 printf("raid%d: Unable to reconstruct to disk at:\n", 452 raidPtr->raidid); 453 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 454 455 RF_UNLOCK_MUTEX(raidPtr->mutex); 456 return (EINVAL); 457 } 458 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 459 return (EINVAL); 460 } 461 462 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 463 /* "It's gone..." */ 464 raidPtr->numFailures++; 465 raidPtr->Disks[row][col].status = rf_ds_failed; 466 raidPtr->status[row] = rf_rs_degraded; 467 rf_update_component_labels(raidPtr, 468 RF_NORMAL_COMPONENT_UPDATE); 469 } 470 471 while (raidPtr->reconInProgress) { 472 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 473 } 474 475 raidPtr->reconInProgress++; 476 477 478 /* first look for a spare drive onto which to reconstruct 479 the data. spare disk descriptors are stored in row 0. 480 This may have to change eventually */ 481 482 /* Actually, we don't care if it's failed or not... 483 On a RAID set with correct parity, this function 484 should be callable on any component without ill affects. */ 485 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 486 */ 487 488 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 489 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 490 491 raidPtr->reconInProgress--; 492 RF_UNLOCK_MUTEX(raidPtr->mutex); 493 return (EINVAL); 494 } 495 496 badDisk = &raidPtr->Disks[row][col]; 497 498 proc = raidPtr->engine_thread; 499 500 /* This device may have been opened successfully the 501 first time. Close it before trying to open it again.. */ 502 503 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 504 #if 0 505 printf("Closed the open device: %s\n", 506 raidPtr->Disks[row][col].devname); 507 #endif 508 vp = raidPtr->raid_cinfo[row][col].ci_vp; 509 ac = raidPtr->Disks[row][col].auto_configured; 510 rf_close_component(raidPtr, vp, ac); 511 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 512 } 513 /* note that this disk was *not* auto_configured (any longer)*/ 514 raidPtr->Disks[row][col].auto_configured = 0; 515 516 #if 0 517 printf("About to (re-)open the device for rebuilding: %s\n", 518 raidPtr->Disks[row][col].devname); 519 #endif 520 521 retcode = raidlookup(raidPtr->Disks[row][col].devname, 522 proc, &vp); 523 524 if (retcode) { 525 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 526 raidPtr->Disks[row][col].devname, retcode); 527 528 /* the component isn't responding properly... 529 must be still dead :-( */ 530 raidPtr->reconInProgress--; 531 RF_UNLOCK_MUTEX(raidPtr->mutex); 532 return(retcode); 533 534 } else { 535 536 /* Ok, so we can at least do a lookup... 537 How about actually getting a vp for it? */ 538 539 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 540 proc)) != 0) { 541 raidPtr->reconInProgress--; 542 RF_UNLOCK_MUTEX(raidPtr->mutex); 543 return(retcode); 544 } 545 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 546 FREAD, proc->p_ucred, proc); 547 if (retcode) { 548 raidPtr->reconInProgress--; 549 RF_UNLOCK_MUTEX(raidPtr->mutex); 550 return(retcode); 551 } 552 raidPtr->Disks[row][col].blockSize = 553 dpart.disklab->d_secsize; 554 555 raidPtr->Disks[row][col].numBlocks = 556 dpart.part->p_size - rf_protectedSectors; 557 558 raidPtr->raid_cinfo[row][col].ci_vp = vp; 559 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 560 561 raidPtr->Disks[row][col].dev = va.va_rdev; 562 563 /* we allow the user to specify that only a 564 fraction of the disks should be used this is 565 just for debug: it speeds up 566 * the parity scan */ 567 raidPtr->Disks[row][col].numBlocks = 568 raidPtr->Disks[row][col].numBlocks * 569 rf_sizePercentage / 100; 570 } 571 572 573 574 spareDiskPtr = &raidPtr->Disks[row][col]; 575 spareDiskPtr->status = rf_ds_used_spare; 576 577 printf("raid%d: initiating in-place reconstruction on\n", 578 raidPtr->raidid); 579 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 580 raidPtr->raidid, row, col, row, col); 581 582 RF_UNLOCK_MUTEX(raidPtr->mutex); 583 584 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 585 spareDiskPtr, numDisksDone, 586 row, col); 587 raidPtr->reconDesc = (void *) reconDesc; 588 #if RF_RECON_STATS > 0 589 reconDesc->hsStallCount = 0; 590 reconDesc->numReconExecDelays = 0; 591 reconDesc->numReconEventWaits = 0; 592 #endif /* RF_RECON_STATS > 0 */ 593 reconDesc->reconExecTimerRunning = 0; 594 reconDesc->reconExecTicks = 0; 595 reconDesc->maxReconExecTicks = 0; 596 rc = rf_ContinueReconstructFailedDisk(reconDesc); 597 598 RF_LOCK_MUTEX(raidPtr->mutex); 599 raidPtr->reconInProgress--; 600 RF_UNLOCK_MUTEX(raidPtr->mutex); 601 602 } else { 603 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 604 lp->parityConfig); 605 rc = EIO; 606 } 607 RF_LOCK_MUTEX(raidPtr->mutex); 608 609 if (!rc) { 610 /* Need to set these here, as at this point it'll be claiming 611 that the disk is in rf_ds_spared! But we know better :-) */ 612 613 raidPtr->Disks[row][col].status = rf_ds_optimal; 614 raidPtr->status[row] = rf_rs_optimal; 615 616 /* fix up the component label */ 617 /* Don't actually need the read here.. */ 618 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 619 raidPtr->raid_cinfo[row][col].ci_vp, 620 &c_label); 621 622 raid_init_component_label(raidPtr, &c_label); 623 624 c_label.row = row; 625 c_label.column = col; 626 627 /* We've just done a rebuild based on all the other 628 disks, so at this point the parity is known to be 629 clean, even if it wasn't before. */ 630 631 /* XXX doesn't hold for RAID 6!!*/ 632 633 raidPtr->parity_good = RF_RAID_CLEAN; 634 635 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 636 raidPtr->raid_cinfo[row][col].ci_vp, 637 &c_label); 638 639 } 640 RF_UNLOCK_MUTEX(raidPtr->mutex); 641 RF_SIGNAL_COND(raidPtr->waitForReconCond); 642 wakeup(&raidPtr->waitForReconCond); 643 return (rc); 644 } 645 646 647 int 648 rf_ContinueReconstructFailedDisk(reconDesc) 649 RF_RaidReconDesc_t *reconDesc; 650 { 651 RF_Raid_t *raidPtr = reconDesc->raidPtr; 652 RF_RowCol_t row = reconDesc->row; 653 RF_RowCol_t col = reconDesc->col; 654 RF_RowCol_t srow = reconDesc->srow; 655 RF_RowCol_t scol = reconDesc->scol; 656 RF_ReconMap_t *mapPtr; 657 658 RF_ReconEvent_t *event; 659 struct timeval etime, elpsd; 660 unsigned long xor_s, xor_resid_us; 661 int retcode, i, ds; 662 663 switch (reconDesc->state) { 664 665 666 case 0: 667 668 raidPtr->accumXorTimeUs = 0; 669 670 /* create one trace record per physical disk */ 671 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 672 673 /* quiesce the array prior to starting recon. this is needed 674 * to assure no nasty interactions with pending user writes. 675 * We need to do this before we change the disk or row status. */ 676 reconDesc->state = 1; 677 678 Dprintf("RECON: begin request suspend\n"); 679 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 680 Dprintf("RECON: end request suspend\n"); 681 rf_StartUserStats(raidPtr); /* zero out the stats kept on 682 * user accs */ 683 684 /* fall through to state 1 */ 685 686 case 1: 687 688 RF_LOCK_MUTEX(raidPtr->mutex); 689 690 /* create the reconstruction control pointer and install it in 691 * the right slot */ 692 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol); 693 mapPtr = raidPtr->reconControl[row]->reconMap; 694 raidPtr->status[row] = rf_rs_reconstructing; 695 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 696 raidPtr->Disks[row][col].spareRow = srow; 697 raidPtr->Disks[row][col].spareCol = scol; 698 699 RF_UNLOCK_MUTEX(raidPtr->mutex); 700 701 RF_GETTIME(raidPtr->reconControl[row]->starttime); 702 703 /* now start up the actual reconstruction: issue a read for 704 * each surviving disk */ 705 706 reconDesc->numDisksDone = 0; 707 for (i = 0; i < raidPtr->numCol; i++) { 708 if (i != col) { 709 /* find and issue the next I/O on the 710 * indicated disk */ 711 if (IssueNextReadRequest(raidPtr, row, i)) { 712 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 713 reconDesc->numDisksDone++; 714 } 715 } 716 } 717 718 case 2: 719 Dprintf("RECON: resume requests\n"); 720 rf_ResumeNewRequests(raidPtr); 721 722 723 reconDesc->state = 3; 724 725 case 3: 726 727 /* process reconstruction events until all disks report that 728 * they've completed all work */ 729 mapPtr = raidPtr->reconControl[row]->reconMap; 730 731 732 733 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 734 735 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 736 RF_ASSERT(event); 737 738 if (ProcessReconEvent(raidPtr, row, event)) 739 reconDesc->numDisksDone++; 740 raidPtr->reconControl[row]->numRUsTotal = 741 mapPtr->totalRUs; 742 raidPtr->reconControl[row]->numRUsComplete = 743 mapPtr->totalRUs - 744 rf_UnitsLeftToReconstruct(mapPtr); 745 746 raidPtr->reconControl[row]->percentComplete = 747 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 748 #if RF_DEBUG_RECON 749 if (rf_prReconSched) { 750 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 751 } 752 #endif 753 } 754 755 756 757 reconDesc->state = 4; 758 759 760 case 4: 761 mapPtr = raidPtr->reconControl[row]->reconMap; 762 if (rf_reconDebug) { 763 printf("RECON: all reads completed\n"); 764 } 765 /* at this point all the reads have completed. We now wait 766 * for any pending writes to complete, and then we're done */ 767 768 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 769 770 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 771 RF_ASSERT(event); 772 773 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 774 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 775 #if RF_DEBUG_RECON 776 if (rf_prReconSched) { 777 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 778 } 779 #endif 780 } 781 reconDesc->state = 5; 782 783 case 5: 784 /* Success: mark the dead disk as reconstructed. We quiesce 785 * the array here to assure no nasty interactions with pending 786 * user accesses when we free up the psstatus structure as 787 * part of FreeReconControl() */ 788 789 reconDesc->state = 6; 790 791 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 792 rf_StopUserStats(raidPtr); 793 rf_PrintUserStats(raidPtr); /* print out the stats on user 794 * accs accumulated during 795 * recon */ 796 797 /* fall through to state 6 */ 798 case 6: 799 800 801 802 RF_LOCK_MUTEX(raidPtr->mutex); 803 raidPtr->numFailures--; 804 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 805 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 806 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 807 RF_UNLOCK_MUTEX(raidPtr->mutex); 808 RF_GETTIME(etime); 809 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 810 811 /* XXX -- why is state 7 different from state 6 if there is no 812 * return() here? -- XXX Note that I set elpsd above & use it 813 * below, so if you put a return here you'll have to fix this. 814 * (also, FreeReconControl is called below) */ 815 816 case 7: 817 818 rf_ResumeNewRequests(raidPtr); 819 820 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 821 raidPtr->raidid, row, col); 822 xor_s = raidPtr->accumXorTimeUs / 1000000; 823 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 824 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 825 raidPtr->raidid, 826 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 827 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 828 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 829 raidPtr->raidid, 830 (int) raidPtr->reconControl[row]->starttime.tv_sec, 831 (int) raidPtr->reconControl[row]->starttime.tv_usec, 832 (int) etime.tv_sec, (int) etime.tv_usec); 833 834 #if RF_RECON_STATS > 0 835 printf("raid%d: Total head-sep stall count was %d\n", 836 raidPtr->raidid, (int) reconDesc->hsStallCount); 837 #endif /* RF_RECON_STATS > 0 */ 838 rf_FreeReconControl(raidPtr, row); 839 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 840 FreeReconDesc(reconDesc); 841 842 } 843 844 SignalReconDone(raidPtr); 845 return (0); 846 } 847 /***************************************************************************** 848 * do the right thing upon each reconstruction event. 849 * returns nonzero if and only if there is nothing left unread on the 850 * indicated disk 851 *****************************************************************************/ 852 static int 853 ProcessReconEvent(raidPtr, frow, event) 854 RF_Raid_t *raidPtr; 855 RF_RowCol_t frow; 856 RF_ReconEvent_t *event; 857 { 858 int retcode = 0, submitblocked; 859 RF_ReconBuffer_t *rbuf; 860 RF_SectorCount_t sectorsPerRU; 861 862 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 863 switch (event->type) { 864 865 /* a read I/O has completed */ 866 case RF_REVENT_READDONE: 867 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 868 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 869 frow, event->col, rbuf->parityStripeID); 870 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 871 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 872 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 873 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 874 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 875 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 876 if (!submitblocked) 877 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 878 break; 879 880 /* a write I/O has completed */ 881 case RF_REVENT_WRITEDONE: 882 #if RF_DEBUG_RECON 883 if (rf_floatingRbufDebug) { 884 rf_CheckFloatingRbufCount(raidPtr, 1); 885 } 886 #endif 887 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 888 rbuf = (RF_ReconBuffer_t *) event->arg; 889 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 890 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 891 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 892 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 893 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 894 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 895 896 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 897 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 898 raidPtr->numFullReconBuffers--; 899 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 900 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 901 } else 902 if (rbuf->type == RF_RBUF_TYPE_FORCED) 903 rf_FreeReconBuffer(rbuf); 904 else 905 RF_ASSERT(0); 906 break; 907 908 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 909 * cleared */ 910 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 911 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 912 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 913 * BUFCLEAR event if we 914 * couldn't submit */ 915 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 916 break; 917 918 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 919 * blockage has been cleared */ 920 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 921 retcode = TryToRead(raidPtr, frow, event->col); 922 break; 923 924 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 925 * reconstruction blockage has been 926 * cleared */ 927 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 928 retcode = TryToRead(raidPtr, frow, event->col); 929 break; 930 931 /* a buffer has become ready to write */ 932 case RF_REVENT_BUFREADY: 933 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 934 retcode = IssueNextWriteRequest(raidPtr, frow); 935 #if RF_DEBUG_RECON 936 if (rf_floatingRbufDebug) { 937 rf_CheckFloatingRbufCount(raidPtr, 1); 938 } 939 #endif 940 break; 941 942 /* we need to skip the current RU entirely because it got 943 * recon'd while we were waiting for something else to happen */ 944 case RF_REVENT_SKIP: 945 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 946 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 947 break; 948 949 /* a forced-reconstruction read access has completed. Just 950 * submit the buffer */ 951 case RF_REVENT_FORCEDREADDONE: 952 rbuf = (RF_ReconBuffer_t *) event->arg; 953 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 954 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 955 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 956 RF_ASSERT(!submitblocked); 957 break; 958 959 default: 960 RF_PANIC(); 961 } 962 rf_FreeReconEventDesc(event); 963 return (retcode); 964 } 965 /***************************************************************************** 966 * 967 * find the next thing that's needed on the indicated disk, and issue 968 * a read request for it. We assume that the reconstruction buffer 969 * associated with this process is free to receive the data. If 970 * reconstruction is blocked on the indicated RU, we issue a 971 * blockage-release request instead of a physical disk read request. 972 * If the current disk gets too far ahead of the others, we issue a 973 * head-separation wait request and return. 974 * 975 * ctrl->{ru_count, curPSID, diskOffset} and 976 * rbuf->failedDiskSectorOffset are maintained to point to the unit 977 * we're currently accessing. Note that this deviates from the 978 * standard C idiom of having counters point to the next thing to be 979 * accessed. This allows us to easily retry when we're blocked by 980 * head separation or reconstruction-blockage events. 981 * 982 * returns nonzero if and only if there is nothing left unread on the 983 * indicated disk 984 * 985 *****************************************************************************/ 986 static int 987 IssueNextReadRequest(raidPtr, row, col) 988 RF_Raid_t *raidPtr; 989 RF_RowCol_t row; 990 RF_RowCol_t col; 991 { 992 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 993 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 994 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 995 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 996 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 997 int do_new_check = 0, retcode = 0, status; 998 999 /* if we are currently the slowest disk, mark that we have to do a new 1000 * check */ 1001 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 1002 do_new_check = 1; 1003 1004 while (1) { 1005 1006 ctrl->ru_count++; 1007 if (ctrl->ru_count < RUsPerPU) { 1008 ctrl->diskOffset += sectorsPerRU; 1009 rbuf->failedDiskSectorOffset += sectorsPerRU; 1010 } else { 1011 ctrl->curPSID++; 1012 ctrl->ru_count = 0; 1013 /* code left over from when head-sep was based on 1014 * parity stripe id */ 1015 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 1016 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 1017 return (1); /* finito! */ 1018 } 1019 /* find the disk offsets of the start of the parity 1020 * stripe on both the current disk and the failed 1021 * disk. skip this entire parity stripe if either disk 1022 * does not appear in the indicated PS */ 1023 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1024 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1025 if (status) { 1026 ctrl->ru_count = RUsPerPU - 1; 1027 continue; 1028 } 1029 } 1030 rbuf->which_ru = ctrl->ru_count; 1031 1032 /* skip this RU if it's already been reconstructed */ 1033 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1034 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1035 continue; 1036 } 1037 break; 1038 } 1039 ctrl->headSepCounter++; 1040 if (do_new_check) 1041 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1042 1043 1044 /* at this point, we have definitely decided what to do, and we have 1045 * only to see if we can actually do it now */ 1046 rbuf->parityStripeID = ctrl->curPSID; 1047 rbuf->which_ru = ctrl->ru_count; 1048 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1049 sizeof(raidPtr->recon_tracerecs[col])); 1050 raidPtr->recon_tracerecs[col].reconacc = 1; 1051 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1052 retcode = TryToRead(raidPtr, row, col); 1053 return (retcode); 1054 } 1055 1056 /* 1057 * tries to issue the next read on the indicated disk. We may be 1058 * blocked by (a) the heads being too far apart, or (b) recon on the 1059 * indicated RU being blocked due to a write by a user thread. In 1060 * this case, we issue a head-sep or blockage wait request, which will 1061 * cause this same routine to be invoked again later when the blockage 1062 * has cleared. 1063 */ 1064 1065 static int 1066 TryToRead(raidPtr, row, col) 1067 RF_Raid_t *raidPtr; 1068 RF_RowCol_t row; 1069 RF_RowCol_t col; 1070 { 1071 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1072 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1073 RF_StripeNum_t psid = ctrl->curPSID; 1074 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1075 RF_DiskQueueData_t *req; 1076 int status, created = 0; 1077 RF_ReconParityStripeStatus_t *pssPtr; 1078 1079 /* if the current disk is too far ahead of the others, issue a 1080 * head-separation wait and return */ 1081 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1082 return (0); 1083 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1084 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1085 1086 /* if recon is blocked on the indicated parity stripe, issue a 1087 * block-wait request and return. this also must mark the indicated RU 1088 * in the stripe as under reconstruction if not blocked. */ 1089 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1090 if (status == RF_PSS_RECON_BLOCKED) { 1091 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1092 goto out; 1093 } else 1094 if (status == RF_PSS_FORCED_ON_WRITE) { 1095 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1096 goto out; 1097 } 1098 /* make one last check to be sure that the indicated RU didn't get 1099 * reconstructed while we were waiting for something else to happen. 1100 * This is unfortunate in that it causes us to make this check twice 1101 * in the normal case. Might want to make some attempt to re-work 1102 * this so that we only do this check if we've definitely blocked on 1103 * one of the above checks. When this condition is detected, we may 1104 * have just created a bogus status entry, which we need to delete. */ 1105 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1106 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1107 if (created) 1108 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1109 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1110 goto out; 1111 } 1112 /* found something to read. issue the I/O */ 1113 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1114 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1115 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1116 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1117 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1118 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1119 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1120 1121 /* should be ok to use a NULL proc pointer here, all the bufs we use 1122 * should be in kernel space */ 1123 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1124 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1125 1126 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1127 1128 ctrl->rbuf->arg = (void *) req; 1129 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1130 pssPtr->issued[col] = 1; 1131 1132 out: 1133 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1134 return (0); 1135 } 1136 1137 1138 /* 1139 * given a parity stripe ID, we want to find out whether both the 1140 * current disk and the failed disk exist in that parity stripe. If 1141 * not, we want to skip this whole PS. If so, we want to find the 1142 * disk offset of the start of the PS on both the current disk and the 1143 * failed disk. 1144 * 1145 * this works by getting a list of disks comprising the indicated 1146 * parity stripe, and searching the list for the current and failed 1147 * disks. Once we've decided they both exist in the parity stripe, we 1148 * need to decide whether each is data or parity, so that we'll know 1149 * which mapping function to call to get the corresponding disk 1150 * offsets. 1151 * 1152 * this is kind of unpleasant, but doing it this way allows the 1153 * reconstruction code to use parity stripe IDs rather than physical 1154 * disks address to march through the failed disk, which greatly 1155 * simplifies a lot of code, as well as eliminating the need for a 1156 * reverse-mapping function. I also think it will execute faster, 1157 * since the calls to the mapping module are kept to a minimum. 1158 * 1159 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1160 * THE STRIPE IN THE CORRECT ORDER */ 1161 1162 1163 static int 1164 ComputePSDiskOffsets( 1165 RF_Raid_t * raidPtr, /* raid descriptor */ 1166 RF_StripeNum_t psid, /* parity stripe identifier */ 1167 RF_RowCol_t row, /* row and column of disk to find the offsets 1168 * for */ 1169 RF_RowCol_t col, 1170 RF_SectorNum_t * outDiskOffset, 1171 RF_SectorNum_t * outFailedDiskSectorOffset, 1172 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1173 RF_RowCol_t * spCol, 1174 RF_SectorNum_t * spOffset) 1175 { /* OUT: offset into disk containing spare unit */ 1176 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1177 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1178 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1179 RF_RowCol_t *diskids; 1180 u_int i, j, k, i_offset, j_offset; 1181 RF_RowCol_t prow, pcol; 1182 int testcol, testrow; 1183 RF_RowCol_t stripe; 1184 RF_SectorNum_t poffset; 1185 char i_is_parity = 0, j_is_parity = 0; 1186 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1187 1188 /* get a listing of the disks comprising that stripe */ 1189 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1190 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1191 RF_ASSERT(diskids); 1192 1193 /* reject this entire parity stripe if it does not contain the 1194 * indicated disk or it does not contain the failed disk */ 1195 if (row != stripe) 1196 goto skipit; 1197 for (i = 0; i < stripeWidth; i++) { 1198 if (col == diskids[i]) 1199 break; 1200 } 1201 if (i == stripeWidth) 1202 goto skipit; 1203 for (j = 0; j < stripeWidth; j++) { 1204 if (fcol == diskids[j]) 1205 break; 1206 } 1207 if (j == stripeWidth) { 1208 goto skipit; 1209 } 1210 /* find out which disk the parity is on */ 1211 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1212 1213 /* find out if either the current RU or the failed RU is parity */ 1214 /* also, if the parity occurs in this stripe prior to the data and/or 1215 * failed col, we need to decrement i and/or j */ 1216 for (k = 0; k < stripeWidth; k++) 1217 if (diskids[k] == pcol) 1218 break; 1219 RF_ASSERT(k < stripeWidth); 1220 i_offset = i; 1221 j_offset = j; 1222 if (k < i) 1223 i_offset--; 1224 else 1225 if (k == i) { 1226 i_is_parity = 1; 1227 i_offset = 0; 1228 } /* set offsets to zero to disable multiply 1229 * below */ 1230 if (k < j) 1231 j_offset--; 1232 else 1233 if (k == j) { 1234 j_is_parity = 1; 1235 j_offset = 0; 1236 } 1237 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1238 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1239 * tells us how far into the stripe the [current,failed] disk is. */ 1240 1241 /* call the mapping routine to get the offset into the current disk, 1242 * repeat for failed disk. */ 1243 if (i_is_parity) 1244 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1245 else 1246 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1247 1248 RF_ASSERT(row == testrow && col == testcol); 1249 1250 if (j_is_parity) 1251 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1252 else 1253 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1254 RF_ASSERT(row == testrow && fcol == testcol); 1255 1256 /* now locate the spare unit for the failed unit */ 1257 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1258 if (j_is_parity) 1259 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1260 else 1261 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1262 } else { 1263 *spRow = raidPtr->reconControl[row]->spareRow; 1264 *spCol = raidPtr->reconControl[row]->spareCol; 1265 *spOffset = *outFailedDiskSectorOffset; 1266 } 1267 1268 return (0); 1269 1270 skipit: 1271 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1272 psid, row, col); 1273 return (1); 1274 } 1275 /* this is called when a buffer has become ready to write to the replacement disk */ 1276 static int 1277 IssueNextWriteRequest(raidPtr, row) 1278 RF_Raid_t *raidPtr; 1279 RF_RowCol_t row; 1280 { 1281 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1282 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1283 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1284 RF_ReconBuffer_t *rbuf; 1285 RF_DiskQueueData_t *req; 1286 1287 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1288 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1289 * have gotten the event that sent us here */ 1290 RF_ASSERT(rbuf->pssPtr); 1291 1292 rbuf->pssPtr->writeRbuf = rbuf; 1293 rbuf->pssPtr = NULL; 1294 1295 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1296 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1297 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1298 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1299 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1300 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1301 1302 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1303 * kernel space */ 1304 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1305 sectorsPerRU, rbuf->buffer, 1306 rbuf->parityStripeID, rbuf->which_ru, 1307 ReconWriteDoneProc, (void *) rbuf, NULL, 1308 &raidPtr->recon_tracerecs[fcol], 1309 (void *) raidPtr, 0, NULL); 1310 1311 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1312 1313 rbuf->arg = (void *) req; 1314 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1315 1316 return (0); 1317 } 1318 1319 /* 1320 * this gets called upon the completion of a reconstruction read 1321 * operation the arg is a pointer to the per-disk reconstruction 1322 * control structure for the process that just finished a read. 1323 * 1324 * called at interrupt context in the kernel, so don't do anything 1325 * illegal here. 1326 */ 1327 static int 1328 ReconReadDoneProc(arg, status) 1329 void *arg; 1330 int status; 1331 { 1332 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1333 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1334 1335 if (status) { 1336 /* 1337 * XXX 1338 */ 1339 printf("Recon read failed!\n"); 1340 RF_PANIC(); 1341 } 1342 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1343 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1344 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1345 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1346 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1347 1348 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1349 return (0); 1350 } 1351 /* this gets called upon the completion of a reconstruction write operation. 1352 * the arg is a pointer to the rbuf that was just written 1353 * 1354 * called at interrupt context in the kernel, so don't do anything illegal here. 1355 */ 1356 static int 1357 ReconWriteDoneProc(arg, status) 1358 void *arg; 1359 int status; 1360 { 1361 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1362 1363 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1364 if (status) { 1365 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1366 * write failed!\n"); */ 1367 RF_PANIC(); 1368 } 1369 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1370 return (0); 1371 } 1372 1373 1374 /* 1375 * computes a new minimum head sep, and wakes up anyone who needs to 1376 * be woken as a result 1377 */ 1378 static void 1379 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1380 RF_Raid_t *raidPtr; 1381 RF_RowCol_t row; 1382 RF_HeadSepLimit_t hsCtr; 1383 { 1384 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1385 RF_HeadSepLimit_t new_min; 1386 RF_RowCol_t i; 1387 RF_CallbackDesc_t *p; 1388 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1389 * of a minimum */ 1390 1391 1392 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1393 1394 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1395 for (i = 0; i < raidPtr->numCol; i++) 1396 if (i != reconCtrlPtr->fcol) { 1397 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1398 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1399 } 1400 /* set the new minimum and wake up anyone who can now run again */ 1401 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1402 reconCtrlPtr->minHeadSepCounter = new_min; 1403 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1404 while (reconCtrlPtr->headSepCBList) { 1405 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1406 break; 1407 p = reconCtrlPtr->headSepCBList; 1408 reconCtrlPtr->headSepCBList = p->next; 1409 p->next = NULL; 1410 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1411 rf_FreeCallbackDesc(p); 1412 } 1413 1414 } 1415 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1416 } 1417 1418 /* 1419 * checks to see that the maximum head separation will not be violated 1420 * if we initiate a reconstruction I/O on the indicated disk. 1421 * Limiting the maximum head separation between two disks eliminates 1422 * the nasty buffer-stall conditions that occur when one disk races 1423 * ahead of the others and consumes all of the floating recon buffers. 1424 * This code is complex and unpleasant but it's necessary to avoid 1425 * some very nasty, albeit fairly rare, reconstruction behavior. 1426 * 1427 * returns non-zero if and only if we have to stop working on the 1428 * indicated disk due to a head-separation delay. 1429 */ 1430 static int 1431 CheckHeadSeparation( 1432 RF_Raid_t * raidPtr, 1433 RF_PerDiskReconCtrl_t * ctrl, 1434 RF_RowCol_t row, 1435 RF_RowCol_t col, 1436 RF_HeadSepLimit_t hsCtr, 1437 RF_ReconUnitNum_t which_ru) 1438 { 1439 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1440 RF_CallbackDesc_t *cb, *p, *pt; 1441 int retval = 0; 1442 1443 /* if we're too far ahead of the slowest disk, stop working on this 1444 * disk until the slower ones catch up. We do this by scheduling a 1445 * wakeup callback for the time when the slowest disk has caught up. 1446 * We define "caught up" with 20% hysteresis, i.e. the head separation 1447 * must have fallen to at most 80% of the max allowable head 1448 * separation before we'll wake up. 1449 * 1450 */ 1451 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1452 if ((raidPtr->headSepLimit >= 0) && 1453 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1454 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1455 raidPtr->raidid, row, col, ctrl->headSepCounter, 1456 reconCtrlPtr->minHeadSepCounter, 1457 raidPtr->headSepLimit); 1458 cb = rf_AllocCallbackDesc(); 1459 /* the minHeadSepCounter value we have to get to before we'll 1460 * wake up. build in 20% hysteresis. */ 1461 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1462 cb->row = row; 1463 cb->col = col; 1464 cb->next = NULL; 1465 1466 /* insert this callback descriptor into the sorted list of 1467 * pending head-sep callbacks */ 1468 p = reconCtrlPtr->headSepCBList; 1469 if (!p) 1470 reconCtrlPtr->headSepCBList = cb; 1471 else 1472 if (cb->callbackArg.v < p->callbackArg.v) { 1473 cb->next = reconCtrlPtr->headSepCBList; 1474 reconCtrlPtr->headSepCBList = cb; 1475 } else { 1476 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1477 cb->next = p; 1478 pt->next = cb; 1479 } 1480 retval = 1; 1481 #if RF_RECON_STATS > 0 1482 ctrl->reconCtrl->reconDesc->hsStallCount++; 1483 #endif /* RF_RECON_STATS > 0 */ 1484 } 1485 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1486 1487 return (retval); 1488 } 1489 /* 1490 * checks to see if reconstruction has been either forced or blocked 1491 * by a user operation. if forced, we skip this RU entirely. else if 1492 * blocked, put ourselves on the wait list. else return 0. 1493 * 1494 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1495 */ 1496 static int 1497 CheckForcedOrBlockedReconstruction( 1498 RF_Raid_t * raidPtr, 1499 RF_ReconParityStripeStatus_t * pssPtr, 1500 RF_PerDiskReconCtrl_t * ctrl, 1501 RF_RowCol_t row, 1502 RF_RowCol_t col, 1503 RF_StripeNum_t psid, 1504 RF_ReconUnitNum_t which_ru) 1505 { 1506 RF_CallbackDesc_t *cb; 1507 int retcode = 0; 1508 1509 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1510 retcode = RF_PSS_FORCED_ON_WRITE; 1511 else 1512 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1513 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1514 cb = rf_AllocCallbackDesc(); /* append ourselves to 1515 * the blockage-wait 1516 * list */ 1517 cb->row = row; 1518 cb->col = col; 1519 cb->next = pssPtr->blockWaitList; 1520 pssPtr->blockWaitList = cb; 1521 retcode = RF_PSS_RECON_BLOCKED; 1522 } 1523 if (!retcode) 1524 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1525 * reconstruction */ 1526 1527 return (retcode); 1528 } 1529 /* 1530 * if reconstruction is currently ongoing for the indicated stripeID, 1531 * reconstruction is forced to completion and we return non-zero to 1532 * indicate that the caller must wait. If not, then reconstruction is 1533 * blocked on the indicated stripe and the routine returns zero. If 1534 * and only if we return non-zero, we'll cause the cbFunc to get 1535 * invoked with the cbArg when the reconstruction has completed. 1536 */ 1537 int 1538 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1539 RF_Raid_t *raidPtr; 1540 RF_AccessStripeMap_t *asmap; 1541 void (*cbFunc) (RF_Raid_t *, void *); 1542 void *cbArg; 1543 { 1544 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1545 * we're working on */ 1546 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1547 * forcing recon on */ 1548 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1549 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1550 * stripe status structure */ 1551 RF_StripeNum_t psid; /* parity stripe id */ 1552 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1553 * offset */ 1554 RF_RowCol_t *diskids; 1555 RF_RowCol_t stripe; 1556 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1557 RF_RowCol_t fcol, diskno, i; 1558 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1559 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1560 RF_CallbackDesc_t *cb; 1561 int created = 0, nPromoted; 1562 1563 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1564 1565 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1566 1567 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1568 1569 /* if recon is not ongoing on this PS, just return */ 1570 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1571 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1572 return (0); 1573 } 1574 /* otherwise, we have to wait for reconstruction to complete on this 1575 * RU. */ 1576 /* In order to avoid waiting for a potentially large number of 1577 * low-priority accesses to complete, we force a normal-priority (i.e. 1578 * not low-priority) reconstruction on this RU. */ 1579 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1580 DDprintf1("Forcing recon on psid %ld\n", psid); 1581 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1582 * forced recon */ 1583 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1584 * that we just set */ 1585 fcol = raidPtr->reconControl[row]->fcol; 1586 1587 /* get a listing of the disks comprising the indicated stripe */ 1588 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1589 RF_ASSERT(row == stripe); 1590 1591 /* For previously issued reads, elevate them to normal 1592 * priority. If the I/O has already completed, it won't be 1593 * found in the queue, and hence this will be a no-op. For 1594 * unissued reads, allocate buffers and issue new reads. The 1595 * fact that we've set the FORCED bit means that the regular 1596 * recon procs will not re-issue these reqs */ 1597 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1598 if ((diskno = diskids[i]) != fcol) { 1599 if (pssPtr->issued[diskno]) { 1600 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1601 if (rf_reconDebug && nPromoted) 1602 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1603 } else { 1604 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1605 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1606 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1607 * location */ 1608 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1609 new_rbuf->which_ru = which_ru; 1610 new_rbuf->failedDiskSectorOffset = fd_offset; 1611 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1612 1613 /* use NULL b_proc b/c all addrs 1614 * should be in kernel space */ 1615 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1616 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1617 NULL, (void *) raidPtr, 0, NULL); 1618 1619 RF_ASSERT(req); /* XXX -- fix this -- 1620 * XXX */ 1621 1622 new_rbuf->arg = req; 1623 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1624 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1625 } 1626 } 1627 /* if the write is sitting in the disk queue, elevate its 1628 * priority */ 1629 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1630 printf("raid%d: promoted write to row %d col %d\n", 1631 raidPtr->raidid, row, fcol); 1632 } 1633 /* install a callback descriptor to be invoked when recon completes on 1634 * this parity stripe. */ 1635 cb = rf_AllocCallbackDesc(); 1636 /* XXX the following is bogus.. These functions don't really match!! 1637 * GO */ 1638 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1639 cb->callbackArg.p = (void *) cbArg; 1640 cb->next = pssPtr->procWaitList; 1641 pssPtr->procWaitList = cb; 1642 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1643 raidPtr->raidid, psid); 1644 1645 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1646 return (1); 1647 } 1648 /* called upon the completion of a forced reconstruction read. 1649 * all we do is schedule the FORCEDREADONE event. 1650 * called at interrupt context in the kernel, so don't do anything illegal here. 1651 */ 1652 static void 1653 ForceReconReadDoneProc(arg, status) 1654 void *arg; 1655 int status; 1656 { 1657 RF_ReconBuffer_t *rbuf = arg; 1658 1659 if (status) { 1660 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1661 * recon read 1662 * failed!\n"); */ 1663 RF_PANIC(); 1664 } 1665 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1666 } 1667 /* releases a block on the reconstruction of the indicated stripe */ 1668 int 1669 rf_UnblockRecon(raidPtr, asmap) 1670 RF_Raid_t *raidPtr; 1671 RF_AccessStripeMap_t *asmap; 1672 { 1673 RF_RowCol_t row = asmap->origRow; 1674 RF_StripeNum_t stripeID = asmap->stripeID; 1675 RF_ReconParityStripeStatus_t *pssPtr; 1676 RF_ReconUnitNum_t which_ru; 1677 RF_StripeNum_t psid; 1678 int created = 0; 1679 RF_CallbackDesc_t *cb; 1680 1681 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1682 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1683 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1684 1685 /* When recon is forced, the pss desc can get deleted before we get 1686 * back to unblock recon. But, this can _only_ happen when recon is 1687 * forced. It would be good to put some kind of sanity check here, but 1688 * how to decide if recon was just forced or not? */ 1689 if (!pssPtr) { 1690 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1691 * RU %d\n",psid,which_ru); */ 1692 if (rf_reconDebug || rf_pssDebug) 1693 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1694 goto out; 1695 } 1696 pssPtr->blockCount--; 1697 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1698 raidPtr->raidid, psid, pssPtr->blockCount); 1699 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1700 1701 /* unblock recon before calling CauseReconEvent in case 1702 * CauseReconEvent causes us to try to issue a new read before 1703 * returning here. */ 1704 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1705 1706 1707 while (pssPtr->blockWaitList) { 1708 /* spin through the block-wait list and 1709 release all the waiters */ 1710 cb = pssPtr->blockWaitList; 1711 pssPtr->blockWaitList = cb->next; 1712 cb->next = NULL; 1713 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1714 rf_FreeCallbackDesc(cb); 1715 } 1716 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1717 /* if no recon was requested while recon was blocked */ 1718 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1719 } 1720 } 1721 out: 1722 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1723 return (0); 1724 } 1725