xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 08c81a9c2dc8c7300e893321eb65c0925d60871c)
1 /*	$NetBSD: rf_reconstruct.c,v 1.41 2002/09/17 03:30:33 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.41 2002/09/17 03:30:33 oster Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #if RF_DEBUG_RECON
70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78 
79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 
82 #else /* RF_DEBUG_RECON */
83 
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92 
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95 
96 #endif /* RF_DEBUG_RECON */
97 
98 
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND  4
101 #define RF_RECOND_INC       1
102 
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110     RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113     RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125     RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129     RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134     RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136 
137 static void rf_ShutdownReconstruction(void *);
138 
139 struct RF_ReconDoneProc_s {
140 	void    (*proc) (RF_Raid_t *, void *);
141 	void   *arg;
142 	RF_ReconDoneProc_t *next;
143 };
144 
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC      1
148 
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 	RF_ReconDoneProc_t *p;
153 
154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 		p->proc(raidPtr, p->arg);
157 	}
158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160 
161 int
162 rf_RegisterReconDoneProc(
163     RF_Raid_t * raidPtr,
164     void (*proc) (RF_Raid_t *, void *),
165     void *arg,
166     RF_ReconDoneProc_t ** handlep)
167 {
168 	RF_ReconDoneProc_t *p;
169 
170 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 	if (p == NULL)
172 		return (ENOMEM);
173 	p->proc = proc;
174 	p->arg = arg;
175 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 	p->next = raidPtr->recon_done_procs;
177 	raidPtr->recon_done_procs = p;
178 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 	if (handlep)
180 		*handlep = p;
181 	return (0);
182 }
183 /**************************************************************************
184  *
185  * sets up the parameters that will be used by the reconstruction process
186  * currently there are none, except for those that the layout-specific
187  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188  *
189  * in the kernel, we fire off the recon thread.
190  *
191  **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 	void   *ignored;
195 {
196 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199 
200 int
201 rf_ConfigureReconstruction(listp)
202 	RF_ShutdownList_t **listp;
203 {
204 	int     rc;
205 
206 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 	if (rf_recond_freelist == NULL)
209 		return (ENOMEM);
210 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 	if (rf_rdp_freelist == NULL) {
213 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 		return (ENOMEM);
215 	}
216 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 	if (rc) {
218 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 		rf_ShutdownReconstruction(NULL);
220 		return (rc);
221 	}
222 	return (0);
223 }
224 
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 	RF_Raid_t *raidPtr;
228 	RF_RowCol_t row;
229 	RF_RowCol_t col;
230 	RF_RaidDisk_t *spareDiskPtr;
231 	int     numDisksDone;
232 	RF_RowCol_t srow;
233 	RF_RowCol_t scol;
234 {
235 
236 	RF_RaidReconDesc_t *reconDesc;
237 
238 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239 
240 	reconDesc->raidPtr = raidPtr;
241 	reconDesc->row = row;
242 	reconDesc->col = col;
243 	reconDesc->spareDiskPtr = spareDiskPtr;
244 	reconDesc->numDisksDone = numDisksDone;
245 	reconDesc->srow = srow;
246 	reconDesc->scol = scol;
247 	reconDesc->state = 0;
248 	reconDesc->next = NULL;
249 
250 	return (reconDesc);
251 }
252 
253 static void
254 FreeReconDesc(reconDesc)
255 	RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif				/* RF_RECON_STATS > 0 */
261 	printf("RAIDframe: %lu max exec ticks\n",
262 	    (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 	printf("\n");
265 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
266 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268 
269 
270 /*****************************************************************************
271  *
272  * primary routine to reconstruct a failed disk.  This should be called from
273  * within its own thread.  It won't return until reconstruction completes,
274  * fails, or is aborted.
275  *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 	RF_Raid_t *raidPtr;
279 	RF_RowCol_t row;
280 	RF_RowCol_t col;
281 {
282 	RF_LayoutSW_t *lp;
283 	int     rc;
284 
285 	lp = raidPtr->Layout.map;
286 	if (lp->SubmitReconBuffer) {
287 		/*
288 	         * The current infrastructure only supports reconstructing one
289 	         * disk at a time for each array.
290 	         */
291 		RF_LOCK_MUTEX(raidPtr->mutex);
292 		while (raidPtr->reconInProgress) {
293 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 		}
295 		raidPtr->reconInProgress++;
296 		RF_UNLOCK_MUTEX(raidPtr->mutex);
297 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 		RF_LOCK_MUTEX(raidPtr->mutex);
299 		raidPtr->reconInProgress--;
300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
301 	} else {
302 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 		    lp->parityConfig);
304 		rc = EIO;
305 	}
306 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 	return (rc);
308 }
309 
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 	RF_Raid_t *raidPtr;
313 	RF_RowCol_t row;
314 	RF_RowCol_t col;
315 {
316 	RF_ComponentLabel_t c_label;
317 	RF_RaidDisk_t *spareDiskPtr = NULL;
318 	RF_RaidReconDesc_t *reconDesc;
319 	RF_RowCol_t srow, scol;
320 	int     numDisksDone = 0, rc;
321 
322 	/* first look for a spare drive onto which to reconstruct the data */
323 	/* spare disk descriptors are stored in row 0.  This may have to
324 	 * change eventually */
325 
326 	RF_LOCK_MUTEX(raidPtr->mutex);
327 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328 
329 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 		if (raidPtr->status[row] != rf_rs_degraded) {
331 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 			RF_UNLOCK_MUTEX(raidPtr->mutex);
333 			return (EINVAL);
334 		}
335 		srow = row;
336 		scol = (-1);
337 	} else {
338 		srow = 0;
339 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 				spareDiskPtr = &raidPtr->Disks[srow][scol];
342 				spareDiskPtr->status = rf_ds_used_spare;
343 				break;
344 			}
345 		}
346 		if (!spareDiskPtr) {
347 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 			RF_UNLOCK_MUTEX(raidPtr->mutex);
349 			return (ENOSPC);
350 		}
351 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 	}
353 	RF_UNLOCK_MUTEX(raidPtr->mutex);
354 
355 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 	raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 	reconDesc->hsStallCount = 0;
359 	reconDesc->numReconExecDelays = 0;
360 	reconDesc->numReconEventWaits = 0;
361 #endif				/* RF_RECON_STATS > 0 */
362 	reconDesc->reconExecTimerRunning = 0;
363 	reconDesc->reconExecTicks = 0;
364 	reconDesc->maxReconExecTicks = 0;
365 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
366 
367 	if (!rc) {
368 		/* fix up the component label */
369 		/* Don't actually need the read here.. */
370 		raidread_component_label(
371                         raidPtr->raid_cinfo[srow][scol].ci_dev,
372 			raidPtr->raid_cinfo[srow][scol].ci_vp,
373 			&c_label);
374 
375 		raid_init_component_label( raidPtr, &c_label);
376 		c_label.row = row;
377 		c_label.column = col;
378 		c_label.clean = RF_RAID_DIRTY;
379 		c_label.status = rf_ds_optimal;
380 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381 
382 		/* We've just done a rebuild based on all the other
383 		   disks, so at this point the parity is known to be
384 		   clean, even if it wasn't before. */
385 
386 		/* XXX doesn't hold for RAID 6!!*/
387 
388 		raidPtr->parity_good = RF_RAID_CLEAN;
389 
390 		/* XXXX MORE NEEDED HERE */
391 
392 		raidwrite_component_label(
393                         raidPtr->raid_cinfo[srow][scol].ci_dev,
394 			raidPtr->raid_cinfo[srow][scol].ci_vp,
395 			&c_label);
396 
397 	}
398 	return (rc);
399 }
400 
401 /*
402 
403    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404    and you don't get a spare until the next Monday.  With this function
405    (and hot-swappable drives) you can now put your new disk containing
406    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407    rebuild the data "on the spot".
408 
409 */
410 
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 	RF_Raid_t *raidPtr;
414 	RF_RowCol_t row;
415 	RF_RowCol_t col;
416 {
417 	RF_RaidDisk_t *spareDiskPtr = NULL;
418 	RF_RaidReconDesc_t *reconDesc;
419 	RF_LayoutSW_t *lp;
420 	RF_RaidDisk_t *badDisk;
421 	RF_ComponentLabel_t c_label;
422 	int     numDisksDone = 0, rc;
423 	struct partinfo dpart;
424 	struct vnode *vp;
425 	struct vattr va;
426 	struct proc *proc;
427 	int retcode;
428 	int ac;
429 
430 	lp = raidPtr->Layout.map;
431 	if (lp->SubmitReconBuffer) {
432 		/*
433 	         * The current infrastructure only supports reconstructing one
434 	         * disk at a time for each array.
435 	         */
436 		RF_LOCK_MUTEX(raidPtr->mutex);
437 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 		    (raidPtr->numFailures > 0)) {
439 			/* XXX 0 above shouldn't be constant!!! */
440 			/* some component other than this has failed.
441 			   Let's not make things worse than they already
442 			   are... */
443 			printf("raid%d: Unable to reconstruct to disk at:\n",
444 			       raidPtr->raidid);
445 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
446 			       raidPtr->raidid, row, col);
447 			RF_UNLOCK_MUTEX(raidPtr->mutex);
448 			return (EINVAL);
449 		}
450 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 			printf("raid%d: Unable to reconstruct to disk at:\n",
452 			       raidPtr->raidid);
453 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454 
455 			RF_UNLOCK_MUTEX(raidPtr->mutex);
456 			return (EINVAL);
457 		}
458 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 			return (EINVAL);
460 		}
461 
462 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 			/* "It's gone..." */
464 			raidPtr->numFailures++;
465 			raidPtr->Disks[row][col].status = rf_ds_failed;
466 			raidPtr->status[row] = rf_rs_degraded;
467 			rf_update_component_labels(raidPtr,
468 						   RF_NORMAL_COMPONENT_UPDATE);
469 		}
470 
471 		while (raidPtr->reconInProgress) {
472 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 		}
474 
475 		raidPtr->reconInProgress++;
476 
477 
478 		/* first look for a spare drive onto which to reconstruct
479 		   the data.  spare disk descriptors are stored in row 0.
480 		   This may have to change eventually */
481 
482 		/* Actually, we don't care if it's failed or not...
483 		   On a RAID set with correct parity, this function
484 		   should be callable on any component without ill affects. */
485 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 		 */
487 
488 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490 
491 			raidPtr->reconInProgress--;
492 			RF_UNLOCK_MUTEX(raidPtr->mutex);
493 			return (EINVAL);
494 		}
495 
496 		badDisk = &raidPtr->Disks[row][col];
497 
498 		proc = raidPtr->engine_thread;
499 
500 		/* This device may have been opened successfully the
501 		   first time. Close it before trying to open it again.. */
502 
503 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
504 #if 0
505 			printf("Closed the open device: %s\n",
506 			       raidPtr->Disks[row][col].devname);
507 #endif
508 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
509 			ac = raidPtr->Disks[row][col].auto_configured;
510 			rf_close_component(raidPtr, vp, ac);
511 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
512 		}
513 		/* note that this disk was *not* auto_configured (any longer)*/
514 		raidPtr->Disks[row][col].auto_configured = 0;
515 
516 #if 0
517 		printf("About to (re-)open the device for rebuilding: %s\n",
518 		       raidPtr->Disks[row][col].devname);
519 #endif
520 
521 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
522 				     proc, &vp);
523 
524 		if (retcode) {
525 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
526 			       raidPtr->Disks[row][col].devname, retcode);
527 
528 			/* the component isn't responding properly...
529 			   must be still dead :-( */
530 			raidPtr->reconInProgress--;
531 			RF_UNLOCK_MUTEX(raidPtr->mutex);
532 			return(retcode);
533 
534 		} else {
535 
536 			/* Ok, so we can at least do a lookup...
537 			   How about actually getting a vp for it? */
538 
539 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
540 						   proc)) != 0) {
541 				raidPtr->reconInProgress--;
542 				RF_UNLOCK_MUTEX(raidPtr->mutex);
543 				return(retcode);
544 			}
545 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
546 					    FREAD, proc->p_ucred, proc);
547 			if (retcode) {
548 				raidPtr->reconInProgress--;
549 				RF_UNLOCK_MUTEX(raidPtr->mutex);
550 				return(retcode);
551 			}
552 			raidPtr->Disks[row][col].blockSize =
553 				dpart.disklab->d_secsize;
554 
555 			raidPtr->Disks[row][col].numBlocks =
556 				dpart.part->p_size - rf_protectedSectors;
557 
558 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
559 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
560 
561 			raidPtr->Disks[row][col].dev = va.va_rdev;
562 
563 			/* we allow the user to specify that only a
564 			   fraction of the disks should be used this is
565 			   just for debug:  it speeds up
566 			 * the parity scan */
567 			raidPtr->Disks[row][col].numBlocks =
568 				raidPtr->Disks[row][col].numBlocks *
569 				rf_sizePercentage / 100;
570 		}
571 
572 
573 
574 		spareDiskPtr = &raidPtr->Disks[row][col];
575 		spareDiskPtr->status = rf_ds_used_spare;
576 
577 		printf("raid%d: initiating in-place reconstruction on\n",
578 		       raidPtr->raidid);
579 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
580 		       raidPtr->raidid, row, col, row, col);
581 
582 		RF_UNLOCK_MUTEX(raidPtr->mutex);
583 
584 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
585 					       spareDiskPtr, numDisksDone,
586 					       row, col);
587 		raidPtr->reconDesc = (void *) reconDesc;
588 #if RF_RECON_STATS > 0
589 		reconDesc->hsStallCount = 0;
590 		reconDesc->numReconExecDelays = 0;
591 		reconDesc->numReconEventWaits = 0;
592 #endif				/* RF_RECON_STATS > 0 */
593 		reconDesc->reconExecTimerRunning = 0;
594 		reconDesc->reconExecTicks = 0;
595 		reconDesc->maxReconExecTicks = 0;
596 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
597 
598 		RF_LOCK_MUTEX(raidPtr->mutex);
599 		raidPtr->reconInProgress--;
600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
601 
602 	} else {
603 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
604 			     lp->parityConfig);
605 		rc = EIO;
606 	}
607 	RF_LOCK_MUTEX(raidPtr->mutex);
608 
609 	if (!rc) {
610 		/* Need to set these here, as at this point it'll be claiming
611 		   that the disk is in rf_ds_spared!  But we know better :-) */
612 
613 		raidPtr->Disks[row][col].status = rf_ds_optimal;
614 		raidPtr->status[row] = rf_rs_optimal;
615 
616 		/* fix up the component label */
617 		/* Don't actually need the read here.. */
618 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
619 					 raidPtr->raid_cinfo[row][col].ci_vp,
620 					 &c_label);
621 
622 		raid_init_component_label(raidPtr, &c_label);
623 
624 		c_label.row = row;
625 		c_label.column = col;
626 
627 		/* We've just done a rebuild based on all the other
628 		   disks, so at this point the parity is known to be
629 		   clean, even if it wasn't before. */
630 
631 		/* XXX doesn't hold for RAID 6!!*/
632 
633 		raidPtr->parity_good = RF_RAID_CLEAN;
634 
635 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
636 					  raidPtr->raid_cinfo[row][col].ci_vp,
637 					  &c_label);
638 
639 	}
640 	RF_UNLOCK_MUTEX(raidPtr->mutex);
641 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
642 	wakeup(&raidPtr->waitForReconCond);
643 	return (rc);
644 }
645 
646 
647 int
648 rf_ContinueReconstructFailedDisk(reconDesc)
649 	RF_RaidReconDesc_t *reconDesc;
650 {
651 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
652 	RF_RowCol_t row = reconDesc->row;
653 	RF_RowCol_t col = reconDesc->col;
654 	RF_RowCol_t srow = reconDesc->srow;
655 	RF_RowCol_t scol = reconDesc->scol;
656 	RF_ReconMap_t *mapPtr;
657 
658 	RF_ReconEvent_t *event;
659 	struct timeval etime, elpsd;
660 	unsigned long xor_s, xor_resid_us;
661 	int     retcode, i, ds;
662 
663 	switch (reconDesc->state) {
664 
665 
666 	case 0:
667 
668 		raidPtr->accumXorTimeUs = 0;
669 
670 		/* create one trace record per physical disk */
671 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
672 
673 		/* quiesce the array prior to starting recon.  this is needed
674 		 * to assure no nasty interactions with pending user writes.
675 		 * We need to do this before we change the disk or row status. */
676 		reconDesc->state = 1;
677 
678 		Dprintf("RECON: begin request suspend\n");
679 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
680 		Dprintf("RECON: end request suspend\n");
681 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
682 						 * user accs */
683 
684 		/* fall through to state 1 */
685 
686 	case 1:
687 
688 		RF_LOCK_MUTEX(raidPtr->mutex);
689 
690 		/* create the reconstruction control pointer and install it in
691 		 * the right slot */
692 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
693 		mapPtr = raidPtr->reconControl[row]->reconMap;
694 		raidPtr->status[row] = rf_rs_reconstructing;
695 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
696 		raidPtr->Disks[row][col].spareRow = srow;
697 		raidPtr->Disks[row][col].spareCol = scol;
698 
699 		RF_UNLOCK_MUTEX(raidPtr->mutex);
700 
701 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
702 
703 		/* now start up the actual reconstruction: issue a read for
704 		 * each surviving disk */
705 
706 		reconDesc->numDisksDone = 0;
707 		for (i = 0; i < raidPtr->numCol; i++) {
708 			if (i != col) {
709 				/* find and issue the next I/O on the
710 				 * indicated disk */
711 				if (IssueNextReadRequest(raidPtr, row, i)) {
712 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
713 					reconDesc->numDisksDone++;
714 				}
715 			}
716 		}
717 
718 	case 2:
719 		Dprintf("RECON: resume requests\n");
720 		rf_ResumeNewRequests(raidPtr);
721 
722 
723 		reconDesc->state = 3;
724 
725 	case 3:
726 
727 		/* process reconstruction events until all disks report that
728 		 * they've completed all work */
729 		mapPtr = raidPtr->reconControl[row]->reconMap;
730 
731 
732 
733 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
734 
735 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
736 			RF_ASSERT(event);
737 
738 			if (ProcessReconEvent(raidPtr, row, event))
739 				reconDesc->numDisksDone++;
740 			raidPtr->reconControl[row]->numRUsTotal =
741 				mapPtr->totalRUs;
742 			raidPtr->reconControl[row]->numRUsComplete =
743 				mapPtr->totalRUs -
744 				rf_UnitsLeftToReconstruct(mapPtr);
745 
746 			raidPtr->reconControl[row]->percentComplete =
747 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
748 #if RF_DEBUG_RECON
749 			if (rf_prReconSched) {
750 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
751 			}
752 #endif
753 		}
754 
755 
756 
757 		reconDesc->state = 4;
758 
759 
760 	case 4:
761 		mapPtr = raidPtr->reconControl[row]->reconMap;
762 		if (rf_reconDebug) {
763 			printf("RECON: all reads completed\n");
764 		}
765 		/* at this point all the reads have completed.  We now wait
766 		 * for any pending writes to complete, and then we're done */
767 
768 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
769 
770 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
771 			RF_ASSERT(event);
772 
773 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
774 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
775 #if RF_DEBUG_RECON
776 			if (rf_prReconSched) {
777 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
778 			}
779 #endif
780 		}
781 		reconDesc->state = 5;
782 
783 	case 5:
784 		/* Success:  mark the dead disk as reconstructed.  We quiesce
785 		 * the array here to assure no nasty interactions with pending
786 		 * user accesses when we free up the psstatus structure as
787 		 * part of FreeReconControl() */
788 
789 		reconDesc->state = 6;
790 
791 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
792 		rf_StopUserStats(raidPtr);
793 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
794 						 * accs accumulated during
795 						 * recon */
796 
797 		/* fall through to state 6 */
798 	case 6:
799 
800 
801 
802 		RF_LOCK_MUTEX(raidPtr->mutex);
803 		raidPtr->numFailures--;
804 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
805 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
806 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
807 		RF_UNLOCK_MUTEX(raidPtr->mutex);
808 		RF_GETTIME(etime);
809 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
810 
811 		/* XXX -- why is state 7 different from state 6 if there is no
812 		 * return() here? -- XXX Note that I set elpsd above & use it
813 		 * below, so if you put a return here you'll have to fix this.
814 		 * (also, FreeReconControl is called below) */
815 
816 	case 7:
817 
818 		rf_ResumeNewRequests(raidPtr);
819 
820 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
821 		       raidPtr->raidid, row, col);
822 		xor_s = raidPtr->accumXorTimeUs / 1000000;
823 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
824 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
825 		       raidPtr->raidid,
826 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
827 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
828 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
829 		       raidPtr->raidid,
830 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
831 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
832 		       (int) etime.tv_sec, (int) etime.tv_usec);
833 
834 #if RF_RECON_STATS > 0
835 		printf("raid%d: Total head-sep stall count was %d\n",
836 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
837 #endif				/* RF_RECON_STATS > 0 */
838 		rf_FreeReconControl(raidPtr, row);
839 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
840 		FreeReconDesc(reconDesc);
841 
842 	}
843 
844 	SignalReconDone(raidPtr);
845 	return (0);
846 }
847 /*****************************************************************************
848  * do the right thing upon each reconstruction event.
849  * returns nonzero if and only if there is nothing left unread on the
850  * indicated disk
851  *****************************************************************************/
852 static int
853 ProcessReconEvent(raidPtr, frow, event)
854 	RF_Raid_t *raidPtr;
855 	RF_RowCol_t frow;
856 	RF_ReconEvent_t *event;
857 {
858 	int     retcode = 0, submitblocked;
859 	RF_ReconBuffer_t *rbuf;
860 	RF_SectorCount_t sectorsPerRU;
861 
862 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
863 	switch (event->type) {
864 
865 		/* a read I/O has completed */
866 	case RF_REVENT_READDONE:
867 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
868 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
869 		    frow, event->col, rbuf->parityStripeID);
870 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
871 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
872 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
873 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
874 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
875 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
876 		if (!submitblocked)
877 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
878 		break;
879 
880 		/* a write I/O has completed */
881 	case RF_REVENT_WRITEDONE:
882 #if RF_DEBUG_RECON
883 		if (rf_floatingRbufDebug) {
884 			rf_CheckFloatingRbufCount(raidPtr, 1);
885 		}
886 #endif
887 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
888 		rbuf = (RF_ReconBuffer_t *) event->arg;
889 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
890 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
891 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
892 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
893 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
894 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
895 
896 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
897 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
898 			raidPtr->numFullReconBuffers--;
899 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
900 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
901 		} else
902 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
903 				rf_FreeReconBuffer(rbuf);
904 			else
905 				RF_ASSERT(0);
906 		break;
907 
908 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
909 					 * cleared */
910 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
911 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
912 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
913 						 * BUFCLEAR event if we
914 						 * couldn't submit */
915 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
916 		break;
917 
918 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
919 					 * blockage has been cleared */
920 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
921 		retcode = TryToRead(raidPtr, frow, event->col);
922 		break;
923 
924 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
925 					 * reconstruction blockage has been
926 					 * cleared */
927 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
928 		retcode = TryToRead(raidPtr, frow, event->col);
929 		break;
930 
931 		/* a buffer has become ready to write */
932 	case RF_REVENT_BUFREADY:
933 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
934 		retcode = IssueNextWriteRequest(raidPtr, frow);
935 #if RF_DEBUG_RECON
936 		if (rf_floatingRbufDebug) {
937 			rf_CheckFloatingRbufCount(raidPtr, 1);
938 		}
939 #endif
940 		break;
941 
942 		/* we need to skip the current RU entirely because it got
943 		 * recon'd while we were waiting for something else to happen */
944 	case RF_REVENT_SKIP:
945 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
946 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
947 		break;
948 
949 		/* a forced-reconstruction read access has completed.  Just
950 		 * submit the buffer */
951 	case RF_REVENT_FORCEDREADDONE:
952 		rbuf = (RF_ReconBuffer_t *) event->arg;
953 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
954 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
955 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
956 		RF_ASSERT(!submitblocked);
957 		break;
958 
959 	default:
960 		RF_PANIC();
961 	}
962 	rf_FreeReconEventDesc(event);
963 	return (retcode);
964 }
965 /*****************************************************************************
966  *
967  * find the next thing that's needed on the indicated disk, and issue
968  * a read request for it.  We assume that the reconstruction buffer
969  * associated with this process is free to receive the data.  If
970  * reconstruction is blocked on the indicated RU, we issue a
971  * blockage-release request instead of a physical disk read request.
972  * If the current disk gets too far ahead of the others, we issue a
973  * head-separation wait request and return.
974  *
975  * ctrl->{ru_count, curPSID, diskOffset} and
976  * rbuf->failedDiskSectorOffset are maintained to point to the unit
977  * we're currently accessing.  Note that this deviates from the
978  * standard C idiom of having counters point to the next thing to be
979  * accessed.  This allows us to easily retry when we're blocked by
980  * head separation or reconstruction-blockage events.
981  *
982  * returns nonzero if and only if there is nothing left unread on the
983  * indicated disk
984  *
985  *****************************************************************************/
986 static int
987 IssueNextReadRequest(raidPtr, row, col)
988 	RF_Raid_t *raidPtr;
989 	RF_RowCol_t row;
990 	RF_RowCol_t col;
991 {
992 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
993 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
994 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
995 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
996 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
997 	int     do_new_check = 0, retcode = 0, status;
998 
999 	/* if we are currently the slowest disk, mark that we have to do a new
1000 	 * check */
1001 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
1002 		do_new_check = 1;
1003 
1004 	while (1) {
1005 
1006 		ctrl->ru_count++;
1007 		if (ctrl->ru_count < RUsPerPU) {
1008 			ctrl->diskOffset += sectorsPerRU;
1009 			rbuf->failedDiskSectorOffset += sectorsPerRU;
1010 		} else {
1011 			ctrl->curPSID++;
1012 			ctrl->ru_count = 0;
1013 			/* code left over from when head-sep was based on
1014 			 * parity stripe id */
1015 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1016 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1017 				return (1);	/* finito! */
1018 			}
1019 			/* find the disk offsets of the start of the parity
1020 			 * stripe on both the current disk and the failed
1021 			 * disk. skip this entire parity stripe if either disk
1022 			 * does not appear in the indicated PS */
1023 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1024 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1025 			if (status) {
1026 				ctrl->ru_count = RUsPerPU - 1;
1027 				continue;
1028 			}
1029 		}
1030 		rbuf->which_ru = ctrl->ru_count;
1031 
1032 		/* skip this RU if it's already been reconstructed */
1033 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1034 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1035 			continue;
1036 		}
1037 		break;
1038 	}
1039 	ctrl->headSepCounter++;
1040 	if (do_new_check)
1041 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1042 
1043 
1044 	/* at this point, we have definitely decided what to do, and we have
1045 	 * only to see if we can actually do it now */
1046 	rbuf->parityStripeID = ctrl->curPSID;
1047 	rbuf->which_ru = ctrl->ru_count;
1048 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1049 	    sizeof(raidPtr->recon_tracerecs[col]));
1050 	raidPtr->recon_tracerecs[col].reconacc = 1;
1051 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1052 	retcode = TryToRead(raidPtr, row, col);
1053 	return (retcode);
1054 }
1055 
1056 /*
1057  * tries to issue the next read on the indicated disk.  We may be
1058  * blocked by (a) the heads being too far apart, or (b) recon on the
1059  * indicated RU being blocked due to a write by a user thread.  In
1060  * this case, we issue a head-sep or blockage wait request, which will
1061  * cause this same routine to be invoked again later when the blockage
1062  * has cleared.
1063  */
1064 
1065 static int
1066 TryToRead(raidPtr, row, col)
1067 	RF_Raid_t *raidPtr;
1068 	RF_RowCol_t row;
1069 	RF_RowCol_t col;
1070 {
1071 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1072 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1073 	RF_StripeNum_t psid = ctrl->curPSID;
1074 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1075 	RF_DiskQueueData_t *req;
1076 	int     status, created = 0;
1077 	RF_ReconParityStripeStatus_t *pssPtr;
1078 
1079 	/* if the current disk is too far ahead of the others, issue a
1080 	 * head-separation wait and return */
1081 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1082 		return (0);
1083 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1084 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1085 
1086 	/* if recon is blocked on the indicated parity stripe, issue a
1087 	 * block-wait request and return. this also must mark the indicated RU
1088 	 * in the stripe as under reconstruction if not blocked. */
1089 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1090 	if (status == RF_PSS_RECON_BLOCKED) {
1091 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1092 		goto out;
1093 	} else
1094 		if (status == RF_PSS_FORCED_ON_WRITE) {
1095 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1096 			goto out;
1097 		}
1098 	/* make one last check to be sure that the indicated RU didn't get
1099 	 * reconstructed while we were waiting for something else to happen.
1100 	 * This is unfortunate in that it causes us to make this check twice
1101 	 * in the normal case.  Might want to make some attempt to re-work
1102 	 * this so that we only do this check if we've definitely blocked on
1103 	 * one of the above checks.  When this condition is detected, we may
1104 	 * have just created a bogus status entry, which we need to delete. */
1105 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1106 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1107 		if (created)
1108 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1109 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1110 		goto out;
1111 	}
1112 	/* found something to read.  issue the I/O */
1113 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1114 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1115 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1116 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1117 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1118 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1119 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1120 
1121 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1122 	 * should be in kernel space */
1123 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1124 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1125 
1126 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1127 
1128 	ctrl->rbuf->arg = (void *) req;
1129 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1130 	pssPtr->issued[col] = 1;
1131 
1132 out:
1133 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1134 	return (0);
1135 }
1136 
1137 
1138 /*
1139  * given a parity stripe ID, we want to find out whether both the
1140  * current disk and the failed disk exist in that parity stripe.  If
1141  * not, we want to skip this whole PS.  If so, we want to find the
1142  * disk offset of the start of the PS on both the current disk and the
1143  * failed disk.
1144  *
1145  * this works by getting a list of disks comprising the indicated
1146  * parity stripe, and searching the list for the current and failed
1147  * disks.  Once we've decided they both exist in the parity stripe, we
1148  * need to decide whether each is data or parity, so that we'll know
1149  * which mapping function to call to get the corresponding disk
1150  * offsets.
1151  *
1152  * this is kind of unpleasant, but doing it this way allows the
1153  * reconstruction code to use parity stripe IDs rather than physical
1154  * disks address to march through the failed disk, which greatly
1155  * simplifies a lot of code, as well as eliminating the need for a
1156  * reverse-mapping function.  I also think it will execute faster,
1157  * since the calls to the mapping module are kept to a minimum.
1158  *
1159  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1160  * THE STRIPE IN THE CORRECT ORDER */
1161 
1162 
1163 static int
1164 ComputePSDiskOffsets(
1165     RF_Raid_t * raidPtr,	/* raid descriptor */
1166     RF_StripeNum_t psid,	/* parity stripe identifier */
1167     RF_RowCol_t row,		/* row and column of disk to find the offsets
1168 				 * for */
1169     RF_RowCol_t col,
1170     RF_SectorNum_t * outDiskOffset,
1171     RF_SectorNum_t * outFailedDiskSectorOffset,
1172     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1173     RF_RowCol_t * spCol,
1174     RF_SectorNum_t * spOffset)
1175 {				/* OUT: offset into disk containing spare unit */
1176 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1177 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1178 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1179 	RF_RowCol_t *diskids;
1180 	u_int   i, j, k, i_offset, j_offset;
1181 	RF_RowCol_t prow, pcol;
1182 	int     testcol, testrow;
1183 	RF_RowCol_t stripe;
1184 	RF_SectorNum_t poffset;
1185 	char    i_is_parity = 0, j_is_parity = 0;
1186 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1187 
1188 	/* get a listing of the disks comprising that stripe */
1189 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1190 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1191 	RF_ASSERT(diskids);
1192 
1193 	/* reject this entire parity stripe if it does not contain the
1194 	 * indicated disk or it does not contain the failed disk */
1195 	if (row != stripe)
1196 		goto skipit;
1197 	for (i = 0; i < stripeWidth; i++) {
1198 		if (col == diskids[i])
1199 			break;
1200 	}
1201 	if (i == stripeWidth)
1202 		goto skipit;
1203 	for (j = 0; j < stripeWidth; j++) {
1204 		if (fcol == diskids[j])
1205 			break;
1206 	}
1207 	if (j == stripeWidth) {
1208 		goto skipit;
1209 	}
1210 	/* find out which disk the parity is on */
1211 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1212 
1213 	/* find out if either the current RU or the failed RU is parity */
1214 	/* also, if the parity occurs in this stripe prior to the data and/or
1215 	 * failed col, we need to decrement i and/or j */
1216 	for (k = 0; k < stripeWidth; k++)
1217 		if (diskids[k] == pcol)
1218 			break;
1219 	RF_ASSERT(k < stripeWidth);
1220 	i_offset = i;
1221 	j_offset = j;
1222 	if (k < i)
1223 		i_offset--;
1224 	else
1225 		if (k == i) {
1226 			i_is_parity = 1;
1227 			i_offset = 0;
1228 		}		/* set offsets to zero to disable multiply
1229 				 * below */
1230 	if (k < j)
1231 		j_offset--;
1232 	else
1233 		if (k == j) {
1234 			j_is_parity = 1;
1235 			j_offset = 0;
1236 		}
1237 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1238 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1239 	 * tells us how far into the stripe the [current,failed] disk is. */
1240 
1241 	/* call the mapping routine to get the offset into the current disk,
1242 	 * repeat for failed disk. */
1243 	if (i_is_parity)
1244 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1245 	else
1246 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1247 
1248 	RF_ASSERT(row == testrow && col == testcol);
1249 
1250 	if (j_is_parity)
1251 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1252 	else
1253 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1254 	RF_ASSERT(row == testrow && fcol == testcol);
1255 
1256 	/* now locate the spare unit for the failed unit */
1257 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1258 		if (j_is_parity)
1259 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1260 		else
1261 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1262 	} else {
1263 		*spRow = raidPtr->reconControl[row]->spareRow;
1264 		*spCol = raidPtr->reconControl[row]->spareCol;
1265 		*spOffset = *outFailedDiskSectorOffset;
1266 	}
1267 
1268 	return (0);
1269 
1270 skipit:
1271 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1272 	    psid, row, col);
1273 	return (1);
1274 }
1275 /* this is called when a buffer has become ready to write to the replacement disk */
1276 static int
1277 IssueNextWriteRequest(raidPtr, row)
1278 	RF_Raid_t *raidPtr;
1279 	RF_RowCol_t row;
1280 {
1281 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1282 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1283 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1284 	RF_ReconBuffer_t *rbuf;
1285 	RF_DiskQueueData_t *req;
1286 
1287 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1288 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1289 				 * have gotten the event that sent us here */
1290 	RF_ASSERT(rbuf->pssPtr);
1291 
1292 	rbuf->pssPtr->writeRbuf = rbuf;
1293 	rbuf->pssPtr = NULL;
1294 
1295 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1296 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1297 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1298 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1299 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1300 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1301 
1302 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1303 	 * kernel space */
1304 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1305 	    sectorsPerRU, rbuf->buffer,
1306 	    rbuf->parityStripeID, rbuf->which_ru,
1307 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1308 	    &raidPtr->recon_tracerecs[fcol],
1309 	    (void *) raidPtr, 0, NULL);
1310 
1311 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1312 
1313 	rbuf->arg = (void *) req;
1314 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1315 
1316 	return (0);
1317 }
1318 
1319 /*
1320  * this gets called upon the completion of a reconstruction read
1321  * operation the arg is a pointer to the per-disk reconstruction
1322  * control structure for the process that just finished a read.
1323  *
1324  * called at interrupt context in the kernel, so don't do anything
1325  * illegal here.
1326  */
1327 static int
1328 ReconReadDoneProc(arg, status)
1329 	void   *arg;
1330 	int     status;
1331 {
1332 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1333 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1334 
1335 	if (status) {
1336 		/*
1337 	         * XXX
1338 	         */
1339 		printf("Recon read failed!\n");
1340 		RF_PANIC();
1341 	}
1342 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1343 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1344 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1345 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1346 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1347 
1348 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1349 	return (0);
1350 }
1351 /* this gets called upon the completion of a reconstruction write operation.
1352  * the arg is a pointer to the rbuf that was just written
1353  *
1354  * called at interrupt context in the kernel, so don't do anything illegal here.
1355  */
1356 static int
1357 ReconWriteDoneProc(arg, status)
1358 	void   *arg;
1359 	int     status;
1360 {
1361 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1362 
1363 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1364 	if (status) {
1365 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1366 							 * write failed!\n"); */
1367 		RF_PANIC();
1368 	}
1369 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1370 	return (0);
1371 }
1372 
1373 
1374 /*
1375  * computes a new minimum head sep, and wakes up anyone who needs to
1376  * be woken as a result
1377  */
1378 static void
1379 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1380 	RF_Raid_t *raidPtr;
1381 	RF_RowCol_t row;
1382 	RF_HeadSepLimit_t hsCtr;
1383 {
1384 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1385 	RF_HeadSepLimit_t new_min;
1386 	RF_RowCol_t i;
1387 	RF_CallbackDesc_t *p;
1388 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1389 								 * of a minimum */
1390 
1391 
1392 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1393 
1394 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1395 	for (i = 0; i < raidPtr->numCol; i++)
1396 		if (i != reconCtrlPtr->fcol) {
1397 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1398 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1399 		}
1400 	/* set the new minimum and wake up anyone who can now run again */
1401 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1402 		reconCtrlPtr->minHeadSepCounter = new_min;
1403 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1404 		while (reconCtrlPtr->headSepCBList) {
1405 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1406 				break;
1407 			p = reconCtrlPtr->headSepCBList;
1408 			reconCtrlPtr->headSepCBList = p->next;
1409 			p->next = NULL;
1410 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1411 			rf_FreeCallbackDesc(p);
1412 		}
1413 
1414 	}
1415 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1416 }
1417 
1418 /*
1419  * checks to see that the maximum head separation will not be violated
1420  * if we initiate a reconstruction I/O on the indicated disk.
1421  * Limiting the maximum head separation between two disks eliminates
1422  * the nasty buffer-stall conditions that occur when one disk races
1423  * ahead of the others and consumes all of the floating recon buffers.
1424  * This code is complex and unpleasant but it's necessary to avoid
1425  * some very nasty, albeit fairly rare, reconstruction behavior.
1426  *
1427  * returns non-zero if and only if we have to stop working on the
1428  * indicated disk due to a head-separation delay.
1429  */
1430 static int
1431 CheckHeadSeparation(
1432     RF_Raid_t * raidPtr,
1433     RF_PerDiskReconCtrl_t * ctrl,
1434     RF_RowCol_t row,
1435     RF_RowCol_t col,
1436     RF_HeadSepLimit_t hsCtr,
1437     RF_ReconUnitNum_t which_ru)
1438 {
1439 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1440 	RF_CallbackDesc_t *cb, *p, *pt;
1441 	int     retval = 0;
1442 
1443 	/* if we're too far ahead of the slowest disk, stop working on this
1444 	 * disk until the slower ones catch up.  We do this by scheduling a
1445 	 * wakeup callback for the time when the slowest disk has caught up.
1446 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1447 	 * must have fallen to at most 80% of the max allowable head
1448 	 * separation before we'll wake up.
1449 	 *
1450 	 */
1451 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1452 	if ((raidPtr->headSepLimit >= 0) &&
1453 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1454 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1455 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1456 			 reconCtrlPtr->minHeadSepCounter,
1457 			 raidPtr->headSepLimit);
1458 		cb = rf_AllocCallbackDesc();
1459 		/* the minHeadSepCounter value we have to get to before we'll
1460 		 * wake up.  build in 20% hysteresis. */
1461 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1462 		cb->row = row;
1463 		cb->col = col;
1464 		cb->next = NULL;
1465 
1466 		/* insert this callback descriptor into the sorted list of
1467 		 * pending head-sep callbacks */
1468 		p = reconCtrlPtr->headSepCBList;
1469 		if (!p)
1470 			reconCtrlPtr->headSepCBList = cb;
1471 		else
1472 			if (cb->callbackArg.v < p->callbackArg.v) {
1473 				cb->next = reconCtrlPtr->headSepCBList;
1474 				reconCtrlPtr->headSepCBList = cb;
1475 			} else {
1476 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1477 				cb->next = p;
1478 				pt->next = cb;
1479 			}
1480 		retval = 1;
1481 #if RF_RECON_STATS > 0
1482 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1483 #endif				/* RF_RECON_STATS > 0 */
1484 	}
1485 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1486 
1487 	return (retval);
1488 }
1489 /*
1490  * checks to see if reconstruction has been either forced or blocked
1491  * by a user operation.  if forced, we skip this RU entirely.  else if
1492  * blocked, put ourselves on the wait list.  else return 0.
1493  *
1494  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1495  */
1496 static int
1497 CheckForcedOrBlockedReconstruction(
1498     RF_Raid_t * raidPtr,
1499     RF_ReconParityStripeStatus_t * pssPtr,
1500     RF_PerDiskReconCtrl_t * ctrl,
1501     RF_RowCol_t row,
1502     RF_RowCol_t col,
1503     RF_StripeNum_t psid,
1504     RF_ReconUnitNum_t which_ru)
1505 {
1506 	RF_CallbackDesc_t *cb;
1507 	int     retcode = 0;
1508 
1509 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1510 		retcode = RF_PSS_FORCED_ON_WRITE;
1511 	else
1512 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1513 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1514 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1515 							 * the blockage-wait
1516 							 * list */
1517 			cb->row = row;
1518 			cb->col = col;
1519 			cb->next = pssPtr->blockWaitList;
1520 			pssPtr->blockWaitList = cb;
1521 			retcode = RF_PSS_RECON_BLOCKED;
1522 		}
1523 	if (!retcode)
1524 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1525 							 * reconstruction */
1526 
1527 	return (retcode);
1528 }
1529 /*
1530  * if reconstruction is currently ongoing for the indicated stripeID,
1531  * reconstruction is forced to completion and we return non-zero to
1532  * indicate that the caller must wait.  If not, then reconstruction is
1533  * blocked on the indicated stripe and the routine returns zero.  If
1534  * and only if we return non-zero, we'll cause the cbFunc to get
1535  * invoked with the cbArg when the reconstruction has completed.
1536  */
1537 int
1538 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1539 	RF_Raid_t *raidPtr;
1540 	RF_AccessStripeMap_t *asmap;
1541 	void    (*cbFunc) (RF_Raid_t *, void *);
1542 	void   *cbArg;
1543 {
1544 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1545 						 * we're working on */
1546 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1547 							 * forcing recon on */
1548 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1549 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1550 						 * stripe status structure */
1551 	RF_StripeNum_t psid;	/* parity stripe id */
1552 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1553 						 * offset */
1554 	RF_RowCol_t *diskids;
1555 	RF_RowCol_t stripe;
1556 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1557 	RF_RowCol_t fcol, diskno, i;
1558 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1559 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1560 	RF_CallbackDesc_t *cb;
1561 	int     created = 0, nPromoted;
1562 
1563 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1564 
1565 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1566 
1567 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1568 
1569 	/* if recon is not ongoing on this PS, just return */
1570 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1571 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1572 		return (0);
1573 	}
1574 	/* otherwise, we have to wait for reconstruction to complete on this
1575 	 * RU. */
1576 	/* In order to avoid waiting for a potentially large number of
1577 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1578 	 * not low-priority) reconstruction on this RU. */
1579 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1580 		DDprintf1("Forcing recon on psid %ld\n", psid);
1581 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1582 								 * forced recon */
1583 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1584 							 * that we just set */
1585 		fcol = raidPtr->reconControl[row]->fcol;
1586 
1587 		/* get a listing of the disks comprising the indicated stripe */
1588 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1589 		RF_ASSERT(row == stripe);
1590 
1591 		/* For previously issued reads, elevate them to normal
1592 		 * priority.  If the I/O has already completed, it won't be
1593 		 * found in the queue, and hence this will be a no-op. For
1594 		 * unissued reads, allocate buffers and issue new reads.  The
1595 		 * fact that we've set the FORCED bit means that the regular
1596 		 * recon procs will not re-issue these reqs */
1597 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1598 			if ((diskno = diskids[i]) != fcol) {
1599 				if (pssPtr->issued[diskno]) {
1600 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1601 					if (rf_reconDebug && nPromoted)
1602 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1603 				} else {
1604 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1605 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1606 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1607 													 * location */
1608 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1609 					new_rbuf->which_ru = which_ru;
1610 					new_rbuf->failedDiskSectorOffset = fd_offset;
1611 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1612 
1613 					/* use NULL b_proc b/c all addrs
1614 					 * should be in kernel space */
1615 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1616 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1617 					    NULL, (void *) raidPtr, 0, NULL);
1618 
1619 					RF_ASSERT(req);	/* XXX -- fix this --
1620 							 * XXX */
1621 
1622 					new_rbuf->arg = req;
1623 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1624 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1625 				}
1626 			}
1627 		/* if the write is sitting in the disk queue, elevate its
1628 		 * priority */
1629 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1630 			printf("raid%d: promoted write to row %d col %d\n",
1631 			       raidPtr->raidid, row, fcol);
1632 	}
1633 	/* install a callback descriptor to be invoked when recon completes on
1634 	 * this parity stripe. */
1635 	cb = rf_AllocCallbackDesc();
1636 	/* XXX the following is bogus.. These functions don't really match!!
1637 	 * GO */
1638 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1639 	cb->callbackArg.p = (void *) cbArg;
1640 	cb->next = pssPtr->procWaitList;
1641 	pssPtr->procWaitList = cb;
1642 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1643 		  raidPtr->raidid, psid);
1644 
1645 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1646 	return (1);
1647 }
1648 /* called upon the completion of a forced reconstruction read.
1649  * all we do is schedule the FORCEDREADONE event.
1650  * called at interrupt context in the kernel, so don't do anything illegal here.
1651  */
1652 static void
1653 ForceReconReadDoneProc(arg, status)
1654 	void   *arg;
1655 	int     status;
1656 {
1657 	RF_ReconBuffer_t *rbuf = arg;
1658 
1659 	if (status) {
1660 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1661 							 *  recon read
1662 							 * failed!\n"); */
1663 		RF_PANIC();
1664 	}
1665 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1666 }
1667 /* releases a block on the reconstruction of the indicated stripe */
1668 int
1669 rf_UnblockRecon(raidPtr, asmap)
1670 	RF_Raid_t *raidPtr;
1671 	RF_AccessStripeMap_t *asmap;
1672 {
1673 	RF_RowCol_t row = asmap->origRow;
1674 	RF_StripeNum_t stripeID = asmap->stripeID;
1675 	RF_ReconParityStripeStatus_t *pssPtr;
1676 	RF_ReconUnitNum_t which_ru;
1677 	RF_StripeNum_t psid;
1678 	int     created = 0;
1679 	RF_CallbackDesc_t *cb;
1680 
1681 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1682 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1683 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1684 
1685 	/* When recon is forced, the pss desc can get deleted before we get
1686 	 * back to unblock recon. But, this can _only_ happen when recon is
1687 	 * forced. It would be good to put some kind of sanity check here, but
1688 	 * how to decide if recon was just forced or not? */
1689 	if (!pssPtr) {
1690 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1691 		 * RU %d\n",psid,which_ru); */
1692 		if (rf_reconDebug || rf_pssDebug)
1693 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1694 		goto out;
1695 	}
1696 	pssPtr->blockCount--;
1697 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1698 		 raidPtr->raidid, psid, pssPtr->blockCount);
1699 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1700 
1701 		/* unblock recon before calling CauseReconEvent in case
1702 		 * CauseReconEvent causes us to try to issue a new read before
1703 		 * returning here. */
1704 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1705 
1706 
1707 		while (pssPtr->blockWaitList) {
1708 			/* spin through the block-wait list and
1709 			   release all the waiters */
1710 			cb = pssPtr->blockWaitList;
1711 			pssPtr->blockWaitList = cb->next;
1712 			cb->next = NULL;
1713 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1714 			rf_FreeCallbackDesc(cb);
1715 		}
1716 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1717 			/* if no recon was requested while recon was blocked */
1718 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1719 		}
1720 	}
1721 out:
1722 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1723 	return (0);
1724 }
1725