1 /* $NetBSD: rf_reconstruct.c,v 1.46 2002/10/06 05:23:55 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.46 2002/10/06 05:23:55 oster Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 /************************************************************************** 162 * 163 * sets up the parameters that will be used by the reconstruction process 164 * currently there are none, except for those that the layout-specific 165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 166 * 167 * in the kernel, we fire off the recon thread. 168 * 169 **************************************************************************/ 170 static void 171 rf_ShutdownReconstruction(ignored) 172 void *ignored; 173 { 174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 176 } 177 178 int 179 rf_ConfigureReconstruction(listp) 180 RF_ShutdownList_t **listp; 181 { 182 int rc; 183 184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 186 if (rf_recond_freelist == NULL) 187 return (ENOMEM); 188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 190 if (rf_rdp_freelist == NULL) { 191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 192 return (ENOMEM); 193 } 194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 195 if (rc) { 196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 197 rf_ShutdownReconstruction(NULL); 198 return (rc); 199 } 200 return (0); 201 } 202 203 static RF_RaidReconDesc_t * 204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 205 RF_Raid_t *raidPtr; 206 RF_RowCol_t row; 207 RF_RowCol_t col; 208 RF_RaidDisk_t *spareDiskPtr; 209 int numDisksDone; 210 RF_RowCol_t srow; 211 RF_RowCol_t scol; 212 { 213 214 RF_RaidReconDesc_t *reconDesc; 215 216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 217 218 reconDesc->raidPtr = raidPtr; 219 reconDesc->row = row; 220 reconDesc->col = col; 221 reconDesc->spareDiskPtr = spareDiskPtr; 222 reconDesc->numDisksDone = numDisksDone; 223 reconDesc->srow = srow; 224 reconDesc->scol = scol; 225 reconDesc->state = 0; 226 reconDesc->next = NULL; 227 228 return (reconDesc); 229 } 230 231 static void 232 FreeReconDesc(reconDesc) 233 RF_RaidReconDesc_t *reconDesc; 234 { 235 #if RF_RECON_STATS > 0 236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n", 237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); 238 #endif /* RF_RECON_STATS > 0 */ 239 printf("RAIDframe: %lu max exec ticks\n", 240 (long) reconDesc->maxReconExecTicks); 241 #if (RF_RECON_STATS > 0) || defined(KERNEL) 242 printf("\n"); 243 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 245 } 246 247 248 /***************************************************************************** 249 * 250 * primary routine to reconstruct a failed disk. This should be called from 251 * within its own thread. It won't return until reconstruction completes, 252 * fails, or is aborted. 253 *****************************************************************************/ 254 int 255 rf_ReconstructFailedDisk(raidPtr, row, col) 256 RF_Raid_t *raidPtr; 257 RF_RowCol_t row; 258 RF_RowCol_t col; 259 { 260 RF_LayoutSW_t *lp; 261 int rc; 262 263 lp = raidPtr->Layout.map; 264 if (lp->SubmitReconBuffer) { 265 /* 266 * The current infrastructure only supports reconstructing one 267 * disk at a time for each array. 268 */ 269 RF_LOCK_MUTEX(raidPtr->mutex); 270 while (raidPtr->reconInProgress) { 271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 272 } 273 raidPtr->reconInProgress++; 274 RF_UNLOCK_MUTEX(raidPtr->mutex); 275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 276 RF_LOCK_MUTEX(raidPtr->mutex); 277 raidPtr->reconInProgress--; 278 RF_UNLOCK_MUTEX(raidPtr->mutex); 279 } else { 280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 281 lp->parityConfig); 282 rc = EIO; 283 } 284 RF_SIGNAL_COND(raidPtr->waitForReconCond); 285 return (rc); 286 } 287 288 int 289 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 290 RF_Raid_t *raidPtr; 291 RF_RowCol_t row; 292 RF_RowCol_t col; 293 { 294 RF_ComponentLabel_t c_label; 295 RF_RaidDisk_t *spareDiskPtr = NULL; 296 RF_RaidReconDesc_t *reconDesc; 297 RF_RowCol_t srow, scol; 298 int numDisksDone = 0, rc; 299 300 /* first look for a spare drive onto which to reconstruct the data */ 301 /* spare disk descriptors are stored in row 0. This may have to 302 * change eventually */ 303 304 RF_LOCK_MUTEX(raidPtr->mutex); 305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 306 307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 308 if (raidPtr->status[row] != rf_rs_degraded) { 309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 310 RF_UNLOCK_MUTEX(raidPtr->mutex); 311 return (EINVAL); 312 } 313 srow = row; 314 scol = (-1); 315 } else { 316 srow = 0; 317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 319 spareDiskPtr = &raidPtr->Disks[srow][scol]; 320 spareDiskPtr->status = rf_ds_used_spare; 321 break; 322 } 323 } 324 if (!spareDiskPtr) { 325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 326 RF_UNLOCK_MUTEX(raidPtr->mutex); 327 return (ENOSPC); 328 } 329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 330 } 331 RF_UNLOCK_MUTEX(raidPtr->mutex); 332 333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 334 raidPtr->reconDesc = (void *) reconDesc; 335 #if RF_RECON_STATS > 0 336 reconDesc->hsStallCount = 0; 337 reconDesc->numReconExecDelays = 0; 338 reconDesc->numReconEventWaits = 0; 339 #endif /* RF_RECON_STATS > 0 */ 340 reconDesc->reconExecTimerRunning = 0; 341 reconDesc->reconExecTicks = 0; 342 reconDesc->maxReconExecTicks = 0; 343 rc = rf_ContinueReconstructFailedDisk(reconDesc); 344 345 if (!rc) { 346 /* fix up the component label */ 347 /* Don't actually need the read here.. */ 348 raidread_component_label( 349 raidPtr->raid_cinfo[srow][scol].ci_dev, 350 raidPtr->raid_cinfo[srow][scol].ci_vp, 351 &c_label); 352 353 raid_init_component_label( raidPtr, &c_label); 354 c_label.row = row; 355 c_label.column = col; 356 c_label.clean = RF_RAID_DIRTY; 357 c_label.status = rf_ds_optimal; 358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 359 360 /* We've just done a rebuild based on all the other 361 disks, so at this point the parity is known to be 362 clean, even if it wasn't before. */ 363 364 /* XXX doesn't hold for RAID 6!!*/ 365 366 raidPtr->parity_good = RF_RAID_CLEAN; 367 368 /* XXXX MORE NEEDED HERE */ 369 370 raidwrite_component_label( 371 raidPtr->raid_cinfo[srow][scol].ci_dev, 372 raidPtr->raid_cinfo[srow][scol].ci_vp, 373 &c_label); 374 375 } 376 return (rc); 377 } 378 379 /* 380 381 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 382 and you don't get a spare until the next Monday. With this function 383 (and hot-swappable drives) you can now put your new disk containing 384 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 385 rebuild the data "on the spot". 386 387 */ 388 389 int 390 rf_ReconstructInPlace(raidPtr, row, col) 391 RF_Raid_t *raidPtr; 392 RF_RowCol_t row; 393 RF_RowCol_t col; 394 { 395 RF_RaidDisk_t *spareDiskPtr = NULL; 396 RF_RaidReconDesc_t *reconDesc; 397 RF_LayoutSW_t *lp; 398 RF_ComponentLabel_t c_label; 399 int numDisksDone = 0, rc; 400 struct partinfo dpart; 401 struct vnode *vp; 402 struct vattr va; 403 struct proc *proc; 404 int retcode; 405 int ac; 406 407 lp = raidPtr->Layout.map; 408 if (lp->SubmitReconBuffer) { 409 /* 410 * The current infrastructure only supports reconstructing one 411 * disk at a time for each array. 412 */ 413 RF_LOCK_MUTEX(raidPtr->mutex); 414 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) && 415 (raidPtr->numFailures > 0)) { 416 /* XXX 0 above shouldn't be constant!!! */ 417 /* some component other than this has failed. 418 Let's not make things worse than they already 419 are... */ 420 printf("raid%d: Unable to reconstruct to disk at:\n", 421 raidPtr->raidid); 422 printf("raid%d: Row: %d Col: %d Too many failures.\n", 423 raidPtr->raidid, row, col); 424 RF_UNLOCK_MUTEX(raidPtr->mutex); 425 return (EINVAL); 426 } 427 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) { 428 printf("raid%d: Unable to reconstruct to disk at:\n", 429 raidPtr->raidid); 430 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col); 431 432 RF_UNLOCK_MUTEX(raidPtr->mutex); 433 return (EINVAL); 434 } 435 if (raidPtr->Disks[row][col].status == rf_ds_spared) { 436 return (EINVAL); 437 } 438 439 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 440 /* "It's gone..." */ 441 raidPtr->numFailures++; 442 raidPtr->Disks[row][col].status = rf_ds_failed; 443 raidPtr->status[row] = rf_rs_degraded; 444 rf_update_component_labels(raidPtr, 445 RF_NORMAL_COMPONENT_UPDATE); 446 } 447 448 while (raidPtr->reconInProgress) { 449 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 450 } 451 452 raidPtr->reconInProgress++; 453 454 455 /* first look for a spare drive onto which to reconstruct 456 the data. spare disk descriptors are stored in row 0. 457 This may have to change eventually */ 458 459 /* Actually, we don't care if it's failed or not... 460 On a RAID set with correct parity, this function 461 should be callable on any component without ill affects. */ 462 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 463 */ 464 465 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 466 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 467 468 raidPtr->reconInProgress--; 469 RF_UNLOCK_MUTEX(raidPtr->mutex); 470 return (EINVAL); 471 } 472 473 proc = raidPtr->engine_thread; 474 475 /* This device may have been opened successfully the 476 first time. Close it before trying to open it again.. */ 477 478 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 479 #if 0 480 printf("Closed the open device: %s\n", 481 raidPtr->Disks[row][col].devname); 482 #endif 483 vp = raidPtr->raid_cinfo[row][col].ci_vp; 484 ac = raidPtr->Disks[row][col].auto_configured; 485 rf_close_component(raidPtr, vp, ac); 486 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 487 } 488 /* note that this disk was *not* auto_configured (any longer)*/ 489 raidPtr->Disks[row][col].auto_configured = 0; 490 491 #if 0 492 printf("About to (re-)open the device for rebuilding: %s\n", 493 raidPtr->Disks[row][col].devname); 494 #endif 495 496 retcode = raidlookup(raidPtr->Disks[row][col].devname, 497 proc, &vp); 498 499 if (retcode) { 500 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 501 raidPtr->Disks[row][col].devname, retcode); 502 503 /* the component isn't responding properly... 504 must be still dead :-( */ 505 raidPtr->reconInProgress--; 506 RF_UNLOCK_MUTEX(raidPtr->mutex); 507 return(retcode); 508 509 } else { 510 511 /* Ok, so we can at least do a lookup... 512 How about actually getting a vp for it? */ 513 514 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 515 proc)) != 0) { 516 raidPtr->reconInProgress--; 517 RF_UNLOCK_MUTEX(raidPtr->mutex); 518 return(retcode); 519 } 520 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart, 521 FREAD, proc->p_ucred, proc); 522 if (retcode) { 523 raidPtr->reconInProgress--; 524 RF_UNLOCK_MUTEX(raidPtr->mutex); 525 return(retcode); 526 } 527 raidPtr->Disks[row][col].blockSize = 528 dpart.disklab->d_secsize; 529 530 raidPtr->Disks[row][col].numBlocks = 531 dpart.part->p_size - rf_protectedSectors; 532 533 raidPtr->raid_cinfo[row][col].ci_vp = vp; 534 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 535 536 raidPtr->Disks[row][col].dev = va.va_rdev; 537 538 /* we allow the user to specify that only a 539 fraction of the disks should be used this is 540 just for debug: it speeds up 541 * the parity scan */ 542 raidPtr->Disks[row][col].numBlocks = 543 raidPtr->Disks[row][col].numBlocks * 544 rf_sizePercentage / 100; 545 } 546 547 548 549 spareDiskPtr = &raidPtr->Disks[row][col]; 550 spareDiskPtr->status = rf_ds_used_spare; 551 552 printf("raid%d: initiating in-place reconstruction on\n", 553 raidPtr->raidid); 554 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 555 raidPtr->raidid, row, col, row, col); 556 557 RF_UNLOCK_MUTEX(raidPtr->mutex); 558 559 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 560 spareDiskPtr, numDisksDone, 561 row, col); 562 raidPtr->reconDesc = (void *) reconDesc; 563 #if RF_RECON_STATS > 0 564 reconDesc->hsStallCount = 0; 565 reconDesc->numReconExecDelays = 0; 566 reconDesc->numReconEventWaits = 0; 567 #endif /* RF_RECON_STATS > 0 */ 568 reconDesc->reconExecTimerRunning = 0; 569 reconDesc->reconExecTicks = 0; 570 reconDesc->maxReconExecTicks = 0; 571 rc = rf_ContinueReconstructFailedDisk(reconDesc); 572 573 RF_LOCK_MUTEX(raidPtr->mutex); 574 raidPtr->reconInProgress--; 575 RF_UNLOCK_MUTEX(raidPtr->mutex); 576 577 } else { 578 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 579 lp->parityConfig); 580 rc = EIO; 581 } 582 RF_LOCK_MUTEX(raidPtr->mutex); 583 584 if (!rc) { 585 /* Need to set these here, as at this point it'll be claiming 586 that the disk is in rf_ds_spared! But we know better :-) */ 587 588 raidPtr->Disks[row][col].status = rf_ds_optimal; 589 raidPtr->status[row] = rf_rs_optimal; 590 591 /* fix up the component label */ 592 /* Don't actually need the read here.. */ 593 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 594 raidPtr->raid_cinfo[row][col].ci_vp, 595 &c_label); 596 597 raid_init_component_label(raidPtr, &c_label); 598 599 c_label.row = row; 600 c_label.column = col; 601 602 /* We've just done a rebuild based on all the other 603 disks, so at this point the parity is known to be 604 clean, even if it wasn't before. */ 605 606 /* XXX doesn't hold for RAID 6!!*/ 607 608 raidPtr->parity_good = RF_RAID_CLEAN; 609 610 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 611 raidPtr->raid_cinfo[row][col].ci_vp, 612 &c_label); 613 614 } 615 RF_UNLOCK_MUTEX(raidPtr->mutex); 616 RF_SIGNAL_COND(raidPtr->waitForReconCond); 617 return (rc); 618 } 619 620 621 int 622 rf_ContinueReconstructFailedDisk(reconDesc) 623 RF_RaidReconDesc_t *reconDesc; 624 { 625 RF_Raid_t *raidPtr = reconDesc->raidPtr; 626 RF_RowCol_t row = reconDesc->row; 627 RF_RowCol_t col = reconDesc->col; 628 RF_RowCol_t srow = reconDesc->srow; 629 RF_RowCol_t scol = reconDesc->scol; 630 RF_ReconMap_t *mapPtr; 631 RF_ReconCtrl_t *tmp_reconctrl; 632 RF_ReconEvent_t *event; 633 struct timeval etime, elpsd; 634 unsigned long xor_s, xor_resid_us; 635 int retcode, i, ds; 636 637 switch (reconDesc->state) { 638 639 640 case 0: 641 642 raidPtr->accumXorTimeUs = 0; 643 644 /* create one trace record per physical disk */ 645 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 646 647 /* quiesce the array prior to starting recon. this is needed 648 * to assure no nasty interactions with pending user writes. 649 * We need to do this before we change the disk or row status. */ 650 reconDesc->state = 1; 651 652 Dprintf("RECON: begin request suspend\n"); 653 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 654 Dprintf("RECON: end request suspend\n"); 655 rf_StartUserStats(raidPtr); /* zero out the stats kept on 656 * user accs */ 657 658 /* fall through to state 1 */ 659 660 case 1: 661 662 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 663 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol); 664 665 RF_LOCK_MUTEX(raidPtr->mutex); 666 667 /* create the reconstruction control pointer and install it in 668 * the right slot */ 669 raidPtr->reconControl[row] = tmp_reconctrl; 670 mapPtr = raidPtr->reconControl[row]->reconMap; 671 raidPtr->status[row] = rf_rs_reconstructing; 672 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 673 raidPtr->Disks[row][col].spareRow = srow; 674 raidPtr->Disks[row][col].spareCol = scol; 675 676 RF_UNLOCK_MUTEX(raidPtr->mutex); 677 678 RF_GETTIME(raidPtr->reconControl[row]->starttime); 679 680 /* now start up the actual reconstruction: issue a read for 681 * each surviving disk */ 682 683 reconDesc->numDisksDone = 0; 684 for (i = 0; i < raidPtr->numCol; i++) { 685 if (i != col) { 686 /* find and issue the next I/O on the 687 * indicated disk */ 688 if (IssueNextReadRequest(raidPtr, row, i)) { 689 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 690 reconDesc->numDisksDone++; 691 } 692 } 693 } 694 695 case 2: 696 Dprintf("RECON: resume requests\n"); 697 rf_ResumeNewRequests(raidPtr); 698 699 700 reconDesc->state = 3; 701 702 case 3: 703 704 /* process reconstruction events until all disks report that 705 * they've completed all work */ 706 mapPtr = raidPtr->reconControl[row]->reconMap; 707 708 709 710 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 711 712 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 713 RF_ASSERT(event); 714 715 if (ProcessReconEvent(raidPtr, row, event)) 716 reconDesc->numDisksDone++; 717 raidPtr->reconControl[row]->numRUsTotal = 718 mapPtr->totalRUs; 719 raidPtr->reconControl[row]->numRUsComplete = 720 mapPtr->totalRUs - 721 rf_UnitsLeftToReconstruct(mapPtr); 722 723 raidPtr->reconControl[row]->percentComplete = 724 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 725 #if RF_DEBUG_RECON 726 if (rf_prReconSched) { 727 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 728 } 729 #endif 730 } 731 732 733 734 reconDesc->state = 4; 735 736 737 case 4: 738 mapPtr = raidPtr->reconControl[row]->reconMap; 739 if (rf_reconDebug) { 740 printf("RECON: all reads completed\n"); 741 } 742 /* at this point all the reads have completed. We now wait 743 * for any pending writes to complete, and then we're done */ 744 745 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 746 747 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 748 RF_ASSERT(event); 749 750 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 751 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 752 #if RF_DEBUG_RECON 753 if (rf_prReconSched) { 754 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 755 } 756 #endif 757 } 758 reconDesc->state = 5; 759 760 case 5: 761 /* Success: mark the dead disk as reconstructed. We quiesce 762 * the array here to assure no nasty interactions with pending 763 * user accesses when we free up the psstatus structure as 764 * part of FreeReconControl() */ 765 766 reconDesc->state = 6; 767 768 retcode = rf_SuspendNewRequestsAndWait(raidPtr); 769 rf_StopUserStats(raidPtr); 770 rf_PrintUserStats(raidPtr); /* print out the stats on user 771 * accs accumulated during 772 * recon */ 773 774 /* fall through to state 6 */ 775 case 6: 776 777 778 779 RF_LOCK_MUTEX(raidPtr->mutex); 780 raidPtr->numFailures--; 781 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 782 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 783 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 784 RF_UNLOCK_MUTEX(raidPtr->mutex); 785 RF_GETTIME(etime); 786 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 787 788 /* XXX -- why is state 7 different from state 6 if there is no 789 * return() here? -- XXX Note that I set elpsd above & use it 790 * below, so if you put a return here you'll have to fix this. 791 * (also, FreeReconControl is called below) */ 792 793 case 7: 794 795 rf_ResumeNewRequests(raidPtr); 796 797 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 798 raidPtr->raidid, row, col); 799 xor_s = raidPtr->accumXorTimeUs / 1000000; 800 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 801 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 802 raidPtr->raidid, 803 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 804 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 805 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 806 raidPtr->raidid, 807 (int) raidPtr->reconControl[row]->starttime.tv_sec, 808 (int) raidPtr->reconControl[row]->starttime.tv_usec, 809 (int) etime.tv_sec, (int) etime.tv_usec); 810 811 #if RF_RECON_STATS > 0 812 printf("raid%d: Total head-sep stall count was %d\n", 813 raidPtr->raidid, (int) reconDesc->hsStallCount); 814 #endif /* RF_RECON_STATS > 0 */ 815 rf_FreeReconControl(raidPtr, row); 816 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 817 FreeReconDesc(reconDesc); 818 819 } 820 821 SignalReconDone(raidPtr); 822 return (0); 823 } 824 /***************************************************************************** 825 * do the right thing upon each reconstruction event. 826 * returns nonzero if and only if there is nothing left unread on the 827 * indicated disk 828 *****************************************************************************/ 829 static int 830 ProcessReconEvent(raidPtr, frow, event) 831 RF_Raid_t *raidPtr; 832 RF_RowCol_t frow; 833 RF_ReconEvent_t *event; 834 { 835 int retcode = 0, submitblocked; 836 RF_ReconBuffer_t *rbuf; 837 RF_SectorCount_t sectorsPerRU; 838 839 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 840 switch (event->type) { 841 842 /* a read I/O has completed */ 843 case RF_REVENT_READDONE: 844 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 845 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 846 frow, event->col, rbuf->parityStripeID); 847 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 848 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 849 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 850 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 851 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 852 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 853 if (!submitblocked) 854 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 855 break; 856 857 /* a write I/O has completed */ 858 case RF_REVENT_WRITEDONE: 859 #if RF_DEBUG_RECON 860 if (rf_floatingRbufDebug) { 861 rf_CheckFloatingRbufCount(raidPtr, 1); 862 } 863 #endif 864 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 865 rbuf = (RF_ReconBuffer_t *) event->arg; 866 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 867 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 868 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 869 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 870 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 871 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 872 873 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 874 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 875 raidPtr->numFullReconBuffers--; 876 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 877 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 878 } else 879 if (rbuf->type == RF_RBUF_TYPE_FORCED) 880 rf_FreeReconBuffer(rbuf); 881 else 882 RF_ASSERT(0); 883 break; 884 885 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 886 * cleared */ 887 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 888 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 889 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 890 * BUFCLEAR event if we 891 * couldn't submit */ 892 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 893 break; 894 895 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 896 * blockage has been cleared */ 897 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 898 retcode = TryToRead(raidPtr, frow, event->col); 899 break; 900 901 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 902 * reconstruction blockage has been 903 * cleared */ 904 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 905 retcode = TryToRead(raidPtr, frow, event->col); 906 break; 907 908 /* a buffer has become ready to write */ 909 case RF_REVENT_BUFREADY: 910 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 911 retcode = IssueNextWriteRequest(raidPtr, frow); 912 #if RF_DEBUG_RECON 913 if (rf_floatingRbufDebug) { 914 rf_CheckFloatingRbufCount(raidPtr, 1); 915 } 916 #endif 917 break; 918 919 /* we need to skip the current RU entirely because it got 920 * recon'd while we were waiting for something else to happen */ 921 case RF_REVENT_SKIP: 922 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 923 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 924 break; 925 926 /* a forced-reconstruction read access has completed. Just 927 * submit the buffer */ 928 case RF_REVENT_FORCEDREADDONE: 929 rbuf = (RF_ReconBuffer_t *) event->arg; 930 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 931 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 932 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 933 RF_ASSERT(!submitblocked); 934 break; 935 936 default: 937 RF_PANIC(); 938 } 939 rf_FreeReconEventDesc(event); 940 return (retcode); 941 } 942 /***************************************************************************** 943 * 944 * find the next thing that's needed on the indicated disk, and issue 945 * a read request for it. We assume that the reconstruction buffer 946 * associated with this process is free to receive the data. If 947 * reconstruction is blocked on the indicated RU, we issue a 948 * blockage-release request instead of a physical disk read request. 949 * If the current disk gets too far ahead of the others, we issue a 950 * head-separation wait request and return. 951 * 952 * ctrl->{ru_count, curPSID, diskOffset} and 953 * rbuf->failedDiskSectorOffset are maintained to point to the unit 954 * we're currently accessing. Note that this deviates from the 955 * standard C idiom of having counters point to the next thing to be 956 * accessed. This allows us to easily retry when we're blocked by 957 * head separation or reconstruction-blockage events. 958 * 959 * returns nonzero if and only if there is nothing left unread on the 960 * indicated disk 961 * 962 *****************************************************************************/ 963 static int 964 IssueNextReadRequest(raidPtr, row, col) 965 RF_Raid_t *raidPtr; 966 RF_RowCol_t row; 967 RF_RowCol_t col; 968 { 969 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 970 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 971 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 972 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 973 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 974 int do_new_check = 0, retcode = 0, status; 975 976 /* if we are currently the slowest disk, mark that we have to do a new 977 * check */ 978 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 979 do_new_check = 1; 980 981 while (1) { 982 983 ctrl->ru_count++; 984 if (ctrl->ru_count < RUsPerPU) { 985 ctrl->diskOffset += sectorsPerRU; 986 rbuf->failedDiskSectorOffset += sectorsPerRU; 987 } else { 988 ctrl->curPSID++; 989 ctrl->ru_count = 0; 990 /* code left over from when head-sep was based on 991 * parity stripe id */ 992 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 993 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 994 return (1); /* finito! */ 995 } 996 /* find the disk offsets of the start of the parity 997 * stripe on both the current disk and the failed 998 * disk. skip this entire parity stripe if either disk 999 * does not appear in the indicated PS */ 1000 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 1001 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 1002 if (status) { 1003 ctrl->ru_count = RUsPerPU - 1; 1004 continue; 1005 } 1006 } 1007 rbuf->which_ru = ctrl->ru_count; 1008 1009 /* skip this RU if it's already been reconstructed */ 1010 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1011 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1012 continue; 1013 } 1014 break; 1015 } 1016 ctrl->headSepCounter++; 1017 if (do_new_check) 1018 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1019 1020 1021 /* at this point, we have definitely decided what to do, and we have 1022 * only to see if we can actually do it now */ 1023 rbuf->parityStripeID = ctrl->curPSID; 1024 rbuf->which_ru = ctrl->ru_count; 1025 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1026 sizeof(raidPtr->recon_tracerecs[col])); 1027 raidPtr->recon_tracerecs[col].reconacc = 1; 1028 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1029 retcode = TryToRead(raidPtr, row, col); 1030 return (retcode); 1031 } 1032 1033 /* 1034 * tries to issue the next read on the indicated disk. We may be 1035 * blocked by (a) the heads being too far apart, or (b) recon on the 1036 * indicated RU being blocked due to a write by a user thread. In 1037 * this case, we issue a head-sep or blockage wait request, which will 1038 * cause this same routine to be invoked again later when the blockage 1039 * has cleared. 1040 */ 1041 1042 static int 1043 TryToRead(raidPtr, row, col) 1044 RF_Raid_t *raidPtr; 1045 RF_RowCol_t row; 1046 RF_RowCol_t col; 1047 { 1048 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1049 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1050 RF_StripeNum_t psid = ctrl->curPSID; 1051 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1052 RF_DiskQueueData_t *req; 1053 int status, created = 0; 1054 RF_ReconParityStripeStatus_t *pssPtr; 1055 1056 /* if the current disk is too far ahead of the others, issue a 1057 * head-separation wait and return */ 1058 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1059 return (0); 1060 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1061 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1062 1063 /* if recon is blocked on the indicated parity stripe, issue a 1064 * block-wait request and return. this also must mark the indicated RU 1065 * in the stripe as under reconstruction if not blocked. */ 1066 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1067 if (status == RF_PSS_RECON_BLOCKED) { 1068 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1069 goto out; 1070 } else 1071 if (status == RF_PSS_FORCED_ON_WRITE) { 1072 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1073 goto out; 1074 } 1075 /* make one last check to be sure that the indicated RU didn't get 1076 * reconstructed while we were waiting for something else to happen. 1077 * This is unfortunate in that it causes us to make this check twice 1078 * in the normal case. Might want to make some attempt to re-work 1079 * this so that we only do this check if we've definitely blocked on 1080 * one of the above checks. When this condition is detected, we may 1081 * have just created a bogus status entry, which we need to delete. */ 1082 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1083 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1084 if (created) 1085 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1086 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1087 goto out; 1088 } 1089 /* found something to read. issue the I/O */ 1090 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1091 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1092 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1093 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1094 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1095 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1096 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1097 1098 /* should be ok to use a NULL proc pointer here, all the bufs we use 1099 * should be in kernel space */ 1100 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1101 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1102 1103 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1104 1105 ctrl->rbuf->arg = (void *) req; 1106 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1107 pssPtr->issued[col] = 1; 1108 1109 out: 1110 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1111 return (0); 1112 } 1113 1114 1115 /* 1116 * given a parity stripe ID, we want to find out whether both the 1117 * current disk and the failed disk exist in that parity stripe. If 1118 * not, we want to skip this whole PS. If so, we want to find the 1119 * disk offset of the start of the PS on both the current disk and the 1120 * failed disk. 1121 * 1122 * this works by getting a list of disks comprising the indicated 1123 * parity stripe, and searching the list for the current and failed 1124 * disks. Once we've decided they both exist in the parity stripe, we 1125 * need to decide whether each is data or parity, so that we'll know 1126 * which mapping function to call to get the corresponding disk 1127 * offsets. 1128 * 1129 * this is kind of unpleasant, but doing it this way allows the 1130 * reconstruction code to use parity stripe IDs rather than physical 1131 * disks address to march through the failed disk, which greatly 1132 * simplifies a lot of code, as well as eliminating the need for a 1133 * reverse-mapping function. I also think it will execute faster, 1134 * since the calls to the mapping module are kept to a minimum. 1135 * 1136 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1137 * THE STRIPE IN THE CORRECT ORDER */ 1138 1139 1140 static int 1141 ComputePSDiskOffsets( 1142 RF_Raid_t * raidPtr, /* raid descriptor */ 1143 RF_StripeNum_t psid, /* parity stripe identifier */ 1144 RF_RowCol_t row, /* row and column of disk to find the offsets 1145 * for */ 1146 RF_RowCol_t col, 1147 RF_SectorNum_t * outDiskOffset, 1148 RF_SectorNum_t * outFailedDiskSectorOffset, 1149 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1150 RF_RowCol_t * spCol, 1151 RF_SectorNum_t * spOffset) 1152 { /* OUT: offset into disk containing spare unit */ 1153 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1154 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1155 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1156 RF_RowCol_t *diskids; 1157 u_int i, j, k, i_offset, j_offset; 1158 RF_RowCol_t prow, pcol; 1159 int testcol, testrow; 1160 RF_RowCol_t stripe; 1161 RF_SectorNum_t poffset; 1162 char i_is_parity = 0, j_is_parity = 0; 1163 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1164 1165 /* get a listing of the disks comprising that stripe */ 1166 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1167 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1168 RF_ASSERT(diskids); 1169 1170 /* reject this entire parity stripe if it does not contain the 1171 * indicated disk or it does not contain the failed disk */ 1172 if (row != stripe) 1173 goto skipit; 1174 for (i = 0; i < stripeWidth; i++) { 1175 if (col == diskids[i]) 1176 break; 1177 } 1178 if (i == stripeWidth) 1179 goto skipit; 1180 for (j = 0; j < stripeWidth; j++) { 1181 if (fcol == diskids[j]) 1182 break; 1183 } 1184 if (j == stripeWidth) { 1185 goto skipit; 1186 } 1187 /* find out which disk the parity is on */ 1188 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1189 1190 /* find out if either the current RU or the failed RU is parity */ 1191 /* also, if the parity occurs in this stripe prior to the data and/or 1192 * failed col, we need to decrement i and/or j */ 1193 for (k = 0; k < stripeWidth; k++) 1194 if (diskids[k] == pcol) 1195 break; 1196 RF_ASSERT(k < stripeWidth); 1197 i_offset = i; 1198 j_offset = j; 1199 if (k < i) 1200 i_offset--; 1201 else 1202 if (k == i) { 1203 i_is_parity = 1; 1204 i_offset = 0; 1205 } /* set offsets to zero to disable multiply 1206 * below */ 1207 if (k < j) 1208 j_offset--; 1209 else 1210 if (k == j) { 1211 j_is_parity = 1; 1212 j_offset = 0; 1213 } 1214 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1215 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1216 * tells us how far into the stripe the [current,failed] disk is. */ 1217 1218 /* call the mapping routine to get the offset into the current disk, 1219 * repeat for failed disk. */ 1220 if (i_is_parity) 1221 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1222 else 1223 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1224 1225 RF_ASSERT(row == testrow && col == testcol); 1226 1227 if (j_is_parity) 1228 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1229 else 1230 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1231 RF_ASSERT(row == testrow && fcol == testcol); 1232 1233 /* now locate the spare unit for the failed unit */ 1234 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1235 if (j_is_parity) 1236 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1237 else 1238 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1239 } else { 1240 *spRow = raidPtr->reconControl[row]->spareRow; 1241 *spCol = raidPtr->reconControl[row]->spareCol; 1242 *spOffset = *outFailedDiskSectorOffset; 1243 } 1244 1245 return (0); 1246 1247 skipit: 1248 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1249 psid, row, col); 1250 return (1); 1251 } 1252 /* this is called when a buffer has become ready to write to the replacement disk */ 1253 static int 1254 IssueNextWriteRequest(raidPtr, row) 1255 RF_Raid_t *raidPtr; 1256 RF_RowCol_t row; 1257 { 1258 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1259 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1260 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1261 RF_ReconBuffer_t *rbuf; 1262 RF_DiskQueueData_t *req; 1263 1264 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1265 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1266 * have gotten the event that sent us here */ 1267 RF_ASSERT(rbuf->pssPtr); 1268 1269 rbuf->pssPtr->writeRbuf = rbuf; 1270 rbuf->pssPtr = NULL; 1271 1272 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1273 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1274 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1275 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1276 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1277 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1278 1279 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1280 * kernel space */ 1281 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1282 sectorsPerRU, rbuf->buffer, 1283 rbuf->parityStripeID, rbuf->which_ru, 1284 ReconWriteDoneProc, (void *) rbuf, NULL, 1285 &raidPtr->recon_tracerecs[fcol], 1286 (void *) raidPtr, 0, NULL); 1287 1288 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1289 1290 rbuf->arg = (void *) req; 1291 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1292 1293 return (0); 1294 } 1295 1296 /* 1297 * this gets called upon the completion of a reconstruction read 1298 * operation the arg is a pointer to the per-disk reconstruction 1299 * control structure for the process that just finished a read. 1300 * 1301 * called at interrupt context in the kernel, so don't do anything 1302 * illegal here. 1303 */ 1304 static int 1305 ReconReadDoneProc(arg, status) 1306 void *arg; 1307 int status; 1308 { 1309 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1310 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1311 1312 if (status) { 1313 /* 1314 * XXX 1315 */ 1316 printf("Recon read failed!\n"); 1317 RF_PANIC(); 1318 } 1319 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1320 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1321 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1322 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1323 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1324 1325 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1326 return (0); 1327 } 1328 /* this gets called upon the completion of a reconstruction write operation. 1329 * the arg is a pointer to the rbuf that was just written 1330 * 1331 * called at interrupt context in the kernel, so don't do anything illegal here. 1332 */ 1333 static int 1334 ReconWriteDoneProc(arg, status) 1335 void *arg; 1336 int status; 1337 { 1338 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1339 1340 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1341 if (status) { 1342 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1343 * write failed!\n"); */ 1344 RF_PANIC(); 1345 } 1346 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1347 return (0); 1348 } 1349 1350 1351 /* 1352 * computes a new minimum head sep, and wakes up anyone who needs to 1353 * be woken as a result 1354 */ 1355 static void 1356 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1357 RF_Raid_t *raidPtr; 1358 RF_RowCol_t row; 1359 RF_HeadSepLimit_t hsCtr; 1360 { 1361 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1362 RF_HeadSepLimit_t new_min; 1363 RF_RowCol_t i; 1364 RF_CallbackDesc_t *p; 1365 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1366 * of a minimum */ 1367 1368 1369 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1370 1371 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1372 for (i = 0; i < raidPtr->numCol; i++) 1373 if (i != reconCtrlPtr->fcol) { 1374 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1375 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1376 } 1377 /* set the new minimum and wake up anyone who can now run again */ 1378 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1379 reconCtrlPtr->minHeadSepCounter = new_min; 1380 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1381 while (reconCtrlPtr->headSepCBList) { 1382 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1383 break; 1384 p = reconCtrlPtr->headSepCBList; 1385 reconCtrlPtr->headSepCBList = p->next; 1386 p->next = NULL; 1387 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1388 rf_FreeCallbackDesc(p); 1389 } 1390 1391 } 1392 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1393 } 1394 1395 /* 1396 * checks to see that the maximum head separation will not be violated 1397 * if we initiate a reconstruction I/O on the indicated disk. 1398 * Limiting the maximum head separation between two disks eliminates 1399 * the nasty buffer-stall conditions that occur when one disk races 1400 * ahead of the others and consumes all of the floating recon buffers. 1401 * This code is complex and unpleasant but it's necessary to avoid 1402 * some very nasty, albeit fairly rare, reconstruction behavior. 1403 * 1404 * returns non-zero if and only if we have to stop working on the 1405 * indicated disk due to a head-separation delay. 1406 */ 1407 static int 1408 CheckHeadSeparation( 1409 RF_Raid_t * raidPtr, 1410 RF_PerDiskReconCtrl_t * ctrl, 1411 RF_RowCol_t row, 1412 RF_RowCol_t col, 1413 RF_HeadSepLimit_t hsCtr, 1414 RF_ReconUnitNum_t which_ru) 1415 { 1416 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1417 RF_CallbackDesc_t *cb, *p, *pt; 1418 int retval = 0; 1419 1420 /* if we're too far ahead of the slowest disk, stop working on this 1421 * disk until the slower ones catch up. We do this by scheduling a 1422 * wakeup callback for the time when the slowest disk has caught up. 1423 * We define "caught up" with 20% hysteresis, i.e. the head separation 1424 * must have fallen to at most 80% of the max allowable head 1425 * separation before we'll wake up. 1426 * 1427 */ 1428 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1429 if ((raidPtr->headSepLimit >= 0) && 1430 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1431 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1432 raidPtr->raidid, row, col, ctrl->headSepCounter, 1433 reconCtrlPtr->minHeadSepCounter, 1434 raidPtr->headSepLimit); 1435 cb = rf_AllocCallbackDesc(); 1436 /* the minHeadSepCounter value we have to get to before we'll 1437 * wake up. build in 20% hysteresis. */ 1438 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1439 cb->row = row; 1440 cb->col = col; 1441 cb->next = NULL; 1442 1443 /* insert this callback descriptor into the sorted list of 1444 * pending head-sep callbacks */ 1445 p = reconCtrlPtr->headSepCBList; 1446 if (!p) 1447 reconCtrlPtr->headSepCBList = cb; 1448 else 1449 if (cb->callbackArg.v < p->callbackArg.v) { 1450 cb->next = reconCtrlPtr->headSepCBList; 1451 reconCtrlPtr->headSepCBList = cb; 1452 } else { 1453 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1454 cb->next = p; 1455 pt->next = cb; 1456 } 1457 retval = 1; 1458 #if RF_RECON_STATS > 0 1459 ctrl->reconCtrl->reconDesc->hsStallCount++; 1460 #endif /* RF_RECON_STATS > 0 */ 1461 } 1462 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1463 1464 return (retval); 1465 } 1466 /* 1467 * checks to see if reconstruction has been either forced or blocked 1468 * by a user operation. if forced, we skip this RU entirely. else if 1469 * blocked, put ourselves on the wait list. else return 0. 1470 * 1471 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1472 */ 1473 static int 1474 CheckForcedOrBlockedReconstruction( 1475 RF_Raid_t * raidPtr, 1476 RF_ReconParityStripeStatus_t * pssPtr, 1477 RF_PerDiskReconCtrl_t * ctrl, 1478 RF_RowCol_t row, 1479 RF_RowCol_t col, 1480 RF_StripeNum_t psid, 1481 RF_ReconUnitNum_t which_ru) 1482 { 1483 RF_CallbackDesc_t *cb; 1484 int retcode = 0; 1485 1486 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1487 retcode = RF_PSS_FORCED_ON_WRITE; 1488 else 1489 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1490 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1491 cb = rf_AllocCallbackDesc(); /* append ourselves to 1492 * the blockage-wait 1493 * list */ 1494 cb->row = row; 1495 cb->col = col; 1496 cb->next = pssPtr->blockWaitList; 1497 pssPtr->blockWaitList = cb; 1498 retcode = RF_PSS_RECON_BLOCKED; 1499 } 1500 if (!retcode) 1501 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1502 * reconstruction */ 1503 1504 return (retcode); 1505 } 1506 /* 1507 * if reconstruction is currently ongoing for the indicated stripeID, 1508 * reconstruction is forced to completion and we return non-zero to 1509 * indicate that the caller must wait. If not, then reconstruction is 1510 * blocked on the indicated stripe and the routine returns zero. If 1511 * and only if we return non-zero, we'll cause the cbFunc to get 1512 * invoked with the cbArg when the reconstruction has completed. 1513 */ 1514 int 1515 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1516 RF_Raid_t *raidPtr; 1517 RF_AccessStripeMap_t *asmap; 1518 void (*cbFunc) (RF_Raid_t *, void *); 1519 void *cbArg; 1520 { 1521 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1522 * we're working on */ 1523 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1524 * forcing recon on */ 1525 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1526 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1527 * stripe status structure */ 1528 RF_StripeNum_t psid; /* parity stripe id */ 1529 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1530 * offset */ 1531 RF_RowCol_t *diskids; 1532 RF_RowCol_t stripe; 1533 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1534 RF_RowCol_t fcol, diskno, i; 1535 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1536 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1537 RF_CallbackDesc_t *cb; 1538 int created = 0, nPromoted; 1539 1540 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1541 1542 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1543 1544 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1545 1546 /* if recon is not ongoing on this PS, just return */ 1547 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1548 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1549 return (0); 1550 } 1551 /* otherwise, we have to wait for reconstruction to complete on this 1552 * RU. */ 1553 /* In order to avoid waiting for a potentially large number of 1554 * low-priority accesses to complete, we force a normal-priority (i.e. 1555 * not low-priority) reconstruction on this RU. */ 1556 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1557 DDprintf1("Forcing recon on psid %ld\n", psid); 1558 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1559 * forced recon */ 1560 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1561 * that we just set */ 1562 fcol = raidPtr->reconControl[row]->fcol; 1563 1564 /* get a listing of the disks comprising the indicated stripe */ 1565 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1566 RF_ASSERT(row == stripe); 1567 1568 /* For previously issued reads, elevate them to normal 1569 * priority. If the I/O has already completed, it won't be 1570 * found in the queue, and hence this will be a no-op. For 1571 * unissued reads, allocate buffers and issue new reads. The 1572 * fact that we've set the FORCED bit means that the regular 1573 * recon procs will not re-issue these reqs */ 1574 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1575 if ((diskno = diskids[i]) != fcol) { 1576 if (pssPtr->issued[diskno]) { 1577 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1578 if (rf_reconDebug && nPromoted) 1579 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1580 } else { 1581 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1582 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1583 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1584 * location */ 1585 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1586 new_rbuf->which_ru = which_ru; 1587 new_rbuf->failedDiskSectorOffset = fd_offset; 1588 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1589 1590 /* use NULL b_proc b/c all addrs 1591 * should be in kernel space */ 1592 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1593 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1594 NULL, (void *) raidPtr, 0, NULL); 1595 1596 RF_ASSERT(req); /* XXX -- fix this -- 1597 * XXX */ 1598 1599 new_rbuf->arg = req; 1600 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1601 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1602 } 1603 } 1604 /* if the write is sitting in the disk queue, elevate its 1605 * priority */ 1606 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1607 printf("raid%d: promoted write to row %d col %d\n", 1608 raidPtr->raidid, row, fcol); 1609 } 1610 /* install a callback descriptor to be invoked when recon completes on 1611 * this parity stripe. */ 1612 cb = rf_AllocCallbackDesc(); 1613 /* XXX the following is bogus.. These functions don't really match!! 1614 * GO */ 1615 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1616 cb->callbackArg.p = (void *) cbArg; 1617 cb->next = pssPtr->procWaitList; 1618 pssPtr->procWaitList = cb; 1619 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1620 raidPtr->raidid, psid); 1621 1622 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1623 return (1); 1624 } 1625 /* called upon the completion of a forced reconstruction read. 1626 * all we do is schedule the FORCEDREADONE event. 1627 * called at interrupt context in the kernel, so don't do anything illegal here. 1628 */ 1629 static void 1630 ForceReconReadDoneProc(arg, status) 1631 void *arg; 1632 int status; 1633 { 1634 RF_ReconBuffer_t *rbuf = arg; 1635 1636 if (status) { 1637 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1638 * recon read 1639 * failed!\n"); */ 1640 RF_PANIC(); 1641 } 1642 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1643 } 1644 /* releases a block on the reconstruction of the indicated stripe */ 1645 int 1646 rf_UnblockRecon(raidPtr, asmap) 1647 RF_Raid_t *raidPtr; 1648 RF_AccessStripeMap_t *asmap; 1649 { 1650 RF_RowCol_t row = asmap->origRow; 1651 RF_StripeNum_t stripeID = asmap->stripeID; 1652 RF_ReconParityStripeStatus_t *pssPtr; 1653 RF_ReconUnitNum_t which_ru; 1654 RF_StripeNum_t psid; 1655 int created = 0; 1656 RF_CallbackDesc_t *cb; 1657 1658 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1659 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1660 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1661 1662 /* When recon is forced, the pss desc can get deleted before we get 1663 * back to unblock recon. But, this can _only_ happen when recon is 1664 * forced. It would be good to put some kind of sanity check here, but 1665 * how to decide if recon was just forced or not? */ 1666 if (!pssPtr) { 1667 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1668 * RU %d\n",psid,which_ru); */ 1669 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1670 if (rf_reconDebug || rf_pssDebug) 1671 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1672 #endif 1673 goto out; 1674 } 1675 pssPtr->blockCount--; 1676 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1677 raidPtr->raidid, psid, pssPtr->blockCount); 1678 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1679 1680 /* unblock recon before calling CauseReconEvent in case 1681 * CauseReconEvent causes us to try to issue a new read before 1682 * returning here. */ 1683 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1684 1685 1686 while (pssPtr->blockWaitList) { 1687 /* spin through the block-wait list and 1688 release all the waiters */ 1689 cb = pssPtr->blockWaitList; 1690 pssPtr->blockWaitList = cb->next; 1691 cb->next = NULL; 1692 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1693 rf_FreeCallbackDesc(cb); 1694 } 1695 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1696 /* if no recon was requested while recon was blocked */ 1697 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1698 } 1699 } 1700 out: 1701 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1702 return (0); 1703 } 1704