1 /* $NetBSD: rf_reconstruct.c,v 1.56 2003/06/29 22:30:34 fvdl Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************ 30 * 31 * rf_reconstruct.c -- code to perform on-line reconstruction 32 * 33 ************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.56 2003/06/29 22:30:34 fvdl Exp $"); 37 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/errno.h> 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/ioctl.h> 46 #include <sys/fcntl.h> 47 #include <sys/vnode.h> 48 #include <dev/raidframe/raidframevar.h> 49 50 #include "rf_raid.h" 51 #include "rf_reconutil.h" 52 #include "rf_revent.h" 53 #include "rf_reconbuffer.h" 54 #include "rf_acctrace.h" 55 #include "rf_etimer.h" 56 #include "rf_dag.h" 57 #include "rf_desc.h" 58 #include "rf_debugprint.h" 59 #include "rf_general.h" 60 #include "rf_freelist.h" 61 #include "rf_driver.h" 62 #include "rf_utils.h" 63 #include "rf_shutdown.h" 64 65 #include "rf_kintf.h" 66 67 /* setting these to -1 causes them to be set to their default values if not set by debug options */ 68 69 #if RF_DEBUG_RECON 70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) 71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) 74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) 75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) 76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) 77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) 78 79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) 80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) 81 82 #else /* RF_DEBUG_RECON */ 83 84 #define Dprintf(s) {} 85 #define Dprintf1(s,a) {} 86 #define Dprintf2(s,a,b) {} 87 #define Dprintf3(s,a,b,c) {} 88 #define Dprintf4(s,a,b,c,d) {} 89 #define Dprintf5(s,a,b,c,d,e) {} 90 #define Dprintf6(s,a,b,c,d,e,f) {} 91 #define Dprintf7(s,a,b,c,d,e,f,g) {} 92 93 #define DDprintf1(s,a) {} 94 #define DDprintf2(s,a,b) {} 95 96 #endif /* RF_DEBUG_RECON */ 97 98 99 static RF_FreeList_t *rf_recond_freelist; 100 #define RF_MAX_FREE_RECOND 4 101 #define RF_RECOND_INC 1 102 103 static RF_RaidReconDesc_t * 104 AllocRaidReconDesc(RF_Raid_t * raidPtr, 105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, 106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol); 107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); 108 static int 109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow, 110 RF_ReconEvent_t * event); 111 static int 112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row, 113 RF_RowCol_t col); 114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col); 115 static int 116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, 117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, 118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow, 119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); 120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row); 121 static int ReconReadDoneProc(void *arg, int status); 122 static int ReconWriteDoneProc(void *arg, int status); 123 static void 124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row, 125 RF_HeadSepLimit_t hsCtr); 126 static int 127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, 128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, 129 RF_ReconUnitNum_t which_ru); 130 static int 131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, 132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, 133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid, 134 RF_ReconUnitNum_t which_ru); 135 static void ForceReconReadDoneProc(void *arg, int status); 136 137 static void rf_ShutdownReconstruction(void *); 138 139 struct RF_ReconDoneProc_s { 140 void (*proc) (RF_Raid_t *, void *); 141 void *arg; 142 RF_ReconDoneProc_t *next; 143 }; 144 145 static RF_FreeList_t *rf_rdp_freelist; 146 #define RF_MAX_FREE_RDP 4 147 #define RF_RDP_INC 1 148 149 static void 150 SignalReconDone(RF_Raid_t * raidPtr) 151 { 152 RF_ReconDoneProc_t *p; 153 154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex); 155 for (p = raidPtr->recon_done_procs; p; p = p->next) { 156 p->proc(raidPtr, p->arg); 157 } 158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex); 159 } 160 161 /************************************************************************** 162 * 163 * sets up the parameters that will be used by the reconstruction process 164 * currently there are none, except for those that the layout-specific 165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up. 166 * 167 * in the kernel, we fire off the recon thread. 168 * 169 **************************************************************************/ 170 static void 171 rf_ShutdownReconstruction(ignored) 172 void *ignored; 173 { 174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *)); 176 } 177 178 int 179 rf_ConfigureReconstruction(listp) 180 RF_ShutdownList_t **listp; 181 { 182 int rc; 183 184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND, 185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t)); 186 if (rf_recond_freelist == NULL) 187 return (ENOMEM); 188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP, 189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t)); 190 if (rf_rdp_freelist == NULL) { 191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *)); 192 return (ENOMEM); 193 } 194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); 195 if (rc) { 196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 197 rf_ShutdownReconstruction(NULL); 198 return (rc); 199 } 200 return (0); 201 } 202 203 static RF_RaidReconDesc_t * 204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol) 205 RF_Raid_t *raidPtr; 206 RF_RowCol_t row; 207 RF_RowCol_t col; 208 RF_RaidDisk_t *spareDiskPtr; 209 int numDisksDone; 210 RF_RowCol_t srow; 211 RF_RowCol_t scol; 212 { 213 214 RF_RaidReconDesc_t *reconDesc; 215 216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *)); 217 218 reconDesc->raidPtr = raidPtr; 219 reconDesc->row = row; 220 reconDesc->col = col; 221 reconDesc->spareDiskPtr = spareDiskPtr; 222 reconDesc->numDisksDone = numDisksDone; 223 reconDesc->srow = srow; 224 reconDesc->scol = scol; 225 reconDesc->state = 0; 226 reconDesc->next = NULL; 227 228 return (reconDesc); 229 } 230 231 static void 232 FreeReconDesc(reconDesc) 233 RF_RaidReconDesc_t *reconDesc; 234 { 235 #if RF_RECON_STATS > 0 236 printf("raid%d: %lu recon event waits, %lu recon delays\n", 237 reconDesc->raidPtr->raidid, 238 (long) reconDesc->numReconEventWaits, 239 (long) reconDesc->numReconExecDelays); 240 #endif /* RF_RECON_STATS > 0 */ 241 printf("raid%d: %lu max exec ticks\n", 242 reconDesc->raidPtr->raidid, 243 (long) reconDesc->maxReconExecTicks); 244 #if (RF_RECON_STATS > 0) || defined(KERNEL) 245 printf("\n"); 246 #endif /* (RF_RECON_STATS > 0) || KERNEL */ 247 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next); 248 } 249 250 251 /***************************************************************************** 252 * 253 * primary routine to reconstruct a failed disk. This should be called from 254 * within its own thread. It won't return until reconstruction completes, 255 * fails, or is aborted. 256 *****************************************************************************/ 257 int 258 rf_ReconstructFailedDisk(raidPtr, row, col) 259 RF_Raid_t *raidPtr; 260 RF_RowCol_t row; 261 RF_RowCol_t col; 262 { 263 const RF_LayoutSW_t *lp; 264 int rc; 265 266 lp = raidPtr->Layout.map; 267 if (lp->SubmitReconBuffer) { 268 /* 269 * The current infrastructure only supports reconstructing one 270 * disk at a time for each array. 271 */ 272 RF_LOCK_MUTEX(raidPtr->mutex); 273 while (raidPtr->reconInProgress) { 274 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 275 } 276 raidPtr->reconInProgress++; 277 RF_UNLOCK_MUTEX(raidPtr->mutex); 278 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col); 279 RF_LOCK_MUTEX(raidPtr->mutex); 280 raidPtr->reconInProgress--; 281 RF_UNLOCK_MUTEX(raidPtr->mutex); 282 } else { 283 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 284 lp->parityConfig); 285 rc = EIO; 286 } 287 RF_SIGNAL_COND(raidPtr->waitForReconCond); 288 return (rc); 289 } 290 291 int 292 rf_ReconstructFailedDiskBasic(raidPtr, row, col) 293 RF_Raid_t *raidPtr; 294 RF_RowCol_t row; 295 RF_RowCol_t col; 296 { 297 RF_ComponentLabel_t c_label; 298 RF_RaidDisk_t *spareDiskPtr = NULL; 299 RF_RaidReconDesc_t *reconDesc; 300 RF_RowCol_t srow, scol; 301 int numDisksDone = 0, rc; 302 303 /* first look for a spare drive onto which to reconstruct the data */ 304 /* spare disk descriptors are stored in row 0. This may have to 305 * change eventually */ 306 307 RF_LOCK_MUTEX(raidPtr->mutex); 308 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 309 310 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 311 if (raidPtr->status[row] != rf_rs_degraded) { 312 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col); 313 RF_UNLOCK_MUTEX(raidPtr->mutex); 314 return (EINVAL); 315 } 316 srow = row; 317 scol = (-1); 318 } else { 319 srow = 0; 320 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { 321 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) { 322 spareDiskPtr = &raidPtr->Disks[srow][scol]; 323 spareDiskPtr->status = rf_ds_used_spare; 324 break; 325 } 326 } 327 if (!spareDiskPtr) { 328 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col); 329 RF_UNLOCK_MUTEX(raidPtr->mutex); 330 return (ENOSPC); 331 } 332 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol); 333 } 334 RF_UNLOCK_MUTEX(raidPtr->mutex); 335 336 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol); 337 raidPtr->reconDesc = (void *) reconDesc; 338 #if RF_RECON_STATS > 0 339 reconDesc->hsStallCount = 0; 340 reconDesc->numReconExecDelays = 0; 341 reconDesc->numReconEventWaits = 0; 342 #endif /* RF_RECON_STATS > 0 */ 343 reconDesc->reconExecTimerRunning = 0; 344 reconDesc->reconExecTicks = 0; 345 reconDesc->maxReconExecTicks = 0; 346 rc = rf_ContinueReconstructFailedDisk(reconDesc); 347 348 if (!rc) { 349 /* fix up the component label */ 350 /* Don't actually need the read here.. */ 351 raidread_component_label( 352 raidPtr->raid_cinfo[srow][scol].ci_dev, 353 raidPtr->raid_cinfo[srow][scol].ci_vp, 354 &c_label); 355 356 raid_init_component_label( raidPtr, &c_label); 357 c_label.row = row; 358 c_label.column = col; 359 c_label.clean = RF_RAID_DIRTY; 360 c_label.status = rf_ds_optimal; 361 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize; 362 363 /* We've just done a rebuild based on all the other 364 disks, so at this point the parity is known to be 365 clean, even if it wasn't before. */ 366 367 /* XXX doesn't hold for RAID 6!!*/ 368 369 RF_LOCK_MUTEX(raidPtr->mutex); 370 raidPtr->parity_good = RF_RAID_CLEAN; 371 RF_UNLOCK_MUTEX(raidPtr->mutex); 372 373 /* XXXX MORE NEEDED HERE */ 374 375 raidwrite_component_label( 376 raidPtr->raid_cinfo[srow][scol].ci_dev, 377 raidPtr->raid_cinfo[srow][scol].ci_vp, 378 &c_label); 379 380 381 rf_update_component_labels(raidPtr, 382 RF_NORMAL_COMPONENT_UPDATE); 383 384 } 385 return (rc); 386 } 387 388 /* 389 390 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, 391 and you don't get a spare until the next Monday. With this function 392 (and hot-swappable drives) you can now put your new disk containing 393 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to 394 rebuild the data "on the spot". 395 396 */ 397 398 int 399 rf_ReconstructInPlace(raidPtr, row, col) 400 RF_Raid_t *raidPtr; 401 RF_RowCol_t row; 402 RF_RowCol_t col; 403 { 404 RF_RaidDisk_t *spareDiskPtr = NULL; 405 RF_RaidReconDesc_t *reconDesc; 406 const RF_LayoutSW_t *lp; 407 RF_ComponentLabel_t c_label; 408 int numDisksDone = 0, rc; 409 struct partinfo dpart; 410 struct vnode *vp; 411 struct vattr va; 412 struct proc *proc; 413 int retcode; 414 int ac; 415 416 lp = raidPtr->Layout.map; 417 if (lp->SubmitReconBuffer) { 418 /* 419 * The current infrastructure only supports reconstructing one 420 * disk at a time for each array. 421 */ 422 RF_LOCK_MUTEX(raidPtr->mutex); 423 424 if (raidPtr->Disks[row][col].status != rf_ds_failed) { 425 /* "It's gone..." */ 426 raidPtr->numFailures++; 427 raidPtr->Disks[row][col].status = rf_ds_failed; 428 raidPtr->status[row] = rf_rs_degraded; 429 RF_UNLOCK_MUTEX(raidPtr->mutex); 430 rf_update_component_labels(raidPtr, 431 RF_NORMAL_COMPONENT_UPDATE); 432 RF_LOCK_MUTEX(raidPtr->mutex); 433 } 434 435 while (raidPtr->reconInProgress) { 436 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); 437 } 438 439 raidPtr->reconInProgress++; 440 441 442 /* first look for a spare drive onto which to reconstruct 443 the data. spare disk descriptors are stored in row 0. 444 This may have to change eventually */ 445 446 /* Actually, we don't care if it's failed or not... 447 On a RAID set with correct parity, this function 448 should be callable on any component without ill affects. */ 449 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed); 450 */ 451 452 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { 453 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col); 454 455 raidPtr->reconInProgress--; 456 RF_UNLOCK_MUTEX(raidPtr->mutex); 457 return (EINVAL); 458 } 459 460 proc = raidPtr->engine_thread; 461 462 /* This device may have been opened successfully the 463 first time. Close it before trying to open it again.. */ 464 465 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) { 466 #if 0 467 printf("Closed the open device: %s\n", 468 raidPtr->Disks[row][col].devname); 469 #endif 470 vp = raidPtr->raid_cinfo[row][col].ci_vp; 471 ac = raidPtr->Disks[row][col].auto_configured; 472 RF_UNLOCK_MUTEX(raidPtr->mutex); 473 rf_close_component(raidPtr, vp, ac); 474 RF_LOCK_MUTEX(raidPtr->mutex); 475 raidPtr->raid_cinfo[row][col].ci_vp = NULL; 476 } 477 /* note that this disk was *not* auto_configured (any longer)*/ 478 raidPtr->Disks[row][col].auto_configured = 0; 479 480 #if 0 481 printf("About to (re-)open the device for rebuilding: %s\n", 482 raidPtr->Disks[row][col].devname); 483 #endif 484 RF_UNLOCK_MUTEX(raidPtr->mutex); 485 retcode = raidlookup(raidPtr->Disks[row][col].devname, 486 proc, &vp); 487 488 if (retcode) { 489 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, 490 raidPtr->Disks[row][col].devname, retcode); 491 492 /* the component isn't responding properly... 493 must be still dead :-( */ 494 RF_LOCK_MUTEX(raidPtr->mutex); 495 raidPtr->reconInProgress--; 496 RF_UNLOCK_MUTEX(raidPtr->mutex); 497 return(retcode); 498 499 } else { 500 501 /* Ok, so we can at least do a lookup... 502 How about actually getting a vp for it? */ 503 504 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, 505 proc)) != 0) { 506 RF_LOCK_MUTEX(raidPtr->mutex); 507 raidPtr->reconInProgress--; 508 RF_UNLOCK_MUTEX(raidPtr->mutex); 509 return(retcode); 510 } 511 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, 512 FREAD, proc->p_ucred, proc); 513 if (retcode) { 514 RF_LOCK_MUTEX(raidPtr->mutex); 515 raidPtr->reconInProgress--; 516 RF_UNLOCK_MUTEX(raidPtr->mutex); 517 return(retcode); 518 } 519 RF_LOCK_MUTEX(raidPtr->mutex); 520 raidPtr->Disks[row][col].blockSize = 521 dpart.disklab->d_secsize; 522 523 raidPtr->Disks[row][col].numBlocks = 524 dpart.part->p_size - rf_protectedSectors; 525 526 raidPtr->raid_cinfo[row][col].ci_vp = vp; 527 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev; 528 529 raidPtr->Disks[row][col].dev = va.va_rdev; 530 531 /* we allow the user to specify that only a 532 fraction of the disks should be used this is 533 just for debug: it speeds up 534 * the parity scan */ 535 raidPtr->Disks[row][col].numBlocks = 536 raidPtr->Disks[row][col].numBlocks * 537 rf_sizePercentage / 100; 538 RF_UNLOCK_MUTEX(raidPtr->mutex); 539 } 540 541 542 543 spareDiskPtr = &raidPtr->Disks[row][col]; 544 spareDiskPtr->status = rf_ds_used_spare; 545 546 printf("raid%d: initiating in-place reconstruction on\n", 547 raidPtr->raidid); 548 printf("raid%d: row %d col %d -> spare at row %d col %d\n", 549 raidPtr->raidid, row, col, row, col); 550 551 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, 552 spareDiskPtr, numDisksDone, 553 row, col); 554 raidPtr->reconDesc = (void *) reconDesc; 555 #if RF_RECON_STATS > 0 556 reconDesc->hsStallCount = 0; 557 reconDesc->numReconExecDelays = 0; 558 reconDesc->numReconEventWaits = 0; 559 #endif /* RF_RECON_STATS > 0 */ 560 reconDesc->reconExecTimerRunning = 0; 561 reconDesc->reconExecTicks = 0; 562 reconDesc->maxReconExecTicks = 0; 563 rc = rf_ContinueReconstructFailedDisk(reconDesc); 564 565 RF_LOCK_MUTEX(raidPtr->mutex); 566 raidPtr->reconInProgress--; 567 RF_UNLOCK_MUTEX(raidPtr->mutex); 568 569 } else { 570 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", 571 lp->parityConfig); 572 rc = EIO; 573 } 574 575 if (!rc) { 576 RF_LOCK_MUTEX(raidPtr->mutex); 577 /* Need to set these here, as at this point it'll be claiming 578 that the disk is in rf_ds_spared! But we know better :-) */ 579 580 raidPtr->Disks[row][col].status = rf_ds_optimal; 581 raidPtr->status[row] = rf_rs_optimal; 582 RF_UNLOCK_MUTEX(raidPtr->mutex); 583 584 /* fix up the component label */ 585 /* Don't actually need the read here.. */ 586 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 587 raidPtr->raid_cinfo[row][col].ci_vp, 588 &c_label); 589 590 RF_LOCK_MUTEX(raidPtr->mutex); 591 raid_init_component_label(raidPtr, &c_label); 592 593 c_label.row = row; 594 c_label.column = col; 595 596 /* We've just done a rebuild based on all the other 597 disks, so at this point the parity is known to be 598 clean, even if it wasn't before. */ 599 600 /* XXX doesn't hold for RAID 6!!*/ 601 602 raidPtr->parity_good = RF_RAID_CLEAN; 603 RF_UNLOCK_MUTEX(raidPtr->mutex); 604 605 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev, 606 raidPtr->raid_cinfo[row][col].ci_vp, 607 &c_label); 608 609 rf_update_component_labels(raidPtr, 610 RF_NORMAL_COMPONENT_UPDATE); 611 612 } 613 RF_SIGNAL_COND(raidPtr->waitForReconCond); 614 return (rc); 615 } 616 617 618 int 619 rf_ContinueReconstructFailedDisk(reconDesc) 620 RF_RaidReconDesc_t *reconDesc; 621 { 622 RF_Raid_t *raidPtr = reconDesc->raidPtr; 623 RF_RowCol_t row = reconDesc->row; 624 RF_RowCol_t col = reconDesc->col; 625 RF_RowCol_t srow = reconDesc->srow; 626 RF_RowCol_t scol = reconDesc->scol; 627 RF_ReconMap_t *mapPtr; 628 RF_ReconCtrl_t *tmp_reconctrl; 629 RF_ReconEvent_t *event; 630 struct timeval etime, elpsd; 631 unsigned long xor_s, xor_resid_us; 632 int i, ds; 633 634 switch (reconDesc->state) { 635 636 637 case 0: 638 639 raidPtr->accumXorTimeUs = 0; 640 641 /* create one trace record per physical disk */ 642 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); 643 644 /* quiesce the array prior to starting recon. this is needed 645 * to assure no nasty interactions with pending user writes. 646 * We need to do this before we change the disk or row status. */ 647 reconDesc->state = 1; 648 649 Dprintf("RECON: begin request suspend\n"); 650 rf_SuspendNewRequestsAndWait(raidPtr); 651 Dprintf("RECON: end request suspend\n"); 652 rf_StartUserStats(raidPtr); /* zero out the stats kept on 653 * user accs */ 654 655 /* fall through to state 1 */ 656 657 case 1: 658 659 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ 660 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol); 661 662 RF_LOCK_MUTEX(raidPtr->mutex); 663 664 /* create the reconstruction control pointer and install it in 665 * the right slot */ 666 raidPtr->reconControl[row] = tmp_reconctrl; 667 mapPtr = raidPtr->reconControl[row]->reconMap; 668 raidPtr->status[row] = rf_rs_reconstructing; 669 raidPtr->Disks[row][col].status = rf_ds_reconstructing; 670 raidPtr->Disks[row][col].spareRow = srow; 671 raidPtr->Disks[row][col].spareCol = scol; 672 673 RF_UNLOCK_MUTEX(raidPtr->mutex); 674 675 RF_GETTIME(raidPtr->reconControl[row]->starttime); 676 677 /* now start up the actual reconstruction: issue a read for 678 * each surviving disk */ 679 680 reconDesc->numDisksDone = 0; 681 for (i = 0; i < raidPtr->numCol; i++) { 682 if (i != col) { 683 /* find and issue the next I/O on the 684 * indicated disk */ 685 if (IssueNextReadRequest(raidPtr, row, i)) { 686 Dprintf2("RECON: done issuing for r%d c%d\n", row, i); 687 reconDesc->numDisksDone++; 688 } 689 } 690 } 691 692 case 2: 693 Dprintf("RECON: resume requests\n"); 694 rf_ResumeNewRequests(raidPtr); 695 696 697 reconDesc->state = 3; 698 699 case 3: 700 701 /* process reconstruction events until all disks report that 702 * they've completed all work */ 703 mapPtr = raidPtr->reconControl[row]->reconMap; 704 705 706 707 while (reconDesc->numDisksDone < raidPtr->numCol - 1) { 708 709 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 710 RF_ASSERT(event); 711 712 if (ProcessReconEvent(raidPtr, row, event)) 713 reconDesc->numDisksDone++; 714 raidPtr->reconControl[row]->numRUsTotal = 715 mapPtr->totalRUs; 716 raidPtr->reconControl[row]->numRUsComplete = 717 mapPtr->totalRUs - 718 rf_UnitsLeftToReconstruct(mapPtr); 719 720 raidPtr->reconControl[row]->percentComplete = 721 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal); 722 #if RF_DEBUG_RECON 723 if (rf_prReconSched) { 724 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 725 } 726 #endif 727 } 728 729 730 731 reconDesc->state = 4; 732 733 734 case 4: 735 mapPtr = raidPtr->reconControl[row]->reconMap; 736 if (rf_reconDebug) { 737 printf("RECON: all reads completed\n"); 738 } 739 /* at this point all the reads have completed. We now wait 740 * for any pending writes to complete, and then we're done */ 741 742 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) { 743 744 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); 745 RF_ASSERT(event); 746 747 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */ 748 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); 749 #if RF_DEBUG_RECON 750 if (rf_prReconSched) { 751 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime)); 752 } 753 #endif 754 } 755 reconDesc->state = 5; 756 757 case 5: 758 /* Success: mark the dead disk as reconstructed. We quiesce 759 * the array here to assure no nasty interactions with pending 760 * user accesses when we free up the psstatus structure as 761 * part of FreeReconControl() */ 762 763 reconDesc->state = 6; 764 765 rf_SuspendNewRequestsAndWait(raidPtr); 766 rf_StopUserStats(raidPtr); 767 rf_PrintUserStats(raidPtr); /* print out the stats on user 768 * accs accumulated during 769 * recon */ 770 771 /* fall through to state 6 */ 772 case 6: 773 774 775 776 RF_LOCK_MUTEX(raidPtr->mutex); 777 raidPtr->numFailures--; 778 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); 779 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; 780 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal; 781 RF_UNLOCK_MUTEX(raidPtr->mutex); 782 RF_GETTIME(etime); 783 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd); 784 785 /* XXX -- why is state 7 different from state 6 if there is no 786 * return() here? -- XXX Note that I set elpsd above & use it 787 * below, so if you put a return here you'll have to fix this. 788 * (also, FreeReconControl is called below) */ 789 790 case 7: 791 792 rf_ResumeNewRequests(raidPtr); 793 794 printf("raid%d: Reconstruction of disk at row %d col %d completed\n", 795 raidPtr->raidid, row, col); 796 xor_s = raidPtr->accumXorTimeUs / 1000000; 797 xor_resid_us = raidPtr->accumXorTimeUs % 1000000; 798 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", 799 raidPtr->raidid, 800 (int) elpsd.tv_sec, (int) elpsd.tv_usec, 801 raidPtr->accumXorTimeUs, xor_s, xor_resid_us); 802 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", 803 raidPtr->raidid, 804 (int) raidPtr->reconControl[row]->starttime.tv_sec, 805 (int) raidPtr->reconControl[row]->starttime.tv_usec, 806 (int) etime.tv_sec, (int) etime.tv_usec); 807 808 #if RF_RECON_STATS > 0 809 printf("raid%d: Total head-sep stall count was %d\n", 810 raidPtr->raidid, (int) reconDesc->hsStallCount); 811 #endif /* RF_RECON_STATS > 0 */ 812 rf_FreeReconControl(raidPtr, row); 813 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); 814 FreeReconDesc(reconDesc); 815 816 } 817 818 SignalReconDone(raidPtr); 819 return (0); 820 } 821 /***************************************************************************** 822 * do the right thing upon each reconstruction event. 823 * returns nonzero if and only if there is nothing left unread on the 824 * indicated disk 825 *****************************************************************************/ 826 static int 827 ProcessReconEvent(raidPtr, frow, event) 828 RF_Raid_t *raidPtr; 829 RF_RowCol_t frow; 830 RF_ReconEvent_t *event; 831 { 832 int retcode = 0, submitblocked; 833 RF_ReconBuffer_t *rbuf; 834 RF_SectorCount_t sectorsPerRU; 835 836 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); 837 switch (event->type) { 838 839 /* a read I/O has completed */ 840 case RF_REVENT_READDONE: 841 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf; 842 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n", 843 frow, event->col, rbuf->parityStripeID); 844 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", 845 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 846 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 847 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 848 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); 849 Dprintf1("RECON: submitblocked=%d\n", submitblocked); 850 if (!submitblocked) 851 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 852 break; 853 854 /* a write I/O has completed */ 855 case RF_REVENT_WRITEDONE: 856 #if RF_DEBUG_RECON 857 if (rf_floatingRbufDebug) { 858 rf_CheckFloatingRbufCount(raidPtr, 1); 859 } 860 #endif 861 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 862 rbuf = (RF_ReconBuffer_t *) event->arg; 863 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 864 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", 865 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete); 866 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap, 867 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); 868 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru); 869 870 if (rbuf->type == RF_RBUF_TYPE_FLOATING) { 871 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 872 raidPtr->numFullReconBuffers--; 873 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf); 874 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex); 875 } else 876 if (rbuf->type == RF_RBUF_TYPE_FORCED) 877 rf_FreeReconBuffer(rbuf); 878 else 879 RF_ASSERT(0); 880 break; 881 882 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been 883 * cleared */ 884 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col); 885 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); 886 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the 887 * BUFCLEAR event if we 888 * couldn't submit */ 889 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 890 break; 891 892 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction 893 * blockage has been cleared */ 894 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col); 895 retcode = TryToRead(raidPtr, frow, event->col); 896 break; 897 898 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation 899 * reconstruction blockage has been 900 * cleared */ 901 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col); 902 retcode = TryToRead(raidPtr, frow, event->col); 903 break; 904 905 /* a buffer has become ready to write */ 906 case RF_REVENT_BUFREADY: 907 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col); 908 retcode = IssueNextWriteRequest(raidPtr, frow); 909 #if RF_DEBUG_RECON 910 if (rf_floatingRbufDebug) { 911 rf_CheckFloatingRbufCount(raidPtr, 1); 912 } 913 #endif 914 break; 915 916 /* we need to skip the current RU entirely because it got 917 * recon'd while we were waiting for something else to happen */ 918 case RF_REVENT_SKIP: 919 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col); 920 retcode = IssueNextReadRequest(raidPtr, frow, event->col); 921 break; 922 923 /* a forced-reconstruction read access has completed. Just 924 * submit the buffer */ 925 case RF_REVENT_FORCEDREADDONE: 926 rbuf = (RF_ReconBuffer_t *) event->arg; 927 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); 928 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col); 929 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); 930 RF_ASSERT(!submitblocked); 931 break; 932 933 default: 934 RF_PANIC(); 935 } 936 rf_FreeReconEventDesc(event); 937 return (retcode); 938 } 939 /***************************************************************************** 940 * 941 * find the next thing that's needed on the indicated disk, and issue 942 * a read request for it. We assume that the reconstruction buffer 943 * associated with this process is free to receive the data. If 944 * reconstruction is blocked on the indicated RU, we issue a 945 * blockage-release request instead of a physical disk read request. 946 * If the current disk gets too far ahead of the others, we issue a 947 * head-separation wait request and return. 948 * 949 * ctrl->{ru_count, curPSID, diskOffset} and 950 * rbuf->failedDiskSectorOffset are maintained to point to the unit 951 * we're currently accessing. Note that this deviates from the 952 * standard C idiom of having counters point to the next thing to be 953 * accessed. This allows us to easily retry when we're blocked by 954 * head separation or reconstruction-blockage events. 955 * 956 * returns nonzero if and only if there is nothing left unread on the 957 * indicated disk 958 * 959 *****************************************************************************/ 960 static int 961 IssueNextReadRequest(raidPtr, row, col) 962 RF_Raid_t *raidPtr; 963 RF_RowCol_t row; 964 RF_RowCol_t col; 965 { 966 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 967 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 968 RF_ReconBuffer_t *rbuf = ctrl->rbuf; 969 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; 970 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 971 int do_new_check = 0, retcode = 0, status; 972 973 /* if we are currently the slowest disk, mark that we have to do a new 974 * check */ 975 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter) 976 do_new_check = 1; 977 978 while (1) { 979 980 ctrl->ru_count++; 981 if (ctrl->ru_count < RUsPerPU) { 982 ctrl->diskOffset += sectorsPerRU; 983 rbuf->failedDiskSectorOffset += sectorsPerRU; 984 } else { 985 ctrl->curPSID++; 986 ctrl->ru_count = 0; 987 /* code left over from when head-sep was based on 988 * parity stripe id */ 989 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) { 990 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter)); 991 return (1); /* finito! */ 992 } 993 /* find the disk offsets of the start of the parity 994 * stripe on both the current disk and the failed 995 * disk. skip this entire parity stripe if either disk 996 * does not appear in the indicated PS */ 997 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, 998 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset); 999 if (status) { 1000 ctrl->ru_count = RUsPerPU - 1; 1001 continue; 1002 } 1003 } 1004 rbuf->which_ru = ctrl->ru_count; 1005 1006 /* skip this RU if it's already been reconstructed */ 1007 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) { 1008 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); 1009 continue; 1010 } 1011 break; 1012 } 1013 ctrl->headSepCounter++; 1014 if (do_new_check) 1015 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */ 1016 1017 1018 /* at this point, we have definitely decided what to do, and we have 1019 * only to see if we can actually do it now */ 1020 rbuf->parityStripeID = ctrl->curPSID; 1021 rbuf->which_ru = ctrl->ru_count; 1022 memset((char *) &raidPtr->recon_tracerecs[col], 0, 1023 sizeof(raidPtr->recon_tracerecs[col])); 1024 raidPtr->recon_tracerecs[col].reconacc = 1; 1025 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1026 retcode = TryToRead(raidPtr, row, col); 1027 return (retcode); 1028 } 1029 1030 /* 1031 * tries to issue the next read on the indicated disk. We may be 1032 * blocked by (a) the heads being too far apart, or (b) recon on the 1033 * indicated RU being blocked due to a write by a user thread. In 1034 * this case, we issue a head-sep or blockage wait request, which will 1035 * cause this same routine to be invoked again later when the blockage 1036 * has cleared. 1037 */ 1038 1039 static int 1040 TryToRead(raidPtr, row, col) 1041 RF_Raid_t *raidPtr; 1042 RF_RowCol_t row; 1043 RF_RowCol_t col; 1044 { 1045 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col]; 1046 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; 1047 RF_StripeNum_t psid = ctrl->curPSID; 1048 RF_ReconUnitNum_t which_ru = ctrl->ru_count; 1049 RF_DiskQueueData_t *req; 1050 int status, created = 0; 1051 RF_ReconParityStripeStatus_t *pssPtr; 1052 1053 /* if the current disk is too far ahead of the others, issue a 1054 * head-separation wait and return */ 1055 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru)) 1056 return (0); 1057 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1058 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created); 1059 1060 /* if recon is blocked on the indicated parity stripe, issue a 1061 * block-wait request and return. this also must mark the indicated RU 1062 * in the stripe as under reconstruction if not blocked. */ 1063 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru); 1064 if (status == RF_PSS_RECON_BLOCKED) { 1065 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); 1066 goto out; 1067 } else 1068 if (status == RF_PSS_FORCED_ON_WRITE) { 1069 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1070 goto out; 1071 } 1072 /* make one last check to be sure that the indicated RU didn't get 1073 * reconstructed while we were waiting for something else to happen. 1074 * This is unfortunate in that it causes us to make this check twice 1075 * in the normal case. Might want to make some attempt to re-work 1076 * this so that we only do this check if we've definitely blocked on 1077 * one of the above checks. When this condition is detected, we may 1078 * have just created a bogus status entry, which we need to delete. */ 1079 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { 1080 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); 1081 if (created) 1082 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1083 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP); 1084 goto out; 1085 } 1086 /* found something to read. issue the I/O */ 1087 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n", 1088 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer); 1089 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); 1090 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); 1091 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = 1092 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); 1093 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); 1094 1095 /* should be ok to use a NULL proc pointer here, all the bufs we use 1096 * should be in kernel space */ 1097 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, 1098 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); 1099 1100 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1101 1102 ctrl->rbuf->arg = (void *) req; 1103 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY); 1104 pssPtr->issued[col] = 1; 1105 1106 out: 1107 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1108 return (0); 1109 } 1110 1111 1112 /* 1113 * given a parity stripe ID, we want to find out whether both the 1114 * current disk and the failed disk exist in that parity stripe. If 1115 * not, we want to skip this whole PS. If so, we want to find the 1116 * disk offset of the start of the PS on both the current disk and the 1117 * failed disk. 1118 * 1119 * this works by getting a list of disks comprising the indicated 1120 * parity stripe, and searching the list for the current and failed 1121 * disks. Once we've decided they both exist in the parity stripe, we 1122 * need to decide whether each is data or parity, so that we'll know 1123 * which mapping function to call to get the corresponding disk 1124 * offsets. 1125 * 1126 * this is kind of unpleasant, but doing it this way allows the 1127 * reconstruction code to use parity stripe IDs rather than physical 1128 * disks address to march through the failed disk, which greatly 1129 * simplifies a lot of code, as well as eliminating the need for a 1130 * reverse-mapping function. I also think it will execute faster, 1131 * since the calls to the mapping module are kept to a minimum. 1132 * 1133 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING 1134 * THE STRIPE IN THE CORRECT ORDER */ 1135 1136 1137 static int 1138 ComputePSDiskOffsets( 1139 RF_Raid_t * raidPtr, /* raid descriptor */ 1140 RF_StripeNum_t psid, /* parity stripe identifier */ 1141 RF_RowCol_t row, /* row and column of disk to find the offsets 1142 * for */ 1143 RF_RowCol_t col, 1144 RF_SectorNum_t * outDiskOffset, 1145 RF_SectorNum_t * outFailedDiskSectorOffset, 1146 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */ 1147 RF_RowCol_t * spCol, 1148 RF_SectorNum_t * spOffset) 1149 { /* OUT: offset into disk containing spare unit */ 1150 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1151 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1152 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ 1153 RF_RowCol_t *diskids; 1154 u_int i, j, k, i_offset, j_offset; 1155 RF_RowCol_t prow, pcol; 1156 int testcol, testrow; 1157 RF_RowCol_t stripe; 1158 RF_SectorNum_t poffset; 1159 char i_is_parity = 0, j_is_parity = 0; 1160 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 1161 1162 /* get a listing of the disks comprising that stripe */ 1163 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); 1164 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe); 1165 RF_ASSERT(diskids); 1166 1167 /* reject this entire parity stripe if it does not contain the 1168 * indicated disk or it does not contain the failed disk */ 1169 if (row != stripe) 1170 goto skipit; 1171 for (i = 0; i < stripeWidth; i++) { 1172 if (col == diskids[i]) 1173 break; 1174 } 1175 if (i == stripeWidth) 1176 goto skipit; 1177 for (j = 0; j < stripeWidth; j++) { 1178 if (fcol == diskids[j]) 1179 break; 1180 } 1181 if (j == stripeWidth) { 1182 goto skipit; 1183 } 1184 /* find out which disk the parity is on */ 1185 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP); 1186 1187 /* find out if either the current RU or the failed RU is parity */ 1188 /* also, if the parity occurs in this stripe prior to the data and/or 1189 * failed col, we need to decrement i and/or j */ 1190 for (k = 0; k < stripeWidth; k++) 1191 if (diskids[k] == pcol) 1192 break; 1193 RF_ASSERT(k < stripeWidth); 1194 i_offset = i; 1195 j_offset = j; 1196 if (k < i) 1197 i_offset--; 1198 else 1199 if (k == i) { 1200 i_is_parity = 1; 1201 i_offset = 0; 1202 } /* set offsets to zero to disable multiply 1203 * below */ 1204 if (k < j) 1205 j_offset--; 1206 else 1207 if (k == j) { 1208 j_is_parity = 1; 1209 j_offset = 0; 1210 } 1211 /* at this point, [ij]_is_parity tells us whether the [current,failed] 1212 * disk is parity at the start of this RU, and, if data, "[ij]_offset" 1213 * tells us how far into the stripe the [current,failed] disk is. */ 1214 1215 /* call the mapping routine to get the offset into the current disk, 1216 * repeat for failed disk. */ 1217 if (i_is_parity) 1218 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1219 else 1220 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP); 1221 1222 RF_ASSERT(row == testrow && col == testcol); 1223 1224 if (j_is_parity) 1225 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1226 else 1227 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); 1228 RF_ASSERT(row == testrow && fcol == testcol); 1229 1230 /* now locate the spare unit for the failed unit */ 1231 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { 1232 if (j_is_parity) 1233 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1234 else 1235 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP); 1236 } else { 1237 *spRow = raidPtr->reconControl[row]->spareRow; 1238 *spCol = raidPtr->reconControl[row]->spareCol; 1239 *spOffset = *outFailedDiskSectorOffset; 1240 } 1241 1242 return (0); 1243 1244 skipit: 1245 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", 1246 psid, row, col); 1247 return (1); 1248 } 1249 /* this is called when a buffer has become ready to write to the replacement disk */ 1250 static int 1251 IssueNextWriteRequest(raidPtr, row) 1252 RF_Raid_t *raidPtr; 1253 RF_RowCol_t row; 1254 { 1255 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 1256 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; 1257 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol; 1258 RF_ReconBuffer_t *rbuf; 1259 RF_DiskQueueData_t *req; 1260 1261 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]); 1262 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't 1263 * have gotten the event that sent us here */ 1264 RF_ASSERT(rbuf->pssPtr); 1265 1266 rbuf->pssPtr->writeRbuf = rbuf; 1267 rbuf->pssPtr = NULL; 1268 1269 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", 1270 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, 1271 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); 1272 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", 1273 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, 1274 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); 1275 1276 /* should be ok to use a NULL b_proc here b/c all addrs should be in 1277 * kernel space */ 1278 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, 1279 sectorsPerRU, rbuf->buffer, 1280 rbuf->parityStripeID, rbuf->which_ru, 1281 ReconWriteDoneProc, (void *) rbuf, NULL, 1282 &raidPtr->recon_tracerecs[fcol], 1283 (void *) raidPtr, 0, NULL); 1284 1285 RF_ASSERT(req); /* XXX -- fix this -- XXX */ 1286 1287 rbuf->arg = (void *) req; 1288 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY); 1289 1290 return (0); 1291 } 1292 1293 /* 1294 * this gets called upon the completion of a reconstruction read 1295 * operation the arg is a pointer to the per-disk reconstruction 1296 * control structure for the process that just finished a read. 1297 * 1298 * called at interrupt context in the kernel, so don't do anything 1299 * illegal here. 1300 */ 1301 static int 1302 ReconReadDoneProc(arg, status) 1303 void *arg; 1304 int status; 1305 { 1306 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; 1307 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; 1308 1309 if (status) { 1310 /* 1311 * XXX 1312 */ 1313 printf("Recon read failed!\n"); 1314 RF_PANIC(); 1315 } 1316 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1317 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1318 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = 1319 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1320 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); 1321 1322 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE); 1323 return (0); 1324 } 1325 /* this gets called upon the completion of a reconstruction write operation. 1326 * the arg is a pointer to the rbuf that was just written 1327 * 1328 * called at interrupt context in the kernel, so don't do anything illegal here. 1329 */ 1330 static int 1331 ReconWriteDoneProc(arg, status) 1332 void *arg; 1333 int status; 1334 { 1335 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; 1336 1337 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); 1338 if (status) { 1339 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon 1340 * write failed!\n"); */ 1341 RF_PANIC(); 1342 } 1343 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE); 1344 return (0); 1345 } 1346 1347 1348 /* 1349 * computes a new minimum head sep, and wakes up anyone who needs to 1350 * be woken as a result 1351 */ 1352 static void 1353 CheckForNewMinHeadSep(raidPtr, row, hsCtr) 1354 RF_Raid_t *raidPtr; 1355 RF_RowCol_t row; 1356 RF_HeadSepLimit_t hsCtr; 1357 { 1358 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1359 RF_HeadSepLimit_t new_min; 1360 RF_RowCol_t i; 1361 RF_CallbackDesc_t *p; 1362 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition 1363 * of a minimum */ 1364 1365 1366 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1367 1368 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ 1369 for (i = 0; i < raidPtr->numCol; i++) 1370 if (i != reconCtrlPtr->fcol) { 1371 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) 1372 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; 1373 } 1374 /* set the new minimum and wake up anyone who can now run again */ 1375 if (new_min != reconCtrlPtr->minHeadSepCounter) { 1376 reconCtrlPtr->minHeadSepCounter = new_min; 1377 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); 1378 while (reconCtrlPtr->headSepCBList) { 1379 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) 1380 break; 1381 p = reconCtrlPtr->headSepCBList; 1382 reconCtrlPtr->headSepCBList = p->next; 1383 p->next = NULL; 1384 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR); 1385 rf_FreeCallbackDesc(p); 1386 } 1387 1388 } 1389 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1390 } 1391 1392 /* 1393 * checks to see that the maximum head separation will not be violated 1394 * if we initiate a reconstruction I/O on the indicated disk. 1395 * Limiting the maximum head separation between two disks eliminates 1396 * the nasty buffer-stall conditions that occur when one disk races 1397 * ahead of the others and consumes all of the floating recon buffers. 1398 * This code is complex and unpleasant but it's necessary to avoid 1399 * some very nasty, albeit fairly rare, reconstruction behavior. 1400 * 1401 * returns non-zero if and only if we have to stop working on the 1402 * indicated disk due to a head-separation delay. 1403 */ 1404 static int 1405 CheckHeadSeparation( 1406 RF_Raid_t * raidPtr, 1407 RF_PerDiskReconCtrl_t * ctrl, 1408 RF_RowCol_t row, 1409 RF_RowCol_t col, 1410 RF_HeadSepLimit_t hsCtr, 1411 RF_ReconUnitNum_t which_ru) 1412 { 1413 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row]; 1414 RF_CallbackDesc_t *cb, *p, *pt; 1415 int retval = 0; 1416 1417 /* if we're too far ahead of the slowest disk, stop working on this 1418 * disk until the slower ones catch up. We do this by scheduling a 1419 * wakeup callback for the time when the slowest disk has caught up. 1420 * We define "caught up" with 20% hysteresis, i.e. the head separation 1421 * must have fallen to at most 80% of the max allowable head 1422 * separation before we'll wake up. 1423 * 1424 */ 1425 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 1426 if ((raidPtr->headSepLimit >= 0) && 1427 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { 1428 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n", 1429 raidPtr->raidid, row, col, ctrl->headSepCounter, 1430 reconCtrlPtr->minHeadSepCounter, 1431 raidPtr->headSepLimit); 1432 cb = rf_AllocCallbackDesc(); 1433 /* the minHeadSepCounter value we have to get to before we'll 1434 * wake up. build in 20% hysteresis. */ 1435 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); 1436 cb->row = row; 1437 cb->col = col; 1438 cb->next = NULL; 1439 1440 /* insert this callback descriptor into the sorted list of 1441 * pending head-sep callbacks */ 1442 p = reconCtrlPtr->headSepCBList; 1443 if (!p) 1444 reconCtrlPtr->headSepCBList = cb; 1445 else 1446 if (cb->callbackArg.v < p->callbackArg.v) { 1447 cb->next = reconCtrlPtr->headSepCBList; 1448 reconCtrlPtr->headSepCBList = cb; 1449 } else { 1450 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); 1451 cb->next = p; 1452 pt->next = cb; 1453 } 1454 retval = 1; 1455 #if RF_RECON_STATS > 0 1456 ctrl->reconCtrl->reconDesc->hsStallCount++; 1457 #endif /* RF_RECON_STATS > 0 */ 1458 } 1459 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 1460 1461 return (retval); 1462 } 1463 /* 1464 * checks to see if reconstruction has been either forced or blocked 1465 * by a user operation. if forced, we skip this RU entirely. else if 1466 * blocked, put ourselves on the wait list. else return 0. 1467 * 1468 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY 1469 */ 1470 static int 1471 CheckForcedOrBlockedReconstruction( 1472 RF_Raid_t * raidPtr, 1473 RF_ReconParityStripeStatus_t * pssPtr, 1474 RF_PerDiskReconCtrl_t * ctrl, 1475 RF_RowCol_t row, 1476 RF_RowCol_t col, 1477 RF_StripeNum_t psid, 1478 RF_ReconUnitNum_t which_ru) 1479 { 1480 RF_CallbackDesc_t *cb; 1481 int retcode = 0; 1482 1483 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) 1484 retcode = RF_PSS_FORCED_ON_WRITE; 1485 else 1486 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { 1487 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru); 1488 cb = rf_AllocCallbackDesc(); /* append ourselves to 1489 * the blockage-wait 1490 * list */ 1491 cb->row = row; 1492 cb->col = col; 1493 cb->next = pssPtr->blockWaitList; 1494 pssPtr->blockWaitList = cb; 1495 retcode = RF_PSS_RECON_BLOCKED; 1496 } 1497 if (!retcode) 1498 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under 1499 * reconstruction */ 1500 1501 return (retcode); 1502 } 1503 /* 1504 * if reconstruction is currently ongoing for the indicated stripeID, 1505 * reconstruction is forced to completion and we return non-zero to 1506 * indicate that the caller must wait. If not, then reconstruction is 1507 * blocked on the indicated stripe and the routine returns zero. If 1508 * and only if we return non-zero, we'll cause the cbFunc to get 1509 * invoked with the cbArg when the reconstruction has completed. 1510 */ 1511 int 1512 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) 1513 RF_Raid_t *raidPtr; 1514 RF_AccessStripeMap_t *asmap; 1515 void (*cbFunc) (RF_Raid_t *, void *); 1516 void *cbArg; 1517 { 1518 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array 1519 * we're working on */ 1520 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're 1521 * forcing recon on */ 1522 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ 1523 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity 1524 * stripe status structure */ 1525 RF_StripeNum_t psid; /* parity stripe id */ 1526 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk 1527 * offset */ 1528 RF_RowCol_t *diskids; 1529 RF_RowCol_t stripe; 1530 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ 1531 RF_RowCol_t fcol, diskno, i; 1532 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ 1533 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ 1534 RF_CallbackDesc_t *cb; 1535 int created = 0, nPromoted; 1536 1537 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1538 1539 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1540 1541 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); 1542 1543 /* if recon is not ongoing on this PS, just return */ 1544 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1545 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1546 return (0); 1547 } 1548 /* otherwise, we have to wait for reconstruction to complete on this 1549 * RU. */ 1550 /* In order to avoid waiting for a potentially large number of 1551 * low-priority accesses to complete, we force a normal-priority (i.e. 1552 * not low-priority) reconstruction on this RU. */ 1553 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { 1554 DDprintf1("Forcing recon on psid %ld\n", psid); 1555 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under 1556 * forced recon */ 1557 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage 1558 * that we just set */ 1559 fcol = raidPtr->reconControl[row]->fcol; 1560 1561 /* get a listing of the disks comprising the indicated stripe */ 1562 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe); 1563 RF_ASSERT(row == stripe); 1564 1565 /* For previously issued reads, elevate them to normal 1566 * priority. If the I/O has already completed, it won't be 1567 * found in the queue, and hence this will be a no-op. For 1568 * unissued reads, allocate buffers and issue new reads. The 1569 * fact that we've set the FORCED bit means that the regular 1570 * recon procs will not re-issue these reqs */ 1571 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) 1572 if ((diskno = diskids[i]) != fcol) { 1573 if (pssPtr->issued[diskno]) { 1574 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru); 1575 if (rf_reconDebug && nPromoted) 1576 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno); 1577 } else { 1578 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ 1579 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset, 1580 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare 1581 * location */ 1582 new_rbuf->parityStripeID = psid; /* fill in the buffer */ 1583 new_rbuf->which_ru = which_ru; 1584 new_rbuf->failedDiskSectorOffset = fd_offset; 1585 new_rbuf->priority = RF_IO_NORMAL_PRIORITY; 1586 1587 /* use NULL b_proc b/c all addrs 1588 * should be in kernel space */ 1589 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, 1590 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, 1591 NULL, (void *) raidPtr, 0, NULL); 1592 1593 RF_ASSERT(req); /* XXX -- fix this -- 1594 * XXX */ 1595 1596 new_rbuf->arg = req; 1597 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ 1598 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno); 1599 } 1600 } 1601 /* if the write is sitting in the disk queue, elevate its 1602 * priority */ 1603 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru)) 1604 printf("raid%d: promoted write to row %d col %d\n", 1605 raidPtr->raidid, row, fcol); 1606 } 1607 /* install a callback descriptor to be invoked when recon completes on 1608 * this parity stripe. */ 1609 cb = rf_AllocCallbackDesc(); 1610 /* XXX the following is bogus.. These functions don't really match!! 1611 * GO */ 1612 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; 1613 cb->callbackArg.p = (void *) cbArg; 1614 cb->next = pssPtr->procWaitList; 1615 pssPtr->procWaitList = cb; 1616 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", 1617 raidPtr->raidid, psid); 1618 1619 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1620 return (1); 1621 } 1622 /* called upon the completion of a forced reconstruction read. 1623 * all we do is schedule the FORCEDREADONE event. 1624 * called at interrupt context in the kernel, so don't do anything illegal here. 1625 */ 1626 static void 1627 ForceReconReadDoneProc(arg, status) 1628 void *arg; 1629 int status; 1630 { 1631 RF_ReconBuffer_t *rbuf = arg; 1632 1633 if (status) { 1634 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced 1635 * recon read 1636 * failed!\n"); */ 1637 RF_PANIC(); 1638 } 1639 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); 1640 } 1641 /* releases a block on the reconstruction of the indicated stripe */ 1642 int 1643 rf_UnblockRecon(raidPtr, asmap) 1644 RF_Raid_t *raidPtr; 1645 RF_AccessStripeMap_t *asmap; 1646 { 1647 RF_RowCol_t row = asmap->origRow; 1648 RF_StripeNum_t stripeID = asmap->stripeID; 1649 RF_ReconParityStripeStatus_t *pssPtr; 1650 RF_ReconUnitNum_t which_ru; 1651 RF_StripeNum_t psid; 1652 int created = 0; 1653 RF_CallbackDesc_t *cb; 1654 1655 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); 1656 RF_LOCK_PSS_MUTEX(raidPtr, row, psid); 1657 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created); 1658 1659 /* When recon is forced, the pss desc can get deleted before we get 1660 * back to unblock recon. But, this can _only_ happen when recon is 1661 * forced. It would be good to put some kind of sanity check here, but 1662 * how to decide if recon was just forced or not? */ 1663 if (!pssPtr) { 1664 /* printf("Warning: no pss descriptor upon unblock on psid %ld 1665 * RU %d\n",psid,which_ru); */ 1666 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) 1667 if (rf_reconDebug || rf_pssDebug) 1668 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); 1669 #endif 1670 goto out; 1671 } 1672 pssPtr->blockCount--; 1673 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", 1674 raidPtr->raidid, psid, pssPtr->blockCount); 1675 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ 1676 1677 /* unblock recon before calling CauseReconEvent in case 1678 * CauseReconEvent causes us to try to issue a new read before 1679 * returning here. */ 1680 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; 1681 1682 1683 while (pssPtr->blockWaitList) { 1684 /* spin through the block-wait list and 1685 release all the waiters */ 1686 cb = pssPtr->blockWaitList; 1687 pssPtr->blockWaitList = cb->next; 1688 cb->next = NULL; 1689 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR); 1690 rf_FreeCallbackDesc(cb); 1691 } 1692 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { 1693 /* if no recon was requested while recon was blocked */ 1694 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr); 1695 } 1696 } 1697 out: 1698 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid); 1699 return (0); 1700 } 1701