xref: /netbsd-src/sys/dev/raidframe/rf_reconstruct.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: rf_reconstruct.c,v 1.56 2003/06/29 22:30:34 fvdl Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /************************************************************
30  *
31  * rf_reconstruct.c -- code to perform on-line reconstruction
32  *
33  ************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.56 2003/06/29 22:30:34 fvdl Exp $");
37 
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49 
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64 
65 #include "rf_kintf.h"
66 
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68 
69 #if RF_DEBUG_RECON
70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78 
79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81 
82 #else /* RF_DEBUG_RECON */
83 
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92 
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95 
96 #endif /* RF_DEBUG_RECON */
97 
98 
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND  4
101 #define RF_RECOND_INC       1
102 
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110     RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113     RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125     RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129     RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134     RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136 
137 static void rf_ShutdownReconstruction(void *);
138 
139 struct RF_ReconDoneProc_s {
140 	void    (*proc) (RF_Raid_t *, void *);
141 	void   *arg;
142 	RF_ReconDoneProc_t *next;
143 };
144 
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC      1
148 
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 	RF_ReconDoneProc_t *p;
153 
154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 		p->proc(raidPtr, p->arg);
157 	}
158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160 
161 /**************************************************************************
162  *
163  * sets up the parameters that will be used by the reconstruction process
164  * currently there are none, except for those that the layout-specific
165  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166  *
167  * in the kernel, we fire off the recon thread.
168  *
169  **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 	void   *ignored;
173 {
174 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177 
178 int
179 rf_ConfigureReconstruction(listp)
180 	RF_ShutdownList_t **listp;
181 {
182 	int     rc;
183 
184 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 	if (rf_recond_freelist == NULL)
187 		return (ENOMEM);
188 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 	if (rf_rdp_freelist == NULL) {
191 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 		return (ENOMEM);
193 	}
194 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 	if (rc) {
196 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 		rf_ShutdownReconstruction(NULL);
198 		return (rc);
199 	}
200 	return (0);
201 }
202 
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 	RF_Raid_t *raidPtr;
206 	RF_RowCol_t row;
207 	RF_RowCol_t col;
208 	RF_RaidDisk_t *spareDiskPtr;
209 	int     numDisksDone;
210 	RF_RowCol_t srow;
211 	RF_RowCol_t scol;
212 {
213 
214 	RF_RaidReconDesc_t *reconDesc;
215 
216 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217 
218 	reconDesc->raidPtr = raidPtr;
219 	reconDesc->row = row;
220 	reconDesc->col = col;
221 	reconDesc->spareDiskPtr = spareDiskPtr;
222 	reconDesc->numDisksDone = numDisksDone;
223 	reconDesc->srow = srow;
224 	reconDesc->scol = scol;
225 	reconDesc->state = 0;
226 	reconDesc->next = NULL;
227 
228 	return (reconDesc);
229 }
230 
231 static void
232 FreeReconDesc(reconDesc)
233 	RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
237 	       reconDesc->raidPtr->raidid,
238 	       (long) reconDesc->numReconEventWaits,
239 	       (long) reconDesc->numReconExecDelays);
240 #endif				/* RF_RECON_STATS > 0 */
241 	printf("raid%d: %lu max exec ticks\n",
242 	       reconDesc->raidPtr->raidid,
243 	       (long) reconDesc->maxReconExecTicks);
244 #if (RF_RECON_STATS > 0) || defined(KERNEL)
245 	printf("\n");
246 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
247 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
248 }
249 
250 
251 /*****************************************************************************
252  *
253  * primary routine to reconstruct a failed disk.  This should be called from
254  * within its own thread.  It won't return until reconstruction completes,
255  * fails, or is aborted.
256  *****************************************************************************/
257 int
258 rf_ReconstructFailedDisk(raidPtr, row, col)
259 	RF_Raid_t *raidPtr;
260 	RF_RowCol_t row;
261 	RF_RowCol_t col;
262 {
263 	const RF_LayoutSW_t *lp;
264 	int     rc;
265 
266 	lp = raidPtr->Layout.map;
267 	if (lp->SubmitReconBuffer) {
268 		/*
269 	         * The current infrastructure only supports reconstructing one
270 	         * disk at a time for each array.
271 	         */
272 		RF_LOCK_MUTEX(raidPtr->mutex);
273 		while (raidPtr->reconInProgress) {
274 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
275 		}
276 		raidPtr->reconInProgress++;
277 		RF_UNLOCK_MUTEX(raidPtr->mutex);
278 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
279 		RF_LOCK_MUTEX(raidPtr->mutex);
280 		raidPtr->reconInProgress--;
281 		RF_UNLOCK_MUTEX(raidPtr->mutex);
282 	} else {
283 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
284 		    lp->parityConfig);
285 		rc = EIO;
286 	}
287 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
288 	return (rc);
289 }
290 
291 int
292 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
293 	RF_Raid_t *raidPtr;
294 	RF_RowCol_t row;
295 	RF_RowCol_t col;
296 {
297 	RF_ComponentLabel_t c_label;
298 	RF_RaidDisk_t *spareDiskPtr = NULL;
299 	RF_RaidReconDesc_t *reconDesc;
300 	RF_RowCol_t srow, scol;
301 	int     numDisksDone = 0, rc;
302 
303 	/* first look for a spare drive onto which to reconstruct the data */
304 	/* spare disk descriptors are stored in row 0.  This may have to
305 	 * change eventually */
306 
307 	RF_LOCK_MUTEX(raidPtr->mutex);
308 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
309 
310 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
311 		if (raidPtr->status[row] != rf_rs_degraded) {
312 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
313 			RF_UNLOCK_MUTEX(raidPtr->mutex);
314 			return (EINVAL);
315 		}
316 		srow = row;
317 		scol = (-1);
318 	} else {
319 		srow = 0;
320 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
321 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
322 				spareDiskPtr = &raidPtr->Disks[srow][scol];
323 				spareDiskPtr->status = rf_ds_used_spare;
324 				break;
325 			}
326 		}
327 		if (!spareDiskPtr) {
328 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
329 			RF_UNLOCK_MUTEX(raidPtr->mutex);
330 			return (ENOSPC);
331 		}
332 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
333 	}
334 	RF_UNLOCK_MUTEX(raidPtr->mutex);
335 
336 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
337 	raidPtr->reconDesc = (void *) reconDesc;
338 #if RF_RECON_STATS > 0
339 	reconDesc->hsStallCount = 0;
340 	reconDesc->numReconExecDelays = 0;
341 	reconDesc->numReconEventWaits = 0;
342 #endif				/* RF_RECON_STATS > 0 */
343 	reconDesc->reconExecTimerRunning = 0;
344 	reconDesc->reconExecTicks = 0;
345 	reconDesc->maxReconExecTicks = 0;
346 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
347 
348 	if (!rc) {
349 		/* fix up the component label */
350 		/* Don't actually need the read here.. */
351 		raidread_component_label(
352                         raidPtr->raid_cinfo[srow][scol].ci_dev,
353 			raidPtr->raid_cinfo[srow][scol].ci_vp,
354 			&c_label);
355 
356 		raid_init_component_label( raidPtr, &c_label);
357 		c_label.row = row;
358 		c_label.column = col;
359 		c_label.clean = RF_RAID_DIRTY;
360 		c_label.status = rf_ds_optimal;
361 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
362 
363 		/* We've just done a rebuild based on all the other
364 		   disks, so at this point the parity is known to be
365 		   clean, even if it wasn't before. */
366 
367 		/* XXX doesn't hold for RAID 6!!*/
368 
369 		RF_LOCK_MUTEX(raidPtr->mutex);
370 		raidPtr->parity_good = RF_RAID_CLEAN;
371 		RF_UNLOCK_MUTEX(raidPtr->mutex);
372 
373 		/* XXXX MORE NEEDED HERE */
374 
375 		raidwrite_component_label(
376                         raidPtr->raid_cinfo[srow][scol].ci_dev,
377 			raidPtr->raid_cinfo[srow][scol].ci_vp,
378 			&c_label);
379 
380 
381 		rf_update_component_labels(raidPtr,
382 					   RF_NORMAL_COMPONENT_UPDATE);
383 
384 	}
385 	return (rc);
386 }
387 
388 /*
389 
390    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
391    and you don't get a spare until the next Monday.  With this function
392    (and hot-swappable drives) you can now put your new disk containing
393    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
394    rebuild the data "on the spot".
395 
396 */
397 
398 int
399 rf_ReconstructInPlace(raidPtr, row, col)
400 	RF_Raid_t *raidPtr;
401 	RF_RowCol_t row;
402 	RF_RowCol_t col;
403 {
404 	RF_RaidDisk_t *spareDiskPtr = NULL;
405 	RF_RaidReconDesc_t *reconDesc;
406 	const RF_LayoutSW_t *lp;
407 	RF_ComponentLabel_t c_label;
408 	int     numDisksDone = 0, rc;
409 	struct partinfo dpart;
410 	struct vnode *vp;
411 	struct vattr va;
412 	struct proc *proc;
413 	int retcode;
414 	int ac;
415 
416 	lp = raidPtr->Layout.map;
417 	if (lp->SubmitReconBuffer) {
418 		/*
419 	         * The current infrastructure only supports reconstructing one
420 	         * disk at a time for each array.
421 	         */
422 		RF_LOCK_MUTEX(raidPtr->mutex);
423 
424 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
425 			/* "It's gone..." */
426 			raidPtr->numFailures++;
427 			raidPtr->Disks[row][col].status = rf_ds_failed;
428 			raidPtr->status[row] = rf_rs_degraded;
429 			RF_UNLOCK_MUTEX(raidPtr->mutex);
430 			rf_update_component_labels(raidPtr,
431 						   RF_NORMAL_COMPONENT_UPDATE);
432 			RF_LOCK_MUTEX(raidPtr->mutex);
433 		}
434 
435 		while (raidPtr->reconInProgress) {
436 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
437 		}
438 
439 		raidPtr->reconInProgress++;
440 
441 
442 		/* first look for a spare drive onto which to reconstruct
443 		   the data.  spare disk descriptors are stored in row 0.
444 		   This may have to change eventually */
445 
446 		/* Actually, we don't care if it's failed or not...
447 		   On a RAID set with correct parity, this function
448 		   should be callable on any component without ill affects. */
449 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
450 		 */
451 
452 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
453 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
454 
455 			raidPtr->reconInProgress--;
456 			RF_UNLOCK_MUTEX(raidPtr->mutex);
457 			return (EINVAL);
458 		}
459 
460 		proc = raidPtr->engine_thread;
461 
462 		/* This device may have been opened successfully the
463 		   first time. Close it before trying to open it again.. */
464 
465 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
466 #if 0
467 			printf("Closed the open device: %s\n",
468 			       raidPtr->Disks[row][col].devname);
469 #endif
470 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
471 			ac = raidPtr->Disks[row][col].auto_configured;
472 			RF_UNLOCK_MUTEX(raidPtr->mutex);
473 			rf_close_component(raidPtr, vp, ac);
474 			RF_LOCK_MUTEX(raidPtr->mutex);
475 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
476 		}
477 		/* note that this disk was *not* auto_configured (any longer)*/
478 		raidPtr->Disks[row][col].auto_configured = 0;
479 
480 #if 0
481 		printf("About to (re-)open the device for rebuilding: %s\n",
482 		       raidPtr->Disks[row][col].devname);
483 #endif
484 		RF_UNLOCK_MUTEX(raidPtr->mutex);
485 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
486 				     proc, &vp);
487 
488 		if (retcode) {
489 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
490 			       raidPtr->Disks[row][col].devname, retcode);
491 
492 			/* the component isn't responding properly...
493 			   must be still dead :-( */
494 			RF_LOCK_MUTEX(raidPtr->mutex);
495 			raidPtr->reconInProgress--;
496 			RF_UNLOCK_MUTEX(raidPtr->mutex);
497 			return(retcode);
498 
499 		} else {
500 
501 			/* Ok, so we can at least do a lookup...
502 			   How about actually getting a vp for it? */
503 
504 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
505 						   proc)) != 0) {
506 				RF_LOCK_MUTEX(raidPtr->mutex);
507 				raidPtr->reconInProgress--;
508 				RF_UNLOCK_MUTEX(raidPtr->mutex);
509 				return(retcode);
510 			}
511 			retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
512 					    FREAD, proc->p_ucred, proc);
513 			if (retcode) {
514 				RF_LOCK_MUTEX(raidPtr->mutex);
515 				raidPtr->reconInProgress--;
516 				RF_UNLOCK_MUTEX(raidPtr->mutex);
517 				return(retcode);
518 			}
519 			RF_LOCK_MUTEX(raidPtr->mutex);
520 			raidPtr->Disks[row][col].blockSize =
521 				dpart.disklab->d_secsize;
522 
523 			raidPtr->Disks[row][col].numBlocks =
524 				dpart.part->p_size - rf_protectedSectors;
525 
526 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
527 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
528 
529 			raidPtr->Disks[row][col].dev = va.va_rdev;
530 
531 			/* we allow the user to specify that only a
532 			   fraction of the disks should be used this is
533 			   just for debug:  it speeds up
534 			 * the parity scan */
535 			raidPtr->Disks[row][col].numBlocks =
536 				raidPtr->Disks[row][col].numBlocks *
537 				rf_sizePercentage / 100;
538 			RF_UNLOCK_MUTEX(raidPtr->mutex);
539 		}
540 
541 
542 
543 		spareDiskPtr = &raidPtr->Disks[row][col];
544 		spareDiskPtr->status = rf_ds_used_spare;
545 
546 		printf("raid%d: initiating in-place reconstruction on\n",
547 		       raidPtr->raidid);
548 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
549 		       raidPtr->raidid, row, col, row, col);
550 
551 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
552 					       spareDiskPtr, numDisksDone,
553 					       row, col);
554 		raidPtr->reconDesc = (void *) reconDesc;
555 #if RF_RECON_STATS > 0
556 		reconDesc->hsStallCount = 0;
557 		reconDesc->numReconExecDelays = 0;
558 		reconDesc->numReconEventWaits = 0;
559 #endif				/* RF_RECON_STATS > 0 */
560 		reconDesc->reconExecTimerRunning = 0;
561 		reconDesc->reconExecTicks = 0;
562 		reconDesc->maxReconExecTicks = 0;
563 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
564 
565 		RF_LOCK_MUTEX(raidPtr->mutex);
566 		raidPtr->reconInProgress--;
567 		RF_UNLOCK_MUTEX(raidPtr->mutex);
568 
569 	} else {
570 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
571 			     lp->parityConfig);
572 		rc = EIO;
573 	}
574 
575 	if (!rc) {
576 		RF_LOCK_MUTEX(raidPtr->mutex);
577 		/* Need to set these here, as at this point it'll be claiming
578 		   that the disk is in rf_ds_spared!  But we know better :-) */
579 
580 		raidPtr->Disks[row][col].status = rf_ds_optimal;
581 		raidPtr->status[row] = rf_rs_optimal;
582 		RF_UNLOCK_MUTEX(raidPtr->mutex);
583 
584 		/* fix up the component label */
585 		/* Don't actually need the read here.. */
586 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
587 					 raidPtr->raid_cinfo[row][col].ci_vp,
588 					 &c_label);
589 
590 		RF_LOCK_MUTEX(raidPtr->mutex);
591 		raid_init_component_label(raidPtr, &c_label);
592 
593 		c_label.row = row;
594 		c_label.column = col;
595 
596 		/* We've just done a rebuild based on all the other
597 		   disks, so at this point the parity is known to be
598 		   clean, even if it wasn't before. */
599 
600 		/* XXX doesn't hold for RAID 6!!*/
601 
602 		raidPtr->parity_good = RF_RAID_CLEAN;
603 		RF_UNLOCK_MUTEX(raidPtr->mutex);
604 
605 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
606 					  raidPtr->raid_cinfo[row][col].ci_vp,
607 					  &c_label);
608 
609 		rf_update_component_labels(raidPtr,
610 					   RF_NORMAL_COMPONENT_UPDATE);
611 
612 	}
613 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
614 	return (rc);
615 }
616 
617 
618 int
619 rf_ContinueReconstructFailedDisk(reconDesc)
620 	RF_RaidReconDesc_t *reconDesc;
621 {
622 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
623 	RF_RowCol_t row = reconDesc->row;
624 	RF_RowCol_t col = reconDesc->col;
625 	RF_RowCol_t srow = reconDesc->srow;
626 	RF_RowCol_t scol = reconDesc->scol;
627 	RF_ReconMap_t *mapPtr;
628 	RF_ReconCtrl_t *tmp_reconctrl;
629 	RF_ReconEvent_t *event;
630 	struct timeval etime, elpsd;
631 	unsigned long xor_s, xor_resid_us;
632 	int     i, ds;
633 
634 	switch (reconDesc->state) {
635 
636 
637 	case 0:
638 
639 		raidPtr->accumXorTimeUs = 0;
640 
641 		/* create one trace record per physical disk */
642 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
643 
644 		/* quiesce the array prior to starting recon.  this is needed
645 		 * to assure no nasty interactions with pending user writes.
646 		 * We need to do this before we change the disk or row status. */
647 		reconDesc->state = 1;
648 
649 		Dprintf("RECON: begin request suspend\n");
650 		rf_SuspendNewRequestsAndWait(raidPtr);
651 		Dprintf("RECON: end request suspend\n");
652 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
653 						 * user accs */
654 
655 		/* fall through to state 1 */
656 
657 	case 1:
658 
659 		/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
660 		tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
661 
662 		RF_LOCK_MUTEX(raidPtr->mutex);
663 
664 		/* create the reconstruction control pointer and install it in
665 		 * the right slot */
666 		raidPtr->reconControl[row] = tmp_reconctrl;
667 		mapPtr = raidPtr->reconControl[row]->reconMap;
668 		raidPtr->status[row] = rf_rs_reconstructing;
669 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
670 		raidPtr->Disks[row][col].spareRow = srow;
671 		raidPtr->Disks[row][col].spareCol = scol;
672 
673 		RF_UNLOCK_MUTEX(raidPtr->mutex);
674 
675 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
676 
677 		/* now start up the actual reconstruction: issue a read for
678 		 * each surviving disk */
679 
680 		reconDesc->numDisksDone = 0;
681 		for (i = 0; i < raidPtr->numCol; i++) {
682 			if (i != col) {
683 				/* find and issue the next I/O on the
684 				 * indicated disk */
685 				if (IssueNextReadRequest(raidPtr, row, i)) {
686 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
687 					reconDesc->numDisksDone++;
688 				}
689 			}
690 		}
691 
692 	case 2:
693 		Dprintf("RECON: resume requests\n");
694 		rf_ResumeNewRequests(raidPtr);
695 
696 
697 		reconDesc->state = 3;
698 
699 	case 3:
700 
701 		/* process reconstruction events until all disks report that
702 		 * they've completed all work */
703 		mapPtr = raidPtr->reconControl[row]->reconMap;
704 
705 
706 
707 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
708 
709 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
710 			RF_ASSERT(event);
711 
712 			if (ProcessReconEvent(raidPtr, row, event))
713 				reconDesc->numDisksDone++;
714 			raidPtr->reconControl[row]->numRUsTotal =
715 				mapPtr->totalRUs;
716 			raidPtr->reconControl[row]->numRUsComplete =
717 				mapPtr->totalRUs -
718 				rf_UnitsLeftToReconstruct(mapPtr);
719 
720 			raidPtr->reconControl[row]->percentComplete =
721 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
722 #if RF_DEBUG_RECON
723 			if (rf_prReconSched) {
724 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
725 			}
726 #endif
727 		}
728 
729 
730 
731 		reconDesc->state = 4;
732 
733 
734 	case 4:
735 		mapPtr = raidPtr->reconControl[row]->reconMap;
736 		if (rf_reconDebug) {
737 			printf("RECON: all reads completed\n");
738 		}
739 		/* at this point all the reads have completed.  We now wait
740 		 * for any pending writes to complete, and then we're done */
741 
742 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
743 
744 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
745 			RF_ASSERT(event);
746 
747 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
748 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
749 #if RF_DEBUG_RECON
750 			if (rf_prReconSched) {
751 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
752 			}
753 #endif
754 		}
755 		reconDesc->state = 5;
756 
757 	case 5:
758 		/* Success:  mark the dead disk as reconstructed.  We quiesce
759 		 * the array here to assure no nasty interactions with pending
760 		 * user accesses when we free up the psstatus structure as
761 		 * part of FreeReconControl() */
762 
763 		reconDesc->state = 6;
764 
765 		rf_SuspendNewRequestsAndWait(raidPtr);
766 		rf_StopUserStats(raidPtr);
767 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
768 						 * accs accumulated during
769 						 * recon */
770 
771 		/* fall through to state 6 */
772 	case 6:
773 
774 
775 
776 		RF_LOCK_MUTEX(raidPtr->mutex);
777 		raidPtr->numFailures--;
778 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
779 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
780 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
781 		RF_UNLOCK_MUTEX(raidPtr->mutex);
782 		RF_GETTIME(etime);
783 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
784 
785 		/* XXX -- why is state 7 different from state 6 if there is no
786 		 * return() here? -- XXX Note that I set elpsd above & use it
787 		 * below, so if you put a return here you'll have to fix this.
788 		 * (also, FreeReconControl is called below) */
789 
790 	case 7:
791 
792 		rf_ResumeNewRequests(raidPtr);
793 
794 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
795 		       raidPtr->raidid, row, col);
796 		xor_s = raidPtr->accumXorTimeUs / 1000000;
797 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
798 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
799 		       raidPtr->raidid,
800 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
801 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
802 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
803 		       raidPtr->raidid,
804 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
805 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
806 		       (int) etime.tv_sec, (int) etime.tv_usec);
807 
808 #if RF_RECON_STATS > 0
809 		printf("raid%d: Total head-sep stall count was %d\n",
810 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
811 #endif				/* RF_RECON_STATS > 0 */
812 		rf_FreeReconControl(raidPtr, row);
813 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
814 		FreeReconDesc(reconDesc);
815 
816 	}
817 
818 	SignalReconDone(raidPtr);
819 	return (0);
820 }
821 /*****************************************************************************
822  * do the right thing upon each reconstruction event.
823  * returns nonzero if and only if there is nothing left unread on the
824  * indicated disk
825  *****************************************************************************/
826 static int
827 ProcessReconEvent(raidPtr, frow, event)
828 	RF_Raid_t *raidPtr;
829 	RF_RowCol_t frow;
830 	RF_ReconEvent_t *event;
831 {
832 	int     retcode = 0, submitblocked;
833 	RF_ReconBuffer_t *rbuf;
834 	RF_SectorCount_t sectorsPerRU;
835 
836 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
837 	switch (event->type) {
838 
839 		/* a read I/O has completed */
840 	case RF_REVENT_READDONE:
841 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
842 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
843 		    frow, event->col, rbuf->parityStripeID);
844 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
845 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
846 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
847 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
848 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
849 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
850 		if (!submitblocked)
851 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
852 		break;
853 
854 		/* a write I/O has completed */
855 	case RF_REVENT_WRITEDONE:
856 #if RF_DEBUG_RECON
857 		if (rf_floatingRbufDebug) {
858 			rf_CheckFloatingRbufCount(raidPtr, 1);
859 		}
860 #endif
861 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
862 		rbuf = (RF_ReconBuffer_t *) event->arg;
863 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
864 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
865 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
866 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
867 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
868 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
869 
870 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
871 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
872 			raidPtr->numFullReconBuffers--;
873 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
874 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
875 		} else
876 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
877 				rf_FreeReconBuffer(rbuf);
878 			else
879 				RF_ASSERT(0);
880 		break;
881 
882 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
883 					 * cleared */
884 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
885 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
886 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
887 						 * BUFCLEAR event if we
888 						 * couldn't submit */
889 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
890 		break;
891 
892 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
893 					 * blockage has been cleared */
894 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
895 		retcode = TryToRead(raidPtr, frow, event->col);
896 		break;
897 
898 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
899 					 * reconstruction blockage has been
900 					 * cleared */
901 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
902 		retcode = TryToRead(raidPtr, frow, event->col);
903 		break;
904 
905 		/* a buffer has become ready to write */
906 	case RF_REVENT_BUFREADY:
907 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
908 		retcode = IssueNextWriteRequest(raidPtr, frow);
909 #if RF_DEBUG_RECON
910 		if (rf_floatingRbufDebug) {
911 			rf_CheckFloatingRbufCount(raidPtr, 1);
912 		}
913 #endif
914 		break;
915 
916 		/* we need to skip the current RU entirely because it got
917 		 * recon'd while we were waiting for something else to happen */
918 	case RF_REVENT_SKIP:
919 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
920 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
921 		break;
922 
923 		/* a forced-reconstruction read access has completed.  Just
924 		 * submit the buffer */
925 	case RF_REVENT_FORCEDREADDONE:
926 		rbuf = (RF_ReconBuffer_t *) event->arg;
927 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
928 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
929 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
930 		RF_ASSERT(!submitblocked);
931 		break;
932 
933 	default:
934 		RF_PANIC();
935 	}
936 	rf_FreeReconEventDesc(event);
937 	return (retcode);
938 }
939 /*****************************************************************************
940  *
941  * find the next thing that's needed on the indicated disk, and issue
942  * a read request for it.  We assume that the reconstruction buffer
943  * associated with this process is free to receive the data.  If
944  * reconstruction is blocked on the indicated RU, we issue a
945  * blockage-release request instead of a physical disk read request.
946  * If the current disk gets too far ahead of the others, we issue a
947  * head-separation wait request and return.
948  *
949  * ctrl->{ru_count, curPSID, diskOffset} and
950  * rbuf->failedDiskSectorOffset are maintained to point to the unit
951  * we're currently accessing.  Note that this deviates from the
952  * standard C idiom of having counters point to the next thing to be
953  * accessed.  This allows us to easily retry when we're blocked by
954  * head separation or reconstruction-blockage events.
955  *
956  * returns nonzero if and only if there is nothing left unread on the
957  * indicated disk
958  *
959  *****************************************************************************/
960 static int
961 IssueNextReadRequest(raidPtr, row, col)
962 	RF_Raid_t *raidPtr;
963 	RF_RowCol_t row;
964 	RF_RowCol_t col;
965 {
966 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
967 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
968 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
969 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
970 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
971 	int     do_new_check = 0, retcode = 0, status;
972 
973 	/* if we are currently the slowest disk, mark that we have to do a new
974 	 * check */
975 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
976 		do_new_check = 1;
977 
978 	while (1) {
979 
980 		ctrl->ru_count++;
981 		if (ctrl->ru_count < RUsPerPU) {
982 			ctrl->diskOffset += sectorsPerRU;
983 			rbuf->failedDiskSectorOffset += sectorsPerRU;
984 		} else {
985 			ctrl->curPSID++;
986 			ctrl->ru_count = 0;
987 			/* code left over from when head-sep was based on
988 			 * parity stripe id */
989 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
990 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
991 				return (1);	/* finito! */
992 			}
993 			/* find the disk offsets of the start of the parity
994 			 * stripe on both the current disk and the failed
995 			 * disk. skip this entire parity stripe if either disk
996 			 * does not appear in the indicated PS */
997 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
998 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
999 			if (status) {
1000 				ctrl->ru_count = RUsPerPU - 1;
1001 				continue;
1002 			}
1003 		}
1004 		rbuf->which_ru = ctrl->ru_count;
1005 
1006 		/* skip this RU if it's already been reconstructed */
1007 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1008 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1009 			continue;
1010 		}
1011 		break;
1012 	}
1013 	ctrl->headSepCounter++;
1014 	if (do_new_check)
1015 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
1016 
1017 
1018 	/* at this point, we have definitely decided what to do, and we have
1019 	 * only to see if we can actually do it now */
1020 	rbuf->parityStripeID = ctrl->curPSID;
1021 	rbuf->which_ru = ctrl->ru_count;
1022 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
1023 	    sizeof(raidPtr->recon_tracerecs[col]));
1024 	raidPtr->recon_tracerecs[col].reconacc = 1;
1025 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1026 	retcode = TryToRead(raidPtr, row, col);
1027 	return (retcode);
1028 }
1029 
1030 /*
1031  * tries to issue the next read on the indicated disk.  We may be
1032  * blocked by (a) the heads being too far apart, or (b) recon on the
1033  * indicated RU being blocked due to a write by a user thread.  In
1034  * this case, we issue a head-sep or blockage wait request, which will
1035  * cause this same routine to be invoked again later when the blockage
1036  * has cleared.
1037  */
1038 
1039 static int
1040 TryToRead(raidPtr, row, col)
1041 	RF_Raid_t *raidPtr;
1042 	RF_RowCol_t row;
1043 	RF_RowCol_t col;
1044 {
1045 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1046 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1047 	RF_StripeNum_t psid = ctrl->curPSID;
1048 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1049 	RF_DiskQueueData_t *req;
1050 	int     status, created = 0;
1051 	RF_ReconParityStripeStatus_t *pssPtr;
1052 
1053 	/* if the current disk is too far ahead of the others, issue a
1054 	 * head-separation wait and return */
1055 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1056 		return (0);
1057 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1058 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1059 
1060 	/* if recon is blocked on the indicated parity stripe, issue a
1061 	 * block-wait request and return. this also must mark the indicated RU
1062 	 * in the stripe as under reconstruction if not blocked. */
1063 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1064 	if (status == RF_PSS_RECON_BLOCKED) {
1065 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1066 		goto out;
1067 	} else
1068 		if (status == RF_PSS_FORCED_ON_WRITE) {
1069 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1070 			goto out;
1071 		}
1072 	/* make one last check to be sure that the indicated RU didn't get
1073 	 * reconstructed while we were waiting for something else to happen.
1074 	 * This is unfortunate in that it causes us to make this check twice
1075 	 * in the normal case.  Might want to make some attempt to re-work
1076 	 * this so that we only do this check if we've definitely blocked on
1077 	 * one of the above checks.  When this condition is detected, we may
1078 	 * have just created a bogus status entry, which we need to delete. */
1079 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1080 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1081 		if (created)
1082 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1083 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1084 		goto out;
1085 	}
1086 	/* found something to read.  issue the I/O */
1087 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1088 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1089 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1090 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1091 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1092 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1093 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1094 
1095 	/* should be ok to use a NULL proc pointer here, all the bufs we use
1096 	 * should be in kernel space */
1097 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1098 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1099 
1100 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1101 
1102 	ctrl->rbuf->arg = (void *) req;
1103 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1104 	pssPtr->issued[col] = 1;
1105 
1106 out:
1107 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1108 	return (0);
1109 }
1110 
1111 
1112 /*
1113  * given a parity stripe ID, we want to find out whether both the
1114  * current disk and the failed disk exist in that parity stripe.  If
1115  * not, we want to skip this whole PS.  If so, we want to find the
1116  * disk offset of the start of the PS on both the current disk and the
1117  * failed disk.
1118  *
1119  * this works by getting a list of disks comprising the indicated
1120  * parity stripe, and searching the list for the current and failed
1121  * disks.  Once we've decided they both exist in the parity stripe, we
1122  * need to decide whether each is data or parity, so that we'll know
1123  * which mapping function to call to get the corresponding disk
1124  * offsets.
1125  *
1126  * this is kind of unpleasant, but doing it this way allows the
1127  * reconstruction code to use parity stripe IDs rather than physical
1128  * disks address to march through the failed disk, which greatly
1129  * simplifies a lot of code, as well as eliminating the need for a
1130  * reverse-mapping function.  I also think it will execute faster,
1131  * since the calls to the mapping module are kept to a minimum.
1132  *
1133  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1134  * THE STRIPE IN THE CORRECT ORDER */
1135 
1136 
1137 static int
1138 ComputePSDiskOffsets(
1139     RF_Raid_t * raidPtr,	/* raid descriptor */
1140     RF_StripeNum_t psid,	/* parity stripe identifier */
1141     RF_RowCol_t row,		/* row and column of disk to find the offsets
1142 				 * for */
1143     RF_RowCol_t col,
1144     RF_SectorNum_t * outDiskOffset,
1145     RF_SectorNum_t * outFailedDiskSectorOffset,
1146     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
1147     RF_RowCol_t * spCol,
1148     RF_SectorNum_t * spOffset)
1149 {				/* OUT: offset into disk containing spare unit */
1150 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1151 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1152 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1153 	RF_RowCol_t *diskids;
1154 	u_int   i, j, k, i_offset, j_offset;
1155 	RF_RowCol_t prow, pcol;
1156 	int     testcol, testrow;
1157 	RF_RowCol_t stripe;
1158 	RF_SectorNum_t poffset;
1159 	char    i_is_parity = 0, j_is_parity = 0;
1160 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1161 
1162 	/* get a listing of the disks comprising that stripe */
1163 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1164 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1165 	RF_ASSERT(diskids);
1166 
1167 	/* reject this entire parity stripe if it does not contain the
1168 	 * indicated disk or it does not contain the failed disk */
1169 	if (row != stripe)
1170 		goto skipit;
1171 	for (i = 0; i < stripeWidth; i++) {
1172 		if (col == diskids[i])
1173 			break;
1174 	}
1175 	if (i == stripeWidth)
1176 		goto skipit;
1177 	for (j = 0; j < stripeWidth; j++) {
1178 		if (fcol == diskids[j])
1179 			break;
1180 	}
1181 	if (j == stripeWidth) {
1182 		goto skipit;
1183 	}
1184 	/* find out which disk the parity is on */
1185 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1186 
1187 	/* find out if either the current RU or the failed RU is parity */
1188 	/* also, if the parity occurs in this stripe prior to the data and/or
1189 	 * failed col, we need to decrement i and/or j */
1190 	for (k = 0; k < stripeWidth; k++)
1191 		if (diskids[k] == pcol)
1192 			break;
1193 	RF_ASSERT(k < stripeWidth);
1194 	i_offset = i;
1195 	j_offset = j;
1196 	if (k < i)
1197 		i_offset--;
1198 	else
1199 		if (k == i) {
1200 			i_is_parity = 1;
1201 			i_offset = 0;
1202 		}		/* set offsets to zero to disable multiply
1203 				 * below */
1204 	if (k < j)
1205 		j_offset--;
1206 	else
1207 		if (k == j) {
1208 			j_is_parity = 1;
1209 			j_offset = 0;
1210 		}
1211 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1212 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1213 	 * tells us how far into the stripe the [current,failed] disk is. */
1214 
1215 	/* call the mapping routine to get the offset into the current disk,
1216 	 * repeat for failed disk. */
1217 	if (i_is_parity)
1218 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1219 	else
1220 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1221 
1222 	RF_ASSERT(row == testrow && col == testcol);
1223 
1224 	if (j_is_parity)
1225 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1226 	else
1227 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1228 	RF_ASSERT(row == testrow && fcol == testcol);
1229 
1230 	/* now locate the spare unit for the failed unit */
1231 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1232 		if (j_is_parity)
1233 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1234 		else
1235 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1236 	} else {
1237 		*spRow = raidPtr->reconControl[row]->spareRow;
1238 		*spCol = raidPtr->reconControl[row]->spareCol;
1239 		*spOffset = *outFailedDiskSectorOffset;
1240 	}
1241 
1242 	return (0);
1243 
1244 skipit:
1245 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1246 	    psid, row, col);
1247 	return (1);
1248 }
1249 /* this is called when a buffer has become ready to write to the replacement disk */
1250 static int
1251 IssueNextWriteRequest(raidPtr, row)
1252 	RF_Raid_t *raidPtr;
1253 	RF_RowCol_t row;
1254 {
1255 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1256 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1257 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1258 	RF_ReconBuffer_t *rbuf;
1259 	RF_DiskQueueData_t *req;
1260 
1261 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1262 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1263 				 * have gotten the event that sent us here */
1264 	RF_ASSERT(rbuf->pssPtr);
1265 
1266 	rbuf->pssPtr->writeRbuf = rbuf;
1267 	rbuf->pssPtr = NULL;
1268 
1269 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1270 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1271 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1272 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1273 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1274 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1275 
1276 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1277 	 * kernel space */
1278 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1279 	    sectorsPerRU, rbuf->buffer,
1280 	    rbuf->parityStripeID, rbuf->which_ru,
1281 	    ReconWriteDoneProc, (void *) rbuf, NULL,
1282 	    &raidPtr->recon_tracerecs[fcol],
1283 	    (void *) raidPtr, 0, NULL);
1284 
1285 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1286 
1287 	rbuf->arg = (void *) req;
1288 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1289 
1290 	return (0);
1291 }
1292 
1293 /*
1294  * this gets called upon the completion of a reconstruction read
1295  * operation the arg is a pointer to the per-disk reconstruction
1296  * control structure for the process that just finished a read.
1297  *
1298  * called at interrupt context in the kernel, so don't do anything
1299  * illegal here.
1300  */
1301 static int
1302 ReconReadDoneProc(arg, status)
1303 	void   *arg;
1304 	int     status;
1305 {
1306 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1307 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1308 
1309 	if (status) {
1310 		/*
1311 	         * XXX
1312 	         */
1313 		printf("Recon read failed!\n");
1314 		RF_PANIC();
1315 	}
1316 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1317 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1318 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1319 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1320 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1321 
1322 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1323 	return (0);
1324 }
1325 /* this gets called upon the completion of a reconstruction write operation.
1326  * the arg is a pointer to the rbuf that was just written
1327  *
1328  * called at interrupt context in the kernel, so don't do anything illegal here.
1329  */
1330 static int
1331 ReconWriteDoneProc(arg, status)
1332 	void   *arg;
1333 	int     status;
1334 {
1335 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1336 
1337 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1338 	if (status) {
1339 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1340 							 * write failed!\n"); */
1341 		RF_PANIC();
1342 	}
1343 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1344 	return (0);
1345 }
1346 
1347 
1348 /*
1349  * computes a new minimum head sep, and wakes up anyone who needs to
1350  * be woken as a result
1351  */
1352 static void
1353 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1354 	RF_Raid_t *raidPtr;
1355 	RF_RowCol_t row;
1356 	RF_HeadSepLimit_t hsCtr;
1357 {
1358 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1359 	RF_HeadSepLimit_t new_min;
1360 	RF_RowCol_t i;
1361 	RF_CallbackDesc_t *p;
1362 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1363 								 * of a minimum */
1364 
1365 
1366 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1367 
1368 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1369 	for (i = 0; i < raidPtr->numCol; i++)
1370 		if (i != reconCtrlPtr->fcol) {
1371 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1372 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1373 		}
1374 	/* set the new minimum and wake up anyone who can now run again */
1375 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1376 		reconCtrlPtr->minHeadSepCounter = new_min;
1377 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1378 		while (reconCtrlPtr->headSepCBList) {
1379 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1380 				break;
1381 			p = reconCtrlPtr->headSepCBList;
1382 			reconCtrlPtr->headSepCBList = p->next;
1383 			p->next = NULL;
1384 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1385 			rf_FreeCallbackDesc(p);
1386 		}
1387 
1388 	}
1389 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1390 }
1391 
1392 /*
1393  * checks to see that the maximum head separation will not be violated
1394  * if we initiate a reconstruction I/O on the indicated disk.
1395  * Limiting the maximum head separation between two disks eliminates
1396  * the nasty buffer-stall conditions that occur when one disk races
1397  * ahead of the others and consumes all of the floating recon buffers.
1398  * This code is complex and unpleasant but it's necessary to avoid
1399  * some very nasty, albeit fairly rare, reconstruction behavior.
1400  *
1401  * returns non-zero if and only if we have to stop working on the
1402  * indicated disk due to a head-separation delay.
1403  */
1404 static int
1405 CheckHeadSeparation(
1406     RF_Raid_t * raidPtr,
1407     RF_PerDiskReconCtrl_t * ctrl,
1408     RF_RowCol_t row,
1409     RF_RowCol_t col,
1410     RF_HeadSepLimit_t hsCtr,
1411     RF_ReconUnitNum_t which_ru)
1412 {
1413 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1414 	RF_CallbackDesc_t *cb, *p, *pt;
1415 	int     retval = 0;
1416 
1417 	/* if we're too far ahead of the slowest disk, stop working on this
1418 	 * disk until the slower ones catch up.  We do this by scheduling a
1419 	 * wakeup callback for the time when the slowest disk has caught up.
1420 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1421 	 * must have fallen to at most 80% of the max allowable head
1422 	 * separation before we'll wake up.
1423 	 *
1424 	 */
1425 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1426 	if ((raidPtr->headSepLimit >= 0) &&
1427 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1428 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1429 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
1430 			 reconCtrlPtr->minHeadSepCounter,
1431 			 raidPtr->headSepLimit);
1432 		cb = rf_AllocCallbackDesc();
1433 		/* the minHeadSepCounter value we have to get to before we'll
1434 		 * wake up.  build in 20% hysteresis. */
1435 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1436 		cb->row = row;
1437 		cb->col = col;
1438 		cb->next = NULL;
1439 
1440 		/* insert this callback descriptor into the sorted list of
1441 		 * pending head-sep callbacks */
1442 		p = reconCtrlPtr->headSepCBList;
1443 		if (!p)
1444 			reconCtrlPtr->headSepCBList = cb;
1445 		else
1446 			if (cb->callbackArg.v < p->callbackArg.v) {
1447 				cb->next = reconCtrlPtr->headSepCBList;
1448 				reconCtrlPtr->headSepCBList = cb;
1449 			} else {
1450 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1451 				cb->next = p;
1452 				pt->next = cb;
1453 			}
1454 		retval = 1;
1455 #if RF_RECON_STATS > 0
1456 		ctrl->reconCtrl->reconDesc->hsStallCount++;
1457 #endif				/* RF_RECON_STATS > 0 */
1458 	}
1459 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1460 
1461 	return (retval);
1462 }
1463 /*
1464  * checks to see if reconstruction has been either forced or blocked
1465  * by a user operation.  if forced, we skip this RU entirely.  else if
1466  * blocked, put ourselves on the wait list.  else return 0.
1467  *
1468  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1469  */
1470 static int
1471 CheckForcedOrBlockedReconstruction(
1472     RF_Raid_t * raidPtr,
1473     RF_ReconParityStripeStatus_t * pssPtr,
1474     RF_PerDiskReconCtrl_t * ctrl,
1475     RF_RowCol_t row,
1476     RF_RowCol_t col,
1477     RF_StripeNum_t psid,
1478     RF_ReconUnitNum_t which_ru)
1479 {
1480 	RF_CallbackDesc_t *cb;
1481 	int     retcode = 0;
1482 
1483 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1484 		retcode = RF_PSS_FORCED_ON_WRITE;
1485 	else
1486 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1487 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1488 			cb = rf_AllocCallbackDesc();	/* append ourselves to
1489 							 * the blockage-wait
1490 							 * list */
1491 			cb->row = row;
1492 			cb->col = col;
1493 			cb->next = pssPtr->blockWaitList;
1494 			pssPtr->blockWaitList = cb;
1495 			retcode = RF_PSS_RECON_BLOCKED;
1496 		}
1497 	if (!retcode)
1498 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1499 							 * reconstruction */
1500 
1501 	return (retcode);
1502 }
1503 /*
1504  * if reconstruction is currently ongoing for the indicated stripeID,
1505  * reconstruction is forced to completion and we return non-zero to
1506  * indicate that the caller must wait.  If not, then reconstruction is
1507  * blocked on the indicated stripe and the routine returns zero.  If
1508  * and only if we return non-zero, we'll cause the cbFunc to get
1509  * invoked with the cbArg when the reconstruction has completed.
1510  */
1511 int
1512 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1513 	RF_Raid_t *raidPtr;
1514 	RF_AccessStripeMap_t *asmap;
1515 	void    (*cbFunc) (RF_Raid_t *, void *);
1516 	void   *cbArg;
1517 {
1518 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
1519 						 * we're working on */
1520 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1521 							 * forcing recon on */
1522 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1523 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
1524 						 * stripe status structure */
1525 	RF_StripeNum_t psid;	/* parity stripe id */
1526 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1527 						 * offset */
1528 	RF_RowCol_t *diskids;
1529 	RF_RowCol_t stripe;
1530 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1531 	RF_RowCol_t fcol, diskno, i;
1532 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1533 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1534 	RF_CallbackDesc_t *cb;
1535 	int     created = 0, nPromoted;
1536 
1537 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1538 
1539 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1540 
1541 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1542 
1543 	/* if recon is not ongoing on this PS, just return */
1544 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1545 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1546 		return (0);
1547 	}
1548 	/* otherwise, we have to wait for reconstruction to complete on this
1549 	 * RU. */
1550 	/* In order to avoid waiting for a potentially large number of
1551 	 * low-priority accesses to complete, we force a normal-priority (i.e.
1552 	 * not low-priority) reconstruction on this RU. */
1553 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1554 		DDprintf1("Forcing recon on psid %ld\n", psid);
1555 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1556 								 * forced recon */
1557 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1558 							 * that we just set */
1559 		fcol = raidPtr->reconControl[row]->fcol;
1560 
1561 		/* get a listing of the disks comprising the indicated stripe */
1562 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1563 		RF_ASSERT(row == stripe);
1564 
1565 		/* For previously issued reads, elevate them to normal
1566 		 * priority.  If the I/O has already completed, it won't be
1567 		 * found in the queue, and hence this will be a no-op. For
1568 		 * unissued reads, allocate buffers and issue new reads.  The
1569 		 * fact that we've set the FORCED bit means that the regular
1570 		 * recon procs will not re-issue these reqs */
1571 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1572 			if ((diskno = diskids[i]) != fcol) {
1573 				if (pssPtr->issued[diskno]) {
1574 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1575 					if (rf_reconDebug && nPromoted)
1576 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1577 				} else {
1578 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1579 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1580 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1581 													 * location */
1582 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1583 					new_rbuf->which_ru = which_ru;
1584 					new_rbuf->failedDiskSectorOffset = fd_offset;
1585 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1586 
1587 					/* use NULL b_proc b/c all addrs
1588 					 * should be in kernel space */
1589 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1590 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1591 					    NULL, (void *) raidPtr, 0, NULL);
1592 
1593 					RF_ASSERT(req);	/* XXX -- fix this --
1594 							 * XXX */
1595 
1596 					new_rbuf->arg = req;
1597 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1598 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1599 				}
1600 			}
1601 		/* if the write is sitting in the disk queue, elevate its
1602 		 * priority */
1603 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1604 			printf("raid%d: promoted write to row %d col %d\n",
1605 			       raidPtr->raidid, row, fcol);
1606 	}
1607 	/* install a callback descriptor to be invoked when recon completes on
1608 	 * this parity stripe. */
1609 	cb = rf_AllocCallbackDesc();
1610 	/* XXX the following is bogus.. These functions don't really match!!
1611 	 * GO */
1612 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1613 	cb->callbackArg.p = (void *) cbArg;
1614 	cb->next = pssPtr->procWaitList;
1615 	pssPtr->procWaitList = cb;
1616 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1617 		  raidPtr->raidid, psid);
1618 
1619 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1620 	return (1);
1621 }
1622 /* called upon the completion of a forced reconstruction read.
1623  * all we do is schedule the FORCEDREADONE event.
1624  * called at interrupt context in the kernel, so don't do anything illegal here.
1625  */
1626 static void
1627 ForceReconReadDoneProc(arg, status)
1628 	void   *arg;
1629 	int     status;
1630 {
1631 	RF_ReconBuffer_t *rbuf = arg;
1632 
1633 	if (status) {
1634 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1635 							 *  recon read
1636 							 * failed!\n"); */
1637 		RF_PANIC();
1638 	}
1639 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1640 }
1641 /* releases a block on the reconstruction of the indicated stripe */
1642 int
1643 rf_UnblockRecon(raidPtr, asmap)
1644 	RF_Raid_t *raidPtr;
1645 	RF_AccessStripeMap_t *asmap;
1646 {
1647 	RF_RowCol_t row = asmap->origRow;
1648 	RF_StripeNum_t stripeID = asmap->stripeID;
1649 	RF_ReconParityStripeStatus_t *pssPtr;
1650 	RF_ReconUnitNum_t which_ru;
1651 	RF_StripeNum_t psid;
1652 	int     created = 0;
1653 	RF_CallbackDesc_t *cb;
1654 
1655 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1656 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1657 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1658 
1659 	/* When recon is forced, the pss desc can get deleted before we get
1660 	 * back to unblock recon. But, this can _only_ happen when recon is
1661 	 * forced. It would be good to put some kind of sanity check here, but
1662 	 * how to decide if recon was just forced or not? */
1663 	if (!pssPtr) {
1664 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1665 		 * RU %d\n",psid,which_ru); */
1666 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1667 		if (rf_reconDebug || rf_pssDebug)
1668 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1669 #endif
1670 		goto out;
1671 	}
1672 	pssPtr->blockCount--;
1673 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1674 		 raidPtr->raidid, psid, pssPtr->blockCount);
1675 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1676 
1677 		/* unblock recon before calling CauseReconEvent in case
1678 		 * CauseReconEvent causes us to try to issue a new read before
1679 		 * returning here. */
1680 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1681 
1682 
1683 		while (pssPtr->blockWaitList) {
1684 			/* spin through the block-wait list and
1685 			   release all the waiters */
1686 			cb = pssPtr->blockWaitList;
1687 			pssPtr->blockWaitList = cb->next;
1688 			cb->next = NULL;
1689 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1690 			rf_FreeCallbackDesc(cb);
1691 		}
1692 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1693 			/* if no recon was requested while recon was blocked */
1694 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1695 		}
1696 	}
1697 out:
1698 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1699 	return (0);
1700 }
1701