1 /* $NetBSD: rf_raid1.c,v 1.4 1999/08/13 03:41:57 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: William V. Courtright II 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /***************************************************************************** 30 * 31 * rf_raid1.c -- implements RAID Level 1 32 * 33 *****************************************************************************/ 34 35 #include "rf_raid.h" 36 #include "rf_raid1.h" 37 #include "rf_dag.h" 38 #include "rf_dagffrd.h" 39 #include "rf_dagffwr.h" 40 #include "rf_dagdegrd.h" 41 #include "rf_dagutils.h" 42 #include "rf_dagfuncs.h" 43 #include "rf_threadid.h" 44 #include "rf_diskqueue.h" 45 #include "rf_general.h" 46 #include "rf_utils.h" 47 #include "rf_parityscan.h" 48 #include "rf_mcpair.h" 49 #include "rf_layout.h" 50 #include "rf_map.h" 51 #include "rf_engine.h" 52 #include "rf_reconbuffer.h" 53 54 typedef struct RF_Raid1ConfigInfo_s { 55 RF_RowCol_t **stripeIdentifier; 56 } RF_Raid1ConfigInfo_t; 57 /* start of day code specific to RAID level 1 */ 58 int 59 rf_ConfigureRAID1( 60 RF_ShutdownList_t ** listp, 61 RF_Raid_t * raidPtr, 62 RF_Config_t * cfgPtr) 63 { 64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 65 RF_Raid1ConfigInfo_t *info; 66 RF_RowCol_t i; 67 68 /* create a RAID level 1 configuration structure */ 69 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); 70 if (info == NULL) 71 return (ENOMEM); 72 layoutPtr->layoutSpecificInfo = (void *) info; 73 74 /* ... and fill it in. */ 75 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); 76 if (info->stripeIdentifier == NULL) 77 return (ENOMEM); 78 for (i = 0; i < (raidPtr->numCol / 2); i++) { 79 info->stripeIdentifier[i][0] = (2 * i); 80 info->stripeIdentifier[i][1] = (2 * i) + 1; 81 } 82 83 RF_ASSERT(raidPtr->numRow == 1); 84 85 /* this implementation of RAID level 1 uses one row of numCol disks 86 * and allows multiple (numCol / 2) stripes per row. A stripe 87 * consists of a single data unit and a single parity (mirror) unit. 88 * stripe id = raidAddr / stripeUnitSize */ 89 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; 90 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); 91 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; 92 layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; 93 layoutPtr->numDataCol = 1; 94 layoutPtr->numParityCol = 1; 95 return (0); 96 } 97 98 99 /* returns the physical disk location of the primary copy in the mirror pair */ 100 void 101 rf_MapSectorRAID1( 102 RF_Raid_t * raidPtr, 103 RF_RaidAddr_t raidSector, 104 RF_RowCol_t * row, 105 RF_RowCol_t * col, 106 RF_SectorNum_t * diskSector, 107 int remap) 108 { 109 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 110 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 111 112 *row = 0; 113 *col = 2 * mirrorPair; 114 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 115 } 116 117 118 /* Map Parity 119 * 120 * returns the physical disk location of the secondary copy in the mirror 121 * pair 122 */ 123 void 124 rf_MapParityRAID1( 125 RF_Raid_t * raidPtr, 126 RF_RaidAddr_t raidSector, 127 RF_RowCol_t * row, 128 RF_RowCol_t * col, 129 RF_SectorNum_t * diskSector, 130 int remap) 131 { 132 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 133 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 134 135 *row = 0; 136 *col = (2 * mirrorPair) + 1; 137 138 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 139 } 140 141 142 /* IdentifyStripeRAID1 143 * 144 * returns a list of disks for a given redundancy group 145 */ 146 void 147 rf_IdentifyStripeRAID1( 148 RF_Raid_t * raidPtr, 149 RF_RaidAddr_t addr, 150 RF_RowCol_t ** diskids, 151 RF_RowCol_t * outRow) 152 { 153 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); 154 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; 155 RF_ASSERT(stripeID >= 0); 156 RF_ASSERT(addr >= 0); 157 *outRow = 0; 158 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; 159 RF_ASSERT(*diskids); 160 } 161 162 163 /* MapSIDToPSIDRAID1 164 * 165 * maps a logical stripe to a stripe in the redundant array 166 */ 167 void 168 rf_MapSIDToPSIDRAID1( 169 RF_RaidLayout_t * layoutPtr, 170 RF_StripeNum_t stripeID, 171 RF_StripeNum_t * psID, 172 RF_ReconUnitNum_t * which_ru) 173 { 174 *which_ru = 0; 175 *psID = stripeID; 176 } 177 178 179 180 /****************************************************************************** 181 * select a graph to perform a single-stripe access 182 * 183 * Parameters: raidPtr - description of the physical array 184 * type - type of operation (read or write) requested 185 * asmap - logical & physical addresses for this access 186 * createFunc - name of function to use to create the graph 187 *****************************************************************************/ 188 189 void 190 rf_RAID1DagSelect( 191 RF_Raid_t * raidPtr, 192 RF_IoType_t type, 193 RF_AccessStripeMap_t * asmap, 194 RF_VoidFuncPtr * createFunc) 195 { 196 RF_RowCol_t frow, fcol, or, oc; 197 RF_PhysDiskAddr_t *failedPDA; 198 int prior_recon, tid; 199 RF_RowStatus_t rstat; 200 RF_SectorNum_t oo; 201 202 203 RF_ASSERT(RF_IO_IS_R_OR_W(type)); 204 205 if (asmap->numDataFailed + asmap->numParityFailed > 1) { 206 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); 207 *createFunc = NULL; 208 return; 209 } 210 if (asmap->numDataFailed + asmap->numParityFailed) { 211 /* 212 * We've got a fault. Re-map to spare space, iff applicable. 213 * Shouldn't the arch-independent code do this for us? 214 * Anyway, it turns out if we don't do this here, then when 215 * we're reconstructing, writes go only to the surviving 216 * original disk, and aren't reflected on the reconstructed 217 * spare. Oops. --jimz 218 */ 219 failedPDA = asmap->failedPDAs[0]; 220 frow = failedPDA->row; 221 fcol = failedPDA->col; 222 rstat = raidPtr->status[frow]; 223 prior_recon = (rstat == rf_rs_reconfigured) || ( 224 (rstat == rf_rs_reconstructing) ? 225 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0 226 ); 227 if (prior_recon) { 228 or = frow; 229 oc = fcol; 230 oo = failedPDA->startSector; 231 /* 232 * If we did distributed sparing, we'd monkey with that here. 233 * But we don't, so we'll 234 */ 235 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow; 236 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol; 237 /* 238 * Redirect other components, iff necessary. This looks 239 * pretty suspicious to me, but it's what the raid5 240 * DAG select does. 241 */ 242 if (asmap->parityInfo->next) { 243 if (failedPDA == asmap->parityInfo) { 244 failedPDA->next->row = failedPDA->row; 245 failedPDA->next->col = failedPDA->col; 246 } else { 247 if (failedPDA == asmap->parityInfo->next) { 248 asmap->parityInfo->row = failedPDA->row; 249 asmap->parityInfo->col = failedPDA->col; 250 } 251 } 252 } 253 if (rf_dagDebug || rf_mapDebug) { 254 rf_get_threadid(tid); 255 printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n", 256 tid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, 257 (long) failedPDA->startSector); 258 } 259 asmap->numDataFailed = asmap->numParityFailed = 0; 260 } 261 } 262 if (type == RF_IO_TYPE_READ) { 263 if (asmap->numDataFailed == 0) 264 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; 265 else 266 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; 267 } else { 268 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; 269 } 270 } 271 272 int 273 rf_VerifyParityRAID1( 274 RF_Raid_t * raidPtr, 275 RF_RaidAddr_t raidAddr, 276 RF_PhysDiskAddr_t * parityPDA, 277 int correct_it, 278 RF_RaidAccessFlags_t flags) 279 { 280 int nbytes, bcount, stripeWidth, ret, i, j, tid = 0, nbad, *bbufs; 281 RF_DagNode_t *blockNode, *unblockNode, *wrBlock; 282 RF_DagHeader_t *rd_dag_h, *wr_dag_h; 283 RF_AccessStripeMapHeader_t *asm_h; 284 RF_AllocListElem_t *allocList; 285 RF_AccTraceEntry_t tracerec; 286 RF_ReconUnitNum_t which_ru; 287 RF_RaidLayout_t *layoutPtr; 288 RF_AccessStripeMap_t *aasm; 289 RF_SectorCount_t nsector; 290 RF_RaidAddr_t startAddr; 291 char *buf, *buf1, *buf2; 292 RF_PhysDiskAddr_t *pda; 293 RF_StripeNum_t psID; 294 RF_MCPair_t *mcpair; 295 296 if (rf_verifyParityDebug) { 297 rf_get_threadid(tid); 298 } 299 layoutPtr = &raidPtr->Layout; 300 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); 301 nsector = parityPDA->numSector; 302 nbytes = rf_RaidAddressToByte(raidPtr, nsector); 303 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); 304 305 asm_h = NULL; 306 rd_dag_h = wr_dag_h = NULL; 307 mcpair = NULL; 308 309 ret = RF_PARITY_COULD_NOT_VERIFY; 310 311 rf_MakeAllocList(allocList); 312 if (allocList == NULL) 313 return (RF_PARITY_COULD_NOT_VERIFY); 314 mcpair = rf_AllocMCPair(); 315 if (mcpair == NULL) 316 goto done; 317 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); 318 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 319 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); 320 RF_MallocAndAdd(buf, bcount, (char *), allocList); 321 if (buf == NULL) 322 goto done; 323 if (rf_verifyParityDebug) { 324 printf("[%d] RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n", 325 tid, (long) buf, bcount, (long) buf, (long) buf + bcount); 326 } 327 /* 328 * Generate a DAG which will read the entire stripe- then we can 329 * just compare data chunks versus "parity" chunks. 330 */ 331 332 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf, 333 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags, 334 RF_IO_NORMAL_PRIORITY); 335 if (rd_dag_h == NULL) 336 goto done; 337 blockNode = rd_dag_h->succedents[0]; 338 unblockNode = blockNode->succedents[0]->succedents[0]; 339 340 /* 341 * Map the access to physical disk addresses (PDAs)- this will 342 * get us both a list of data addresses, and "parity" addresses 343 * (which are really mirror copies). 344 */ 345 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, 346 buf, RF_DONT_REMAP); 347 aasm = asm_h->stripeMap; 348 349 buf1 = buf; 350 /* 351 * Loop through the data blocks, setting up read nodes for each. 352 */ 353 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { 354 RF_ASSERT(pda); 355 356 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 357 358 RF_ASSERT(pda->numSector != 0); 359 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 360 /* cannot verify parity with dead disk */ 361 goto done; 362 } 363 pda->bufPtr = buf1; 364 blockNode->succedents[i]->params[0].p = pda; 365 blockNode->succedents[i]->params[1].p = buf1; 366 blockNode->succedents[i]->params[2].v = psID; 367 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 368 buf1 += nbytes; 369 } 370 RF_ASSERT(pda == NULL); 371 /* 372 * keep i, buf1 running 373 * 374 * Loop through parity blocks, setting up read nodes for each. 375 */ 376 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { 377 RF_ASSERT(pda); 378 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 379 RF_ASSERT(pda->numSector != 0); 380 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 381 /* cannot verify parity with dead disk */ 382 goto done; 383 } 384 pda->bufPtr = buf1; 385 blockNode->succedents[i]->params[0].p = pda; 386 blockNode->succedents[i]->params[1].p = buf1; 387 blockNode->succedents[i]->params[2].v = psID; 388 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 389 buf1 += nbytes; 390 } 391 RF_ASSERT(pda == NULL); 392 393 bzero((char *) &tracerec, sizeof(tracerec)); 394 rd_dag_h->tracerec = &tracerec; 395 396 if (rf_verifyParityDebug > 1) { 397 printf("[%d] RAID1 parity verify read dag:\n", tid); 398 rf_PrintDAGList(rd_dag_h); 399 } 400 RF_LOCK_MUTEX(mcpair->mutex); 401 mcpair->flag = 0; 402 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 403 (void *) mcpair); 404 while (mcpair->flag == 0) { 405 RF_WAIT_MCPAIR(mcpair); 406 } 407 RF_UNLOCK_MUTEX(mcpair->mutex); 408 409 if (rd_dag_h->status != rf_enable) { 410 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n"); 411 ret = RF_PARITY_COULD_NOT_VERIFY; 412 goto done; 413 } 414 /* 415 * buf1 is the beginning of the data blocks chunk 416 * buf2 is the beginning of the parity blocks chunk 417 */ 418 buf1 = buf; 419 buf2 = buf + (nbytes * layoutPtr->numDataCol); 420 ret = RF_PARITY_OKAY; 421 /* 422 * bbufs is "bad bufs"- an array whose entries are the data 423 * column numbers where we had miscompares. (That is, column 0 424 * and column 1 of the array are mirror copies, and are considered 425 * "data column 0" for this purpose). 426 */ 427 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), 428 allocList); 429 nbad = 0; 430 /* 431 * Check data vs "parity" (mirror copy). 432 */ 433 for (i = 0; i < layoutPtr->numDataCol; i++) { 434 if (rf_verifyParityDebug) { 435 printf("[%d] RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n", 436 tid, nbytes, i, (long) buf1, (long) buf2, (long) buf); 437 } 438 ret = bcmp(buf1, buf2, nbytes); 439 if (ret) { 440 if (rf_verifyParityDebug > 1) { 441 for (j = 0; j < nbytes; j++) { 442 if (buf1[j] != buf2[j]) 443 break; 444 } 445 printf("psid=%ld j=%d\n", (long) psID, j); 446 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff, 447 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); 448 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff, 449 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); 450 } 451 if (rf_verifyParityDebug) { 452 printf("[%d] RAID1: found bad parity, i=%d\n", tid, i); 453 } 454 /* 455 * Parity is bad. Keep track of which columns were bad. 456 */ 457 if (bbufs) 458 bbufs[nbad] = i; 459 nbad++; 460 ret = RF_PARITY_BAD; 461 } 462 buf1 += nbytes; 463 buf2 += nbytes; 464 } 465 466 if ((ret != RF_PARITY_OKAY) && correct_it) { 467 ret = RF_PARITY_COULD_NOT_CORRECT; 468 if (rf_verifyParityDebug) { 469 printf("[%d] RAID1 parity verify: parity not correct\n", tid); 470 } 471 if (bbufs == NULL) 472 goto done; 473 /* 474 * Make a DAG with one write node for each bad unit. We'll simply 475 * write the contents of the data unit onto the parity unit for 476 * correction. (It's possible that the mirror copy was the correct 477 * copy, and that we're spooging good data by writing bad over it, 478 * but there's no way we can know that. 479 */ 480 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf, 481 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags, 482 RF_IO_NORMAL_PRIORITY); 483 if (wr_dag_h == NULL) 484 goto done; 485 wrBlock = wr_dag_h->succedents[0]; 486 /* 487 * Fill in a write node for each bad compare. 488 */ 489 for (i = 0; i < nbad; i++) { 490 j = i + layoutPtr->numDataCol; 491 pda = blockNode->succedents[j]->params[0].p; 492 pda->bufPtr = blockNode->succedents[i]->params[1].p; 493 wrBlock->succedents[i]->params[0].p = pda; 494 wrBlock->succedents[i]->params[1].p = pda->bufPtr; 495 wrBlock->succedents[i]->params[2].v = psID; 496 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 497 } 498 bzero((char *) &tracerec, sizeof(tracerec)); 499 wr_dag_h->tracerec = &tracerec; 500 if (rf_verifyParityDebug > 1) { 501 printf("Parity verify write dag:\n"); 502 rf_PrintDAGList(wr_dag_h); 503 } 504 RF_LOCK_MUTEX(mcpair->mutex); 505 mcpair->flag = 0; 506 /* fire off the write DAG */ 507 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 508 (void *) mcpair); 509 while (!mcpair->flag) { 510 RF_WAIT_COND(mcpair->cond, mcpair->mutex); 511 } 512 RF_UNLOCK_MUTEX(mcpair->mutex); 513 if (wr_dag_h->status != rf_enable) { 514 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n"); 515 goto done; 516 } 517 ret = RF_PARITY_CORRECTED; 518 } 519 done: 520 /* 521 * All done. We might've gotten here without doing part of the function, 522 * so cleanup what we have to and return our running status. 523 */ 524 if (asm_h) 525 rf_FreeAccessStripeMap(asm_h); 526 if (rd_dag_h) 527 rf_FreeDAG(rd_dag_h); 528 if (wr_dag_h) 529 rf_FreeDAG(wr_dag_h); 530 if (mcpair) 531 rf_FreeMCPair(mcpair); 532 rf_FreeAllocList(allocList); 533 if (rf_verifyParityDebug) { 534 printf("[%d] RAID1 parity verify, returning %d\n", tid, ret); 535 } 536 return (ret); 537 } 538 539 int 540 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed) 541 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */ 542 int keep_it; /* whether we can keep this buffer or we have 543 * to return it */ 544 int use_committed; /* whether to use a committed or an available 545 * recon buffer */ 546 { 547 RF_ReconParityStripeStatus_t *pssPtr; 548 RF_ReconCtrl_t *reconCtrlPtr; 549 RF_RaidLayout_t *layoutPtr; 550 int tid = 0, retcode, created; 551 RF_CallbackDesc_t *cb, *p; 552 RF_ReconBuffer_t *t; 553 RF_Raid_t *raidPtr; 554 caddr_t ta; 555 556 retcode = 0; 557 created = 0; 558 559 raidPtr = rbuf->raidPtr; 560 layoutPtr = &raidPtr->Layout; 561 reconCtrlPtr = raidPtr->reconControl[rbuf->row]; 562 563 RF_ASSERT(rbuf); 564 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); 565 566 if (rf_reconbufferDebug) { 567 rf_get_threadid(tid); 568 printf("[%d] RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n", 569 tid, rbuf->row, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru, 570 (long) rbuf->failedDiskSectorOffset); 571 } 572 if (rf_reconDebug) { 573 printf("RAID1 reconbuffer submit psid %ld buf %lx\n", 574 (long) rbuf->parityStripeID, (long) rbuf->buffer); 575 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n", 576 (long) rbuf->parityStripeID, 577 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3], 578 rbuf->buffer[4]); 579 } 580 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); 581 582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 583 584 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, 585 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created); 586 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten 587 * an rbuf for it */ 588 589 /* 590 * Since this is simple mirroring, the first submission for a stripe is also 591 * treated as the last. 592 */ 593 594 t = NULL; 595 if (keep_it) { 596 if (rf_reconbufferDebug) { 597 printf("[%d] RAID1 rbuf submission: keeping rbuf\n", tid); 598 } 599 t = rbuf; 600 } else { 601 if (use_committed) { 602 if (rf_reconbufferDebug) { 603 printf("[%d] RAID1 rbuf submission: using committed rbuf\n", tid); 604 } 605 t = reconCtrlPtr->committedRbufs; 606 RF_ASSERT(t); 607 reconCtrlPtr->committedRbufs = t->next; 608 t->next = NULL; 609 } else 610 if (reconCtrlPtr->floatingRbufs) { 611 if (rf_reconbufferDebug) { 612 printf("[%d] RAID1 rbuf submission: using floating rbuf\n", tid); 613 } 614 t = reconCtrlPtr->floatingRbufs; 615 reconCtrlPtr->floatingRbufs = t->next; 616 t->next = NULL; 617 } 618 } 619 if (t == NULL) { 620 if (rf_reconbufferDebug) { 621 printf("[%d] RAID1 rbuf submission: waiting for rbuf\n", tid); 622 } 623 RF_ASSERT((keep_it == 0) && (use_committed == 0)); 624 raidPtr->procsInBufWait++; 625 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) 626 && (raidPtr->numFullReconBuffers == 0)) { 627 /* ruh-ro */ 628 RF_ERRORMSG("Buffer wait deadlock\n"); 629 rf_PrintPSStatusTable(raidPtr, rbuf->row); 630 RF_PANIC(); 631 } 632 pssPtr->flags |= RF_PSS_BUFFERWAIT; 633 cb = rf_AllocCallbackDesc(); 634 cb->row = rbuf->row; 635 cb->col = rbuf->col; 636 cb->callbackArg.v = rbuf->parityStripeID; 637 cb->callbackArg2.v = rbuf->which_ru; 638 cb->next = NULL; 639 if (reconCtrlPtr->bufferWaitList == NULL) { 640 /* we are the wait list- lucky us */ 641 reconCtrlPtr->bufferWaitList = cb; 642 } else { 643 /* append to wait list */ 644 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); 645 p->next = cb; 646 } 647 retcode = 1; 648 goto out; 649 } 650 if (t != rbuf) { 651 t->row = rbuf->row; 652 t->col = reconCtrlPtr->fcol; 653 t->parityStripeID = rbuf->parityStripeID; 654 t->which_ru = rbuf->which_ru; 655 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; 656 t->spRow = rbuf->spRow; 657 t->spCol = rbuf->spCol; 658 t->spOffset = rbuf->spOffset; 659 /* Swap buffers. DANCE! */ 660 ta = t->buffer; 661 t->buffer = rbuf->buffer; 662 rbuf->buffer = ta; 663 } 664 /* 665 * Use the rbuf we've been given as the target. 666 */ 667 RF_ASSERT(pssPtr->rbuf == NULL); 668 pssPtr->rbuf = t; 669 670 t->count = 1; 671 /* 672 * Below, we use 1 for numDataCol (which is equal to the count in the 673 * previous line), so we'll always be done. 674 */ 675 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); 676 677 out: 678 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); 679 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 680 if (rf_reconbufferDebug) { 681 printf("[%d] RAID1 rbuf submission: returning %d\n", tid, retcode); 682 } 683 return (retcode); 684 } 685