1 /* $NetBSD: rf_raid1.c,v 1.7 2001/07/18 06:46:46 thorpej Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: William V. Courtright II 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /***************************************************************************** 30 * 31 * rf_raid1.c -- implements RAID Level 1 32 * 33 *****************************************************************************/ 34 35 #include "rf_raid.h" 36 #include "rf_raid1.h" 37 #include "rf_dag.h" 38 #include "rf_dagffrd.h" 39 #include "rf_dagffwr.h" 40 #include "rf_dagdegrd.h" 41 #include "rf_dagutils.h" 42 #include "rf_dagfuncs.h" 43 #include "rf_diskqueue.h" 44 #include "rf_general.h" 45 #include "rf_utils.h" 46 #include "rf_parityscan.h" 47 #include "rf_mcpair.h" 48 #include "rf_layout.h" 49 #include "rf_map.h" 50 #include "rf_engine.h" 51 #include "rf_reconbuffer.h" 52 53 typedef struct RF_Raid1ConfigInfo_s { 54 RF_RowCol_t **stripeIdentifier; 55 } RF_Raid1ConfigInfo_t; 56 /* start of day code specific to RAID level 1 */ 57 int 58 rf_ConfigureRAID1( 59 RF_ShutdownList_t ** listp, 60 RF_Raid_t * raidPtr, 61 RF_Config_t * cfgPtr) 62 { 63 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 64 RF_Raid1ConfigInfo_t *info; 65 RF_RowCol_t i; 66 67 /* create a RAID level 1 configuration structure */ 68 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); 69 if (info == NULL) 70 return (ENOMEM); 71 layoutPtr->layoutSpecificInfo = (void *) info; 72 73 /* ... and fill it in. */ 74 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); 75 if (info->stripeIdentifier == NULL) 76 return (ENOMEM); 77 for (i = 0; i < (raidPtr->numCol / 2); i++) { 78 info->stripeIdentifier[i][0] = (2 * i); 79 info->stripeIdentifier[i][1] = (2 * i) + 1; 80 } 81 82 RF_ASSERT(raidPtr->numRow == 1); 83 84 /* this implementation of RAID level 1 uses one row of numCol disks 85 * and allows multiple (numCol / 2) stripes per row. A stripe 86 * consists of a single data unit and a single parity (mirror) unit. 87 * stripe id = raidAddr / stripeUnitSize */ 88 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; 89 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); 90 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; 91 layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector; 92 layoutPtr->numDataCol = 1; 93 layoutPtr->numParityCol = 1; 94 return (0); 95 } 96 97 98 /* returns the physical disk location of the primary copy in the mirror pair */ 99 void 100 rf_MapSectorRAID1( 101 RF_Raid_t * raidPtr, 102 RF_RaidAddr_t raidSector, 103 RF_RowCol_t * row, 104 RF_RowCol_t * col, 105 RF_SectorNum_t * diskSector, 106 int remap) 107 { 108 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 109 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 110 111 *row = 0; 112 *col = 2 * mirrorPair; 113 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 114 } 115 116 117 /* Map Parity 118 * 119 * returns the physical disk location of the secondary copy in the mirror 120 * pair 121 */ 122 void 123 rf_MapParityRAID1( 124 RF_Raid_t * raidPtr, 125 RF_RaidAddr_t raidSector, 126 RF_RowCol_t * row, 127 RF_RowCol_t * col, 128 RF_SectorNum_t * diskSector, 129 int remap) 130 { 131 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 132 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 133 134 *row = 0; 135 *col = (2 * mirrorPair) + 1; 136 137 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 138 } 139 140 141 /* IdentifyStripeRAID1 142 * 143 * returns a list of disks for a given redundancy group 144 */ 145 void 146 rf_IdentifyStripeRAID1( 147 RF_Raid_t * raidPtr, 148 RF_RaidAddr_t addr, 149 RF_RowCol_t ** diskids, 150 RF_RowCol_t * outRow) 151 { 152 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); 153 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; 154 RF_ASSERT(stripeID >= 0); 155 RF_ASSERT(addr >= 0); 156 *outRow = 0; 157 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; 158 RF_ASSERT(*diskids); 159 } 160 161 162 /* MapSIDToPSIDRAID1 163 * 164 * maps a logical stripe to a stripe in the redundant array 165 */ 166 void 167 rf_MapSIDToPSIDRAID1( 168 RF_RaidLayout_t * layoutPtr, 169 RF_StripeNum_t stripeID, 170 RF_StripeNum_t * psID, 171 RF_ReconUnitNum_t * which_ru) 172 { 173 *which_ru = 0; 174 *psID = stripeID; 175 } 176 177 178 179 /****************************************************************************** 180 * select a graph to perform a single-stripe access 181 * 182 * Parameters: raidPtr - description of the physical array 183 * type - type of operation (read or write) requested 184 * asmap - logical & physical addresses for this access 185 * createFunc - name of function to use to create the graph 186 *****************************************************************************/ 187 188 void 189 rf_RAID1DagSelect( 190 RF_Raid_t * raidPtr, 191 RF_IoType_t type, 192 RF_AccessStripeMap_t * asmap, 193 RF_VoidFuncPtr * createFunc) 194 { 195 RF_RowCol_t frow, fcol, or, oc; 196 RF_PhysDiskAddr_t *failedPDA; 197 int prior_recon; 198 RF_RowStatus_t rstat; 199 RF_SectorNum_t oo; 200 201 202 RF_ASSERT(RF_IO_IS_R_OR_W(type)); 203 204 if (asmap->numDataFailed + asmap->numParityFailed > 1) { 205 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); 206 *createFunc = NULL; 207 return; 208 } 209 if (asmap->numDataFailed + asmap->numParityFailed) { 210 /* 211 * We've got a fault. Re-map to spare space, iff applicable. 212 * Shouldn't the arch-independent code do this for us? 213 * Anyway, it turns out if we don't do this here, then when 214 * we're reconstructing, writes go only to the surviving 215 * original disk, and aren't reflected on the reconstructed 216 * spare. Oops. --jimz 217 */ 218 failedPDA = asmap->failedPDAs[0]; 219 frow = failedPDA->row; 220 fcol = failedPDA->col; 221 rstat = raidPtr->status[frow]; 222 prior_recon = (rstat == rf_rs_reconfigured) || ( 223 (rstat == rf_rs_reconstructing) ? 224 rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0 225 ); 226 if (prior_recon) { 227 or = frow; 228 oc = fcol; 229 oo = failedPDA->startSector; 230 /* 231 * If we did distributed sparing, we'd monkey with that here. 232 * But we don't, so we'll 233 */ 234 failedPDA->row = raidPtr->Disks[frow][fcol].spareRow; 235 failedPDA->col = raidPtr->Disks[frow][fcol].spareCol; 236 /* 237 * Redirect other components, iff necessary. This looks 238 * pretty suspicious to me, but it's what the raid5 239 * DAG select does. 240 */ 241 if (asmap->parityInfo->next) { 242 if (failedPDA == asmap->parityInfo) { 243 failedPDA->next->row = failedPDA->row; 244 failedPDA->next->col = failedPDA->col; 245 } else { 246 if (failedPDA == asmap->parityInfo->next) { 247 asmap->parityInfo->row = failedPDA->row; 248 asmap->parityInfo->col = failedPDA->col; 249 } 250 } 251 } 252 if (rf_dagDebug || rf_mapDebug) { 253 printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n", 254 raidPtr->raidid, type, or, oc, 255 (long) oo, failedPDA->row, 256 failedPDA->col, 257 (long) failedPDA->startSector); 258 } 259 asmap->numDataFailed = asmap->numParityFailed = 0; 260 } 261 } 262 if (type == RF_IO_TYPE_READ) { 263 if (asmap->numDataFailed == 0) 264 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; 265 else 266 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; 267 } else { 268 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; 269 } 270 } 271 272 int 273 rf_VerifyParityRAID1( 274 RF_Raid_t * raidPtr, 275 RF_RaidAddr_t raidAddr, 276 RF_PhysDiskAddr_t * parityPDA, 277 int correct_it, 278 RF_RaidAccessFlags_t flags) 279 { 280 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs; 281 RF_DagNode_t *blockNode, *unblockNode, *wrBlock; 282 RF_DagHeader_t *rd_dag_h, *wr_dag_h; 283 RF_AccessStripeMapHeader_t *asm_h; 284 RF_AllocListElem_t *allocList; 285 RF_AccTraceEntry_t tracerec; 286 RF_ReconUnitNum_t which_ru; 287 RF_RaidLayout_t *layoutPtr; 288 RF_AccessStripeMap_t *aasm; 289 RF_SectorCount_t nsector; 290 RF_RaidAddr_t startAddr; 291 char *buf, *buf1, *buf2; 292 RF_PhysDiskAddr_t *pda; 293 RF_StripeNum_t psID; 294 RF_MCPair_t *mcpair; 295 296 layoutPtr = &raidPtr->Layout; 297 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); 298 nsector = parityPDA->numSector; 299 nbytes = rf_RaidAddressToByte(raidPtr, nsector); 300 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); 301 302 asm_h = NULL; 303 rd_dag_h = wr_dag_h = NULL; 304 mcpair = NULL; 305 306 ret = RF_PARITY_COULD_NOT_VERIFY; 307 308 rf_MakeAllocList(allocList); 309 if (allocList == NULL) 310 return (RF_PARITY_COULD_NOT_VERIFY); 311 mcpair = rf_AllocMCPair(); 312 if (mcpair == NULL) 313 goto done; 314 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); 315 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 316 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); 317 RF_MallocAndAdd(buf, bcount, (char *), allocList); 318 if (buf == NULL) 319 goto done; 320 if (rf_verifyParityDebug) { 321 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n", 322 raidPtr->raidid, (long) buf, bcount, (long) buf, 323 (long) buf + bcount); 324 } 325 /* 326 * Generate a DAG which will read the entire stripe- then we can 327 * just compare data chunks versus "parity" chunks. 328 */ 329 330 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf, 331 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags, 332 RF_IO_NORMAL_PRIORITY); 333 if (rd_dag_h == NULL) 334 goto done; 335 blockNode = rd_dag_h->succedents[0]; 336 unblockNode = blockNode->succedents[0]->succedents[0]; 337 338 /* 339 * Map the access to physical disk addresses (PDAs)- this will 340 * get us both a list of data addresses, and "parity" addresses 341 * (which are really mirror copies). 342 */ 343 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, 344 buf, RF_DONT_REMAP); 345 aasm = asm_h->stripeMap; 346 347 buf1 = buf; 348 /* 349 * Loop through the data blocks, setting up read nodes for each. 350 */ 351 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { 352 RF_ASSERT(pda); 353 354 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 355 356 RF_ASSERT(pda->numSector != 0); 357 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 358 /* cannot verify parity with dead disk */ 359 goto done; 360 } 361 pda->bufPtr = buf1; 362 blockNode->succedents[i]->params[0].p = pda; 363 blockNode->succedents[i]->params[1].p = buf1; 364 blockNode->succedents[i]->params[2].v = psID; 365 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 366 buf1 += nbytes; 367 } 368 RF_ASSERT(pda == NULL); 369 /* 370 * keep i, buf1 running 371 * 372 * Loop through parity blocks, setting up read nodes for each. 373 */ 374 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { 375 RF_ASSERT(pda); 376 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 377 RF_ASSERT(pda->numSector != 0); 378 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 379 /* cannot verify parity with dead disk */ 380 goto done; 381 } 382 pda->bufPtr = buf1; 383 blockNode->succedents[i]->params[0].p = pda; 384 blockNode->succedents[i]->params[1].p = buf1; 385 blockNode->succedents[i]->params[2].v = psID; 386 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 387 buf1 += nbytes; 388 } 389 RF_ASSERT(pda == NULL); 390 391 memset((char *) &tracerec, 0, sizeof(tracerec)); 392 rd_dag_h->tracerec = &tracerec; 393 394 if (rf_verifyParityDebug > 1) { 395 printf("raid%d: RAID1 parity verify read dag:\n", 396 raidPtr->raidid); 397 rf_PrintDAGList(rd_dag_h); 398 } 399 RF_LOCK_MUTEX(mcpair->mutex); 400 mcpair->flag = 0; 401 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 402 (void *) mcpair); 403 while (mcpair->flag == 0) { 404 RF_WAIT_MCPAIR(mcpair); 405 } 406 RF_UNLOCK_MUTEX(mcpair->mutex); 407 408 if (rd_dag_h->status != rf_enable) { 409 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n"); 410 ret = RF_PARITY_COULD_NOT_VERIFY; 411 goto done; 412 } 413 /* 414 * buf1 is the beginning of the data blocks chunk 415 * buf2 is the beginning of the parity blocks chunk 416 */ 417 buf1 = buf; 418 buf2 = buf + (nbytes * layoutPtr->numDataCol); 419 ret = RF_PARITY_OKAY; 420 /* 421 * bbufs is "bad bufs"- an array whose entries are the data 422 * column numbers where we had miscompares. (That is, column 0 423 * and column 1 of the array are mirror copies, and are considered 424 * "data column 0" for this purpose). 425 */ 426 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), 427 allocList); 428 nbad = 0; 429 /* 430 * Check data vs "parity" (mirror copy). 431 */ 432 for (i = 0; i < layoutPtr->numDataCol; i++) { 433 if (rf_verifyParityDebug) { 434 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n", 435 raidPtr->raidid, nbytes, i, (long) buf1, 436 (long) buf2, (long) buf); 437 } 438 ret = memcmp(buf1, buf2, nbytes); 439 if (ret) { 440 if (rf_verifyParityDebug > 1) { 441 for (j = 0; j < nbytes; j++) { 442 if (buf1[j] != buf2[j]) 443 break; 444 } 445 printf("psid=%ld j=%d\n", (long) psID, j); 446 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff, 447 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); 448 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff, 449 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); 450 } 451 if (rf_verifyParityDebug) { 452 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i); 453 } 454 /* 455 * Parity is bad. Keep track of which columns were bad. 456 */ 457 if (bbufs) 458 bbufs[nbad] = i; 459 nbad++; 460 ret = RF_PARITY_BAD; 461 } 462 buf1 += nbytes; 463 buf2 += nbytes; 464 } 465 466 if ((ret != RF_PARITY_OKAY) && correct_it) { 467 ret = RF_PARITY_COULD_NOT_CORRECT; 468 if (rf_verifyParityDebug) { 469 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid); 470 } 471 if (bbufs == NULL) 472 goto done; 473 /* 474 * Make a DAG with one write node for each bad unit. We'll simply 475 * write the contents of the data unit onto the parity unit for 476 * correction. (It's possible that the mirror copy was the correct 477 * copy, and that we're spooging good data by writing bad over it, 478 * but there's no way we can know that. 479 */ 480 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf, 481 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags, 482 RF_IO_NORMAL_PRIORITY); 483 if (wr_dag_h == NULL) 484 goto done; 485 wrBlock = wr_dag_h->succedents[0]; 486 /* 487 * Fill in a write node for each bad compare. 488 */ 489 for (i = 0; i < nbad; i++) { 490 j = i + layoutPtr->numDataCol; 491 pda = blockNode->succedents[j]->params[0].p; 492 pda->bufPtr = blockNode->succedents[i]->params[1].p; 493 wrBlock->succedents[i]->params[0].p = pda; 494 wrBlock->succedents[i]->params[1].p = pda->bufPtr; 495 wrBlock->succedents[i]->params[2].v = psID; 496 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru); 497 } 498 memset((char *) &tracerec, 0, sizeof(tracerec)); 499 wr_dag_h->tracerec = &tracerec; 500 if (rf_verifyParityDebug > 1) { 501 printf("Parity verify write dag:\n"); 502 rf_PrintDAGList(wr_dag_h); 503 } 504 RF_LOCK_MUTEX(mcpair->mutex); 505 mcpair->flag = 0; 506 /* fire off the write DAG */ 507 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 508 (void *) mcpair); 509 while (!mcpair->flag) { 510 RF_WAIT_COND(mcpair->cond, mcpair->mutex); 511 } 512 RF_UNLOCK_MUTEX(mcpair->mutex); 513 if (wr_dag_h->status != rf_enable) { 514 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n"); 515 goto done; 516 } 517 ret = RF_PARITY_CORRECTED; 518 } 519 done: 520 /* 521 * All done. We might've gotten here without doing part of the function, 522 * so cleanup what we have to and return our running status. 523 */ 524 if (asm_h) 525 rf_FreeAccessStripeMap(asm_h); 526 if (rd_dag_h) 527 rf_FreeDAG(rd_dag_h); 528 if (wr_dag_h) 529 rf_FreeDAG(wr_dag_h); 530 if (mcpair) 531 rf_FreeMCPair(mcpair); 532 rf_FreeAllocList(allocList); 533 if (rf_verifyParityDebug) { 534 printf("raid%d: RAID1 parity verify, returning %d\n", 535 raidPtr->raidid, ret); 536 } 537 return (ret); 538 } 539 540 int 541 rf_SubmitReconBufferRAID1(rbuf, keep_it, use_committed) 542 RF_ReconBuffer_t *rbuf; /* the recon buffer to submit */ 543 int keep_it; /* whether we can keep this buffer or we have 544 * to return it */ 545 int use_committed; /* whether to use a committed or an available 546 * recon buffer */ 547 { 548 RF_ReconParityStripeStatus_t *pssPtr; 549 RF_ReconCtrl_t *reconCtrlPtr; 550 RF_RaidLayout_t *layoutPtr; 551 int retcode, created; 552 RF_CallbackDesc_t *cb, *p; 553 RF_ReconBuffer_t *t; 554 RF_Raid_t *raidPtr; 555 caddr_t ta; 556 557 retcode = 0; 558 created = 0; 559 560 raidPtr = rbuf->raidPtr; 561 layoutPtr = &raidPtr->Layout; 562 reconCtrlPtr = raidPtr->reconControl[rbuf->row]; 563 564 RF_ASSERT(rbuf); 565 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); 566 567 if (rf_reconbufferDebug) { 568 printf("raid%d: RAID1 reconbuffer submission r%d c%d psid %ld ru%d (failed offset %ld)\n", 569 raidPtr->raidid, rbuf->row, rbuf->col, 570 (long) rbuf->parityStripeID, rbuf->which_ru, 571 (long) rbuf->failedDiskSectorOffset); 572 } 573 if (rf_reconDebug) { 574 printf("RAID1 reconbuffer submit psid %ld buf %lx\n", 575 (long) rbuf->parityStripeID, (long) rbuf->buffer); 576 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n", 577 (long) rbuf->parityStripeID, 578 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3], 579 rbuf->buffer[4]); 580 } 581 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); 582 583 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 584 585 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, 586 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, &created); 587 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten 588 * an rbuf for it */ 589 590 /* 591 * Since this is simple mirroring, the first submission for a stripe is also 592 * treated as the last. 593 */ 594 595 t = NULL; 596 if (keep_it) { 597 if (rf_reconbufferDebug) { 598 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n", 599 raidPtr->raidid); 600 } 601 t = rbuf; 602 } else { 603 if (use_committed) { 604 if (rf_reconbufferDebug) { 605 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid); 606 } 607 t = reconCtrlPtr->committedRbufs; 608 RF_ASSERT(t); 609 reconCtrlPtr->committedRbufs = t->next; 610 t->next = NULL; 611 } else 612 if (reconCtrlPtr->floatingRbufs) { 613 if (rf_reconbufferDebug) { 614 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid); 615 } 616 t = reconCtrlPtr->floatingRbufs; 617 reconCtrlPtr->floatingRbufs = t->next; 618 t->next = NULL; 619 } 620 } 621 if (t == NULL) { 622 if (rf_reconbufferDebug) { 623 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid); 624 } 625 RF_ASSERT((keep_it == 0) && (use_committed == 0)); 626 raidPtr->procsInBufWait++; 627 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) 628 && (raidPtr->numFullReconBuffers == 0)) { 629 /* ruh-ro */ 630 RF_ERRORMSG("Buffer wait deadlock\n"); 631 rf_PrintPSStatusTable(raidPtr, rbuf->row); 632 RF_PANIC(); 633 } 634 pssPtr->flags |= RF_PSS_BUFFERWAIT; 635 cb = rf_AllocCallbackDesc(); 636 cb->row = rbuf->row; 637 cb->col = rbuf->col; 638 cb->callbackArg.v = rbuf->parityStripeID; 639 cb->callbackArg2.v = rbuf->which_ru; 640 cb->next = NULL; 641 if (reconCtrlPtr->bufferWaitList == NULL) { 642 /* we are the wait list- lucky us */ 643 reconCtrlPtr->bufferWaitList = cb; 644 } else { 645 /* append to wait list */ 646 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); 647 p->next = cb; 648 } 649 retcode = 1; 650 goto out; 651 } 652 if (t != rbuf) { 653 t->row = rbuf->row; 654 t->col = reconCtrlPtr->fcol; 655 t->parityStripeID = rbuf->parityStripeID; 656 t->which_ru = rbuf->which_ru; 657 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; 658 t->spRow = rbuf->spRow; 659 t->spCol = rbuf->spCol; 660 t->spOffset = rbuf->spOffset; 661 /* Swap buffers. DANCE! */ 662 ta = t->buffer; 663 t->buffer = rbuf->buffer; 664 rbuf->buffer = ta; 665 } 666 /* 667 * Use the rbuf we've been given as the target. 668 */ 669 RF_ASSERT(pssPtr->rbuf == NULL); 670 pssPtr->rbuf = t; 671 672 t->count = 1; 673 /* 674 * Below, we use 1 for numDataCol (which is equal to the count in the 675 * previous line), so we'll always be done. 676 */ 677 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); 678 679 out: 680 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->row, rbuf->parityStripeID); 681 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 682 if (rf_reconbufferDebug) { 683 printf("raid%d: RAID1 rbuf submission: returning %d\n", 684 raidPtr->raidid, retcode); 685 } 686 return (retcode); 687 } 688