1 /* $NetBSD: rf_raid1.c,v 1.24 2004/03/18 16:54:54 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: William V. Courtright II 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /***************************************************************************** 30 * 31 * rf_raid1.c -- implements RAID Level 1 32 * 33 *****************************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.24 2004/03/18 16:54:54 oster Exp $"); 37 38 #include "rf_raid.h" 39 #include "rf_raid1.h" 40 #include "rf_dag.h" 41 #include "rf_dagffrd.h" 42 #include "rf_dagffwr.h" 43 #include "rf_dagdegrd.h" 44 #include "rf_dagutils.h" 45 #include "rf_dagfuncs.h" 46 #include "rf_diskqueue.h" 47 #include "rf_general.h" 48 #include "rf_utils.h" 49 #include "rf_parityscan.h" 50 #include "rf_mcpair.h" 51 #include "rf_layout.h" 52 #include "rf_map.h" 53 #include "rf_engine.h" 54 #include "rf_reconbuffer.h" 55 56 typedef struct RF_Raid1ConfigInfo_s { 57 RF_RowCol_t **stripeIdentifier; 58 } RF_Raid1ConfigInfo_t; 59 /* start of day code specific to RAID level 1 */ 60 int 61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, 62 RF_Config_t *cfgPtr) 63 { 64 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 65 RF_Raid1ConfigInfo_t *info; 66 RF_RowCol_t i; 67 68 /* create a RAID level 1 configuration structure */ 69 RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); 70 if (info == NULL) 71 return (ENOMEM); 72 layoutPtr->layoutSpecificInfo = (void *) info; 73 74 /* ... and fill it in. */ 75 info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); 76 if (info->stripeIdentifier == NULL) 77 return (ENOMEM); 78 for (i = 0; i < (raidPtr->numCol / 2); i++) { 79 info->stripeIdentifier[i][0] = (2 * i); 80 info->stripeIdentifier[i][1] = (2 * i) + 1; 81 } 82 83 /* this implementation of RAID level 1 uses one row of numCol disks 84 * and allows multiple (numCol / 2) stripes per row. A stripe 85 * consists of a single data unit and a single parity (mirror) unit. 86 * stripe id = raidAddr / stripeUnitSize */ 87 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; 88 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); 89 layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; 90 layoutPtr->numDataCol = 1; 91 layoutPtr->numParityCol = 1; 92 return (0); 93 } 94 95 96 /* returns the physical disk location of the primary copy in the mirror pair */ 97 void 98 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, 99 RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) 100 { 101 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 102 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 103 104 *col = 2 * mirrorPair; 105 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 106 } 107 108 109 /* Map Parity 110 * 111 * returns the physical disk location of the secondary copy in the mirror 112 * pair 113 */ 114 void 115 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, 116 RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) 117 { 118 RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; 119 RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); 120 121 *col = (2 * mirrorPair) + 1; 122 123 *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); 124 } 125 126 127 /* IdentifyStripeRAID1 128 * 129 * returns a list of disks for a given redundancy group 130 */ 131 void 132 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr, 133 RF_RowCol_t **diskids) 134 { 135 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); 136 RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; 137 RF_ASSERT(stripeID >= 0); 138 RF_ASSERT(addr >= 0); 139 *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; 140 RF_ASSERT(*diskids); 141 } 142 143 144 /* MapSIDToPSIDRAID1 145 * 146 * maps a logical stripe to a stripe in the redundant array 147 */ 148 void 149 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID, 150 RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru) 151 { 152 *which_ru = 0; 153 *psID = stripeID; 154 } 155 156 157 158 /****************************************************************************** 159 * select a graph to perform a single-stripe access 160 * 161 * Parameters: raidPtr - description of the physical array 162 * type - type of operation (read or write) requested 163 * asmap - logical & physical addresses for this access 164 * createFunc - name of function to use to create the graph 165 *****************************************************************************/ 166 167 void 168 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type, 169 RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc) 170 { 171 RF_RowCol_t fcol, oc; 172 RF_PhysDiskAddr_t *failedPDA; 173 int prior_recon; 174 RF_RowStatus_t rstat; 175 RF_SectorNum_t oo; 176 177 178 RF_ASSERT(RF_IO_IS_R_OR_W(type)); 179 180 if (asmap->numDataFailed + asmap->numParityFailed > 1) { 181 #if RF_DEBUG_DAG 182 if (rf_dagDebug) 183 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); 184 #endif 185 *createFunc = NULL; 186 return; 187 } 188 if (asmap->numDataFailed + asmap->numParityFailed) { 189 /* 190 * We've got a fault. Re-map to spare space, iff applicable. 191 * Shouldn't the arch-independent code do this for us? 192 * Anyway, it turns out if we don't do this here, then when 193 * we're reconstructing, writes go only to the surviving 194 * original disk, and aren't reflected on the reconstructed 195 * spare. Oops. --jimz 196 */ 197 failedPDA = asmap->failedPDAs[0]; 198 fcol = failedPDA->col; 199 rstat = raidPtr->status; 200 prior_recon = (rstat == rf_rs_reconfigured) || ( 201 (rstat == rf_rs_reconstructing) ? 202 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0 203 ); 204 if (prior_recon) { 205 oc = fcol; 206 oo = failedPDA->startSector; 207 /* 208 * If we did distributed sparing, we'd monkey with that here. 209 * But we don't, so we'll 210 */ 211 failedPDA->col = raidPtr->Disks[fcol].spareCol; 212 /* 213 * Redirect other components, iff necessary. This looks 214 * pretty suspicious to me, but it's what the raid5 215 * DAG select does. 216 */ 217 if (asmap->parityInfo->next) { 218 if (failedPDA == asmap->parityInfo) { 219 failedPDA->next->col = failedPDA->col; 220 } else { 221 if (failedPDA == asmap->parityInfo->next) { 222 asmap->parityInfo->col = failedPDA->col; 223 } 224 } 225 } 226 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0 227 if (rf_dagDebug || rf_mapDebug) { 228 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n", 229 raidPtr->raidid, type, oc, 230 (long) oo, 231 failedPDA->col, 232 (long) failedPDA->startSector); 233 } 234 #endif 235 asmap->numDataFailed = asmap->numParityFailed = 0; 236 } 237 } 238 if (type == RF_IO_TYPE_READ) { 239 if (asmap->numDataFailed == 0) 240 *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; 241 else 242 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; 243 } else { 244 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; 245 } 246 } 247 248 int 249 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, 250 RF_PhysDiskAddr_t *parityPDA, int correct_it, 251 RF_RaidAccessFlags_t flags) 252 { 253 int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs; 254 RF_DagNode_t *blockNode, *wrBlock; 255 RF_DagHeader_t *rd_dag_h, *wr_dag_h; 256 RF_AccessStripeMapHeader_t *asm_h; 257 RF_AllocListElem_t *allocList; 258 #if RF_ACC_TRACE > 0 259 RF_AccTraceEntry_t tracerec; 260 #endif 261 RF_ReconUnitNum_t which_ru; 262 RF_RaidLayout_t *layoutPtr; 263 RF_AccessStripeMap_t *aasm; 264 RF_SectorCount_t nsector; 265 RF_RaidAddr_t startAddr; 266 char *buf, *buf1, *buf2; 267 RF_PhysDiskAddr_t *pda; 268 RF_StripeNum_t psID; 269 RF_MCPair_t *mcpair; 270 271 layoutPtr = &raidPtr->Layout; 272 startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); 273 nsector = parityPDA->numSector; 274 nbytes = rf_RaidAddressToByte(raidPtr, nsector); 275 psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); 276 277 asm_h = NULL; 278 rd_dag_h = wr_dag_h = NULL; 279 mcpair = NULL; 280 281 ret = RF_PARITY_COULD_NOT_VERIFY; 282 283 rf_MakeAllocList(allocList); 284 if (allocList == NULL) 285 return (RF_PARITY_COULD_NOT_VERIFY); 286 mcpair = rf_AllocMCPair(); 287 if (mcpair == NULL) 288 goto done; 289 RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); 290 stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; 291 bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); 292 RF_MallocAndAdd(buf, bcount, (char *), allocList); 293 if (buf == NULL) 294 goto done; 295 #if RF_DEBUG_VERIFYPARITY 296 if (rf_verifyParityDebug) { 297 printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n", 298 raidPtr->raidid, (long) buf, bcount, (long) buf, 299 (long) buf + bcount); 300 } 301 #endif 302 /* 303 * Generate a DAG which will read the entire stripe- then we can 304 * just compare data chunks versus "parity" chunks. 305 */ 306 307 rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf, 308 rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags, 309 RF_IO_NORMAL_PRIORITY); 310 if (rd_dag_h == NULL) 311 goto done; 312 blockNode = rd_dag_h->succedents[0]; 313 314 /* 315 * Map the access to physical disk addresses (PDAs)- this will 316 * get us both a list of data addresses, and "parity" addresses 317 * (which are really mirror copies). 318 */ 319 asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, 320 buf, RF_DONT_REMAP); 321 aasm = asm_h->stripeMap; 322 323 buf1 = buf; 324 /* 325 * Loop through the data blocks, setting up read nodes for each. 326 */ 327 for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { 328 RF_ASSERT(pda); 329 330 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 331 332 RF_ASSERT(pda->numSector != 0); 333 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 334 /* cannot verify parity with dead disk */ 335 goto done; 336 } 337 pda->bufPtr = buf1; 338 blockNode->succedents[i]->params[0].p = pda; 339 blockNode->succedents[i]->params[1].p = buf1; 340 blockNode->succedents[i]->params[2].v = psID; 341 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); 342 buf1 += nbytes; 343 } 344 RF_ASSERT(pda == NULL); 345 /* 346 * keep i, buf1 running 347 * 348 * Loop through parity blocks, setting up read nodes for each. 349 */ 350 for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { 351 RF_ASSERT(pda); 352 rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); 353 RF_ASSERT(pda->numSector != 0); 354 if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { 355 /* cannot verify parity with dead disk */ 356 goto done; 357 } 358 pda->bufPtr = buf1; 359 blockNode->succedents[i]->params[0].p = pda; 360 blockNode->succedents[i]->params[1].p = buf1; 361 blockNode->succedents[i]->params[2].v = psID; 362 blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); 363 buf1 += nbytes; 364 } 365 RF_ASSERT(pda == NULL); 366 367 #if RF_ACC_TRACE > 0 368 memset((char *) &tracerec, 0, sizeof(tracerec)); 369 rd_dag_h->tracerec = &tracerec; 370 #endif 371 #if 0 372 if (rf_verifyParityDebug > 1) { 373 printf("raid%d: RAID1 parity verify read dag:\n", 374 raidPtr->raidid); 375 rf_PrintDAGList(rd_dag_h); 376 } 377 #endif 378 RF_LOCK_MUTEX(mcpair->mutex); 379 mcpair->flag = 0; 380 RF_UNLOCK_MUTEX(mcpair->mutex); 381 382 rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 383 (void *) mcpair); 384 385 RF_LOCK_MUTEX(mcpair->mutex); 386 while (mcpair->flag == 0) { 387 RF_WAIT_MCPAIR(mcpair); 388 } 389 RF_UNLOCK_MUTEX(mcpair->mutex); 390 391 if (rd_dag_h->status != rf_enable) { 392 RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n"); 393 ret = RF_PARITY_COULD_NOT_VERIFY; 394 goto done; 395 } 396 /* 397 * buf1 is the beginning of the data blocks chunk 398 * buf2 is the beginning of the parity blocks chunk 399 */ 400 buf1 = buf; 401 buf2 = buf + (nbytes * layoutPtr->numDataCol); 402 ret = RF_PARITY_OKAY; 403 /* 404 * bbufs is "bad bufs"- an array whose entries are the data 405 * column numbers where we had miscompares. (That is, column 0 406 * and column 1 of the array are mirror copies, and are considered 407 * "data column 0" for this purpose). 408 */ 409 RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), 410 allocList); 411 nbad = 0; 412 /* 413 * Check data vs "parity" (mirror copy). 414 */ 415 for (i = 0; i < layoutPtr->numDataCol; i++) { 416 #if RF_DEBUG_VERIFYPARITY 417 if (rf_verifyParityDebug) { 418 printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n", 419 raidPtr->raidid, nbytes, i, (long) buf1, 420 (long) buf2, (long) buf); 421 } 422 #endif 423 ret = memcmp(buf1, buf2, nbytes); 424 if (ret) { 425 #if RF_DEBUG_VERIFYPARITY 426 if (rf_verifyParityDebug > 1) { 427 for (j = 0; j < nbytes; j++) { 428 if (buf1[j] != buf2[j]) 429 break; 430 } 431 printf("psid=%ld j=%d\n", (long) psID, j); 432 printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff, 433 buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); 434 printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff, 435 buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); 436 } 437 if (rf_verifyParityDebug) { 438 printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i); 439 } 440 #endif 441 /* 442 * Parity is bad. Keep track of which columns were bad. 443 */ 444 if (bbufs) 445 bbufs[nbad] = i; 446 nbad++; 447 ret = RF_PARITY_BAD; 448 } 449 buf1 += nbytes; 450 buf2 += nbytes; 451 } 452 453 if ((ret != RF_PARITY_OKAY) && correct_it) { 454 ret = RF_PARITY_COULD_NOT_CORRECT; 455 #if RF_DEBUG_VERIFYPARITY 456 if (rf_verifyParityDebug) { 457 printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid); 458 } 459 #endif 460 if (bbufs == NULL) 461 goto done; 462 /* 463 * Make a DAG with one write node for each bad unit. We'll simply 464 * write the contents of the data unit onto the parity unit for 465 * correction. (It's possible that the mirror copy was the correct 466 * copy, and that we're spooging good data by writing bad over it, 467 * but there's no way we can know that. 468 */ 469 wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf, 470 rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags, 471 RF_IO_NORMAL_PRIORITY); 472 if (wr_dag_h == NULL) 473 goto done; 474 wrBlock = wr_dag_h->succedents[0]; 475 /* 476 * Fill in a write node for each bad compare. 477 */ 478 for (i = 0; i < nbad; i++) { 479 j = i + layoutPtr->numDataCol; 480 pda = blockNode->succedents[j]->params[0].p; 481 pda->bufPtr = blockNode->succedents[i]->params[1].p; 482 wrBlock->succedents[i]->params[0].p = pda; 483 wrBlock->succedents[i]->params[1].p = pda->bufPtr; 484 wrBlock->succedents[i]->params[2].v = psID; 485 wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); 486 } 487 #if RF_ACC_TRACE > 0 488 memset((char *) &tracerec, 0, sizeof(tracerec)); 489 wr_dag_h->tracerec = &tracerec; 490 #endif 491 #if 0 492 if (rf_verifyParityDebug > 1) { 493 printf("Parity verify write dag:\n"); 494 rf_PrintDAGList(wr_dag_h); 495 } 496 #endif 497 RF_LOCK_MUTEX(mcpair->mutex); 498 mcpair->flag = 0; 499 RF_UNLOCK_MUTEX(mcpair->mutex); 500 501 /* fire off the write DAG */ 502 rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, 503 (void *) mcpair); 504 505 RF_LOCK_MUTEX(mcpair->mutex); 506 while (!mcpair->flag) { 507 RF_WAIT_COND(mcpair->cond, mcpair->mutex); 508 } 509 RF_UNLOCK_MUTEX(mcpair->mutex); 510 if (wr_dag_h->status != rf_enable) { 511 RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n"); 512 goto done; 513 } 514 ret = RF_PARITY_CORRECTED; 515 } 516 done: 517 /* 518 * All done. We might've gotten here without doing part of the function, 519 * so cleanup what we have to and return our running status. 520 */ 521 if (asm_h) 522 rf_FreeAccessStripeMap(asm_h); 523 if (rd_dag_h) 524 rf_FreeDAG(rd_dag_h); 525 if (wr_dag_h) 526 rf_FreeDAG(wr_dag_h); 527 if (mcpair) 528 rf_FreeMCPair(mcpair); 529 rf_FreeAllocList(allocList); 530 #if RF_DEBUG_VERIFYPARITY 531 if (rf_verifyParityDebug) { 532 printf("raid%d: RAID1 parity verify, returning %d\n", 533 raidPtr->raidid, ret); 534 } 535 #endif 536 return (ret); 537 } 538 539 /* rbuf - the recon buffer to submit 540 * keep_it - whether we can keep this buffer or we have to return it 541 * use_committed - whether to use a committed or an available recon buffer 542 */ 543 544 int 545 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it, 546 int use_committed) 547 { 548 RF_ReconParityStripeStatus_t *pssPtr; 549 RF_ReconCtrl_t *reconCtrlPtr; 550 int retcode; 551 RF_CallbackDesc_t *cb, *p; 552 RF_ReconBuffer_t *t; 553 RF_Raid_t *raidPtr; 554 caddr_t ta; 555 556 retcode = 0; 557 558 raidPtr = rbuf->raidPtr; 559 reconCtrlPtr = raidPtr->reconControl; 560 561 RF_ASSERT(rbuf); 562 RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); 563 564 #if RF_DEBUG_RECON 565 if (rf_reconbufferDebug) { 566 printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n", 567 raidPtr->raidid, rbuf->col, 568 (long) rbuf->parityStripeID, rbuf->which_ru, 569 (long) rbuf->failedDiskSectorOffset); 570 } 571 #endif 572 if (rf_reconDebug) { 573 printf("RAID1 reconbuffer submit psid %ld buf %lx\n", 574 (long) rbuf->parityStripeID, (long) rbuf->buffer); 575 printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n", 576 (long) rbuf->parityStripeID, 577 rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3], 578 rbuf->buffer[4]); 579 } 580 RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); 581 582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 583 while(reconCtrlPtr->rb_lock) { 584 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex); 585 } 586 reconCtrlPtr->rb_lock = 1; 587 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 588 589 pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, 590 rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL); 591 RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten 592 * an rbuf for it */ 593 594 /* 595 * Since this is simple mirroring, the first submission for a stripe is also 596 * treated as the last. 597 */ 598 599 t = NULL; 600 if (keep_it) { 601 #if RF_DEBUG_RECON 602 if (rf_reconbufferDebug) { 603 printf("raid%d: RAID1 rbuf submission: keeping rbuf\n", 604 raidPtr->raidid); 605 } 606 #endif 607 t = rbuf; 608 } else { 609 if (use_committed) { 610 #if RF_DEBUG_RECON 611 if (rf_reconbufferDebug) { 612 printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid); 613 } 614 #endif 615 t = reconCtrlPtr->committedRbufs; 616 RF_ASSERT(t); 617 reconCtrlPtr->committedRbufs = t->next; 618 t->next = NULL; 619 } else 620 if (reconCtrlPtr->floatingRbufs) { 621 #if RF_DEBUG_RECON 622 if (rf_reconbufferDebug) { 623 printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid); 624 } 625 #endif 626 t = reconCtrlPtr->floatingRbufs; 627 reconCtrlPtr->floatingRbufs = t->next; 628 t->next = NULL; 629 } 630 } 631 if (t == NULL) { 632 #if RF_DEBUG_RECON 633 if (rf_reconbufferDebug) { 634 printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid); 635 } 636 #endif 637 RF_ASSERT((keep_it == 0) && (use_committed == 0)); 638 raidPtr->procsInBufWait++; 639 if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) 640 && (raidPtr->numFullReconBuffers == 0)) { 641 /* ruh-ro */ 642 RF_ERRORMSG("Buffer wait deadlock\n"); 643 rf_PrintPSStatusTable(raidPtr); 644 RF_PANIC(); 645 } 646 pssPtr->flags |= RF_PSS_BUFFERWAIT; 647 cb = rf_AllocCallbackDesc(); 648 cb->col = rbuf->col; 649 cb->callbackArg.v = rbuf->parityStripeID; 650 cb->next = NULL; 651 if (reconCtrlPtr->bufferWaitList == NULL) { 652 /* we are the wait list- lucky us */ 653 reconCtrlPtr->bufferWaitList = cb; 654 } else { 655 /* append to wait list */ 656 for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); 657 p->next = cb; 658 } 659 retcode = 1; 660 goto out; 661 } 662 if (t != rbuf) { 663 t->col = reconCtrlPtr->fcol; 664 t->parityStripeID = rbuf->parityStripeID; 665 t->which_ru = rbuf->which_ru; 666 t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; 667 t->spCol = rbuf->spCol; 668 t->spOffset = rbuf->spOffset; 669 /* Swap buffers. DANCE! */ 670 ta = t->buffer; 671 t->buffer = rbuf->buffer; 672 rbuf->buffer = ta; 673 } 674 /* 675 * Use the rbuf we've been given as the target. 676 */ 677 RF_ASSERT(pssPtr->rbuf == NULL); 678 pssPtr->rbuf = t; 679 680 t->count = 1; 681 /* 682 * Below, we use 1 for numDataCol (which is equal to the count in the 683 * previous line), so we'll always be done. 684 */ 685 rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); 686 687 out: 688 RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); 689 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); 690 reconCtrlPtr->rb_lock = 0; 691 wakeup(&reconCtrlPtr->rb_lock); 692 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); 693 #if RF_DEBUG_RECON 694 if (rf_reconbufferDebug) { 695 printf("raid%d: RAID1 rbuf submission: returning %d\n", 696 raidPtr->raidid, retcode); 697 } 698 #endif 699 return (retcode); 700 } 701