xref: /netbsd-src/sys/dev/raidframe/rf_parityscan.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: rf_parityscan.c,v 1.27 2004/03/18 17:26:36 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*****************************************************************************
30  *
31  * rf_parityscan.c -- misc utilities related to parity verification
32  *
33  ****************************************************************************/
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.27 2004/03/18 17:26:36 oster Exp $");
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagutils.h"
44 #include "rf_mcpair.h"
45 #include "rf_general.h"
46 #include "rf_engine.h"
47 #include "rf_parityscan.h"
48 #include "rf_map.h"
49 
50 /*****************************************************************************
51  *
52  * walk through the entire arry and write new parity.  This works by
53  * creating two DAGs, one to read a stripe of data and one to write
54  * new parity.  The first is executed, the data is xored together, and
55  * then the second is executed.  To avoid constantly building and
56  * tearing down the DAGs, we create them a priori and fill them in
57  * with the mapping information as we go along.
58  *
59  * there should never be more than one thread running this.
60  *
61  ****************************************************************************/
62 
63 int
64 rf_RewriteParity(RF_Raid_t *raidPtr)
65 {
66 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
67 	RF_AccessStripeMapHeader_t *asm_h;
68 	int ret_val;
69 	int rc;
70 	RF_SectorNum_t i;
71 
72 	if (raidPtr->Layout.map->faultsTolerated == 0) {
73 		/* There isn't any parity. Call it "okay." */
74 		return (RF_PARITY_OKAY);
75 	}
76 	if (raidPtr->status != rf_rs_optimal) {
77 		/*
78 		 * We're in degraded mode.  Don't try to verify parity now!
79 		 * XXX: this should be a "we don't want to", not a
80 		 * "we can't" error.
81 		 */
82 		return (RF_PARITY_COULD_NOT_VERIFY);
83 	}
84 
85 	ret_val = 0;
86 
87 	rc = RF_PARITY_OKAY;
88 
89 	for (i = 0; i < raidPtr->totalSectors &&
90 		     rc <= RF_PARITY_CORRECTED;
91 	     i += layoutPtr->dataSectorsPerStripe) {
92 		if (raidPtr->waitShutdown) {
93 			/* Someone is pulling the plug on this set...
94 			   abort the re-write */
95 			return (1);
96 		}
97 		asm_h = rf_MapAccess(raidPtr, i,
98 				     layoutPtr->dataSectorsPerStripe,
99 				     NULL, RF_DONT_REMAP);
100 		raidPtr->parity_rewrite_stripes_done =
101 			i / layoutPtr->dataSectorsPerStripe ;
102 		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
103 
104 		switch (rc) {
105 		case RF_PARITY_OKAY:
106 		case RF_PARITY_CORRECTED:
107 			break;
108 		case RF_PARITY_BAD:
109 			printf("Parity bad during correction\n");
110 			ret_val = 1;
111 			break;
112 		case RF_PARITY_COULD_NOT_CORRECT:
113 			printf("Could not correct bad parity\n");
114 			ret_val = 1;
115 			break;
116 		case RF_PARITY_COULD_NOT_VERIFY:
117 			printf("Could not verify parity\n");
118 			ret_val = 1;
119 			break;
120 		default:
121 			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
122 			ret_val = 1;
123 		}
124 		rf_FreeAccessStripeMap(asm_h);
125 	}
126 	return (ret_val);
127 }
128 /*****************************************************************************
129  *
130  * verify that the parity in a particular stripe is correct.  we
131  * validate only the range of parity defined by parityPDA, since this
132  * is all we have locked.  The way we do this is to create an asm that
133  * maps the whole stripe and then range-restrict it to the parity
134  * region defined by the parityPDA.
135  *
136  ****************************************************************************/
137 int
138 rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
139 		int correct_it, RF_RaidAccessFlags_t flags)
140 {
141 	RF_PhysDiskAddr_t *parityPDA;
142 	RF_AccessStripeMap_t *doasm;
143 	const RF_LayoutSW_t *lp;
144 	int     lrc, rc;
145 
146 	lp = raidPtr->Layout.map;
147 	if (lp->faultsTolerated == 0) {
148 		/*
149 	         * There isn't any parity. Call it "okay."
150 	         */
151 		return (RF_PARITY_OKAY);
152 	}
153 	rc = RF_PARITY_OKAY;
154 	if (lp->VerifyParity) {
155 		for (doasm = aasm; doasm; doasm = doasm->next) {
156 			for (parityPDA = doasm->parityInfo; parityPDA;
157 			     parityPDA = parityPDA->next) {
158 				lrc = lp->VerifyParity(raidPtr,
159 						       doasm->raidAddress,
160 						       parityPDA,
161 						       correct_it, flags);
162 				if (lrc > rc) {
163 					/* see rf_parityscan.h for why this
164 					 * works */
165 					rc = lrc;
166 				}
167 			}
168 		}
169 	} else {
170 		rc = RF_PARITY_COULD_NOT_VERIFY;
171 	}
172 	return (rc);
173 }
174 
175 int
176 rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
177 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
178 		     RF_RaidAccessFlags_t flags)
179 {
180 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
181 	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
182 								     raidAddr);
183 	RF_SectorCount_t numsector = parityPDA->numSector;
184 	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
185 	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
186 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
187 	RF_DagNode_t *blockNode, *wrBlock;
188 	RF_AccessStripeMapHeader_t *asm_h;
189 	RF_AccessStripeMap_t *asmap;
190 	RF_AllocListElem_t *alloclist;
191 	RF_PhysDiskAddr_t *pda;
192 	char   *pbuf, *buf, *end_p, *p;
193 	int     i, retcode;
194 	RF_ReconUnitNum_t which_ru;
195 	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
196 							     raidAddr,
197 							     &which_ru);
198 	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
199 #if RF_ACC_TRACE > 0
200 	RF_AccTraceEntry_t tracerec;
201 #endif
202 	RF_MCPair_t *mcpair;
203 
204 	retcode = RF_PARITY_OKAY;
205 
206 	mcpair = rf_AllocMCPair();
207 	rf_MakeAllocList(alloclist);
208 	RF_MallocAndAdd(buf, numbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol), (char *), alloclist);
209 	RF_MallocAndAdd(pbuf, numbytes, (char *), alloclist);
210 	end_p = buf + bytesPerStripe;
211 
212 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
213 	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
214 	blockNode = rd_dag_h->succedents[0];
215 
216 	/* map the stripe and fill in the PDAs in the dag */
217 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP);
218 	asmap = asm_h->stripeMap;
219 
220 	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
221 		RF_ASSERT(pda);
222 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
223 		RF_ASSERT(pda->numSector != 0);
224 		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
225 			goto out;	/* no way to verify parity if disk is
226 					 * dead.  return w/ good status */
227 		blockNode->succedents[i]->params[0].p = pda;
228 		blockNode->succedents[i]->params[2].v = psID;
229 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
230 	}
231 
232 	RF_ASSERT(!asmap->parityInfo->next);
233 	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
234 	RF_ASSERT(asmap->parityInfo->numSector != 0);
235 	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
236 		goto out;
237 	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
238 
239 	/* fire off the DAG */
240 #if RF_ACC_TRACE > 0
241 	memset((char *) &tracerec, 0, sizeof(tracerec));
242 	rd_dag_h->tracerec = &tracerec;
243 #endif
244 #if 0
245 	if (rf_verifyParityDebug) {
246 		printf("Parity verify read dag:\n");
247 		rf_PrintDAGList(rd_dag_h);
248 	}
249 #endif
250 	RF_LOCK_MUTEX(mcpair->mutex);
251 	mcpair->flag = 0;
252 	RF_UNLOCK_MUTEX(mcpair->mutex);
253 
254 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
255 	    (void *) mcpair);
256 
257 	RF_LOCK_MUTEX(mcpair->mutex);
258 	while (!mcpair->flag)
259 		RF_WAIT_COND(mcpair->cond, mcpair->mutex);
260 	RF_UNLOCK_MUTEX(mcpair->mutex);
261 	if (rd_dag_h->status != rf_enable) {
262 		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
263 		retcode = RF_PARITY_COULD_NOT_VERIFY;
264 		goto out;
265 	}
266 	for (p = buf; p < end_p; p += numbytes) {
267 		rf_bxor(p, pbuf, numbytes);
268 	}
269 	for (i = 0; i < numbytes; i++) {
270 		if (pbuf[i] != buf[bytesPerStripe + i]) {
271 			if (!correct_it)
272 				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
273 				    i, (u_char) buf[bytesPerStripe + i], (u_char) pbuf[i]);
274 			retcode = RF_PARITY_BAD;
275 			break;
276 		}
277 	}
278 
279 	if (retcode && correct_it) {
280 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
281 		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
282 		wrBlock = wr_dag_h->succedents[0];
283 		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
284 		wrBlock->succedents[0]->params[2].v = psID;
285 		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
286 #if RF_ACC_TRACE > 0
287 		memset((char *) &tracerec, 0, sizeof(tracerec));
288 		wr_dag_h->tracerec = &tracerec;
289 #endif
290 #if 0
291 		if (rf_verifyParityDebug) {
292 			printf("Parity verify write dag:\n");
293 			rf_PrintDAGList(wr_dag_h);
294 		}
295 #endif
296 		RF_LOCK_MUTEX(mcpair->mutex);
297 		mcpair->flag = 0;
298 		RF_UNLOCK_MUTEX(mcpair->mutex);
299 
300 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
301 		    (void *) mcpair);
302 
303 		RF_LOCK_MUTEX(mcpair->mutex);
304 		while (!mcpair->flag)
305 			RF_WAIT_COND(mcpair->cond, mcpair->mutex);
306 		RF_UNLOCK_MUTEX(mcpair->mutex);
307 		if (wr_dag_h->status != rf_enable) {
308 			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
309 			retcode = RF_PARITY_COULD_NOT_CORRECT;
310 		}
311 		rf_FreeDAG(wr_dag_h);
312 		if (retcode == RF_PARITY_BAD)
313 			retcode = RF_PARITY_CORRECTED;
314 	}
315 out:
316 	rf_FreeAccessStripeMap(asm_h);
317 	rf_FreeAllocList(alloclist);
318 	rf_FreeDAG(rd_dag_h);
319 	rf_FreeMCPair(mcpair);
320 	return (retcode);
321 }
322 
323 int
324 rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda, int parity)
325 {
326 	if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
327 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
328 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
329 			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 #if RF_DEBUG_VERIFYPARITY
331 				RF_RowCol_t oc = pda->col;
332 				RF_SectorNum_t os = pda->startSector;
333 #endif
334 				if (parity) {
335 					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
336 #if RF_DEBUG_VERIFYPARITY
337 					if (rf_verifyParityDebug)
338 						printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
339 						    oc, (long) os, pda->col, (long) pda->startSector);
340 #endif
341 				} else {
342 					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
343 #if RF_DEBUG_VERIFYPARITY
344 					if (rf_verifyParityDebug)
345 						printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
346 						   oc, (long) os, pda->col, (long) pda->startSector);
347 #endif
348 				}
349 			} else {
350 #endif
351 				RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
352 				pda->col = spCol;
353 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
354 			}
355 #endif
356 		}
357 	}
358 	if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
359 		return (1);
360 	return (0);
361 }
362 /*****************************************************************************
363  *
364  * currently a stub.
365  *
366  * takes as input an ASM describing a write operation and containing
367  * one failure, and verifies that the parity was correctly updated to
368  * reflect the write.
369  *
370  * if it's a data unit that's failed, we read the other data units in
371  * the stripe and the parity unit, XOR them together, and verify that
372  * we get the data intended for the failed disk.  Since it's easy, we
373  * also validate that the right data got written to the surviving data
374  * disks.
375  *
376  * If it's the parity that failed, there's really no validation we can
377  * do except the above verification that the right data got written to
378  * all disks.  This is because the new data intended for the failed
379  * disk is supplied in the ASM, but this is of course not the case for
380  * the new parity.
381  *
382  ****************************************************************************/
383 #if 0
384 int
385 rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
386 {
387 	return (0);
388 }
389 #endif
390 /* creates a simple DAG with a header, a block-recon node at level 1,
391  * nNodes nodes at level 2, an unblock-recon node at level 3, and a
392  * terminator node at level 4.  The stripe address field in the block
393  * and unblock nodes are not touched, nor are the pda fields in the
394  * second-level nodes, so they must be filled in later.
395  *
396  * commit point is established at unblock node - this means that any
397  * failure during dag execution causes the dag to fail
398  *
399  * name - node names at the second level
400  */
401 RF_DagHeader_t *
402 rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
403 		 int (*doFunc) (RF_DagNode_t * node),
404 		 int (*undoFunc) (RF_DagNode_t * node),
405 		 char *name, RF_AllocListElem_t *alloclist,
406 		 RF_RaidAccessFlags_t flags, int priority)
407 {
408 	RF_DagHeader_t *dag_h;
409 	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
410 	int     i;
411 
412 	/* grab a DAG header... */
413 
414 	dag_h = rf_AllocDAGHeader();
415 	dag_h->raidPtr = (void *) raidPtr;
416 	dag_h->allocList = NULL;/* we won't use this alloc list */
417 	dag_h->status = rf_enable;
418 	dag_h->numSuccedents = 1;
419 	dag_h->creator = "SimpleDAG";
420 
421 	/* this dag can not commit until the unblock node is reached errors
422 	 * prior to the commit point imply the dag has failed */
423 	dag_h->numCommitNodes = 1;
424 	dag_h->numCommits = 0;
425 
426 	/* create the nodes, the block & unblock nodes, and the terminator
427 	 * node */
428 
429 	for (i = 0; i < nNodes; i++) {
430 		tmpNode = rf_AllocDAGNode();
431 		tmpNode->list_next = dag_h->nodes;
432 		dag_h->nodes = tmpNode;
433 	}
434 	nodes = dag_h->nodes;
435 
436 	blockNode = rf_AllocDAGNode();
437 	blockNode->list_next = dag_h->nodes;
438 	dag_h->nodes = blockNode;
439 
440 	unblockNode = rf_AllocDAGNode();
441 	unblockNode->list_next = dag_h->nodes;
442 	dag_h->nodes = unblockNode;
443 
444 	termNode = rf_AllocDAGNode();
445 	termNode->list_next = dag_h->nodes;
446 	dag_h->nodes = termNode;
447 
448 	dag_h->succedents[0] = blockNode;
449 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
450 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
451 	unblockNode->succedents[0] = termNode;
452 	tmpNode = nodes;
453 	for (i = 0; i < nNodes; i++) {
454 		blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
455 		unblockNode->antType[i] = rf_control;
456 		rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
457 		tmpNode->succedents[0] = unblockNode;
458 		tmpNode->antecedents[0] = blockNode;
459 		tmpNode->antType[0] = rf_control;
460 		tmpNode->params[1].p = (databuf + (i * bytesPerSU));
461 		tmpNode = tmpNode->list_next;
462 	}
463 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
464 	termNode->antecedents[0] = unblockNode;
465 	termNode->antType[0] = rf_control;
466 	return (dag_h);
467 }
468