xref: /netbsd-src/sys/dev/raidframe/rf_paritymap.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /* $NetBSD: rf_paritymap.c,v 1.3 2009/11/26 07:35:39 pooka Exp $ */
2 
3 /*-
4  * Copyright (c) 2009 Jed Davis.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.3 2009/11/26 07:35:39 pooka Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/callout.h>
34 #include <sys/kmem.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 
40 #include <dev/raidframe/rf_paritymap.h>
41 #include <dev/raidframe/rf_stripelocks.h>
42 #include <dev/raidframe/rf_layout.h>
43 #include <dev/raidframe/rf_raid.h>
44 #include <dev/raidframe/rf_parityscan.h>
45 #include <dev/raidframe/rf_kintf.h>
46 
47 /* Important parameters: */
48 #define REGION_MINSIZE (25ULL << 20)
49 #define DFL_TICKMS      40000
50 #define DFL_COOLDOWN    8     /* 7-8 intervals of 40s = 5min +/- 20s */
51 
52 /* Internal-use flag bits. */
53 #define TICKING 1
54 #define TICKED 2
55 
56 /* Prototypes! */
57 static void rf_paritymap_write_locked(struct rf_paritymap *);
58 static void rf_paritymap_tick(void *);
59 static u_int rf_paritymap_nreg(RF_Raid_t *);
60 
61 /* Extract the current status of the parity map. */
62 void
63 rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
64 {
65 	memset(ps, 0, sizeof(*ps));
66 	if (pm == NULL)
67 		ps->enabled = 0;
68 	else {
69 		ps->enabled = 1;
70 		ps->region_size = pm->region_size;
71 		mutex_enter(&pm->lock);
72 		memcpy(&ps->params, &pm->params, sizeof(ps->params));
73 		memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74 		memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75 		mutex_exit(&pm->lock);
76 	}
77 }
78 
79 /*
80  * Test whether parity in a given sector is suspected of being inconsistent
81  * on disk (assuming that any pending I/O to it is allowed to complete).
82  * This may be of interest to future work on parity scrubbing.
83  */
84 int
85 rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
86 {
87 	unsigned region = sector / pm->region_size;
88 	int retval;
89 
90 	mutex_enter(&pm->lock);
91 	retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92 	mutex_exit(&pm->lock);
93 	return retval;
94 }
95 
96 /* To be called before a write to the RAID is submitted. */
97 void
98 rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
99 {
100 	unsigned i, b, e;
101 
102 	b = offset / pm->region_size;
103 	e = (offset + size - 1) / pm->region_size;
104 
105 	for (i = b; i <= e; i++)
106 		rf_paritymap_begin_region(pm, i);
107 }
108 
109 /* To be called after a write to the RAID completes. */
110 void
111 rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
112 {
113 	unsigned i, b, e;
114 
115 	b = offset / pm->region_size;
116 	e = (offset + size - 1) / pm->region_size;
117 
118 	for (i = b; i <= e; i++)
119 		rf_paritymap_end_region(pm, i);
120 }
121 
122 void
123 rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
124 {
125 	int needs_write;
126 
127 	KASSERT(region < RF_PARITYMAP_NREG);
128 	pm->ctrs.nwrite++;
129 
130 	/* If it was being kept warm, deal with that. */
131 	mutex_enter(&pm->lock);
132 	if (pm->current->state[region] < 0)
133 		pm->current->state[region] = 0;
134 
135 	/* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136 	KASSERT(pm->current->state[region] < 127);
137 	pm->current->state[region]++;
138 
139 	needs_write = isclr(pm->disk_now->bits, region);
140 
141 	if (needs_write) {
142 		KASSERT(pm->current->state[region] == 1);
143 		rf_paritymap_write_locked(pm);
144 	}
145 
146 	mutex_exit(&pm->lock);
147 }
148 
149 void
150 rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
151 {
152 	KASSERT(region < RF_PARITYMAP_NREG);
153 
154 	mutex_enter(&pm->lock);
155 	KASSERT(pm->current->state[region] > 0);
156 	--pm->current->state[region];
157 
158 	if (pm->current->state[region] <= 0) {
159 		pm->current->state[region] = -pm->params.cooldown;
160 		KASSERT(pm->current->state[region] <= 0);
161 		mutex_enter(&pm->lk_flags);
162 		if (!(pm->flags & TICKING)) {
163 			pm->flags |= TICKING;
164 			mutex_exit(&pm->lk_flags);
165 			callout_schedule(&pm->ticker,
166 			    mstohz(pm->params.tickms));
167 		} else
168 			mutex_exit(&pm->lk_flags);
169 	}
170 	mutex_exit(&pm->lock);
171 }
172 
173 /*
174  * Updates the parity map to account for any changes in current activity
175  * and/or an ongoing parity scan, then writes it to disk with appropriate
176  * synchronization.
177  */
178 void
179 rf_paritymap_write(struct rf_paritymap *pm)
180 {
181 	mutex_enter(&pm->lock);
182 	rf_paritymap_write_locked(pm);
183 	mutex_exit(&pm->lock);
184 }
185 
186 /* As above, but to be used when pm->lock is already held. */
187 static void
188 rf_paritymap_write_locked(struct rf_paritymap *pm)
189 {
190 	char w, w0;
191 	int i, j, setting, clearing;
192 
193 	setting = clearing = 0;
194 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195 		w0 = pm->disk_now->bits[i];
196 		w = pm->disk_boot->bits[i];
197 
198 		for (j = 0; j < NBBY; j++)
199 			if (pm->current->state[i * NBBY + j] != 0)
200 				w |= 1 << j;
201 
202 		if (w & ~w0)
203 			setting = 1;
204 		if (w0 & ~w)
205 			clearing = 1;
206 
207 		pm->disk_now->bits[i] = w;
208 	}
209 	pm->ctrs.ncachesync += setting + clearing;
210 	pm->ctrs.nclearing += clearing;
211 
212 	/*
213 	 * If bits are being set in the parity map, then a sync is
214 	 * required afterwards, so that the regions are marked dirty
215 	 * on disk before any writes to them take place.  If bits are
216 	 * being cleared, then a sync is required before the write, so
217 	 * that any writes to those regions are processed before the
218 	 * region is marked clean.  (Synchronization is somewhat
219 	 * overkill; a write ordering barrier would suffice, but we
220 	 * currently have no way to express that directly.)
221 	 */
222 	if (clearing)
223 		rf_sync_component_caches(pm->raid);
224 	rf_paritymap_kern_write(pm->raid, pm->disk_now);
225 	if (setting)
226 		rf_sync_component_caches(pm->raid);
227 }
228 
229 /* Mark all parity as being in need of rewrite. */
230 void
231 rf_paritymap_invalidate(struct rf_paritymap *pm)
232 {
233 	mutex_enter(&pm->lock);
234 	memset(pm->disk_boot, ~(unsigned char)0,
235 	    sizeof(struct rf_paritymap_ondisk));
236 	mutex_exit(&pm->lock);
237 }
238 
239 /* Mark all parity as being correct. */
240 void
241 rf_paritymap_forceclean(struct rf_paritymap *pm)
242 {
243 	mutex_enter(&pm->lock);
244 	memset(pm->disk_boot, (unsigned char)0,
245 	    sizeof(struct rf_paritymap_ondisk));
246 	mutex_exit(&pm->lock);
247 }
248 
249 /*
250  * The cooldown callout routine just defers its work to a thread; it can't do
251  * the parity map write itself as it would block, and although mutex-induced
252  * blocking is permitted it seems wise to avoid tying up the softint.
253  */
254 static void
255 rf_paritymap_tick(void *arg)
256 {
257 	struct rf_paritymap *pm = arg;
258 
259 	mutex_enter(&pm->lk_flags);
260 	pm->flags |= TICKED;
261 	mutex_exit(&pm->lk_flags);
262 	wakeup(&(pm->raid->iodone)); /* XXX */
263 }
264 
265 /*
266  * This is where the parity cooling work (and rearming the callout if needed)
267  * is done; the raidio thread calls it when woken up, as by the above.
268  */
269 void
270 rf_paritymap_checkwork(struct rf_paritymap *pm)
271 {
272 	int i, zerop, progressp;
273 
274 	mutex_enter(&pm->lk_flags);
275 	if (pm->flags & TICKED) {
276 		zerop = progressp = 0;
277 
278 		pm->flags &= ~TICKED;
279 		mutex_exit(&pm->lk_flags);
280 
281 		mutex_enter(&pm->lock);
282 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
283 			if (pm->current->state[i] < 0) {
284 				progressp = 1;
285 				pm->current->state[i]++;
286 				if (pm->current->state[i] == 0)
287 					zerop = 1;
288 			}
289 		}
290 
291 		if (progressp)
292 			callout_schedule(&pm->ticker,
293 			    mstohz(pm->params.tickms));
294 		else {
295 			mutex_enter(&pm->lk_flags);
296 			pm->flags &= ~TICKING;
297 			mutex_exit(&pm->lk_flags);
298 		}
299 
300 		if (zerop)
301 			rf_paritymap_write_locked(pm);
302 		mutex_exit(&pm->lock);
303 	} else
304 		mutex_exit(&pm->lk_flags);
305 }
306 
307 /*
308  * Set parity map parameters; used both to alter parameters on the fly and to
309  * establish their initial values.  Note that setting a parameter to 0 means
310  * to leave the previous setting unchanged, and that if this is done for the
311  * initial setting of "regions", then a default value will be computed based
312  * on the RAID component size.
313  */
314 int
315 rf_paritymap_set_params(struct rf_paritymap *pm,
316     const struct rf_pmparams *params, int todisk)
317 {
318 	int cooldown, tickms;
319 	u_int regions;
320 	RF_RowCol_t col;
321 	RF_ComponentLabel_t *clabel;
322 	RF_Raid_t *raidPtr;
323 
324 	cooldown = params->cooldown != 0
325 	    ? params->cooldown : pm->params.cooldown;
326 	tickms = params->tickms != 0
327 	    ? params->tickms : pm->params.tickms;
328 	regions = params->regions != 0
329 	    ? params->regions : pm->params.regions;
330 
331 	if (cooldown < 1 || cooldown > 128) {
332 		printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
333 		    cooldown);
334 		return (-1);
335 	}
336 	if (tickms < 10) {
337 		printf("raid%d: tick time %dms out of range\n",
338 		    pm->raid->raidid, tickms);
339 		return (-1);
340 	}
341 	if (regions == 0) {
342 		regions = rf_paritymap_nreg(pm->raid);
343 	} else if (regions > RF_PARITYMAP_NREG) {
344 		printf("raid%d: region count %u too large (more than %u)\n",
345 		    pm->raid->raidid, regions, RF_PARITYMAP_NREG);
346 		return (-1);
347 	}
348 
349 	/* XXX any currently warm parity will be used with the new tickms! */
350 	pm->params.cooldown = cooldown;
351 	pm->params.tickms = tickms;
352 	/* Apply the initial region count, but do not change it after that. */
353 	if (pm->params.regions == 0)
354 		pm->params.regions = regions;
355 
356 	/* So that the newly set parameters can be tested: */
357 	pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
358 
359 	if (todisk) {
360 		raidPtr = pm->raid;
361 		for (col = 0; col < raidPtr->numCol; col++) {
362 			clabel = raidget_component_label(raidPtr, col);
363 			clabel->parity_map_ntick = cooldown;
364 			clabel->parity_map_tickms = tickms;
365 			clabel->parity_map_regions = regions;
366 			raidflush_component_label(raidPtr, col);
367 		}
368 	}
369 	return 0;
370 }
371 
372 /*
373  * The number of regions may not be as many as can fit into the map, because
374  * when regions are too small, the overhead of setting parity map bits
375  * becomes significant in comparison to the actual I/O, while the
376  * corresponding gains in parity verification time become negligible.  Thus,
377  * a minimum region size (defined above) is imposed.
378  *
379  * Note that, if the number of regions is less than the maximum, then some of
380  * the regions will be "fictional", corresponding to no actual disk; some
381  * parts of the code may process them as normal, but they can not ever be
382  * written to.
383  */
384 static u_int
385 rf_paritymap_nreg(RF_Raid_t *raid)
386 {
387 	daddr_t bytes_per_disk, nreg;
388 
389 	bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
390 	nreg = bytes_per_disk / REGION_MINSIZE;
391 	if (nreg > RF_PARITYMAP_NREG)
392 		nreg = RF_PARITYMAP_NREG;
393 
394 	return (u_int)nreg;
395 }
396 
397 /*
398  * Initialize a parity map given specific parameters.  This neither reads nor
399  * writes the parity map config in the component labels; for that, see below.
400  */
401 int
402 rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
403     const struct rf_pmparams *params)
404 {
405 	daddr_t rstripes;
406 	struct rf_pmparams safe;
407 
408 	pm->raid = raid;
409 	pm->params.regions = 0;
410 	if (0 != rf_paritymap_set_params(pm, params, 0)) {
411 		/*
412 		 * If the parameters are out-of-range, then bring the
413 		 * parity map up with something reasonable, so that
414 		 * the admin can at least go and fix it (or ignore it
415 		 * entirely).
416 		 */
417 		safe.cooldown = DFL_COOLDOWN;
418 		safe.tickms = DFL_TICKMS;
419 		safe.regions = 0;
420 
421 		if (0 != rf_paritymap_set_params(pm, &safe, 0))
422 			return (-1);
423 	}
424 
425 	rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
426 	pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
427 
428 	callout_init(&pm->ticker, CALLOUT_MPSAFE);
429 	callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
430 	pm->flags = 0;
431 
432 	pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
433 	    KM_SLEEP);
434 	pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
435 	    KM_SLEEP);
436 	pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
437 	    KM_SLEEP);
438 
439 	rf_paritymap_kern_read(pm->raid, pm->disk_boot);
440 	memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
441 
442 	mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
443 	mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
444 
445 	return 0;
446 }
447 
448 /*
449  * Destroys a parity map; unless "force" is set, also cleans parity for any
450  * regions which were still in cooldown (but are not dirty on disk).
451  */
452 void
453 rf_paritymap_destroy(struct rf_paritymap *pm, int force)
454 {
455 	int i;
456 
457 	callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
458 	callout_destroy(&pm->ticker);
459 
460 	if (!force) {
461 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
462 			/* XXX check for > 0 ? */
463 			if (pm->current->state[i] < 0)
464 				pm->current->state[i] = 0;
465 		}
466 
467 		rf_paritymap_write_locked(pm);
468 	}
469 
470 	mutex_destroy(&pm->lock);
471 	mutex_destroy(&pm->lk_flags);
472 
473 	kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
474 	kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
475 	kmem_free(pm->current, sizeof(struct rf_paritymap_current));
476 }
477 
478 /*
479  * Rewrite parity, taking parity map into account; this is the equivalent of
480  * the old rf_RewriteParity, and is likewise to be called from a suitable
481  * thread and shouldn't have multiple copies running in parallel and so on.
482  *
483  * Note that the fictional regions are "cleaned" in one shot, so that very
484  * small RAIDs (useful for testing) will not experience potentially severe
485  * regressions in rewrite time.
486  */
487 int
488 rf_paritymap_rewrite(struct rf_paritymap *pm)
489 {
490 	int i, ret_val = 0;
491 	daddr_t reg_b, reg_e;
492 
493 	/* Process only the actual regions. */
494 	for (i = 0; i < pm->params.regions; i++) {
495 		mutex_enter(&pm->lock);
496 		if (isset(pm->disk_boot->bits, i)) {
497 			mutex_exit(&pm->lock);
498 
499 			reg_b = i * pm->region_size;
500 			reg_e = reg_b + pm->region_size;
501 			if (reg_e > pm->raid->totalSectors)
502 				reg_e = pm->raid->totalSectors;
503 
504 			if (rf_RewriteParityRange(pm->raid, reg_b,
505 			    reg_e - reg_b)) {
506 				ret_val = 1;
507 				if (pm->raid->waitShutdown)
508 					return ret_val;
509 			} else {
510 				mutex_enter(&pm->lock);
511 				clrbit(pm->disk_boot->bits, i);
512 				rf_paritymap_write_locked(pm);
513 				mutex_exit(&pm->lock);
514 			}
515 		} else {
516 			mutex_exit(&pm->lock);
517 		}
518 	}
519 
520 	/* Now, clear the fictional regions, if any. */
521 	rf_paritymap_forceclean(pm);
522 	rf_paritymap_write(pm);
523 
524 	return ret_val;
525 }
526 
527 /*
528  * How to merge the on-disk parity maps when reading them in from the
529  * various components; returns whether they differ.  In the case that
530  * they do differ, sets *dst to the union of *dst and *src.
531  *
532  * In theory, it should be safe to take the intersection (or just pick
533  * a single component arbitrarily), but the paranoid approach costs
534  * little.
535  *
536  * Appropriate locking, if any, is the responsibility of the caller.
537  */
538 int
539 rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
540     struct rf_paritymap_ondisk *src)
541 {
542 	int i, discrep = 0;
543 
544 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
545 		if (dst->bits[i] != src->bits[i])
546 			discrep = 1;
547 		dst->bits[i] |= src->bits[i];
548 	}
549 
550 	return discrep;
551 }
552 
553 /*
554  * Detach a parity map from its RAID.  This is not meant to be applied except
555  * when unconfiguring the RAID after all I/O has been resolved, as otherwise
556  * an out-of-date parity map could be treated as current.
557  */
558 void
559 rf_paritymap_detach(RF_Raid_t *raidPtr)
560 {
561 	if (raidPtr->parity_map == NULL)
562 		return;
563 
564 	simple_lock(&(raidPtr->iodone_lock));
565 	struct rf_paritymap *pm = raidPtr->parity_map;
566 	raidPtr->parity_map = NULL;
567 	simple_unlock(&(raidPtr->iodone_lock));
568 	/* XXXjld is that enough locking?  Or too much? */
569 	rf_paritymap_destroy(pm, 0);
570 	kmem_free(pm, sizeof(*pm));
571 }
572 
573 /*
574  * Attach a parity map to a RAID set if appropriate.  Includes
575  * configure-time processing of parity-map fields of component label.
576  */
577 void
578 rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
579 {
580 	RF_RowCol_t col;
581 	int pm_use, pm_zap;
582 	int g_tickms, g_ntick, g_regions;
583 	int good;
584 	RF_ComponentLabel_t *clabel;
585 	u_int flags, regions;
586 	struct rf_pmparams params;
587 
588 	if (raidPtr->Layout.map->faultsTolerated == 0) {
589 		/* There isn't any parity. */
590 		return;
591 	}
592 
593 	pm_use = 1;
594 	pm_zap = 0;
595 	g_tickms = DFL_TICKMS;
596 	g_ntick = DFL_COOLDOWN;
597 	g_regions = 0;
598 
599 	/*
600 	 * Collect opinions on the set config.  If this is the initial
601 	 * config (raidctl -C), treat all labels as invalid, since
602 	 * there may be random data present.
603 	 */
604 	if (!force) {
605 		for (col = 0; col < raidPtr->numCol; col++) {
606 			clabel = raidget_component_label(raidPtr, col);
607 			flags = clabel->parity_map_flags;
608 			/* Check for use by non-parity-map kernel. */
609 			if (clabel->parity_map_modcount
610 			    != clabel->mod_counter) {
611 				flags &= ~RF_PMLABEL_WASUSED;
612 			}
613 
614 			if (flags & RF_PMLABEL_VALID) {
615 				g_tickms = clabel->parity_map_tickms;
616 				g_ntick = clabel->parity_map_ntick;
617 				regions = clabel->parity_map_regions;
618 				if (g_regions == 0)
619 					g_regions = regions;
620 				else if (g_regions != regions) {
621 					pm_zap = 1; /* important! */
622 				}
623 
624 				if (flags & RF_PMLABEL_DISABLE) {
625 					pm_use = 0;
626 				}
627 				if (!(flags & RF_PMLABEL_WASUSED)) {
628 					pm_zap = 1;
629 				}
630 			} else {
631 				pm_zap = 1;
632 			}
633 		}
634 	} else {
635 		pm_zap = 1;
636 	}
637 
638 	/* Finally, create and attach the parity map. */
639 	if (pm_use) {
640 		params.cooldown = g_ntick;
641 		params.tickms = g_tickms;
642 		params.regions = g_regions;
643 
644 		raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
645 		    KM_SLEEP);
646 		if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
647 			&params)) {
648 			/* It failed; do without. */
649 			kmem_free(raidPtr->parity_map,
650 			    sizeof(struct rf_paritymap));
651 			raidPtr->parity_map = NULL;
652 			return;
653 		}
654 
655 		if (g_regions == 0)
656 			/* Pick up the autoconfigured region count. */
657 			g_regions = raidPtr->parity_map->params.regions;
658 
659 		if (pm_zap) {
660 			good = raidPtr->parity_good && !force;
661 
662 			if (good)
663 				rf_paritymap_forceclean(raidPtr->parity_map);
664 			else
665 				rf_paritymap_invalidate(raidPtr->parity_map);
666 			/* This needs to be on disk before WASUSED is set. */
667 			rf_paritymap_write(raidPtr->parity_map);
668 		}
669 	}
670 
671 	/* Alter labels in-core to reflect the current view of things. */
672 	for (col = 0; col < raidPtr->numCol; col++) {
673 		clabel = raidget_component_label(raidPtr, col);
674 
675 		if (pm_use)
676 			flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
677 		else
678 			flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
679 
680 		clabel->parity_map_flags = flags;
681 		clabel->parity_map_tickms = g_tickms;
682 		clabel->parity_map_ntick = g_ntick;
683 		clabel->parity_map_regions = g_regions;
684 		raidflush_component_label(raidPtr, col);
685 	}
686 }
687 
688 /*
689  * For initializing the parity-map fields of a component label, both on
690  * initial creation and on reconstruct/copyback/etc.
691  */
692 void
693 rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
694 {
695 	if (pm != NULL) {
696 		clabel->parity_map_flags =
697 		    RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
698 		clabel->parity_map_tickms = pm->params.tickms;
699 		clabel->parity_map_ntick = pm->params.cooldown;
700 		/*
701 		 * XXXjld: If the number of regions is changed on disk, and
702 		 * then a new component is labeled before the next configure,
703 		 * then it will get the old value and they will conflict on
704 		 * the next boot (and the default will be used instead).
705 		 */
706 		clabel->parity_map_regions = pm->params.regions;
707 	} else {
708 		/*
709 		 * XXXjld: if the map is disabled, and all the components are
710 		 * replaced without an intervening unconfigure/reconfigure,
711 		 * then it will become enabled on the next unconfig/reconfig.
712 		 */
713 	}
714 }
715 
716 
717 /* Will the parity map be disabled next time? */
718 int
719 rf_paritymap_get_disable(RF_Raid_t *raidPtr)
720 {
721 	RF_ComponentLabel_t *clabel;
722 	RF_RowCol_t col;
723 	int dis;
724 
725 	dis = 0;
726 	for (col = 0; col < raidPtr->numCol; col++) {
727 		clabel = raidget_component_label(raidPtr, col);
728 		if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
729 			dis = 1;
730 	}
731 
732 	return dis;
733 }
734 
735 /* Set whether the parity map will be disabled next time. */
736 void
737 rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
738 {
739 	RF_ComponentLabel_t *clabel;
740 	RF_RowCol_t col;
741 
742 	for (col = 0; col < raidPtr->numCol; col++) {
743 		clabel = raidget_component_label(raidPtr, col);
744 		if (dis)
745 			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
746 		else
747 			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
748 		raidflush_component_label(raidPtr, col);
749 	}
750 }
751