xref: /netbsd-src/sys/dev/raidframe/rf_parityloggingdags.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: rf_parityloggingdags.c,v 1.6 2001/10/04 15:58:55 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 #include "rf_archs.h"
30 
31 #if RF_INCLUDE_PARITYLOGGING > 0
32 
33 /*
34   DAGs specific to parity logging are created here
35  */
36 
37 #include <dev/raidframe/raidframevar.h>
38 
39 #include "rf_raid.h"
40 #include "rf_dag.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_debugMem.h"
44 #include "rf_paritylog.h"
45 #include "rf_memchunk.h"
46 #include "rf_general.h"
47 
48 #include "rf_parityloggingdags.h"
49 
50 /******************************************************************************
51  *
52  * creates a DAG to perform a large-write operation:
53  *
54  *         / Rod \     / Wnd \
55  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
56  *         \ Rod /     \ Xor - Lpo /
57  *
58  * The writes are not done until the reads complete because if they were done in
59  * parallel, a failure on one of the reads could leave the parity in an inconsistent
60  * state, so that the retry with a new DAG would produce erroneous parity.
61  *
62  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
63  *        old data can be freed until the XOR node fires.  Need to fix this.
64  *
65  * The last two arguments are the number of faults tolerated, and function for the
66  * redundancy calculation. The undo for the redundancy calc is assumed to be null
67  *
68  *****************************************************************************/
69 
70 void
71 rf_CommonCreateParityLoggingLargeWriteDAG(
72     RF_Raid_t * raidPtr,
73     RF_AccessStripeMap_t * asmap,
74     RF_DagHeader_t * dag_h,
75     void *bp,
76     RF_RaidAccessFlags_t flags,
77     RF_AllocListElem_t * allocList,
78     int nfaults,
79     int (*redFunc) (RF_DagNode_t *))
80 {
81 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
82 	       *lpoNode, *blockNode, *unblockNode, *termNode;
83 	int     nWndNodes, nRodNodes, i;
84 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
85 	RF_AccessStripeMapHeader_t *new_asm_h[2];
86 	int     nodeNum, asmNum;
87 	RF_ReconUnitNum_t which_ru;
88 	char   *sosBuffer, *eosBuffer;
89 	RF_PhysDiskAddr_t *pda;
90 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
91 
92 	if (rf_dagDebug)
93 		printf("[Creating parity-logging large-write DAG]\n");
94 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
95 	dag_h->creator = "ParityLoggingLargeWriteDAG";
96 
97 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
98 	nWndNodes = asmap->numStripeUnitsAccessed;
99 	RF_CallocAndAdd(nodes, nWndNodes + 6, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
100 	i = 0;
101 	wndNodes = &nodes[i];
102 	i += nWndNodes;
103 	xorNode = &nodes[i];
104 	i += 1;
105 	lpoNode = &nodes[i];
106 	i += 1;
107 	blockNode = &nodes[i];
108 	i += 1;
109 	syncNode = &nodes[i];
110 	i += 1;
111 	unblockNode = &nodes[i];
112 	i += 1;
113 	termNode = &nodes[i];
114 	i += 1;
115 
116 	dag_h->numCommitNodes = nWndNodes + 1;
117 	dag_h->numCommits = 0;
118 	dag_h->numSuccedents = 1;
119 
120 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
121 	if (nRodNodes > 0)
122 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
123 
124 	/* begin node initialization */
125 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
126 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
127 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
128 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
129 
130 	/* initialize the Rod nodes */
131 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
132 		if (new_asm_h[asmNum]) {
133 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
134 			while (pda) {
135 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
136 				rodNodes[nodeNum].params[0].p = pda;
137 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
138 				rodNodes[nodeNum].params[2].v = parityStripeID;
139 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
140 				nodeNum++;
141 				pda = pda->next;
142 			}
143 		}
144 	}
145 	RF_ASSERT(nodeNum == nRodNodes);
146 
147 	/* initialize the wnd nodes */
148 	pda = asmap->physInfo;
149 	for (i = 0; i < nWndNodes; i++) {
150 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
151 		RF_ASSERT(pda != NULL);
152 		wndNodes[i].params[0].p = pda;
153 		wndNodes[i].params[1].p = pda->bufPtr;
154 		wndNodes[i].params[2].v = parityStripeID;
155 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
156 		pda = pda->next;
157 	}
158 
159 	/* initialize the redundancy node */
160 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
161 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
162 	for (i = 0; i < nWndNodes; i++) {
163 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
164 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
165 	}
166 	for (i = 0; i < nRodNodes; i++) {
167 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
168 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
169 	}
170 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
171 									 * at RAID information */
172 
173 	/* look for an Rod node that reads a complete SU.  If none, alloc a
174 	 * buffer to receive the parity info. Note that we can't use a new
175 	 * data buffer because it will not have gotten written when the xor
176 	 * occurs. */
177 	for (i = 0; i < nRodNodes; i++)
178 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
179 			break;
180 	if (i == nRodNodes) {
181 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
182 	} else {
183 		xorNode->results[0] = rodNodes[i].params[1].p;
184 	}
185 
186 	/* initialize the Lpo node */
187 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
188 
189 	lpoNode->params[0].p = asmap->parityInfo;
190 	lpoNode->params[1].p = xorNode->results[0];
191 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
192 							 * describe entire
193 							 * parity unit */
194 
195 	/* connect nodes to form graph */
196 
197 	/* connect dag header to block node */
198 	RF_ASSERT(dag_h->numSuccedents == 1);
199 	RF_ASSERT(blockNode->numAntecedents == 0);
200 	dag_h->succedents[0] = blockNode;
201 
202 	/* connect the block node to the Rod nodes */
203 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
204 	for (i = 0; i < nRodNodes; i++) {
205 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
206 		blockNode->succedents[i] = &rodNodes[i];
207 		rodNodes[i].antecedents[0] = blockNode;
208 		rodNodes[i].antType[0] = rf_control;
209 	}
210 
211 	/* connect the block node to the sync node */
212 	/* necessary if nRodNodes == 0 */
213 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
214 	blockNode->succedents[nRodNodes] = syncNode;
215 	syncNode->antecedents[0] = blockNode;
216 	syncNode->antType[0] = rf_control;
217 
218 	/* connect the Rod nodes to the syncNode */
219 	for (i = 0; i < nRodNodes; i++) {
220 		rodNodes[i].succedents[0] = syncNode;
221 		syncNode->antecedents[1 + i] = &rodNodes[i];
222 		syncNode->antType[1 + i] = rf_control;
223 	}
224 
225 	/* connect the sync node to the xor node */
226 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
227 	RF_ASSERT(xorNode->numAntecedents == 1);
228 	syncNode->succedents[0] = xorNode;
229 	xorNode->antecedents[0] = syncNode;
230 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
231 
232 	/* connect the sync node to the Wnd nodes */
233 	for (i = 0; i < nWndNodes; i++) {
234 		RF_ASSERT(wndNodes->numAntecedents == 1);
235 		syncNode->succedents[1 + i] = &wndNodes[i];
236 		wndNodes[i].antecedents[0] = syncNode;
237 		wndNodes[i].antType[0] = rf_control;
238 	}
239 
240 	/* connect the xor node to the Lpo node */
241 	RF_ASSERT(xorNode->numSuccedents == 1);
242 	RF_ASSERT(lpoNode->numAntecedents == 1);
243 	xorNode->succedents[0] = lpoNode;
244 	lpoNode->antecedents[0] = xorNode;
245 	lpoNode->antType[0] = rf_trueData;
246 
247 	/* connect the Wnd nodes to the unblock node */
248 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
249 	for (i = 0; i < nWndNodes; i++) {
250 		RF_ASSERT(wndNodes->numSuccedents == 1);
251 		wndNodes[i].succedents[0] = unblockNode;
252 		unblockNode->antecedents[i] = &wndNodes[i];
253 		unblockNode->antType[i] = rf_control;
254 	}
255 
256 	/* connect the Lpo node to the unblock node */
257 	RF_ASSERT(lpoNode->numSuccedents == 1);
258 	lpoNode->succedents[0] = unblockNode;
259 	unblockNode->antecedents[nWndNodes] = lpoNode;
260 	unblockNode->antType[nWndNodes] = rf_control;
261 
262 	/* connect unblock node to terminator */
263 	RF_ASSERT(unblockNode->numSuccedents == 1);
264 	RF_ASSERT(termNode->numAntecedents == 1);
265 	RF_ASSERT(termNode->numSuccedents == 0);
266 	unblockNode->succedents[0] = termNode;
267 	termNode->antecedents[0] = unblockNode;
268 	termNode->antType[0] = rf_control;
269 }
270 
271 
272 
273 
274 /******************************************************************************
275  *
276  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
277  *
278  *                                     Header
279  *                                       |
280  *                                     Block
281  *                                 / |  ... \   \
282  *                                /  |       \   \
283  *                             Rod  Rod      Rod  Rop
284  *                             | \ /| \    / |  \/ |
285  *                             |    |        |  /\ |
286  *                             Wnd  Wnd      Wnd   X
287  *                              |    \       /     |
288  *                              |     \     /      |
289  *                               \     \   /      Lpo
290  *                                \     \ /       /
291  *                                 +-> Unblock <-+
292  *                                       |
293  *                                       T
294  *
295  *
296  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
297  * When the access spans a stripe unit boundary and is less than one SU in size, there will
298  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
299  * The second output from each Rod node goes to the X node.  In the double-XOR
300  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
301  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
302  *
303  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
304  *
305  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
306  *        it also has the nasty property that none of the buffers allocated for reading
307  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
308  *
309  * A null qfuncs indicates single fault tolerant
310  *****************************************************************************/
311 
312 void
313 rf_CommonCreateParityLoggingSmallWriteDAG(
314     RF_Raid_t * raidPtr,
315     RF_AccessStripeMap_t * asmap,
316     RF_DagHeader_t * dag_h,
317     void *bp,
318     RF_RaidAccessFlags_t flags,
319     RF_AllocListElem_t * allocList,
320     RF_RedFuncs_t * pfuncs,
321     RF_RedFuncs_t * qfuncs)
322 {
323 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
324 	RF_DagNode_t *readDataNodes, *readParityNodes;
325 	RF_DagNode_t *writeDataNodes, *lpuNodes;
326 	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
327 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
328 	int     numDataNodes = asmap->numStripeUnitsAccessed;
329 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
330 	int     i, j, nNodes, totalNumNodes;
331 	RF_ReconUnitNum_t which_ru;
332 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
333 	int     (*qfunc) (RF_DagNode_t * node);
334 	char   *name, *qname;
335 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
336 #ifdef RAID_DIAGNOSTIC
337 	long    nfaults = qfuncs ? 2 : 1;
338 #endif /* RAID_DIAGNOSTIC */
339 	int     lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
340 
341 	if (rf_dagDebug)
342 		printf("[Creating parity-logging small-write DAG]\n");
343 	RF_ASSERT(numDataNodes > 0);
344 	RF_ASSERT(nfaults == 1);
345 	dag_h->creator = "ParityLoggingSmallWriteDAG";
346 
347 	/* DAG creation occurs in three steps: 1. count the number of nodes in
348 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
349 	 * nodes */
350 
351 	/* Step 1. compute number of nodes in the graph */
352 
353 	/* number of nodes: a read and write for each data unit a redundancy
354 	 * computation node for each parity node a read and Lpu for each
355 	 * parity unit a block and unblock node (2) a terminator node if
356 	 * atomic RMW an unlock node for each data unit, redundancy unit */
357 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
358 	if (lu_flag)
359 		totalNumNodes += numDataNodes;
360 
361 	nNodes = numDataNodes + numParityNodes;
362 
363 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
364 	dag_h->numCommits = 0;
365 	dag_h->numSuccedents = 1;
366 
367 	/* Step 2. create the nodes */
368 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
369 	i = 0;
370 	blockNode = &nodes[i];
371 	i += 1;
372 	unblockNode = &nodes[i];
373 	i += 1;
374 	readDataNodes = &nodes[i];
375 	i += numDataNodes;
376 	readParityNodes = &nodes[i];
377 	i += numParityNodes;
378 	writeDataNodes = &nodes[i];
379 	i += numDataNodes;
380 	lpuNodes = &nodes[i];
381 	i += numParityNodes;
382 	xorNodes = &nodes[i];
383 	i += numParityNodes;
384 	termNode = &nodes[i];
385 	i += 1;
386 	if (lu_flag) {
387 		unlockDataNodes = &nodes[i];
388 		i += numDataNodes;
389 	}
390 	RF_ASSERT(i == totalNumNodes);
391 
392 	/* Step 3. initialize the nodes */
393 	/* initialize block node (Nil) */
394 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
395 
396 	/* initialize unblock node (Nil) */
397 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
398 
399 	/* initialize terminatory node (Trm) */
400 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
401 
402 	/* initialize nodes which read old data (Rod) */
403 	for (i = 0; i < numDataNodes; i++) {
404 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
405 		RF_ASSERT(pda != NULL);
406 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
407 							 * desc */
408 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
409 												 * data */
410 		readDataNodes[i].params[2].v = parityStripeID;
411 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
412 		pda = pda->next;
413 		readDataNodes[i].propList[0] = NULL;
414 		readDataNodes[i].propList[1] = NULL;
415 	}
416 
417 	/* initialize nodes which read old parity (Rop) */
418 	pda = asmap->parityInfo;
419 	i = 0;
420 	for (i = 0; i < numParityNodes; i++) {
421 		RF_ASSERT(pda != NULL);
422 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
423 		readParityNodes[i].params[0].p = pda;
424 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
425 													 * parity */
426 		readParityNodes[i].params[2].v = parityStripeID;
427 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
428 		readParityNodes[i].propList[0] = NULL;
429 		pda = pda->next;
430 	}
431 
432 	/* initialize nodes which write new data (Wnd) */
433 	pda = asmap->physInfo;
434 	for (i = 0; i < numDataNodes; i++) {
435 		RF_ASSERT(pda != NULL);
436 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
437 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
438 							 * desc */
439 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
440 								 * data to be written */
441 		writeDataNodes[i].params[2].v = parityStripeID;
442 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
443 
444 		if (lu_flag) {
445 			/* initialize node to unlock the disk queue */
446 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
447 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
448 								 * desc */
449 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
450 		}
451 		pda = pda->next;
452 	}
453 
454 
455 	/* initialize nodes which compute new parity */
456 	/* we use the simple XOR func in the double-XOR case, and when we're
457 	 * accessing only a portion of one stripe unit. the distinction
458 	 * between the two is that the regular XOR func assumes that the
459 	 * targbuf is a full SU in size, and examines the pda associated with
460 	 * the buffer to decide where within the buffer to XOR the data,
461 	 * whereas the simple XOR func just XORs the data into the start of
462 	 * the buffer. */
463 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
464 		func = pfuncs->simple;
465 		undoFunc = rf_NullNodeUndoFunc;
466 		name = pfuncs->SimpleName;
467 		if (qfuncs) {
468 			qfunc = qfuncs->simple;
469 			qname = qfuncs->SimpleName;
470 		}
471 	} else {
472 		func = pfuncs->regular;
473 		undoFunc = rf_NullNodeUndoFunc;
474 		name = pfuncs->RegularName;
475 		if (qfuncs) {
476 			qfunc = qfuncs->regular;
477 			qname = qfuncs->RegularName;
478 		}
479 	}
480 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
481 	 * nodes, and raidPtr  */
482 	if (numParityNodes == 2) {	/* double-xor case */
483 		for (i = 0; i < numParityNodes; i++) {
484 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
485 																	 * xor */
486 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
487 			xorNodes[i].params[0] = readDataNodes[i].params[0];
488 			xorNodes[i].params[1] = readDataNodes[i].params[1];
489 			xorNodes[i].params[2] = readParityNodes[i].params[0];
490 			xorNodes[i].params[3] = readParityNodes[i].params[1];
491 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
492 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
493 			xorNodes[i].params[6].p = raidPtr;
494 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
495 											 * target buf */
496 		}
497 	} else {
498 		/* there is only one xor node in this case */
499 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
500 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
501 		for (i = 0; i < numDataNodes + 1; i++) {
502 			/* set up params related to Rod and Rop nodes */
503 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
504 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
505 		}
506 		for (i = 0; i < numDataNodes; i++) {
507 			/* set up params related to Wnd and Wnp nodes */
508 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
509 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
510 		}
511 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
512 											 * at RAID information */
513 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
514 	}
515 
516 	/* initialize the log node(s) */
517 	pda = asmap->parityInfo;
518 	for (i = 0; i < numParityNodes; i++) {
519 		RF_ASSERT(pda);
520 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
521 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
522 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
523 									 * parity */
524 		pda = pda->next;
525 	}
526 
527 
528 	/* Step 4. connect the nodes */
529 
530 	/* connect header to block node */
531 	RF_ASSERT(dag_h->numSuccedents == 1);
532 	RF_ASSERT(blockNode->numAntecedents == 0);
533 	dag_h->succedents[0] = blockNode;
534 
535 	/* connect block node to read old data nodes */
536 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
537 	for (i = 0; i < numDataNodes; i++) {
538 		blockNode->succedents[i] = &readDataNodes[i];
539 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
540 		readDataNodes[i].antecedents[0] = blockNode;
541 		readDataNodes[i].antType[0] = rf_control;
542 	}
543 
544 	/* connect block node to read old parity nodes */
545 	for (i = 0; i < numParityNodes; i++) {
546 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
547 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
548 		readParityNodes[i].antecedents[0] = blockNode;
549 		readParityNodes[i].antType[0] = rf_control;
550 	}
551 
552 	/* connect read old data nodes to write new data nodes */
553 	for (i = 0; i < numDataNodes; i++) {
554 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
555 		for (j = 0; j < numDataNodes; j++) {
556 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
557 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
558 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
559 			if (i == j)
560 				writeDataNodes[j].antType[i] = rf_antiData;
561 			else
562 				writeDataNodes[j].antType[i] = rf_control;
563 		}
564 	}
565 
566 	/* connect read old data nodes to xor nodes */
567 	for (i = 0; i < numDataNodes; i++)
568 		for (j = 0; j < numParityNodes; j++) {
569 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
570 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
571 			xorNodes[j].antecedents[i] = &readDataNodes[i];
572 			xorNodes[j].antType[i] = rf_trueData;
573 		}
574 
575 	/* connect read old parity nodes to write new data nodes */
576 	for (i = 0; i < numParityNodes; i++) {
577 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
578 		for (j = 0; j < numDataNodes; j++) {
579 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
580 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
581 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
582 		}
583 	}
584 
585 	/* connect read old parity nodes to xor nodes */
586 	for (i = 0; i < numParityNodes; i++)
587 		for (j = 0; j < numParityNodes; j++) {
588 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
589 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
590 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
591 		}
592 
593 	/* connect xor nodes to write new parity nodes */
594 	for (i = 0; i < numParityNodes; i++) {
595 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
596 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
597 		xorNodes[i].succedents[0] = &lpuNodes[i];
598 		lpuNodes[i].antecedents[0] = &xorNodes[i];
599 		lpuNodes[i].antType[0] = rf_trueData;
600 	}
601 
602 	for (i = 0; i < numDataNodes; i++) {
603 		if (lu_flag) {
604 			/* connect write new data nodes to unlock nodes */
605 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
606 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
607 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
608 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
609 			unlockDataNodes[i].antType[0] = rf_control;
610 
611 			/* connect unlock nodes to unblock node */
612 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
613 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
614 			unlockDataNodes[i].succedents[0] = unblockNode;
615 			unblockNode->antecedents[i] = &unlockDataNodes[i];
616 			unblockNode->antType[i] = rf_control;
617 		} else {
618 			/* connect write new data nodes to unblock node */
619 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
620 			RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
621 			writeDataNodes[i].succedents[0] = unblockNode;
622 			unblockNode->antecedents[i] = &writeDataNodes[i];
623 			unblockNode->antType[i] = rf_control;
624 		}
625 	}
626 
627 	/* connect write new parity nodes to unblock node */
628 	for (i = 0; i < numParityNodes; i++) {
629 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
630 		lpuNodes[i].succedents[0] = unblockNode;
631 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
632 		unblockNode->antType[numDataNodes + i] = rf_control;
633 	}
634 
635 	/* connect unblock node to terminator */
636 	RF_ASSERT(unblockNode->numSuccedents == 1);
637 	RF_ASSERT(termNode->numAntecedents == 1);
638 	RF_ASSERT(termNode->numSuccedents == 0);
639 	unblockNode->succedents[0] = termNode;
640 	termNode->antecedents[0] = unblockNode;
641 	termNode->antType[0] = rf_control;
642 }
643 
644 
645 void
646 rf_CreateParityLoggingSmallWriteDAG(
647     RF_Raid_t * raidPtr,
648     RF_AccessStripeMap_t * asmap,
649     RF_DagHeader_t * dag_h,
650     void *bp,
651     RF_RaidAccessFlags_t flags,
652     RF_AllocListElem_t * allocList,
653     RF_RedFuncs_t * pfuncs,
654     RF_RedFuncs_t * qfuncs)
655 {
656 	dag_h->creator = "ParityLoggingSmallWriteDAG";
657 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
658 }
659 
660 
661 void
662 rf_CreateParityLoggingLargeWriteDAG(
663     RF_Raid_t * raidPtr,
664     RF_AccessStripeMap_t * asmap,
665     RF_DagHeader_t * dag_h,
666     void *bp,
667     RF_RaidAccessFlags_t flags,
668     RF_AllocListElem_t * allocList,
669     int nfaults,
670     int (*redFunc) (RF_DagNode_t *))
671 {
672 	dag_h->creator = "ParityLoggingSmallWriteDAG";
673 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
674 }
675 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
676