xref: /netbsd-src/sys/dev/raidframe/rf_parityloggingdags.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: rf_parityloggingdags.c,v 1.13 2004/01/10 00:56:28 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30   DAGs specific to parity logging are created here
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.13 2004/01/10 00:56:28 oster Exp $");
35 
36 #include "rf_archs.h"
37 #include "opt_raid_diagnostic.h"
38 
39 #if RF_INCLUDE_PARITYLOGGING > 0
40 
41 #include <dev/raidframe/raidframevar.h>
42 
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_debugMem.h"
48 #include "rf_paritylog.h"
49 #include "rf_general.h"
50 
51 #include "rf_parityloggingdags.h"
52 
53 /******************************************************************************
54  *
55  * creates a DAG to perform a large-write operation:
56  *
57  *         / Rod \     / Wnd \
58  * H -- NIL- Rod - NIL - Wnd ------ NIL - T
59  *         \ Rod /     \ Xor - Lpo /
60  *
61  * The writes are not done until the reads complete because if they were done in
62  * parallel, a failure on one of the reads could leave the parity in an inconsistent
63  * state, so that the retry with a new DAG would produce erroneous parity.
64  *
65  * Note:  this DAG has the nasty property that none of the buffers allocated for reading
66  *        old data can be freed until the XOR node fires.  Need to fix this.
67  *
68  * The last two arguments are the number of faults tolerated, and function for the
69  * redundancy calculation. The undo for the redundancy calc is assumed to be null
70  *
71  *****************************************************************************/
72 
73 void
74 rf_CommonCreateParityLoggingLargeWriteDAG(
75     RF_Raid_t * raidPtr,
76     RF_AccessStripeMap_t * asmap,
77     RF_DagHeader_t * dag_h,
78     void *bp,
79     RF_RaidAccessFlags_t flags,
80     RF_AllocListElem_t * allocList,
81     int nfaults,
82     int (*redFunc) (RF_DagNode_t *))
83 {
84 	RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
85 	       *lpoNode, *blockNode, *unblockNode, *termNode;
86 	int     nWndNodes, nRodNodes, i;
87 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
88 	RF_AccessStripeMapHeader_t *new_asm_h[2];
89 	int     nodeNum, asmNum;
90 	RF_ReconUnitNum_t which_ru;
91 	char   *sosBuffer, *eosBuffer;
92 	RF_PhysDiskAddr_t *pda;
93 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
94 
95 	if (rf_dagDebug)
96 		printf("[Creating parity-logging large-write DAG]\n");
97 	RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
98 	dag_h->creator = "ParityLoggingLargeWriteDAG";
99 
100 	/* alloc the Wnd nodes, the xor node, and the Lpo node */
101 	nWndNodes = asmap->numStripeUnitsAccessed;
102 	RF_MallocAndAdd(nodes, (nWndNodes + 6) * sizeof(RF_DagNode_t),
103 			(RF_DagNode_t *), allocList);
104 	i = 0;
105 	wndNodes = &nodes[i];
106 	i += nWndNodes;
107 	xorNode = &nodes[i];
108 	i += 1;
109 	lpoNode = &nodes[i];
110 	i += 1;
111 	blockNode = &nodes[i];
112 	i += 1;
113 	syncNode = &nodes[i];
114 	i += 1;
115 	unblockNode = &nodes[i];
116 	i += 1;
117 	termNode = &nodes[i];
118 	i += 1;
119 
120 	dag_h->numCommitNodes = nWndNodes + 1;
121 	dag_h->numCommits = 0;
122 	dag_h->numSuccedents = 1;
123 
124 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
125 	if (nRodNodes > 0)
126 		RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
127 				(RF_DagNode_t *), allocList);
128 
129 	/* begin node initialization */
130 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
131 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
132 	rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
133 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
134 
135 	/* initialize the Rod nodes */
136 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
137 		if (new_asm_h[asmNum]) {
138 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
139 			while (pda) {
140 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
141 				rodNodes[nodeNum].params[0].p = pda;
142 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
143 				rodNodes[nodeNum].params[2].v = parityStripeID;
144 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
145 				nodeNum++;
146 				pda = pda->next;
147 			}
148 		}
149 	}
150 	RF_ASSERT(nodeNum == nRodNodes);
151 
152 	/* initialize the wnd nodes */
153 	pda = asmap->physInfo;
154 	for (i = 0; i < nWndNodes; i++) {
155 		rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
156 		RF_ASSERT(pda != NULL);
157 		wndNodes[i].params[0].p = pda;
158 		wndNodes[i].params[1].p = pda->bufPtr;
159 		wndNodes[i].params[2].v = parityStripeID;
160 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
161 		pda = pda->next;
162 	}
163 
164 	/* initialize the redundancy node */
165 	rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
166 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
167 	for (i = 0; i < nWndNodes; i++) {
168 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
169 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
170 	}
171 	for (i = 0; i < nRodNodes; i++) {
172 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
173 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
174 	}
175 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
176 									 * at RAID information */
177 
178 	/* look for an Rod node that reads a complete SU.  If none, alloc a
179 	 * buffer to receive the parity info. Note that we can't use a new
180 	 * data buffer because it will not have gotten written when the xor
181 	 * occurs. */
182 	for (i = 0; i < nRodNodes; i++)
183 		if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
184 			break;
185 	if (i == nRodNodes) {
186 		RF_MallocAndAdd(xorNode->results[0],
187 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
188 	} else {
189 		xorNode->results[0] = rodNodes[i].params[1].p;
190 	}
191 
192 	/* initialize the Lpo node */
193 	rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
194 
195 	lpoNode->params[0].p = asmap->parityInfo;
196 	lpoNode->params[1].p = xorNode->results[0];
197 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
198 							 * describe entire
199 							 * parity unit */
200 
201 	/* connect nodes to form graph */
202 
203 	/* connect dag header to block node */
204 	RF_ASSERT(dag_h->numSuccedents == 1);
205 	RF_ASSERT(blockNode->numAntecedents == 0);
206 	dag_h->succedents[0] = blockNode;
207 
208 	/* connect the block node to the Rod nodes */
209 	RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
210 	for (i = 0; i < nRodNodes; i++) {
211 		RF_ASSERT(rodNodes[i].numAntecedents == 1);
212 		blockNode->succedents[i] = &rodNodes[i];
213 		rodNodes[i].antecedents[0] = blockNode;
214 		rodNodes[i].antType[0] = rf_control;
215 	}
216 
217 	/* connect the block node to the sync node */
218 	/* necessary if nRodNodes == 0 */
219 	RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
220 	blockNode->succedents[nRodNodes] = syncNode;
221 	syncNode->antecedents[0] = blockNode;
222 	syncNode->antType[0] = rf_control;
223 
224 	/* connect the Rod nodes to the syncNode */
225 	for (i = 0; i < nRodNodes; i++) {
226 		rodNodes[i].succedents[0] = syncNode;
227 		syncNode->antecedents[1 + i] = &rodNodes[i];
228 		syncNode->antType[1 + i] = rf_control;
229 	}
230 
231 	/* connect the sync node to the xor node */
232 	RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
233 	RF_ASSERT(xorNode->numAntecedents == 1);
234 	syncNode->succedents[0] = xorNode;
235 	xorNode->antecedents[0] = syncNode;
236 	xorNode->antType[0] = rf_trueData;	/* carry forward from sync */
237 
238 	/* connect the sync node to the Wnd nodes */
239 	for (i = 0; i < nWndNodes; i++) {
240 		RF_ASSERT(wndNodes->numAntecedents == 1);
241 		syncNode->succedents[1 + i] = &wndNodes[i];
242 		wndNodes[i].antecedents[0] = syncNode;
243 		wndNodes[i].antType[0] = rf_control;
244 	}
245 
246 	/* connect the xor node to the Lpo node */
247 	RF_ASSERT(xorNode->numSuccedents == 1);
248 	RF_ASSERT(lpoNode->numAntecedents == 1);
249 	xorNode->succedents[0] = lpoNode;
250 	lpoNode->antecedents[0] = xorNode;
251 	lpoNode->antType[0] = rf_trueData;
252 
253 	/* connect the Wnd nodes to the unblock node */
254 	RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
255 	for (i = 0; i < nWndNodes; i++) {
256 		RF_ASSERT(wndNodes->numSuccedents == 1);
257 		wndNodes[i].succedents[0] = unblockNode;
258 		unblockNode->antecedents[i] = &wndNodes[i];
259 		unblockNode->antType[i] = rf_control;
260 	}
261 
262 	/* connect the Lpo node to the unblock node */
263 	RF_ASSERT(lpoNode->numSuccedents == 1);
264 	lpoNode->succedents[0] = unblockNode;
265 	unblockNode->antecedents[nWndNodes] = lpoNode;
266 	unblockNode->antType[nWndNodes] = rf_control;
267 
268 	/* connect unblock node to terminator */
269 	RF_ASSERT(unblockNode->numSuccedents == 1);
270 	RF_ASSERT(termNode->numAntecedents == 1);
271 	RF_ASSERT(termNode->numSuccedents == 0);
272 	unblockNode->succedents[0] = termNode;
273 	termNode->antecedents[0] = unblockNode;
274 	termNode->antType[0] = rf_control;
275 }
276 
277 
278 
279 
280 /******************************************************************************
281  *
282  * creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
283  *
284  *                                     Header
285  *                                       |
286  *                                     Block
287  *                                 / |  ... \   \
288  *                                /  |       \   \
289  *                             Rod  Rod      Rod  Rop
290  *                             | \ /| \    / |  \/ |
291  *                             |    |        |  /\ |
292  *                             Wnd  Wnd      Wnd   X
293  *                              |    \       /     |
294  *                              |     \     /      |
295  *                               \     \   /      Lpo
296  *                                \     \ /       /
297  *                                 +-> Unblock <-+
298  *                                       |
299  *                                       T
300  *
301  *
302  * R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
303  * When the access spans a stripe unit boundary and is less than one SU in size, there will
304  * be two Rop -- X -- Wnp branches.  I call this the "double-XOR" case.
305  * The second output from each Rod node goes to the X node.  In the double-XOR
306  * case, there are exactly 2 Rod nodes, and each sends one output to one X node.
307  * There is one Rod -- Wnd -- T branch for each stripe unit being updated.
308  *
309  * The block and unblock nodes are unused.  See comment above CreateFaultFreeReadDAG.
310  *
311  * Note:  this DAG ignores all the optimizations related to making the RMWs atomic.
312  *        it also has the nasty property that none of the buffers allocated for reading
313  *        old data & parity can be freed until the XOR node fires.  Need to fix this.
314  *
315  * A null qfuncs indicates single fault tolerant
316  *****************************************************************************/
317 
318 void
319 rf_CommonCreateParityLoggingSmallWriteDAG(
320     RF_Raid_t * raidPtr,
321     RF_AccessStripeMap_t * asmap,
322     RF_DagHeader_t * dag_h,
323     void *bp,
324     RF_RaidAccessFlags_t flags,
325     RF_AllocListElem_t * allocList,
326     RF_RedFuncs_t * pfuncs,
327     RF_RedFuncs_t * qfuncs)
328 {
329 	RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
330 	RF_DagNode_t *readDataNodes, *readParityNodes;
331 	RF_DagNode_t *writeDataNodes, *lpuNodes;
332 	RF_DagNode_t *unlockDataNodes = NULL, *termNode;
333 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
334 	int     numDataNodes = asmap->numStripeUnitsAccessed;
335 	int     numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
336 	int     i, j, nNodes, totalNumNodes;
337 	RF_ReconUnitNum_t which_ru;
338 	int     (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
339 	int     (*qfunc) (RF_DagNode_t * node);
340 	char   *name, *qname;
341 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
342 #ifdef RAID_DIAGNOSTIC
343 	long    nfaults = qfuncs ? 2 : 1;
344 #endif /* RAID_DIAGNOSTIC */
345 
346 	if (rf_dagDebug)
347 		printf("[Creating parity-logging small-write DAG]\n");
348 	RF_ASSERT(numDataNodes > 0);
349 	RF_ASSERT(nfaults == 1);
350 	dag_h->creator = "ParityLoggingSmallWriteDAG";
351 
352 	/* DAG creation occurs in three steps: 1. count the number of nodes in
353 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
354 	 * nodes */
355 
356 	/* Step 1. compute number of nodes in the graph */
357 
358 	/* number of nodes: a read and write for each data unit a redundancy
359 	 * computation node for each parity node a read and Lpu for each
360 	 * parity unit a block and unblock node (2) a terminator node if
361 	 * atomic RMW an unlock node for each data unit, redundancy unit */
362 	totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
363 
364 	nNodes = numDataNodes + numParityNodes;
365 
366 	dag_h->numCommitNodes = numDataNodes + numParityNodes;
367 	dag_h->numCommits = 0;
368 	dag_h->numSuccedents = 1;
369 
370 	/* Step 2. create the nodes */
371 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
372 			(RF_DagNode_t *), allocList);
373 	i = 0;
374 	blockNode = &nodes[i];
375 	i += 1;
376 	unblockNode = &nodes[i];
377 	i += 1;
378 	readDataNodes = &nodes[i];
379 	i += numDataNodes;
380 	readParityNodes = &nodes[i];
381 	i += numParityNodes;
382 	writeDataNodes = &nodes[i];
383 	i += numDataNodes;
384 	lpuNodes = &nodes[i];
385 	i += numParityNodes;
386 	xorNodes = &nodes[i];
387 	i += numParityNodes;
388 	termNode = &nodes[i];
389 	i += 1;
390 
391 	RF_ASSERT(i == totalNumNodes);
392 
393 	/* Step 3. initialize the nodes */
394 	/* initialize block node (Nil) */
395 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
396 
397 	/* initialize unblock node (Nil) */
398 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
399 
400 	/* initialize terminatory node (Trm) */
401 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
402 
403 	/* initialize nodes which read old data (Rod) */
404 	for (i = 0; i < numDataNodes; i++) {
405 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
406 		RF_ASSERT(pda != NULL);
407 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
408 							 * desc */
409 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
410 												 * data */
411 		readDataNodes[i].params[2].v = parityStripeID;
412 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
413 		pda = pda->next;
414 		readDataNodes[i].propList[0] = NULL;
415 		readDataNodes[i].propList[1] = NULL;
416 	}
417 
418 	/* initialize nodes which read old parity (Rop) */
419 	pda = asmap->parityInfo;
420 	i = 0;
421 	for (i = 0; i < numParityNodes; i++) {
422 		RF_ASSERT(pda != NULL);
423 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
424 		readParityNodes[i].params[0].p = pda;
425 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
426 													 * parity */
427 		readParityNodes[i].params[2].v = parityStripeID;
428 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
429 		readParityNodes[i].propList[0] = NULL;
430 		pda = pda->next;
431 	}
432 
433 	/* initialize nodes which write new data (Wnd) */
434 	pda = asmap->physInfo;
435 	for (i = 0; i < numDataNodes; i++) {
436 		RF_ASSERT(pda != NULL);
437 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
438 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
439 							 * desc */
440 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
441 								 * data to be written */
442 		writeDataNodes[i].params[2].v = parityStripeID;
443 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
444 
445 		pda = pda->next;
446 	}
447 
448 
449 	/* initialize nodes which compute new parity */
450 	/* we use the simple XOR func in the double-XOR case, and when we're
451 	 * accessing only a portion of one stripe unit. the distinction
452 	 * between the two is that the regular XOR func assumes that the
453 	 * targbuf is a full SU in size, and examines the pda associated with
454 	 * the buffer to decide where within the buffer to XOR the data,
455 	 * whereas the simple XOR func just XORs the data into the start of
456 	 * the buffer. */
457 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
458 		func = pfuncs->simple;
459 		undoFunc = rf_NullNodeUndoFunc;
460 		name = pfuncs->SimpleName;
461 		if (qfuncs) {
462 			qfunc = qfuncs->simple;
463 			qname = qfuncs->SimpleName;
464 		}
465 	} else {
466 		func = pfuncs->regular;
467 		undoFunc = rf_NullNodeUndoFunc;
468 		name = pfuncs->RegularName;
469 		if (qfuncs) {
470 			qfunc = qfuncs->regular;
471 			qname = qfuncs->RegularName;
472 		}
473 	}
474 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
475 	 * nodes, and raidPtr  */
476 	if (numParityNodes == 2) {	/* double-xor case */
477 		for (i = 0; i < numParityNodes; i++) {
478 			rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
479 																	 * xor */
480 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
481 			xorNodes[i].params[0] = readDataNodes[i].params[0];
482 			xorNodes[i].params[1] = readDataNodes[i].params[1];
483 			xorNodes[i].params[2] = readParityNodes[i].params[0];
484 			xorNodes[i].params[3] = readParityNodes[i].params[1];
485 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
486 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
487 			xorNodes[i].params[6].p = raidPtr;
488 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
489 											 * target buf */
490 		}
491 	} else {
492 		/* there is only one xor node in this case */
493 		rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
494 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
495 		for (i = 0; i < numDataNodes + 1; i++) {
496 			/* set up params related to Rod and Rop nodes */
497 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
498 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
499 		}
500 		for (i = 0; i < numDataNodes; i++) {
501 			/* set up params related to Wnd and Wnp nodes */
502 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
503 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
504 		}
505 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
506 											 * at RAID information */
507 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
508 	}
509 
510 	/* initialize the log node(s) */
511 	pda = asmap->parityInfo;
512 	for (i = 0; i < numParityNodes; i++) {
513 		RF_ASSERT(pda);
514 		rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
515 		lpuNodes[i].params[0].p = pda;	/* PhysDiskAddr of parity */
516 		lpuNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer to
517 									 * parity */
518 		pda = pda->next;
519 	}
520 
521 
522 	/* Step 4. connect the nodes */
523 
524 	/* connect header to block node */
525 	RF_ASSERT(dag_h->numSuccedents == 1);
526 	RF_ASSERT(blockNode->numAntecedents == 0);
527 	dag_h->succedents[0] = blockNode;
528 
529 	/* connect block node to read old data nodes */
530 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
531 	for (i = 0; i < numDataNodes; i++) {
532 		blockNode->succedents[i] = &readDataNodes[i];
533 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
534 		readDataNodes[i].antecedents[0] = blockNode;
535 		readDataNodes[i].antType[0] = rf_control;
536 	}
537 
538 	/* connect block node to read old parity nodes */
539 	for (i = 0; i < numParityNodes; i++) {
540 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
541 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
542 		readParityNodes[i].antecedents[0] = blockNode;
543 		readParityNodes[i].antType[0] = rf_control;
544 	}
545 
546 	/* connect read old data nodes to write new data nodes */
547 	for (i = 0; i < numDataNodes; i++) {
548 		RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
549 		for (j = 0; j < numDataNodes; j++) {
550 			RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
551 			readDataNodes[i].succedents[j] = &writeDataNodes[j];
552 			writeDataNodes[j].antecedents[i] = &readDataNodes[i];
553 			if (i == j)
554 				writeDataNodes[j].antType[i] = rf_antiData;
555 			else
556 				writeDataNodes[j].antType[i] = rf_control;
557 		}
558 	}
559 
560 	/* connect read old data nodes to xor nodes */
561 	for (i = 0; i < numDataNodes; i++)
562 		for (j = 0; j < numParityNodes; j++) {
563 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
564 			readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
565 			xorNodes[j].antecedents[i] = &readDataNodes[i];
566 			xorNodes[j].antType[i] = rf_trueData;
567 		}
568 
569 	/* connect read old parity nodes to write new data nodes */
570 	for (i = 0; i < numParityNodes; i++) {
571 		RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
572 		for (j = 0; j < numDataNodes; j++) {
573 			readParityNodes[i].succedents[j] = &writeDataNodes[j];
574 			writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
575 			writeDataNodes[j].antType[numDataNodes + i] = rf_control;
576 		}
577 	}
578 
579 	/* connect read old parity nodes to xor nodes */
580 	for (i = 0; i < numParityNodes; i++)
581 		for (j = 0; j < numParityNodes; j++) {
582 			readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
583 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
584 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
585 		}
586 
587 	/* connect xor nodes to write new parity nodes */
588 	for (i = 0; i < numParityNodes; i++) {
589 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
590 		RF_ASSERT(lpuNodes[i].numAntecedents == 1);
591 		xorNodes[i].succedents[0] = &lpuNodes[i];
592 		lpuNodes[i].antecedents[0] = &xorNodes[i];
593 		lpuNodes[i].antType[0] = rf_trueData;
594 	}
595 
596 	for (i = 0; i < numDataNodes; i++) {
597 		/* connect write new data nodes to unblock node */
598 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
599 		RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
600 		writeDataNodes[i].succedents[0] = unblockNode;
601 		unblockNode->antecedents[i] = &writeDataNodes[i];
602 		unblockNode->antType[i] = rf_control;
603 	}
604 
605 	/* connect write new parity nodes to unblock node */
606 	for (i = 0; i < numParityNodes; i++) {
607 		RF_ASSERT(lpuNodes[i].numSuccedents == 1);
608 		lpuNodes[i].succedents[0] = unblockNode;
609 		unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
610 		unblockNode->antType[numDataNodes + i] = rf_control;
611 	}
612 
613 	/* connect unblock node to terminator */
614 	RF_ASSERT(unblockNode->numSuccedents == 1);
615 	RF_ASSERT(termNode->numAntecedents == 1);
616 	RF_ASSERT(termNode->numSuccedents == 0);
617 	unblockNode->succedents[0] = termNode;
618 	termNode->antecedents[0] = unblockNode;
619 	termNode->antType[0] = rf_control;
620 }
621 
622 
623 void
624 rf_CreateParityLoggingSmallWriteDAG(
625     RF_Raid_t * raidPtr,
626     RF_AccessStripeMap_t * asmap,
627     RF_DagHeader_t * dag_h,
628     void *bp,
629     RF_RaidAccessFlags_t flags,
630     RF_AllocListElem_t * allocList,
631     RF_RedFuncs_t * pfuncs,
632     RF_RedFuncs_t * qfuncs)
633 {
634 	dag_h->creator = "ParityLoggingSmallWriteDAG";
635 	rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
636 }
637 
638 
639 void
640 rf_CreateParityLoggingLargeWriteDAG(
641     RF_Raid_t * raidPtr,
642     RF_AccessStripeMap_t * asmap,
643     RF_DagHeader_t * dag_h,
644     void *bp,
645     RF_RaidAccessFlags_t flags,
646     RF_AllocListElem_t * allocList,
647     int nfaults,
648     int (*redFunc) (RF_DagNode_t *))
649 {
650 	dag_h->creator = "ParityLoggingSmallWriteDAG";
651 	rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
652 }
653 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
654