xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: rf_paritylogging.c,v 1.21 2003/12/29 05:48:13 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.21 2003/12/29 05:48:13 oster Exp $");
36 
37 #include "rf_archs.h"
38 
39 #if RF_INCLUDE_PARITYLOGGING > 0
40 
41 #include <dev/raidframe/raidframevar.h>
42 
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59 
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
62 					 * IdentifyStripe */
63 }       RF_ParityLoggingConfigInfo_t;
64 
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 
73 int
74 rf_ConfigureParityLogging(
75     RF_ShutdownList_t ** listp,
76     RF_Raid_t * raidPtr,
77     RF_Config_t * cfgPtr)
78 {
79 	int     i, j, startdisk, rc;
80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 	RF_ParityLoggingConfigInfo_t *info;
84 	RF_ParityLog_t *l = NULL, *next;
85 	caddr_t lHeapPtr;
86 
87 	if (rf_numParityRegions <= 0)
88 		return(EINVAL);
89 
90 	/*
91          * We create multiple entries on the shutdown list here, since
92          * this configuration routine is fairly complicated in and of
93          * itself, and this makes backing out of a failed configuration
94          * much simpler.
95          */
96 
97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 
99 	/* create a parity logging configuration structure */
100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 			(RF_ParityLoggingConfigInfo_t *),
102 			raidPtr->cleanupList);
103 	if (info == NULL)
104 		return (ENOMEM);
105 	layoutPtr->layoutSpecificInfo = (void *) info;
106 
107 	/* the stripe identifier must identify the disks in each stripe, IN
108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 						  (raidPtr->numCol),
111 						  raidPtr->cleanupList);
112 	if (info->stripeIdentifier == NULL)
113 		return (ENOMEM);
114 
115 	startdisk = 0;
116 	for (i = 0; i < (raidPtr->numCol); i++) {
117 		for (j = 0; j < (raidPtr->numCol); j++) {
118 			info->stripeIdentifier[i][j] = (startdisk + j) %
119 				(raidPtr->numCol - 1);
120 		}
121 		if ((--startdisk) < 0)
122 			startdisk = raidPtr->numCol - 1 - 1;
123 	}
124 
125 	/* fill in the remaining layout parameters */
126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 	layoutPtr->numParityCol = 1;
128 	layoutPtr->numParityLogCol = 1;
129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 		layoutPtr->numParityLogCol;
131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 		layoutPtr->sectorsPerStripeUnit;
133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 		layoutPtr->sectorsPerStripeUnit;
136 
137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 
140 	/* configure parity log parameters
141 	 *
142 	 * parameter               comment/constraints
143 	 * -------------------------------------------
144 	 * numParityRegions*       all regions (except possibly last)
145 	 *                         of equal size
146 	 * totalInCoreLogCapacity* amount of memory in bytes available
147 	 *                         for in-core logs (default 1 MB)
148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
149 	 *                         (1 * disk track)
150 	 * numParityLogs           total number of in-core logs,
151 	 *                         should be at least numParityRegions
152 	 * regionLogCapacity       size of a region log (except possibly
153 	 *                         last one) in sectors
154 	 * totalLogCapacity        total amount of log space in sectors
155 	 *
156 	 * where '*' denotes a user settable parameter.
157 	 * Note that logs are fixed to be the size of a disk track,
158 	 * value #defined in rf_paritylog.h
159 	 *
160 	 */
161 
162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 	if (rf_parityLogDebug)
165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 
167 	/* reduce fragmentation within a disk region by adjusting the number
168 	 * of regions in an attempt to allow an integral number of logs to fit
169 	 * into a disk region */
170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 	if (fragmentation > 0)
172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 			     raidPtr->numSectorsPerLog) < fragmentation) {
175 				rf_numParityRegions++;
176 				raidPtr->regionLogCapacity = totalLogCapacity /
177 					rf_numParityRegions;
178 				fragmentation = raidPtr->regionLogCapacity %
179 					raidPtr->numSectorsPerLog;
180 			}
181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 			     raidPtr->numSectorsPerLog) < fragmentation) {
183 				rf_numParityRegions--;
184 				raidPtr->regionLogCapacity = totalLogCapacity /
185 					rf_numParityRegions;
186 				fragmentation = raidPtr->regionLogCapacity %
187 					raidPtr->numSectorsPerLog;
188 			}
189 		}
190 	/* ensure integral number of regions per log */
191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 				      raidPtr->numSectorsPerLog) *
193 		raidPtr->numSectorsPerLog;
194 
195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 	/* to avoid deadlock, must ensure that enough logs exist for each
198 	 * region to have one simultaneously */
199 	if (raidPtr->numParityLogs < rf_numParityRegions)
200 		raidPtr->numParityLogs = rf_numParityRegions;
201 
202 	/* create region information structs */
203 	printf("Allocating %d bytes for in-core parity region info\n",
204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 	RF_Malloc(raidPtr->regionInfo,
206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 		  (RF_RegionInfo_t *));
208 	if (raidPtr->regionInfo == NULL)
209 		return (ENOMEM);
210 
211 	/* last region may not be full capacity */
212 	lastRegionCapacity = raidPtr->regionLogCapacity;
213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 	       lastRegionCapacity > totalLogCapacity)
215 		lastRegionCapacity = lastRegionCapacity -
216 			raidPtr->numSectorsPerLog;
217 
218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 		rf_numParityRegions;
220 	maxRegionParityRange = raidPtr->regionParityRange;
221 
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224     regionParityRange++; */
225 
226 	/* build pool of unused parity logs */
227 	printf("Allocating %d bytes for %d parity logs\n",
228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 	       raidPtr->bytesPerSector,
230 	       raidPtr->numParityLogs);
231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 		  (caddr_t));
234 	if (raidPtr->parityLogBufferHeap == NULL)
235 		return (ENOMEM);
236 	lHeapPtr = raidPtr->parityLogBufferHeap;
237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 	if (rc) {
239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 		return (ENOMEM);
243 	}
244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
245 		if (i == 0) {
246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
249 				RF_Free(raidPtr->parityLogBufferHeap,
250 					raidPtr->numParityLogs *
251 					raidPtr->numSectorsPerLog *
252 					raidPtr->bytesPerSector);
253 				return (ENOMEM);
254 			}
255 			l = raidPtr->parityLogPool.parityLogs;
256 		} else {
257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 				  (RF_ParityLog_t *));
259 			if (l->next == NULL) {
260 				RF_Free(raidPtr->parityLogBufferHeap,
261 					raidPtr->numParityLogs *
262 					raidPtr->numSectorsPerLog *
263 					raidPtr->bytesPerSector);
264 				for (l = raidPtr->parityLogPool.parityLogs;
265 				     l;
266 				     l = next) {
267 					next = l->next;
268 					if (l->records)
269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 					RF_Free(l, sizeof(RF_ParityLog_t));
271 				}
272 				return (ENOMEM);
273 			}
274 			l = l->next;
275 		}
276 		l->bufPtr = lHeapPtr;
277 		lHeapPtr += raidPtr->numSectorsPerLog *
278 			raidPtr->bytesPerSector;
279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 				       sizeof(RF_ParityLogRecord_t)),
281 			  (RF_ParityLogRecord_t *));
282 		if (l->records == NULL) {
283 			RF_Free(raidPtr->parityLogBufferHeap,
284 				raidPtr->numParityLogs *
285 				raidPtr->numSectorsPerLog *
286 				raidPtr->bytesPerSector);
287 			for (l = raidPtr->parityLogPool.parityLogs;
288 			     l;
289 			     l = next) {
290 				next = l->next;
291 				if (l->records)
292 					RF_Free(l->records,
293 						(raidPtr->numSectorsPerLog *
294 						 sizeof(RF_ParityLogRecord_t)));
295 				RF_Free(l, sizeof(RF_ParityLog_t));
296 			}
297 			return (ENOMEM);
298 		}
299 	}
300 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 	if (rc) {
302 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
303 		    __LINE__, rc);
304 		rf_ShutdownParityLoggingPool(raidPtr);
305 		return (rc);
306 	}
307 	/* build pool of region buffers */
308 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
309 	if (rc) {
310 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
311 		return (ENOMEM);
312 	}
313 	raidPtr->regionBufferPool.cond = 0;
314 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
315 		raidPtr->bytesPerSector;
316 	printf("regionBufferPool.bufferSize %d\n",
317 	       raidPtr->regionBufferPool.bufferSize);
318 
319 	/* for now, only one region at a time may be reintegrated */
320 	raidPtr->regionBufferPool.totalBuffers = 1;
321 
322 	raidPtr->regionBufferPool.availableBuffers =
323 		raidPtr->regionBufferPool.totalBuffers;
324 	raidPtr->regionBufferPool.availBuffersIndex = 0;
325 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
326 	printf("Allocating %d bytes for regionBufferPool\n",
327 	       (int) (raidPtr->regionBufferPool.totalBuffers *
328 		      sizeof(caddr_t)));
329 	RF_Malloc(raidPtr->regionBufferPool.buffers,
330 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
331 		  (caddr_t *));
332 	if (raidPtr->regionBufferPool.buffers == NULL) {
333 		return (ENOMEM);
334 	}
335 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
336 		printf("Allocating %d bytes for regionBufferPool#%d\n",
337 		       (int) (raidPtr->regionBufferPool.bufferSize *
338 			      sizeof(char)), i);
339 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
340 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
341 			  (caddr_t));
342 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
343 			for (j = 0; j < i; j++) {
344 				RF_Free(raidPtr->regionBufferPool.buffers[i],
345 					raidPtr->regionBufferPool.bufferSize *
346 					sizeof(char));
347 			}
348 			RF_Free(raidPtr->regionBufferPool.buffers,
349 				raidPtr->regionBufferPool.totalBuffers *
350 				sizeof(caddr_t));
351 			return (ENOMEM);
352 		}
353 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
354 		    (long) raidPtr->regionBufferPool.buffers[i]);
355 	}
356 	rc = rf_ShutdownCreate(listp,
357 			       rf_ShutdownParityLoggingRegionBufferPool,
358 			       raidPtr);
359 	if (rc) {
360 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
361 		    __LINE__, rc);
362 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
363 		return (rc);
364 	}
365 	/* build pool of parity buffers */
366 	parityBufferCapacity = maxRegionParityRange;
367 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
368 	if (rc) {
369 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
370 		return (rc);
371 	}
372 	raidPtr->parityBufferPool.cond = 0;
373 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
374 		raidPtr->bytesPerSector;
375 	printf("parityBufferPool.bufferSize %d\n",
376 	       raidPtr->parityBufferPool.bufferSize);
377 
378 	/* for now, only one region at a time may be reintegrated */
379 	raidPtr->parityBufferPool.totalBuffers = 1;
380 
381 	raidPtr->parityBufferPool.availableBuffers =
382 		raidPtr->parityBufferPool.totalBuffers;
383 	raidPtr->parityBufferPool.availBuffersIndex = 0;
384 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
385 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
386 	       (int) (raidPtr->parityBufferPool.totalBuffers *
387 		      sizeof(caddr_t)),
388 	       raidPtr->parityBufferPool.totalBuffers );
389 	RF_Malloc(raidPtr->parityBufferPool.buffers,
390 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
391 		  (caddr_t *));
392 	if (raidPtr->parityBufferPool.buffers == NULL) {
393 		return (ENOMEM);
394 	}
395 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
396 		printf("Allocating %d bytes for parityBufferPool#%d\n",
397 		       (int) (raidPtr->parityBufferPool.bufferSize *
398 			      sizeof(char)),i);
399 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
400 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
401 			  (caddr_t));
402 		if (raidPtr->parityBufferPool.buffers == NULL) {
403 			for (j = 0; j < i; j++) {
404 				RF_Free(raidPtr->parityBufferPool.buffers[i],
405 					raidPtr->regionBufferPool.bufferSize *
406 					sizeof(char));
407 			}
408 			RF_Free(raidPtr->parityBufferPool.buffers,
409 				raidPtr->regionBufferPool.totalBuffers *
410 				sizeof(caddr_t));
411 			return (ENOMEM);
412 		}
413 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
414 		    (long) raidPtr->parityBufferPool.buffers[i]);
415 	}
416 	rc = rf_ShutdownCreate(listp,
417 			       rf_ShutdownParityLoggingParityBufferPool,
418 			       raidPtr);
419 	if (rc) {
420 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
421 		    __LINE__, rc);
422 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
423 		return (rc);
424 	}
425 	/* initialize parityLogDiskQueue */
426 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
427 	raidPtr->parityLogDiskQueue.cond = 0;
428 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
429 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
430 	raidPtr->parityLogDiskQueue.bufHead = NULL;
431 	raidPtr->parityLogDiskQueue.bufTail = NULL;
432 	raidPtr->parityLogDiskQueue.reintHead = NULL;
433 	raidPtr->parityLogDiskQueue.reintTail = NULL;
434 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
435 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
436 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
437 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
438 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
439 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
440 
441 	rc = rf_ShutdownCreate(listp,
442 			       rf_ShutdownParityLoggingDiskQueue,
443 			       raidPtr);
444 	if (rc) {
445 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
446 		    __LINE__, rc);
447 		return (rc);
448 	}
449 	for (i = 0; i < rf_numParityRegions; i++) {
450 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
451 		if (rc) {
452 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
453 			for (j = 0; j < i; j++)
454 				FreeRegionInfo(raidPtr, j);
455 			RF_Free(raidPtr->regionInfo,
456 				(rf_numParityRegions *
457 				 sizeof(RF_RegionInfo_t)));
458 			return (ENOMEM);
459 		}
460 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
461 		if (rc) {
462 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
463 			for (j = 0; j < i; j++)
464 				FreeRegionInfo(raidPtr, j);
465 			RF_Free(raidPtr->regionInfo,
466 				(rf_numParityRegions *
467 				 sizeof(RF_RegionInfo_t)));
468 			return (ENOMEM);
469 		}
470 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
471 		raidPtr->regionInfo[i].regionStartAddr =
472 			raidPtr->regionLogCapacity * i;
473 		raidPtr->regionInfo[i].parityStartAddr =
474 			raidPtr->regionParityRange * i;
475 		if (i < rf_numParityRegions - 1) {
476 			raidPtr->regionInfo[i].capacity =
477 				raidPtr->regionLogCapacity;
478 			raidPtr->regionInfo[i].numSectorsParity =
479 				raidPtr->regionParityRange;
480 		} else {
481 			raidPtr->regionInfo[i].capacity =
482 				lastRegionCapacity;
483 			raidPtr->regionInfo[i].numSectorsParity =
484 				raidPtr->sectorsPerDisk -
485 				raidPtr->regionParityRange * i;
486 			if (raidPtr->regionInfo[i].numSectorsParity >
487 			    maxRegionParityRange)
488 				maxRegionParityRange =
489 					raidPtr->regionInfo[i].numSectorsParity;
490 		}
491 		raidPtr->regionInfo[i].diskCount = 0;
492 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
493 			  raidPtr->regionInfo[i].regionStartAddr <=
494 			  totalLogCapacity);
495 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
496 			  raidPtr->regionInfo[i].numSectorsParity <=
497 			  raidPtr->sectorsPerDisk);
498 		printf("Allocating %d bytes for region %d\n",
499 		       (int) (raidPtr->regionInfo[i].capacity *
500 			   sizeof(RF_DiskMap_t)), i);
501 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
502 			  (raidPtr->regionInfo[i].capacity *
503 			   sizeof(RF_DiskMap_t)),
504 			  (RF_DiskMap_t *));
505 		if (raidPtr->regionInfo[i].diskMap == NULL) {
506 			for (j = 0; j < i; j++)
507 				FreeRegionInfo(raidPtr, j);
508 			RF_Free(raidPtr->regionInfo,
509 				(rf_numParityRegions *
510 				 sizeof(RF_RegionInfo_t)));
511 			return (ENOMEM);
512 		}
513 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
514 		raidPtr->regionInfo[i].coreLog = NULL;
515 	}
516 	rc = rf_ShutdownCreate(listp,
517 			       rf_ShutdownParityLoggingRegionInfo,
518 			       raidPtr);
519 	if (rc) {
520 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
521 		    __LINE__, rc);
522 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
523 		return (rc);
524 	}
525 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
526 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
527 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
528 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
529 	if (rc) {
530 		raidPtr->parityLogDiskQueue.threadState = 0;
531 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
532 		    __FILE__, __LINE__, rc);
533 		return (ENOMEM);
534 	}
535 	/* wait for thread to start */
536 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
537 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
538 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
539 			     raidPtr->parityLogDiskQueue.mutex);
540 	}
541 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
542 
543 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
544 	if (rc) {
545 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
546 		rf_ShutdownParityLogging(raidPtr);
547 		return (rc);
548 	}
549 	if (rf_parityLogDebug) {
550 		printf("                            size of disk log in sectors: %d\n",
551 		    (int) totalLogCapacity);
552 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
553 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
554 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
555 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
556 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
557 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
558 	}
559 	rf_EnableParityLogging(raidPtr);
560 
561 	return (0);
562 }
563 
564 static void
565 FreeRegionInfo(
566     RF_Raid_t * raidPtr,
567     RF_RegionId_t regionID)
568 {
569 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
570 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
571 		(raidPtr->regionInfo[regionID].capacity *
572 		 sizeof(RF_DiskMap_t)));
573 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
574 		rf_ReleaseParityLogs(raidPtr,
575 				     raidPtr->regionInfo[regionID].coreLog);
576 		raidPtr->regionInfo[regionID].coreLog = NULL;
577 	} else {
578 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
579 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
580 	}
581 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
582 }
583 
584 
585 static void
586 FreeParityLogQueue(
587     RF_Raid_t * raidPtr,
588     RF_ParityLogQueue_t * queue)
589 {
590 	RF_ParityLog_t *l1, *l2;
591 
592 	RF_LOCK_MUTEX(queue->mutex);
593 	l1 = queue->parityLogs;
594 	while (l1) {
595 		l2 = l1;
596 		l1 = l2->next;
597 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
598 				      sizeof(RF_ParityLogRecord_t)));
599 		RF_Free(l2, sizeof(RF_ParityLog_t));
600 	}
601 	RF_UNLOCK_MUTEX(queue->mutex);
602 }
603 
604 
605 static void
606 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
607 {
608 	int     i;
609 
610 	RF_LOCK_MUTEX(queue->mutex);
611 	if (queue->availableBuffers != queue->totalBuffers) {
612 		printf("Attempt to free region queue which is still in use!\n");
613 		RF_ASSERT(0);
614 	}
615 	for (i = 0; i < queue->totalBuffers; i++)
616 		RF_Free(queue->buffers[i], queue->bufferSize);
617 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
618 	RF_UNLOCK_MUTEX(queue->mutex);
619 }
620 
621 static void
622 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
623 {
624 	RF_Raid_t *raidPtr;
625 	RF_RegionId_t i;
626 
627 	raidPtr = (RF_Raid_t *) arg;
628 	if (rf_parityLogDebug) {
629 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
630 		       raidPtr->raidid);
631 	}
632 	/* free region information structs */
633 	for (i = 0; i < rf_numParityRegions; i++)
634 		FreeRegionInfo(raidPtr, i);
635 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
636 				      sizeof(raidPtr->regionInfo)));
637 	raidPtr->regionInfo = NULL;
638 }
639 
640 static void
641 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
642 {
643 	RF_Raid_t *raidPtr;
644 
645 	raidPtr = (RF_Raid_t *) arg;
646 	if (rf_parityLogDebug) {
647 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
648 	}
649 	/* free contents of parityLogPool */
650 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
651 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
652 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
653 }
654 
655 static void
656 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
657 {
658 	RF_Raid_t *raidPtr;
659 
660 	raidPtr = (RF_Raid_t *) arg;
661 	if (rf_parityLogDebug) {
662 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
663 		       raidPtr->raidid);
664 	}
665 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
666 }
667 
668 static void
669 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
670 {
671 	RF_Raid_t *raidPtr;
672 
673 	raidPtr = (RF_Raid_t *) arg;
674 	if (rf_parityLogDebug) {
675 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
676 		       raidPtr->raidid);
677 	}
678 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
679 }
680 
681 static void
682 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
683 {
684 	RF_ParityLogData_t *d;
685 	RF_CommonLogData_t *c;
686 	RF_Raid_t *raidPtr;
687 
688 	raidPtr = (RF_Raid_t *) arg;
689 	if (rf_parityLogDebug) {
690 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
691 		       raidPtr->raidid);
692 	}
693 	/* free disk manager stuff */
694 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
695 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
696 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
697 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
698 	while (raidPtr->parityLogDiskQueue.freeDataList) {
699 		d = raidPtr->parityLogDiskQueue.freeDataList;
700 		raidPtr->parityLogDiskQueue.freeDataList =
701 			raidPtr->parityLogDiskQueue.freeDataList->next;
702 		RF_Free(d, sizeof(RF_ParityLogData_t));
703 	}
704 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
705 		c = raidPtr->parityLogDiskQueue.freeCommonList;
706 		raidPtr->parityLogDiskQueue.freeCommonList =
707 			raidPtr->parityLogDiskQueue.freeCommonList->next;
708 		RF_Free(c, sizeof(RF_CommonLogData_t));
709 	}
710 }
711 
712 static void
713 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
714 {
715 	RF_Raid_t *raidPtr;
716 
717 	raidPtr = (RF_Raid_t *) arg;
718 	if (rf_parityLogDebug) {
719 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
720 	}
721 	/* shutdown disk thread */
722 	/* This has the desirable side-effect of forcing all regions to be
723 	 * reintegrated.  This is necessary since all parity log maps are
724 	 * currently held in volatile memory. */
725 
726 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
727 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
728 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
729 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
730 	/*
731          * pLogDiskThread will now terminate when queues are cleared
732          * now wait for it to be done
733          */
734 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
735 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
736 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
737 			     raidPtr->parityLogDiskQueue.mutex);
738 	}
739 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
740 	if (rf_parityLogDebug) {
741 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
742 	}
743 }
744 
745 int
746 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
747 {
748 	return (20);
749 }
750 
751 RF_HeadSepLimit_t
752 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
753 {
754 	return (10);
755 }
756 /* return the region ID for a given RAID address */
757 RF_RegionId_t
758 rf_MapRegionIDParityLogging(
759     RF_Raid_t * raidPtr,
760     RF_SectorNum_t address)
761 {
762 	RF_RegionId_t regionID;
763 
764 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
765 	regionID = address / raidPtr->regionParityRange;
766 	if (regionID == rf_numParityRegions) {
767 		/* last region may be larger than other regions */
768 		regionID--;
769 	}
770 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
771 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
772 		  raidPtr->regionInfo[regionID].numSectorsParity);
773 	RF_ASSERT(regionID < rf_numParityRegions);
774 	return (regionID);
775 }
776 
777 
778 /* given a logical RAID sector, determine physical disk address of data */
779 void
780 rf_MapSectorParityLogging(
781     RF_Raid_t * raidPtr,
782     RF_RaidAddr_t raidSector,
783     RF_RowCol_t * col,
784     RF_SectorNum_t * diskSector,
785     int remap)
786 {
787 	RF_StripeNum_t SUID = raidSector /
788 		raidPtr->Layout.sectorsPerStripeUnit;
789 	/* *col = (SUID % (raidPtr->numCol -
790 	 * raidPtr->Layout.numParityLogCol)); */
791 	*col = SUID % raidPtr->Layout.numDataCol;
792 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
793 		raidPtr->Layout.sectorsPerStripeUnit +
794 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
795 }
796 
797 
798 /* given a logical RAID sector, determine physical disk address of parity  */
799 void
800 rf_MapParityParityLogging(
801     RF_Raid_t * raidPtr,
802     RF_RaidAddr_t raidSector,
803     RF_RowCol_t * col,
804     RF_SectorNum_t * diskSector,
805     int remap)
806 {
807 	RF_StripeNum_t SUID = raidSector /
808 		raidPtr->Layout.sectorsPerStripeUnit;
809 
810 	/* *col =
811 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
812 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
813 	*col = raidPtr->Layout.numDataCol;
814 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
815 		raidPtr->Layout.sectorsPerStripeUnit +
816 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
817 }
818 
819 
820 /* given a regionID and sector offset, determine the physical disk address of the parity log */
821 void
822 rf_MapLogParityLogging(
823     RF_Raid_t * raidPtr,
824     RF_RegionId_t regionID,
825     RF_SectorNum_t regionOffset,
826     RF_RowCol_t * col,
827     RF_SectorNum_t * startSector)
828 {
829 	*col = raidPtr->numCol - 1;
830 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
831 }
832 
833 
834 /* given a regionID, determine the physical disk address of the logged
835    parity for that region */
836 void
837 rf_MapRegionParity(
838     RF_Raid_t * raidPtr,
839     RF_RegionId_t regionID,
840     RF_RowCol_t * col,
841     RF_SectorNum_t * startSector,
842     RF_SectorCount_t * numSector)
843 {
844 	*col = raidPtr->numCol - 2;
845 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
846 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
847 }
848 
849 
850 /* given a logical RAID address, determine the participating disks in
851    the stripe */
852 void
853 rf_IdentifyStripeParityLogging(
854     RF_Raid_t * raidPtr,
855     RF_RaidAddr_t addr,
856     RF_RowCol_t ** diskids)
857 {
858 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
859 							   addr);
860 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
861 		raidPtr->Layout.layoutSpecificInfo;
862 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
863 }
864 
865 
866 void
867 rf_MapSIDToPSIDParityLogging(
868     RF_RaidLayout_t * layoutPtr,
869     RF_StripeNum_t stripeID,
870     RF_StripeNum_t * psID,
871     RF_ReconUnitNum_t * which_ru)
872 {
873 	*which_ru = 0;
874 	*psID = stripeID;
875 }
876 
877 
878 /* select an algorithm for performing an access.  Returns two pointers,
879  * one to a function that will return information about the DAG, and
880  * another to a function that will create the dag.
881  */
882 void
883 rf_ParityLoggingDagSelect(
884     RF_Raid_t * raidPtr,
885     RF_IoType_t type,
886     RF_AccessStripeMap_t * asmp,
887     RF_VoidFuncPtr * createFunc)
888 {
889 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
890 	RF_PhysDiskAddr_t *failedPDA = NULL;
891 	RF_RowCol_t fcol;
892 	RF_RowStatus_t rstat;
893 	int     prior_recon;
894 
895 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
896 
897 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
898 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
899 		*createFunc = NULL;
900 		return;
901 	} else
902 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
903 
904 			/* if under recon & already reconstructed, redirect
905 			 * the access to the spare drive and eliminate the
906 			 * failure indication */
907 			failedPDA = asmp->failedPDAs[0];
908 			fcol = failedPDA->col;
909 			rstat = raidPtr->status;
910 			prior_recon = (rstat == rf_rs_reconfigured) || (
911 			    (rstat == rf_rs_reconstructing) ?
912 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
913 			    );
914 			if (prior_recon) {
915 				RF_RowCol_t oc = failedPDA->col;
916 				RF_SectorNum_t oo = failedPDA->startSector;
917 				if (layoutPtr->map->flags &
918 				    RF_DISTRIBUTE_SPARE) {
919 					/* redirect to dist spare space */
920 
921 					if (failedPDA == asmp->parityInfo) {
922 
923 						/* parity has failed */
924 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
925 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
926 
927 						if (asmp->parityInfo->next) {	/* redir 2nd component,
928 										 * if any */
929 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
930 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
931 							p->col = failedPDA->col;
932 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
933 							    SUoffs;	/* cheating:
934 									 * startSector is not
935 									 * really a RAID address */
936 						}
937 					} else
938 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
939 							RF_ASSERT(0);	/* should not ever
940 									 * happen */
941 						} else {
942 
943 							/* data has failed */
944 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
945 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
946 
947 						}
948 
949 				} else {
950 					/* redirect to dedicated spare space */
951 
952 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
953 
954 					/* the parity may have two distinct
955 					 * components, both of which may need
956 					 * to be redirected */
957 					if (asmp->parityInfo->next) {
958 						if (failedPDA == asmp->parityInfo) {
959 							failedPDA->next->col = failedPDA->col;
960 						} else
961 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
962 								asmp->parityInfo->col = failedPDA->col;
963 							}
964 					}
965 				}
966 
967 				RF_ASSERT(failedPDA->col != -1);
968 
969 				if (rf_dagDebug || rf_mapDebug) {
970 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
971 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
972 				}
973 				asmp->numDataFailed = asmp->numParityFailed = 0;
974 			}
975 		}
976 	if (type == RF_IO_TYPE_READ) {
977 
978 		if (asmp->numDataFailed == 0)
979 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
980 		else
981 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
982 
983 	} else {
984 
985 
986 		/* if mirroring, always use large writes.  If the access
987 		 * requires two distinct parity updates, always do a small
988 		 * write.  If the stripe contains a failure but the access
989 		 * does not, do a small write. The first conditional
990 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
991 		 * less-than-or-equal rather than just a less-than because
992 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
993 		 * single-stripe-unit updates to use just one disk. */
994 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
995 			if (((asmp->numStripeUnitsAccessed <=
996 			      (layoutPtr->numDataCol / 2)) &&
997 			     (layoutPtr->numDataCol != 1)) ||
998 			    (asmp->parityInfo->next != NULL) ||
999 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
1000 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1001 			} else
1002 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1003 		} else
1004 			if (asmp->numParityFailed == 1)
1005 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1006 			else
1007 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1008 					*createFunc = NULL;
1009 				else
1010 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1011 	}
1012 }
1013 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
1014