xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: rf_paritylogging.c,v 1.28 2007/03/04 06:02:39 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.28 2007/03/04 06:02:39 christos Exp $");
36 
37 #include "rf_archs.h"
38 
39 #if RF_INCLUDE_PARITYLOGGING > 0
40 
41 #include <dev/raidframe/raidframevar.h>
42 
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59 
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
62 					 * IdentifyStripe */
63 }       RF_ParityLoggingConfigInfo_t;
64 
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 
73 int
74 rf_ConfigureParityLogging(
75     RF_ShutdownList_t ** listp,
76     RF_Raid_t * raidPtr,
77     RF_Config_t * cfgPtr)
78 {
79 	int     i, j, startdisk, rc;
80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 	RF_ParityLoggingConfigInfo_t *info;
84 	RF_ParityLog_t *l = NULL, *next;
85 	void *lHeapPtr;
86 
87 	if (rf_numParityRegions <= 0)
88 		return(EINVAL);
89 
90 	/*
91          * We create multiple entries on the shutdown list here, since
92          * this configuration routine is fairly complicated in and of
93          * itself, and this makes backing out of a failed configuration
94          * much simpler.
95          */
96 
97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 
99 	/* create a parity logging configuration structure */
100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 			(RF_ParityLoggingConfigInfo_t *),
102 			raidPtr->cleanupList);
103 	if (info == NULL)
104 		return (ENOMEM);
105 	layoutPtr->layoutSpecificInfo = (void *) info;
106 
107 	/* the stripe identifier must identify the disks in each stripe, IN
108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 						  (raidPtr->numCol),
111 						  raidPtr->cleanupList);
112 	if (info->stripeIdentifier == NULL)
113 		return (ENOMEM);
114 
115 	startdisk = 0;
116 	for (i = 0; i < (raidPtr->numCol); i++) {
117 		for (j = 0; j < (raidPtr->numCol); j++) {
118 			info->stripeIdentifier[i][j] = (startdisk + j) %
119 				(raidPtr->numCol - 1);
120 		}
121 		if ((--startdisk) < 0)
122 			startdisk = raidPtr->numCol - 1 - 1;
123 	}
124 
125 	/* fill in the remaining layout parameters */
126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 	layoutPtr->numParityCol = 1;
128 	layoutPtr->numParityLogCol = 1;
129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 		layoutPtr->numParityLogCol;
131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 		layoutPtr->sectorsPerStripeUnit;
133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 		layoutPtr->sectorsPerStripeUnit;
136 
137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 
140 	/* configure parity log parameters
141 	 *
142 	 * parameter               comment/constraints
143 	 * -------------------------------------------
144 	 * numParityRegions*       all regions (except possibly last)
145 	 *                         of equal size
146 	 * totalInCoreLogCapacity* amount of memory in bytes available
147 	 *                         for in-core logs (default 1 MB)
148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
149 	 *                         (1 * disk track)
150 	 * numParityLogs           total number of in-core logs,
151 	 *                         should be at least numParityRegions
152 	 * regionLogCapacity       size of a region log (except possibly
153 	 *                         last one) in sectors
154 	 * totalLogCapacity        total amount of log space in sectors
155 	 *
156 	 * where '*' denotes a user settable parameter.
157 	 * Note that logs are fixed to be the size of a disk track,
158 	 * value #defined in rf_paritylog.h
159 	 *
160 	 */
161 
162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 	if (rf_parityLogDebug)
165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 
167 	/* reduce fragmentation within a disk region by adjusting the number
168 	 * of regions in an attempt to allow an integral number of logs to fit
169 	 * into a disk region */
170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 	if (fragmentation > 0)
172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 			     raidPtr->numSectorsPerLog) < fragmentation) {
175 				rf_numParityRegions++;
176 				raidPtr->regionLogCapacity = totalLogCapacity /
177 					rf_numParityRegions;
178 				fragmentation = raidPtr->regionLogCapacity %
179 					raidPtr->numSectorsPerLog;
180 			}
181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 			     raidPtr->numSectorsPerLog) < fragmentation) {
183 				rf_numParityRegions--;
184 				raidPtr->regionLogCapacity = totalLogCapacity /
185 					rf_numParityRegions;
186 				fragmentation = raidPtr->regionLogCapacity %
187 					raidPtr->numSectorsPerLog;
188 			}
189 		}
190 	/* ensure integral number of regions per log */
191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 				      raidPtr->numSectorsPerLog) *
193 		raidPtr->numSectorsPerLog;
194 
195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 	/* to avoid deadlock, must ensure that enough logs exist for each
198 	 * region to have one simultaneously */
199 	if (raidPtr->numParityLogs < rf_numParityRegions)
200 		raidPtr->numParityLogs = rf_numParityRegions;
201 
202 	/* create region information structs */
203 	printf("Allocating %d bytes for in-core parity region info\n",
204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 	RF_Malloc(raidPtr->regionInfo,
206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 		  (RF_RegionInfo_t *));
208 	if (raidPtr->regionInfo == NULL)
209 		return (ENOMEM);
210 
211 	/* last region may not be full capacity */
212 	lastRegionCapacity = raidPtr->regionLogCapacity;
213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 	       lastRegionCapacity > totalLogCapacity)
215 		lastRegionCapacity = lastRegionCapacity -
216 			raidPtr->numSectorsPerLog;
217 
218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 		rf_numParityRegions;
220 	maxRegionParityRange = raidPtr->regionParityRange;
221 
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224     regionParityRange++; */
225 
226 	/* build pool of unused parity logs */
227 	printf("Allocating %d bytes for %d parity logs\n",
228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 	       raidPtr->bytesPerSector,
230 	       raidPtr->numParityLogs);
231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 		  (void *));
234 	if (raidPtr->parityLogBufferHeap == NULL)
235 		return (ENOMEM);
236 	lHeapPtr = raidPtr->parityLogBufferHeap;
237 	rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 	for (i = 0; i < raidPtr->numParityLogs; i++) {
239 		if (i == 0) {
240 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
241 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
242 			if (raidPtr->parityLogPool.parityLogs == NULL) {
243 				RF_Free(raidPtr->parityLogBufferHeap,
244 					raidPtr->numParityLogs *
245 					raidPtr->numSectorsPerLog *
246 					raidPtr->bytesPerSector);
247 				return (ENOMEM);
248 			}
249 			l = raidPtr->parityLogPool.parityLogs;
250 		} else {
251 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
252 				  (RF_ParityLog_t *));
253 			if (l->next == NULL) {
254 				RF_Free(raidPtr->parityLogBufferHeap,
255 					raidPtr->numParityLogs *
256 					raidPtr->numSectorsPerLog *
257 					raidPtr->bytesPerSector);
258 				for (l = raidPtr->parityLogPool.parityLogs;
259 				     l;
260 				     l = next) {
261 					next = l->next;
262 					if (l->records)
263 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
264 					RF_Free(l, sizeof(RF_ParityLog_t));
265 				}
266 				return (ENOMEM);
267 			}
268 			l = l->next;
269 		}
270 		l->bufPtr = lHeapPtr;
271 		lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
272 			raidPtr->bytesPerSector;
273 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
274 				       sizeof(RF_ParityLogRecord_t)),
275 			  (RF_ParityLogRecord_t *));
276 		if (l->records == NULL) {
277 			RF_Free(raidPtr->parityLogBufferHeap,
278 				raidPtr->numParityLogs *
279 				raidPtr->numSectorsPerLog *
280 				raidPtr->bytesPerSector);
281 			for (l = raidPtr->parityLogPool.parityLogs;
282 			     l;
283 			     l = next) {
284 				next = l->next;
285 				if (l->records)
286 					RF_Free(l->records,
287 						(raidPtr->numSectorsPerLog *
288 						 sizeof(RF_ParityLogRecord_t)));
289 				RF_Free(l, sizeof(RF_ParityLog_t));
290 			}
291 			return (ENOMEM);
292 		}
293 	}
294 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
295 	/* build pool of region buffers */
296 	rf_mutex_init(&raidPtr->regionBufferPool.mutex);
297 	raidPtr->regionBufferPool.cond = 0;
298 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
299 		raidPtr->bytesPerSector;
300 	printf("regionBufferPool.bufferSize %d\n",
301 	       raidPtr->regionBufferPool.bufferSize);
302 
303 	/* for now, only one region at a time may be reintegrated */
304 	raidPtr->regionBufferPool.totalBuffers = 1;
305 
306 	raidPtr->regionBufferPool.availableBuffers =
307 		raidPtr->regionBufferPool.totalBuffers;
308 	raidPtr->regionBufferPool.availBuffersIndex = 0;
309 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
310 	printf("Allocating %d bytes for regionBufferPool\n",
311 	       (int) (raidPtr->regionBufferPool.totalBuffers *
312 		      sizeof(void *)));
313 	RF_Malloc(raidPtr->regionBufferPool.buffers,
314 		  raidPtr->regionBufferPool.totalBuffers * sizeof(void *),
315 		  (void **));
316 	if (raidPtr->regionBufferPool.buffers == NULL) {
317 		return (ENOMEM);
318 	}
319 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
320 		printf("Allocating %d bytes for regionBufferPool#%d\n",
321 		       (int) (raidPtr->regionBufferPool.bufferSize *
322 			      sizeof(char)), i);
323 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
324 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
325 			  (void *));
326 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
327 			for (j = 0; j < i; j++) {
328 				RF_Free(raidPtr->regionBufferPool.buffers[i],
329 					raidPtr->regionBufferPool.bufferSize *
330 					sizeof(char));
331 			}
332 			RF_Free(raidPtr->regionBufferPool.buffers,
333 				raidPtr->regionBufferPool.totalBuffers *
334 				sizeof(void *));
335 			return (ENOMEM);
336 		}
337 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
338 		    (long) raidPtr->regionBufferPool.buffers[i]);
339 	}
340 	rf_ShutdownCreate(listp,
341 			  rf_ShutdownParityLoggingRegionBufferPool,
342 			  raidPtr);
343 	/* build pool of parity buffers */
344 	parityBufferCapacity = maxRegionParityRange;
345 	rf_mutex_init(&raidPtr->parityBufferPool.mutex);
346 	raidPtr->parityBufferPool.cond = 0;
347 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
348 		raidPtr->bytesPerSector;
349 	printf("parityBufferPool.bufferSize %d\n",
350 	       raidPtr->parityBufferPool.bufferSize);
351 
352 	/* for now, only one region at a time may be reintegrated */
353 	raidPtr->parityBufferPool.totalBuffers = 1;
354 
355 	raidPtr->parityBufferPool.availableBuffers =
356 		raidPtr->parityBufferPool.totalBuffers;
357 	raidPtr->parityBufferPool.availBuffersIndex = 0;
358 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
359 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
360 	       (int) (raidPtr->parityBufferPool.totalBuffers *
361 		      sizeof(void *)),
362 	       raidPtr->parityBufferPool.totalBuffers );
363 	RF_Malloc(raidPtr->parityBufferPool.buffers,
364 		  raidPtr->parityBufferPool.totalBuffers * sizeof(void *),
365 		  (void **));
366 	if (raidPtr->parityBufferPool.buffers == NULL) {
367 		return (ENOMEM);
368 	}
369 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
370 		printf("Allocating %d bytes for parityBufferPool#%d\n",
371 		       (int) (raidPtr->parityBufferPool.bufferSize *
372 			      sizeof(char)),i);
373 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
374 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
375 			  (void *));
376 		if (raidPtr->parityBufferPool.buffers == NULL) {
377 			for (j = 0; j < i; j++) {
378 				RF_Free(raidPtr->parityBufferPool.buffers[i],
379 					raidPtr->regionBufferPool.bufferSize *
380 					sizeof(char));
381 			}
382 			RF_Free(raidPtr->parityBufferPool.buffers,
383 				raidPtr->regionBufferPool.totalBuffers *
384 				sizeof(void *));
385 			return (ENOMEM);
386 		}
387 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
388 		    (long) raidPtr->parityBufferPool.buffers[i]);
389 	}
390 	rf_ShutdownCreate(listp,
391 			  rf_ShutdownParityLoggingParityBufferPool,
392 			  raidPtr);
393 	/* initialize parityLogDiskQueue */
394 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
395 	raidPtr->parityLogDiskQueue.cond = 0;
396 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
397 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
398 	raidPtr->parityLogDiskQueue.bufHead = NULL;
399 	raidPtr->parityLogDiskQueue.bufTail = NULL;
400 	raidPtr->parityLogDiskQueue.reintHead = NULL;
401 	raidPtr->parityLogDiskQueue.reintTail = NULL;
402 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
403 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
404 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
405 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
406 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
407 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
408 
409 	rf_ShutdownCreate(listp,
410 			  rf_ShutdownParityLoggingDiskQueue,
411 			  raidPtr);
412 	for (i = 0; i < rf_numParityRegions; i++) {
413 		rf_mutex_init(&raidPtr->regionInfo[i].mutex);
414 		rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
415 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
416 		raidPtr->regionInfo[i].regionStartAddr =
417 			raidPtr->regionLogCapacity * i;
418 		raidPtr->regionInfo[i].parityStartAddr =
419 			raidPtr->regionParityRange * i;
420 		if (i < rf_numParityRegions - 1) {
421 			raidPtr->regionInfo[i].capacity =
422 				raidPtr->regionLogCapacity;
423 			raidPtr->regionInfo[i].numSectorsParity =
424 				raidPtr->regionParityRange;
425 		} else {
426 			raidPtr->regionInfo[i].capacity =
427 				lastRegionCapacity;
428 			raidPtr->regionInfo[i].numSectorsParity =
429 				raidPtr->sectorsPerDisk -
430 				raidPtr->regionParityRange * i;
431 			if (raidPtr->regionInfo[i].numSectorsParity >
432 			    maxRegionParityRange)
433 				maxRegionParityRange =
434 					raidPtr->regionInfo[i].numSectorsParity;
435 		}
436 		raidPtr->regionInfo[i].diskCount = 0;
437 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
438 			  raidPtr->regionInfo[i].regionStartAddr <=
439 			  totalLogCapacity);
440 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
441 			  raidPtr->regionInfo[i].numSectorsParity <=
442 			  raidPtr->sectorsPerDisk);
443 		printf("Allocating %d bytes for region %d\n",
444 		       (int) (raidPtr->regionInfo[i].capacity *
445 			   sizeof(RF_DiskMap_t)), i);
446 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
447 			  (raidPtr->regionInfo[i].capacity *
448 			   sizeof(RF_DiskMap_t)),
449 			  (RF_DiskMap_t *));
450 		if (raidPtr->regionInfo[i].diskMap == NULL) {
451 			for (j = 0; j < i; j++)
452 				FreeRegionInfo(raidPtr, j);
453 			RF_Free(raidPtr->regionInfo,
454 				(rf_numParityRegions *
455 				 sizeof(RF_RegionInfo_t)));
456 			return (ENOMEM);
457 		}
458 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
459 		raidPtr->regionInfo[i].coreLog = NULL;
460 	}
461 	rf_ShutdownCreate(listp,
462 			  rf_ShutdownParityLoggingRegionInfo,
463 			  raidPtr);
464 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
465 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
466 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
467 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
468 	if (rc) {
469 		raidPtr->parityLogDiskQueue.threadState = 0;
470 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
471 		    __FILE__, __LINE__, rc);
472 		return (ENOMEM);
473 	}
474 	/* wait for thread to start */
475 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
476 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
477 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
478 			     raidPtr->parityLogDiskQueue.mutex);
479 	}
480 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
481 
482 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
483 	if (rf_parityLogDebug) {
484 		printf("                            size of disk log in sectors: %d\n",
485 		    (int) totalLogCapacity);
486 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
487 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
488 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
489 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
490 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
491 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
492 	}
493 	rf_EnableParityLogging(raidPtr);
494 
495 	return (0);
496 }
497 
498 static void
499 FreeRegionInfo(
500     RF_Raid_t * raidPtr,
501     RF_RegionId_t regionID)
502 {
503 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
504 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
505 		(raidPtr->regionInfo[regionID].capacity *
506 		 sizeof(RF_DiskMap_t)));
507 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
508 		rf_ReleaseParityLogs(raidPtr,
509 				     raidPtr->regionInfo[regionID].coreLog);
510 		raidPtr->regionInfo[regionID].coreLog = NULL;
511 	} else {
512 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
513 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
514 	}
515 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
516 }
517 
518 
519 static void
520 FreeParityLogQueue(
521     RF_Raid_t * raidPtr,
522     RF_ParityLogQueue_t * queue)
523 {
524 	RF_ParityLog_t *l1, *l2;
525 
526 	RF_LOCK_MUTEX(queue->mutex);
527 	l1 = queue->parityLogs;
528 	while (l1) {
529 		l2 = l1;
530 		l1 = l2->next;
531 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
532 				      sizeof(RF_ParityLogRecord_t)));
533 		RF_Free(l2, sizeof(RF_ParityLog_t));
534 	}
535 	RF_UNLOCK_MUTEX(queue->mutex);
536 }
537 
538 
539 static void
540 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
541 {
542 	int     i;
543 
544 	RF_LOCK_MUTEX(queue->mutex);
545 	if (queue->availableBuffers != queue->totalBuffers) {
546 		printf("Attempt to free region queue which is still in use!\n");
547 		RF_ASSERT(0);
548 	}
549 	for (i = 0; i < queue->totalBuffers; i++)
550 		RF_Free(queue->buffers[i], queue->bufferSize);
551 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
552 	RF_UNLOCK_MUTEX(queue->mutex);
553 }
554 
555 static void
556 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
557 {
558 	RF_Raid_t *raidPtr;
559 	RF_RegionId_t i;
560 
561 	raidPtr = (RF_Raid_t *) arg;
562 	if (rf_parityLogDebug) {
563 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
564 		       raidPtr->raidid);
565 	}
566 	/* free region information structs */
567 	for (i = 0; i < rf_numParityRegions; i++)
568 		FreeRegionInfo(raidPtr, i);
569 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
570 				      sizeof(raidPtr->regionInfo)));
571 	raidPtr->regionInfo = NULL;
572 }
573 
574 static void
575 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
576 {
577 	RF_Raid_t *raidPtr;
578 
579 	raidPtr = (RF_Raid_t *) arg;
580 	if (rf_parityLogDebug) {
581 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
582 	}
583 	/* free contents of parityLogPool */
584 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
585 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
586 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
587 }
588 
589 static void
590 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
591 {
592 	RF_Raid_t *raidPtr;
593 
594 	raidPtr = (RF_Raid_t *) arg;
595 	if (rf_parityLogDebug) {
596 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
597 		       raidPtr->raidid);
598 	}
599 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
600 }
601 
602 static void
603 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
604 {
605 	RF_Raid_t *raidPtr;
606 
607 	raidPtr = (RF_Raid_t *) arg;
608 	if (rf_parityLogDebug) {
609 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
610 		       raidPtr->raidid);
611 	}
612 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
613 }
614 
615 static void
616 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
617 {
618 	RF_ParityLogData_t *d;
619 	RF_CommonLogData_t *c;
620 	RF_Raid_t *raidPtr;
621 
622 	raidPtr = (RF_Raid_t *) arg;
623 	if (rf_parityLogDebug) {
624 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
625 		       raidPtr->raidid);
626 	}
627 	/* free disk manager stuff */
628 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
629 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
630 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
631 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
632 	while (raidPtr->parityLogDiskQueue.freeDataList) {
633 		d = raidPtr->parityLogDiskQueue.freeDataList;
634 		raidPtr->parityLogDiskQueue.freeDataList =
635 			raidPtr->parityLogDiskQueue.freeDataList->next;
636 		RF_Free(d, sizeof(RF_ParityLogData_t));
637 	}
638 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
639 		c = raidPtr->parityLogDiskQueue.freeCommonList;
640 		raidPtr->parityLogDiskQueue.freeCommonList =
641 			raidPtr->parityLogDiskQueue.freeCommonList->next;
642 		RF_Free(c, sizeof(RF_CommonLogData_t));
643 	}
644 }
645 
646 static void
647 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
648 {
649 	RF_Raid_t *raidPtr;
650 
651 	raidPtr = (RF_Raid_t *) arg;
652 	if (rf_parityLogDebug) {
653 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
654 	}
655 	/* shutdown disk thread */
656 	/* This has the desirable side-effect of forcing all regions to be
657 	 * reintegrated.  This is necessary since all parity log maps are
658 	 * currently held in volatile memory. */
659 
660 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
661 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
662 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
663 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
664 	/*
665          * pLogDiskThread will now terminate when queues are cleared
666          * now wait for it to be done
667          */
668 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
669 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
670 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
671 			     raidPtr->parityLogDiskQueue.mutex);
672 	}
673 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
674 	if (rf_parityLogDebug) {
675 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
676 	}
677 }
678 
679 int
680 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
681 {
682 	return (20);
683 }
684 
685 RF_HeadSepLimit_t
686 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
687 {
688 	return (10);
689 }
690 /* return the region ID for a given RAID address */
691 RF_RegionId_t
692 rf_MapRegionIDParityLogging(
693     RF_Raid_t * raidPtr,
694     RF_SectorNum_t address)
695 {
696 	RF_RegionId_t regionID;
697 
698 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
699 	regionID = address / raidPtr->regionParityRange;
700 	if (regionID == rf_numParityRegions) {
701 		/* last region may be larger than other regions */
702 		regionID--;
703 	}
704 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
705 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
706 		  raidPtr->regionInfo[regionID].numSectorsParity);
707 	RF_ASSERT(regionID < rf_numParityRegions);
708 	return (regionID);
709 }
710 
711 
712 /* given a logical RAID sector, determine physical disk address of data */
713 void
714 rf_MapSectorParityLogging(
715     RF_Raid_t * raidPtr,
716     RF_RaidAddr_t raidSector,
717     RF_RowCol_t * col,
718     RF_SectorNum_t * diskSector,
719     int remap)
720 {
721 	RF_StripeNum_t SUID = raidSector /
722 		raidPtr->Layout.sectorsPerStripeUnit;
723 	/* *col = (SUID % (raidPtr->numCol -
724 	 * raidPtr->Layout.numParityLogCol)); */
725 	*col = SUID % raidPtr->Layout.numDataCol;
726 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
727 		raidPtr->Layout.sectorsPerStripeUnit +
728 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
729 }
730 
731 
732 /* given a logical RAID sector, determine physical disk address of parity  */
733 void
734 rf_MapParityParityLogging(
735     RF_Raid_t * raidPtr,
736     RF_RaidAddr_t raidSector,
737     RF_RowCol_t * col,
738     RF_SectorNum_t * diskSector,
739     int remap)
740 {
741 	RF_StripeNum_t SUID = raidSector /
742 		raidPtr->Layout.sectorsPerStripeUnit;
743 
744 	/* *col =
745 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
746 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
747 	*col = raidPtr->Layout.numDataCol;
748 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
749 		raidPtr->Layout.sectorsPerStripeUnit +
750 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
751 }
752 
753 
754 /* given a regionID and sector offset, determine the physical disk address of the parity log */
755 void
756 rf_MapLogParityLogging(
757     RF_Raid_t * raidPtr,
758     RF_RegionId_t regionID,
759     RF_SectorNum_t regionOffset,
760     RF_RowCol_t * col,
761     RF_SectorNum_t * startSector)
762 {
763 	*col = raidPtr->numCol - 1;
764 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
765 }
766 
767 
768 /* given a regionID, determine the physical disk address of the logged
769    parity for that region */
770 void
771 rf_MapRegionParity(
772     RF_Raid_t * raidPtr,
773     RF_RegionId_t regionID,
774     RF_RowCol_t * col,
775     RF_SectorNum_t * startSector,
776     RF_SectorCount_t * numSector)
777 {
778 	*col = raidPtr->numCol - 2;
779 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
780 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
781 }
782 
783 
784 /* given a logical RAID address, determine the participating disks in
785    the stripe */
786 void
787 rf_IdentifyStripeParityLogging(
788     RF_Raid_t * raidPtr,
789     RF_RaidAddr_t addr,
790     RF_RowCol_t ** diskids)
791 {
792 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
793 							   addr);
794 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
795 		raidPtr->Layout.layoutSpecificInfo;
796 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
797 }
798 
799 
800 void
801 rf_MapSIDToPSIDParityLogging(
802     RF_RaidLayout_t * layoutPtr,
803     RF_StripeNum_t stripeID,
804     RF_StripeNum_t * psID,
805     RF_ReconUnitNum_t * which_ru)
806 {
807 	*which_ru = 0;
808 	*psID = stripeID;
809 }
810 
811 
812 /* select an algorithm for performing an access.  Returns two pointers,
813  * one to a function that will return information about the DAG, and
814  * another to a function that will create the dag.
815  */
816 void
817 rf_ParityLoggingDagSelect(
818     RF_Raid_t * raidPtr,
819     RF_IoType_t type,
820     RF_AccessStripeMap_t * asmp,
821     RF_VoidFuncPtr * createFunc)
822 {
823 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
824 	RF_PhysDiskAddr_t *failedPDA = NULL;
825 	RF_RowCol_t fcol;
826 	RF_RowStatus_t rstat;
827 	int     prior_recon;
828 
829 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
830 
831 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
832 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
833 		*createFunc = NULL;
834 		return;
835 	} else
836 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
837 
838 			/* if under recon & already reconstructed, redirect
839 			 * the access to the spare drive and eliminate the
840 			 * failure indication */
841 			failedPDA = asmp->failedPDAs[0];
842 			fcol = failedPDA->col;
843 			rstat = raidPtr->status;
844 			prior_recon = (rstat == rf_rs_reconfigured) || (
845 			    (rstat == rf_rs_reconstructing) ?
846 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
847 			    );
848 			if (prior_recon) {
849 				RF_RowCol_t oc = failedPDA->col;
850 				RF_SectorNum_t oo = failedPDA->startSector;
851 				if (layoutPtr->map->flags &
852 				    RF_DISTRIBUTE_SPARE) {
853 					/* redirect to dist spare space */
854 
855 					if (failedPDA == asmp->parityInfo) {
856 
857 						/* parity has failed */
858 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
859 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
860 
861 						if (asmp->parityInfo->next) {	/* redir 2nd component,
862 										 * if any */
863 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
864 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
865 							p->col = failedPDA->col;
866 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
867 							    SUoffs;	/* cheating:
868 									 * startSector is not
869 									 * really a RAID address */
870 						}
871 					} else
872 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
873 							RF_ASSERT(0);	/* should not ever
874 									 * happen */
875 						} else {
876 
877 							/* data has failed */
878 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
879 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
880 
881 						}
882 
883 				} else {
884 					/* redirect to dedicated spare space */
885 
886 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
887 
888 					/* the parity may have two distinct
889 					 * components, both of which may need
890 					 * to be redirected */
891 					if (asmp->parityInfo->next) {
892 						if (failedPDA == asmp->parityInfo) {
893 							failedPDA->next->col = failedPDA->col;
894 						} else
895 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
896 								asmp->parityInfo->col = failedPDA->col;
897 							}
898 					}
899 				}
900 
901 				RF_ASSERT(failedPDA->col != -1);
902 
903 				if (rf_dagDebug || rf_mapDebug) {
904 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
905 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
906 				}
907 				asmp->numDataFailed = asmp->numParityFailed = 0;
908 			}
909 		}
910 	if (type == RF_IO_TYPE_READ) {
911 
912 		if (asmp->numDataFailed == 0)
913 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
914 		else
915 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
916 
917 	} else {
918 
919 
920 		/* if mirroring, always use large writes.  If the access
921 		 * requires two distinct parity updates, always do a small
922 		 * write.  If the stripe contains a failure but the access
923 		 * does not, do a small write. The first conditional
924 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
925 		 * less-than-or-equal rather than just a less-than because
926 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
927 		 * single-stripe-unit updates to use just one disk. */
928 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
929 			if (((asmp->numStripeUnitsAccessed <=
930 			      (layoutPtr->numDataCol / 2)) &&
931 			     (layoutPtr->numDataCol != 1)) ||
932 			    (asmp->parityInfo->next != NULL) ||
933 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
934 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
935 			} else
936 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
937 		} else
938 			if (asmp->numParityFailed == 1)
939 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
940 			else
941 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
942 					*createFunc = NULL;
943 				else
944 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
945 	}
946 }
947 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
948