xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: rf_paritylogging.c,v 1.11 2001/10/04 15:58:55 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include "rf_archs.h"
35 
36 #if RF_INCLUDE_PARITYLOGGING > 0
37 
38 #include <dev/raidframe/raidframevar.h>
39 
40 #include "rf_raid.h"
41 #include "rf_dag.h"
42 #include "rf_dagutils.h"
43 #include "rf_dagfuncs.h"
44 #include "rf_dagffrd.h"
45 #include "rf_dagffwr.h"
46 #include "rf_dagdegrd.h"
47 #include "rf_dagdegwr.h"
48 #include "rf_paritylog.h"
49 #include "rf_paritylogDiskMgr.h"
50 #include "rf_paritylogging.h"
51 #include "rf_parityloggingdags.h"
52 #include "rf_general.h"
53 #include "rf_map.h"
54 #include "rf_utils.h"
55 #include "rf_shutdown.h"
56 
57 typedef struct RF_ParityLoggingConfigInfo_s {
58 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
59 					 * IdentifyStripe */
60 }       RF_ParityLoggingConfigInfo_t;
61 
62 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
63 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
64 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
65 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
66 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
69 
70 int
71 rf_ConfigureParityLogging(
72     RF_ShutdownList_t ** listp,
73     RF_Raid_t * raidPtr,
74     RF_Config_t * cfgPtr)
75 {
76 	int     i, j, startdisk, rc;
77 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
78 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
79 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
80 	RF_ParityLoggingConfigInfo_t *info;
81 	RF_ParityLog_t *l = NULL, *next;
82 	caddr_t lHeapPtr;
83 
84 	if (rf_numParityRegions <= 0)
85 		return(EINVAL);
86 
87 	/*
88          * We create multiple entries on the shutdown list here, since
89          * this configuration routine is fairly complicated in and of
90          * itself, and this makes backing out of a failed configuration
91          * much simpler.
92          */
93 
94 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
95 
96 	/* create a parity logging configuration structure */
97 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
98 			(RF_ParityLoggingConfigInfo_t *),
99 			raidPtr->cleanupList);
100 	if (info == NULL)
101 		return (ENOMEM);
102 	layoutPtr->layoutSpecificInfo = (void *) info;
103 
104 	RF_ASSERT(raidPtr->numRow == 1);
105 
106 	/* the stripe identifier must identify the disks in each stripe, IN
107 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
108 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
109 						  (raidPtr->numCol),
110 						  raidPtr->cleanupList);
111 	if (info->stripeIdentifier == NULL)
112 		return (ENOMEM);
113 
114 	startdisk = 0;
115 	for (i = 0; i < (raidPtr->numCol); i++) {
116 		for (j = 0; j < (raidPtr->numCol); j++) {
117 			info->stripeIdentifier[i][j] = (startdisk + j) %
118 				(raidPtr->numCol - 1);
119 		}
120 		if ((--startdisk) < 0)
121 			startdisk = raidPtr->numCol - 1 - 1;
122 	}
123 
124 	/* fill in the remaining layout parameters */
125 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
126 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
127 		raidPtr->logBytesPerSector;
128 	layoutPtr->numParityCol = 1;
129 	layoutPtr->numParityLogCol = 1;
130 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
131 		layoutPtr->numParityLogCol;
132 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
133 		layoutPtr->sectorsPerStripeUnit;
134 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
135 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
136 		layoutPtr->sectorsPerStripeUnit;
137 
138 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
139 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
140 
141 	/* configure parity log parameters
142 	 *
143 	 * parameter               comment/constraints
144 	 * -------------------------------------------
145 	 * numParityRegions*       all regions (except possibly last)
146 	 *                         of equal size
147 	 * totalInCoreLogCapacity* amount of memory in bytes available
148 	 *                         for in-core logs (default 1 MB)
149 	 * numSectorsPerLog#       capacity of an in-core log in sectors
150 	 *                         (1 * disk track)
151 	 * numParityLogs           total number of in-core logs,
152 	 *                         should be at least numParityRegions
153 	 * regionLogCapacity       size of a region log (except possibly
154 	 *                         last one) in sectors
155 	 * totalLogCapacity        total amount of log space in sectors
156 	 *
157 	 * where '*' denotes a user settable parameter.
158 	 * Note that logs are fixed to be the size of a disk track,
159 	 * value #defined in rf_paritylog.h
160 	 *
161 	 */
162 
163 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
164 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
165 	if (rf_parityLogDebug)
166 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
167 
168 	/* reduce fragmentation within a disk region by adjusting the number
169 	 * of regions in an attempt to allow an integral number of logs to fit
170 	 * into a disk region */
171 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
172 	if (fragmentation > 0)
173 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
174 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
175 			     raidPtr->numSectorsPerLog) < fragmentation) {
176 				rf_numParityRegions++;
177 				raidPtr->regionLogCapacity = totalLogCapacity /
178 					rf_numParityRegions;
179 				fragmentation = raidPtr->regionLogCapacity %
180 					raidPtr->numSectorsPerLog;
181 			}
182 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
183 			     raidPtr->numSectorsPerLog) < fragmentation) {
184 				rf_numParityRegions--;
185 				raidPtr->regionLogCapacity = totalLogCapacity /
186 					rf_numParityRegions;
187 				fragmentation = raidPtr->regionLogCapacity %
188 					raidPtr->numSectorsPerLog;
189 			}
190 		}
191 	/* ensure integral number of regions per log */
192 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
193 				      raidPtr->numSectorsPerLog) *
194 		raidPtr->numSectorsPerLog;
195 
196 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
197 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
198 	/* to avoid deadlock, must ensure that enough logs exist for each
199 	 * region to have one simultaneously */
200 	if (raidPtr->numParityLogs < rf_numParityRegions)
201 		raidPtr->numParityLogs = rf_numParityRegions;
202 
203 	/* create region information structs */
204 	printf("Allocating %d bytes for in-core parity region info\n",
205 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
206 	RF_Malloc(raidPtr->regionInfo,
207 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
208 		  (RF_RegionInfo_t *));
209 	if (raidPtr->regionInfo == NULL)
210 		return (ENOMEM);
211 
212 	/* last region may not be full capacity */
213 	lastRegionCapacity = raidPtr->regionLogCapacity;
214 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
215 	       lastRegionCapacity > totalLogCapacity)
216 		lastRegionCapacity = lastRegionCapacity -
217 			raidPtr->numSectorsPerLog;
218 
219 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
220 		rf_numParityRegions;
221 	maxRegionParityRange = raidPtr->regionParityRange;
222 
223 /* i can't remember why this line is in the code -wvcii 6/30/95 */
224 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
225     regionParityRange++; */
226 
227 	/* build pool of unused parity logs */
228 	printf("Allocating %d bytes for %d parity logs\n",
229 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
230 	       raidPtr->bytesPerSector,
231 	       raidPtr->numParityLogs);
232 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
233 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
234 		  (caddr_t));
235 	if (raidPtr->parityLogBufferHeap == NULL)
236 		return (ENOMEM);
237 	lHeapPtr = raidPtr->parityLogBufferHeap;
238 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
239 	if (rc) {
240 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
241 			     __FILE__, __LINE__, rc);
242 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
243 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
244 		return (ENOMEM);
245 	}
246 	for (i = 0; i < raidPtr->numParityLogs; i++) {
247 		if (i == 0) {
248 			RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
249 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
250 			if (raidPtr->parityLogPool.parityLogs == NULL) {
251 				RF_Free(raidPtr->parityLogBufferHeap,
252 					raidPtr->numParityLogs *
253 					raidPtr->numSectorsPerLog *
254 					raidPtr->bytesPerSector);
255 				return (ENOMEM);
256 			}
257 			l = raidPtr->parityLogPool.parityLogs;
258 		} else {
259 			RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
260 				  (RF_ParityLog_t *));
261 			if (l->next == NULL) {
262 				RF_Free(raidPtr->parityLogBufferHeap,
263 					raidPtr->numParityLogs *
264 					raidPtr->numSectorsPerLog *
265 					raidPtr->bytesPerSector);
266 				for (l = raidPtr->parityLogPool.parityLogs;
267 				     l;
268 				     l = next) {
269 					next = l->next;
270 					if (l->records)
271 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
272 					RF_Free(l, sizeof(RF_ParityLog_t));
273 				}
274 				return (ENOMEM);
275 			}
276 			l = l->next;
277 		}
278 		l->bufPtr = lHeapPtr;
279 		lHeapPtr += raidPtr->numSectorsPerLog *
280 			raidPtr->bytesPerSector;
281 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
282 				       sizeof(RF_ParityLogRecord_t)),
283 			  (RF_ParityLogRecord_t *));
284 		if (l->records == NULL) {
285 			RF_Free(raidPtr->parityLogBufferHeap,
286 				raidPtr->numParityLogs *
287 				raidPtr->numSectorsPerLog *
288 				raidPtr->bytesPerSector);
289 			for (l = raidPtr->parityLogPool.parityLogs;
290 			     l;
291 			     l = next) {
292 				next = l->next;
293 				if (l->records)
294 					RF_Free(l->records,
295 						(raidPtr->numSectorsPerLog *
296 						 sizeof(RF_ParityLogRecord_t)));
297 				RF_Free(l, sizeof(RF_ParityLog_t));
298 			}
299 			return (ENOMEM);
300 		}
301 	}
302 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
303 	if (rc) {
304 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
305 		    __LINE__, rc);
306 		rf_ShutdownParityLoggingPool(raidPtr);
307 		return (rc);
308 	}
309 	/* build pool of region buffers */
310 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
311 	if (rc) {
312 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
313 			     __FILE__, __LINE__, rc);
314 		return (ENOMEM);
315 	}
316 	rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
317 	if (rc) {
318 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
319 			     __FILE__, __LINE__, rc);
320 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
321 		return (ENOMEM);
322 	}
323 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
324 		raidPtr->bytesPerSector;
325 	printf("regionBufferPool.bufferSize %d\n",
326 	       raidPtr->regionBufferPool.bufferSize);
327 
328 	/* for now, only one region at a time may be reintegrated */
329 	raidPtr->regionBufferPool.totalBuffers = 1;
330 
331 	raidPtr->regionBufferPool.availableBuffers =
332 		raidPtr->regionBufferPool.totalBuffers;
333 	raidPtr->regionBufferPool.availBuffersIndex = 0;
334 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
335 	printf("Allocating %d bytes for regionBufferPool\n",
336 	       (int) (raidPtr->regionBufferPool.totalBuffers *
337 		      sizeof(caddr_t)));
338 	RF_Malloc(raidPtr->regionBufferPool.buffers,
339 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
340 		  (caddr_t *));
341 	if (raidPtr->regionBufferPool.buffers == NULL) {
342 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
343 		rf_cond_destroy(&raidPtr->regionBufferPool.cond);
344 		return (ENOMEM);
345 	}
346 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
347 		printf("Allocating %d bytes for regionBufferPool#%d\n",
348 		       (int) (raidPtr->regionBufferPool.bufferSize *
349 			      sizeof(char)), i);
350 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
351 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
352 			  (caddr_t));
353 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
354 			rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
355 			rf_cond_destroy(&raidPtr->regionBufferPool.cond);
356 			for (j = 0; j < i; j++) {
357 				RF_Free(raidPtr->regionBufferPool.buffers[i],
358 					raidPtr->regionBufferPool.bufferSize *
359 					sizeof(char));
360 			}
361 			RF_Free(raidPtr->regionBufferPool.buffers,
362 				raidPtr->regionBufferPool.totalBuffers *
363 				sizeof(caddr_t));
364 			return (ENOMEM);
365 		}
366 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
367 		    (long) raidPtr->regionBufferPool.buffers[i]);
368 	}
369 	rc = rf_ShutdownCreate(listp,
370 			       rf_ShutdownParityLoggingRegionBufferPool,
371 			       raidPtr);
372 	if (rc) {
373 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
374 		    __LINE__, rc);
375 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
376 		return (rc);
377 	}
378 	/* build pool of parity buffers */
379 	parityBufferCapacity = maxRegionParityRange;
380 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
381 	if (rc) {
382 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
383 			     __FILE__, __LINE__, rc);
384 		return (rc);
385 	}
386 	rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
387 	if (rc) {
388 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
389 			     __FILE__, __LINE__, rc);
390 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
391 		return (ENOMEM);
392 	}
393 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
394 		raidPtr->bytesPerSector;
395 	printf("parityBufferPool.bufferSize %d\n",
396 	       raidPtr->parityBufferPool.bufferSize);
397 
398 	/* for now, only one region at a time may be reintegrated */
399 	raidPtr->parityBufferPool.totalBuffers = 1;
400 
401 	raidPtr->parityBufferPool.availableBuffers =
402 		raidPtr->parityBufferPool.totalBuffers;
403 	raidPtr->parityBufferPool.availBuffersIndex = 0;
404 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
405 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
406 	       (int) (raidPtr->parityBufferPool.totalBuffers *
407 		      sizeof(caddr_t)),
408 	       raidPtr->parityBufferPool.totalBuffers );
409 	RF_Malloc(raidPtr->parityBufferPool.buffers,
410 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
411 		  (caddr_t *));
412 	if (raidPtr->parityBufferPool.buffers == NULL) {
413 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
414 		rf_cond_destroy(&raidPtr->parityBufferPool.cond);
415 		return (ENOMEM);
416 	}
417 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
418 		printf("Allocating %d bytes for parityBufferPool#%d\n",
419 		       (int) (raidPtr->parityBufferPool.bufferSize *
420 			      sizeof(char)),i);
421 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
422 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
423 			  (caddr_t));
424 		if (raidPtr->parityBufferPool.buffers == NULL) {
425 			rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
426 			rf_cond_destroy(&raidPtr->parityBufferPool.cond);
427 			for (j = 0; j < i; j++) {
428 				RF_Free(raidPtr->parityBufferPool.buffers[i],
429 					raidPtr->regionBufferPool.bufferSize *
430 					sizeof(char));
431 			}
432 			RF_Free(raidPtr->parityBufferPool.buffers,
433 				raidPtr->regionBufferPool.totalBuffers *
434 				sizeof(caddr_t));
435 			return (ENOMEM);
436 		}
437 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
438 		    (long) raidPtr->parityBufferPool.buffers[i]);
439 	}
440 	rc = rf_ShutdownCreate(listp,
441 			       rf_ShutdownParityLoggingParityBufferPool,
442 			       raidPtr);
443 	if (rc) {
444 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
445 		    __LINE__, rc);
446 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
447 		return (rc);
448 	}
449 	/* initialize parityLogDiskQueue */
450 	rc = rf_create_managed_mutex(listp,
451 				     &raidPtr->parityLogDiskQueue.mutex);
452 	if (rc) {
453 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
454 			     __FILE__, __LINE__, rc);
455 		return (rc);
456 	}
457 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
458 	if (rc) {
459 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
460 			     __FILE__, __LINE__, rc);
461 		return (rc);
462 	}
463 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
464 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
465 	raidPtr->parityLogDiskQueue.bufHead = NULL;
466 	raidPtr->parityLogDiskQueue.bufTail = NULL;
467 	raidPtr->parityLogDiskQueue.reintHead = NULL;
468 	raidPtr->parityLogDiskQueue.reintTail = NULL;
469 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
470 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
471 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
472 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
473 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
474 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
475 
476 	rc = rf_ShutdownCreate(listp,
477 			       rf_ShutdownParityLoggingDiskQueue,
478 			       raidPtr);
479 	if (rc) {
480 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
481 		    __LINE__, rc);
482 		return (rc);
483 	}
484 	for (i = 0; i < rf_numParityRegions; i++) {
485 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
486 		if (rc) {
487 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
488 			    __LINE__, rc);
489 			for (j = 0; j < i; j++)
490 				FreeRegionInfo(raidPtr, j);
491 			RF_Free(raidPtr->regionInfo,
492 				(rf_numParityRegions *
493 				 sizeof(RF_RegionInfo_t)));
494 			return (ENOMEM);
495 		}
496 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
497 		if (rc) {
498 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
499 			    __LINE__, rc);
500 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
501 			for (j = 0; j < i; j++)
502 				FreeRegionInfo(raidPtr, j);
503 			RF_Free(raidPtr->regionInfo,
504 				(rf_numParityRegions *
505 				 sizeof(RF_RegionInfo_t)));
506 			return (ENOMEM);
507 		}
508 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
509 		raidPtr->regionInfo[i].regionStartAddr =
510 			raidPtr->regionLogCapacity * i;
511 		raidPtr->regionInfo[i].parityStartAddr =
512 			raidPtr->regionParityRange * i;
513 		if (i < rf_numParityRegions - 1) {
514 			raidPtr->regionInfo[i].capacity =
515 				raidPtr->regionLogCapacity;
516 			raidPtr->regionInfo[i].numSectorsParity =
517 				raidPtr->regionParityRange;
518 		} else {
519 			raidPtr->regionInfo[i].capacity =
520 				lastRegionCapacity;
521 			raidPtr->regionInfo[i].numSectorsParity =
522 				raidPtr->sectorsPerDisk -
523 				raidPtr->regionParityRange * i;
524 			if (raidPtr->regionInfo[i].numSectorsParity >
525 			    maxRegionParityRange)
526 				maxRegionParityRange =
527 					raidPtr->regionInfo[i].numSectorsParity;
528 		}
529 		raidPtr->regionInfo[i].diskCount = 0;
530 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
531 			  raidPtr->regionInfo[i].regionStartAddr <=
532 			  totalLogCapacity);
533 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
534 			  raidPtr->regionInfo[i].numSectorsParity <=
535 			  raidPtr->sectorsPerDisk);
536 		printf("Allocating %d bytes for region %d\n",
537 		       (int) (raidPtr->regionInfo[i].capacity *
538 			   sizeof(RF_DiskMap_t)), i);
539 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
540 			  (raidPtr->regionInfo[i].capacity *
541 			   sizeof(RF_DiskMap_t)),
542 			  (RF_DiskMap_t *));
543 		if (raidPtr->regionInfo[i].diskMap == NULL) {
544 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
545 			rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
546 			for (j = 0; j < i; j++)
547 				FreeRegionInfo(raidPtr, j);
548 			RF_Free(raidPtr->regionInfo,
549 				(rf_numParityRegions *
550 				 sizeof(RF_RegionInfo_t)));
551 			return (ENOMEM);
552 		}
553 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
554 		raidPtr->regionInfo[i].coreLog = NULL;
555 	}
556 	rc = rf_ShutdownCreate(listp,
557 			       rf_ShutdownParityLoggingRegionInfo,
558 			       raidPtr);
559 	if (rc) {
560 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
561 		    __LINE__, rc);
562 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
563 		return (rc);
564 	}
565 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
566 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
567 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
568 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
569 	if (rc) {
570 		raidPtr->parityLogDiskQueue.threadState = 0;
571 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
572 		    __FILE__, __LINE__, rc);
573 		return (ENOMEM);
574 	}
575 	/* wait for thread to start */
576 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
577 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
578 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
579 			     raidPtr->parityLogDiskQueue.mutex);
580 	}
581 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
582 
583 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
584 	if (rc) {
585 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
586 		rf_ShutdownParityLogging(raidPtr);
587 		return (rc);
588 	}
589 	if (rf_parityLogDebug) {
590 		printf("                            size of disk log in sectors: %d\n",
591 		    (int) totalLogCapacity);
592 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
593 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
594 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
595 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
596 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
597 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
598 	}
599 	rf_EnableParityLogging(raidPtr);
600 
601 	return (0);
602 }
603 
604 static void
605 FreeRegionInfo(
606     RF_Raid_t * raidPtr,
607     RF_RegionId_t regionID)
608 {
609 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
610 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
611 		(raidPtr->regionInfo[regionID].capacity *
612 		 sizeof(RF_DiskMap_t)));
613 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
614 		rf_ReleaseParityLogs(raidPtr,
615 				     raidPtr->regionInfo[regionID].coreLog);
616 		raidPtr->regionInfo[regionID].coreLog = NULL;
617 	} else {
618 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
619 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
620 	}
621 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
622 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
623 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
624 }
625 
626 
627 static void
628 FreeParityLogQueue(
629     RF_Raid_t * raidPtr,
630     RF_ParityLogQueue_t * queue)
631 {
632 	RF_ParityLog_t *l1, *l2;
633 
634 	RF_LOCK_MUTEX(queue->mutex);
635 	l1 = queue->parityLogs;
636 	while (l1) {
637 		l2 = l1;
638 		l1 = l2->next;
639 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
640 				      sizeof(RF_ParityLogRecord_t)));
641 		RF_Free(l2, sizeof(RF_ParityLog_t));
642 	}
643 	RF_UNLOCK_MUTEX(queue->mutex);
644 	rf_mutex_destroy(&queue->mutex);
645 }
646 
647 
648 static void
649 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
650 {
651 	int     i;
652 
653 	RF_LOCK_MUTEX(queue->mutex);
654 	if (queue->availableBuffers != queue->totalBuffers) {
655 		printf("Attempt to free region queue which is still in use!\n");
656 		RF_ASSERT(0);
657 	}
658 	for (i = 0; i < queue->totalBuffers; i++)
659 		RF_Free(queue->buffers[i], queue->bufferSize);
660 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
661 	RF_UNLOCK_MUTEX(queue->mutex);
662 	rf_mutex_destroy(&queue->mutex);
663 }
664 
665 static void
666 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
667 {
668 	RF_Raid_t *raidPtr;
669 	RF_RegionId_t i;
670 
671 	raidPtr = (RF_Raid_t *) arg;
672 	if (rf_parityLogDebug) {
673 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
674 		       raidPtr->raidid);
675 	}
676 	/* free region information structs */
677 	for (i = 0; i < rf_numParityRegions; i++)
678 		FreeRegionInfo(raidPtr, i);
679 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
680 				      sizeof(raidPtr->regionInfo)));
681 	raidPtr->regionInfo = NULL;
682 }
683 
684 static void
685 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
686 {
687 	RF_Raid_t *raidPtr;
688 
689 	raidPtr = (RF_Raid_t *) arg;
690 	if (rf_parityLogDebug) {
691 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
692 	}
693 	/* free contents of parityLogPool */
694 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
695 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
696 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
697 }
698 
699 static void
700 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
701 {
702 	RF_Raid_t *raidPtr;
703 
704 	raidPtr = (RF_Raid_t *) arg;
705 	if (rf_parityLogDebug) {
706 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
707 		       raidPtr->raidid);
708 	}
709 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
710 }
711 
712 static void
713 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
714 {
715 	RF_Raid_t *raidPtr;
716 
717 	raidPtr = (RF_Raid_t *) arg;
718 	if (rf_parityLogDebug) {
719 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
720 		       raidPtr->raidid);
721 	}
722 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
723 }
724 
725 static void
726 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
727 {
728 	RF_ParityLogData_t *d;
729 	RF_CommonLogData_t *c;
730 	RF_Raid_t *raidPtr;
731 
732 	raidPtr = (RF_Raid_t *) arg;
733 	if (rf_parityLogDebug) {
734 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
735 		       raidPtr->raidid);
736 	}
737 	/* free disk manager stuff */
738 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
739 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
740 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
741 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
742 	while (raidPtr->parityLogDiskQueue.freeDataList) {
743 		d = raidPtr->parityLogDiskQueue.freeDataList;
744 		raidPtr->parityLogDiskQueue.freeDataList =
745 			raidPtr->parityLogDiskQueue.freeDataList->next;
746 		RF_Free(d, sizeof(RF_ParityLogData_t));
747 	}
748 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
749 		c = raidPtr->parityLogDiskQueue.freeCommonList;
750 		rf_mutex_destroy(&c->mutex);
751 		raidPtr->parityLogDiskQueue.freeCommonList =
752 			raidPtr->parityLogDiskQueue.freeCommonList->next;
753 		RF_Free(c, sizeof(RF_CommonLogData_t));
754 	}
755 }
756 
757 static void
758 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
759 {
760 	RF_Raid_t *raidPtr;
761 
762 	raidPtr = (RF_Raid_t *) arg;
763 	if (rf_parityLogDebug) {
764 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
765 	}
766 	/* shutdown disk thread */
767 	/* This has the desirable side-effect of forcing all regions to be
768 	 * reintegrated.  This is necessary since all parity log maps are
769 	 * currently held in volatile memory. */
770 
771 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
772 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
773 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
774 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
775 	/*
776          * pLogDiskThread will now terminate when queues are cleared
777          * now wait for it to be done
778          */
779 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
780 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
781 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
782 			     raidPtr->parityLogDiskQueue.mutex);
783 	}
784 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
785 	if (rf_parityLogDebug) {
786 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
787 	}
788 }
789 
790 int
791 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
792 {
793 	return (20);
794 }
795 
796 RF_HeadSepLimit_t
797 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
798 {
799 	return (10);
800 }
801 /* return the region ID for a given RAID address */
802 RF_RegionId_t
803 rf_MapRegionIDParityLogging(
804     RF_Raid_t * raidPtr,
805     RF_SectorNum_t address)
806 {
807 	RF_RegionId_t regionID;
808 
809 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
810 	regionID = address / raidPtr->regionParityRange;
811 	if (regionID == rf_numParityRegions) {
812 		/* last region may be larger than other regions */
813 		regionID--;
814 	}
815 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
816 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
817 		  raidPtr->regionInfo[regionID].numSectorsParity);
818 	RF_ASSERT(regionID < rf_numParityRegions);
819 	return (regionID);
820 }
821 
822 
823 /* given a logical RAID sector, determine physical disk address of data */
824 void
825 rf_MapSectorParityLogging(
826     RF_Raid_t * raidPtr,
827     RF_RaidAddr_t raidSector,
828     RF_RowCol_t * row,
829     RF_RowCol_t * col,
830     RF_SectorNum_t * diskSector,
831     int remap)
832 {
833 	RF_StripeNum_t SUID = raidSector /
834 		raidPtr->Layout.sectorsPerStripeUnit;
835 	*row = 0;
836 	/* *col = (SUID % (raidPtr->numCol -
837 	 * raidPtr->Layout.numParityLogCol)); */
838 	*col = SUID % raidPtr->Layout.numDataCol;
839 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
840 		raidPtr->Layout.sectorsPerStripeUnit +
841 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
842 }
843 
844 
845 /* given a logical RAID sector, determine physical disk address of parity  */
846 void
847 rf_MapParityParityLogging(
848     RF_Raid_t * raidPtr,
849     RF_RaidAddr_t raidSector,
850     RF_RowCol_t * row,
851     RF_RowCol_t * col,
852     RF_SectorNum_t * diskSector,
853     int remap)
854 {
855 	RF_StripeNum_t SUID = raidSector /
856 		raidPtr->Layout.sectorsPerStripeUnit;
857 
858 	*row = 0;
859 	/* *col =
860 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
861 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
862 	*col = raidPtr->Layout.numDataCol;
863 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
864 		raidPtr->Layout.sectorsPerStripeUnit +
865 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
866 }
867 
868 
869 /* given a regionID and sector offset, determine the physical disk address of the parity log */
870 void
871 rf_MapLogParityLogging(
872     RF_Raid_t * raidPtr,
873     RF_RegionId_t regionID,
874     RF_SectorNum_t regionOffset,
875     RF_RowCol_t * row,
876     RF_RowCol_t * col,
877     RF_SectorNum_t * startSector)
878 {
879 	*row = 0;
880 	*col = raidPtr->numCol - 1;
881 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
882 }
883 
884 
885 /* given a regionID, determine the physical disk address of the logged
886    parity for that region */
887 void
888 rf_MapRegionParity(
889     RF_Raid_t * raidPtr,
890     RF_RegionId_t regionID,
891     RF_RowCol_t * row,
892     RF_RowCol_t * col,
893     RF_SectorNum_t * startSector,
894     RF_SectorCount_t * numSector)
895 {
896 	*row = 0;
897 	*col = raidPtr->numCol - 2;
898 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
899 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
900 }
901 
902 
903 /* given a logical RAID address, determine the participating disks in
904    the stripe */
905 void
906 rf_IdentifyStripeParityLogging(
907     RF_Raid_t * raidPtr,
908     RF_RaidAddr_t addr,
909     RF_RowCol_t ** diskids,
910     RF_RowCol_t * outRow)
911 {
912 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
913 							   addr);
914 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
915 		raidPtr->Layout.layoutSpecificInfo;
916 	*outRow = 0;
917 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
918 }
919 
920 
921 void
922 rf_MapSIDToPSIDParityLogging(
923     RF_RaidLayout_t * layoutPtr,
924     RF_StripeNum_t stripeID,
925     RF_StripeNum_t * psID,
926     RF_ReconUnitNum_t * which_ru)
927 {
928 	*which_ru = 0;
929 	*psID = stripeID;
930 }
931 
932 
933 /* select an algorithm for performing an access.  Returns two pointers,
934  * one to a function that will return information about the DAG, and
935  * another to a function that will create the dag.
936  */
937 void
938 rf_ParityLoggingDagSelect(
939     RF_Raid_t * raidPtr,
940     RF_IoType_t type,
941     RF_AccessStripeMap_t * asmp,
942     RF_VoidFuncPtr * createFunc)
943 {
944 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
945 	RF_PhysDiskAddr_t *failedPDA = NULL;
946 	RF_RowCol_t frow, fcol;
947 	RF_RowStatus_t rstat;
948 	int     prior_recon;
949 
950 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
951 
952 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
953 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
954 		 /* *infoFunc = */ *createFunc = NULL;
955 		return;
956 	} else
957 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
958 
959 			/* if under recon & already reconstructed, redirect
960 			 * the access to the spare drive and eliminate the
961 			 * failure indication */
962 			failedPDA = asmp->failedPDAs[0];
963 			frow = failedPDA->row;
964 			fcol = failedPDA->col;
965 			rstat = raidPtr->status[failedPDA->row];
966 			prior_recon = (rstat == rf_rs_reconfigured) || (
967 			    (rstat == rf_rs_reconstructing) ?
968 			    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
969 			    );
970 			if (prior_recon) {
971 				RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
972 				RF_SectorNum_t oo = failedPDA->startSector;
973 				if (layoutPtr->map->flags &
974 				    RF_DISTRIBUTE_SPARE) {
975 					/* redirect to dist spare space */
976 
977 					if (failedPDA == asmp->parityInfo) {
978 
979 						/* parity has failed */
980 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
981 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
982 
983 						if (asmp->parityInfo->next) {	/* redir 2nd component,
984 										 * if any */
985 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
986 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
987 							p->row = failedPDA->row;
988 							p->col = failedPDA->col;
989 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
990 							    SUoffs;	/* cheating:
991 									 * startSector is not
992 									 * really a RAID address */
993 						}
994 					} else
995 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
996 							RF_ASSERT(0);	/* should not ever
997 									 * happen */
998 						} else {
999 
1000 							/* data has failed */
1001 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
1002 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
1003 
1004 						}
1005 
1006 				} else {
1007 					/* redirect to dedicated spare space */
1008 
1009 					failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
1010 					failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
1011 
1012 					/* the parity may have two distinct
1013 					 * components, both of which may need
1014 					 * to be redirected */
1015 					if (asmp->parityInfo->next) {
1016 						if (failedPDA == asmp->parityInfo) {
1017 							failedPDA->next->row = failedPDA->row;
1018 							failedPDA->next->col = failedPDA->col;
1019 						} else
1020 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
1021 								asmp->parityInfo->row = failedPDA->row;
1022 								asmp->parityInfo->col = failedPDA->col;
1023 							}
1024 					}
1025 				}
1026 
1027 				RF_ASSERT(failedPDA->col != -1);
1028 
1029 				if (rf_dagDebug || rf_mapDebug) {
1030 					printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
1031 					    raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
1032 				}
1033 				asmp->numDataFailed = asmp->numParityFailed = 0;
1034 			}
1035 		}
1036 	if (type == RF_IO_TYPE_READ) {
1037 
1038 		if (asmp->numDataFailed == 0)
1039 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1040 		else
1041 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1042 
1043 	} else {
1044 
1045 
1046 		/* if mirroring, always use large writes.  If the access
1047 		 * requires two distinct parity updates, always do a small
1048 		 * write.  If the stripe contains a failure but the access
1049 		 * does not, do a small write. The first conditional
1050 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
1051 		 * less-than-or-equal rather than just a less-than because
1052 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
1053 		 * single-stripe-unit updates to use just one disk. */
1054 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1055 			if (((asmp->numStripeUnitsAccessed <=
1056 			      (layoutPtr->numDataCol / 2)) &&
1057 			     (layoutPtr->numDataCol != 1)) ||
1058 			    (asmp->parityInfo->next != NULL) ||
1059 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
1060 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1061 			} else
1062 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1063 		} else
1064 			if (asmp->numParityFailed == 1)
1065 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1066 			else
1067 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1068 					*createFunc = NULL;
1069 				else
1070 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1071 	}
1072 }
1073 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
1074