xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: rf_paritylogging.c,v 1.10 2000/02/12 16:06:27 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include "rf_archs.h"
35 
36 #if RF_INCLUDE_PARITYLOGGING > 0
37 
38 #include "rf_types.h"
39 #include "rf_raid.h"
40 #include "rf_dag.h"
41 #include "rf_dagutils.h"
42 #include "rf_dagfuncs.h"
43 #include "rf_dagffrd.h"
44 #include "rf_dagffwr.h"
45 #include "rf_dagdegrd.h"
46 #include "rf_dagdegwr.h"
47 #include "rf_paritylog.h"
48 #include "rf_paritylogDiskMgr.h"
49 #include "rf_paritylogging.h"
50 #include "rf_parityloggingdags.h"
51 #include "rf_general.h"
52 #include "rf_map.h"
53 #include "rf_utils.h"
54 #include "rf_shutdown.h"
55 
56 typedef struct RF_ParityLoggingConfigInfo_s {
57 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
58 					 * IdentifyStripe */
59 }       RF_ParityLoggingConfigInfo_t;
60 
61 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
62 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
63 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
64 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
65 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
66 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
68 
69 int
70 rf_ConfigureParityLogging(
71     RF_ShutdownList_t ** listp,
72     RF_Raid_t * raidPtr,
73     RF_Config_t * cfgPtr)
74 {
75 	int     i, j, startdisk, rc;
76 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
77 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
78 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
79 	RF_ParityLoggingConfigInfo_t *info;
80 	RF_ParityLog_t *l = NULL, *next;
81 	caddr_t lHeapPtr;
82 
83 	if (rf_numParityRegions <= 0)
84 		return(EINVAL);
85 
86 	/*
87          * We create multiple entries on the shutdown list here, since
88          * this configuration routine is fairly complicated in and of
89          * itself, and this makes backing out of a failed configuration
90          * much simpler.
91          */
92 
93 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
94 
95 	/* create a parity logging configuration structure */
96 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
97 			(RF_ParityLoggingConfigInfo_t *),
98 			raidPtr->cleanupList);
99 	if (info == NULL)
100 		return (ENOMEM);
101 	layoutPtr->layoutSpecificInfo = (void *) info;
102 
103 	RF_ASSERT(raidPtr->numRow == 1);
104 
105 	/* the stripe identifier must identify the disks in each stripe, IN
106 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
107 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
108 						  (raidPtr->numCol),
109 						  raidPtr->cleanupList);
110 	if (info->stripeIdentifier == NULL)
111 		return (ENOMEM);
112 
113 	startdisk = 0;
114 	for (i = 0; i < (raidPtr->numCol); i++) {
115 		for (j = 0; j < (raidPtr->numCol); j++) {
116 			info->stripeIdentifier[i][j] = (startdisk + j) %
117 				(raidPtr->numCol - 1);
118 		}
119 		if ((--startdisk) < 0)
120 			startdisk = raidPtr->numCol - 1 - 1;
121 	}
122 
123 	/* fill in the remaining layout parameters */
124 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
125 	layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit <<
126 		raidPtr->logBytesPerSector;
127 	layoutPtr->numParityCol = 1;
128 	layoutPtr->numParityLogCol = 1;
129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 		layoutPtr->numParityLogCol;
131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 		layoutPtr->sectorsPerStripeUnit;
133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 		layoutPtr->sectorsPerStripeUnit;
136 
137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 
140 	/* configure parity log parameters
141 	 *
142 	 * parameter               comment/constraints
143 	 * -------------------------------------------
144 	 * numParityRegions*       all regions (except possibly last)
145 	 *                         of equal size
146 	 * totalInCoreLogCapacity* amount of memory in bytes available
147 	 *                         for in-core logs (default 1 MB)
148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
149 	 *                         (1 * disk track)
150 	 * numParityLogs           total number of in-core logs,
151 	 *                         should be at least numParityRegions
152 	 * regionLogCapacity       size of a region log (except possibly
153 	 *                         last one) in sectors
154 	 * totalLogCapacity        total amount of log space in sectors
155 	 *
156 	 * where '*' denotes a user settable parameter.
157 	 * Note that logs are fixed to be the size of a disk track,
158 	 * value #defined in rf_paritylog.h
159 	 *
160 	 */
161 
162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 	if (rf_parityLogDebug)
165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 
167 	/* reduce fragmentation within a disk region by adjusting the number
168 	 * of regions in an attempt to allow an integral number of logs to fit
169 	 * into a disk region */
170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 	if (fragmentation > 0)
172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 			     raidPtr->numSectorsPerLog) < fragmentation) {
175 				rf_numParityRegions++;
176 				raidPtr->regionLogCapacity = totalLogCapacity /
177 					rf_numParityRegions;
178 				fragmentation = raidPtr->regionLogCapacity %
179 					raidPtr->numSectorsPerLog;
180 			}
181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 			     raidPtr->numSectorsPerLog) < fragmentation) {
183 				rf_numParityRegions--;
184 				raidPtr->regionLogCapacity = totalLogCapacity /
185 					rf_numParityRegions;
186 				fragmentation = raidPtr->regionLogCapacity %
187 					raidPtr->numSectorsPerLog;
188 			}
189 		}
190 	/* ensure integral number of regions per log */
191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 				      raidPtr->numSectorsPerLog) *
193 		raidPtr->numSectorsPerLog;
194 
195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 	/* to avoid deadlock, must ensure that enough logs exist for each
198 	 * region to have one simultaneously */
199 	if (raidPtr->numParityLogs < rf_numParityRegions)
200 		raidPtr->numParityLogs = rf_numParityRegions;
201 
202 	/* create region information structs */
203 	printf("Allocating %d bytes for in-core parity region info\n",
204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 	RF_Malloc(raidPtr->regionInfo,
206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 		  (RF_RegionInfo_t *));
208 	if (raidPtr->regionInfo == NULL)
209 		return (ENOMEM);
210 
211 	/* last region may not be full capacity */
212 	lastRegionCapacity = raidPtr->regionLogCapacity;
213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 	       lastRegionCapacity > totalLogCapacity)
215 		lastRegionCapacity = lastRegionCapacity -
216 			raidPtr->numSectorsPerLog;
217 
218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 		rf_numParityRegions;
220 	maxRegionParityRange = raidPtr->regionParityRange;
221 
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224     regionParityRange++; */
225 
226 	/* build pool of unused parity logs */
227 	printf("Allocating %d bytes for %d parity logs\n",
228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 	       raidPtr->bytesPerSector,
230 	       raidPtr->numParityLogs);
231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 		  (caddr_t));
234 	if (raidPtr->parityLogBufferHeap == NULL)
235 		return (ENOMEM);
236 	lHeapPtr = raidPtr->parityLogBufferHeap;
237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 	if (rc) {
239 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
240 			     __FILE__, __LINE__, rc);
241 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
242 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
243 		return (ENOMEM);
244 	}
245 	for (i = 0; i < raidPtr->numParityLogs; i++) {
246 		if (i == 0) {
247 			RF_Calloc(raidPtr->parityLogPool.parityLogs, 1,
248 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
249 			if (raidPtr->parityLogPool.parityLogs == NULL) {
250 				RF_Free(raidPtr->parityLogBufferHeap,
251 					raidPtr->numParityLogs *
252 					raidPtr->numSectorsPerLog *
253 					raidPtr->bytesPerSector);
254 				return (ENOMEM);
255 			}
256 			l = raidPtr->parityLogPool.parityLogs;
257 		} else {
258 			RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t),
259 				  (RF_ParityLog_t *));
260 			if (l->next == NULL) {
261 				RF_Free(raidPtr->parityLogBufferHeap,
262 					raidPtr->numParityLogs *
263 					raidPtr->numSectorsPerLog *
264 					raidPtr->bytesPerSector);
265 				for (l = raidPtr->parityLogPool.parityLogs;
266 				     l;
267 				     l = next) {
268 					next = l->next;
269 					if (l->records)
270 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
271 					RF_Free(l, sizeof(RF_ParityLog_t));
272 				}
273 				return (ENOMEM);
274 			}
275 			l = l->next;
276 		}
277 		l->bufPtr = lHeapPtr;
278 		lHeapPtr += raidPtr->numSectorsPerLog *
279 			raidPtr->bytesPerSector;
280 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
281 				       sizeof(RF_ParityLogRecord_t)),
282 			  (RF_ParityLogRecord_t *));
283 		if (l->records == NULL) {
284 			RF_Free(raidPtr->parityLogBufferHeap,
285 				raidPtr->numParityLogs *
286 				raidPtr->numSectorsPerLog *
287 				raidPtr->bytesPerSector);
288 			for (l = raidPtr->parityLogPool.parityLogs;
289 			     l;
290 			     l = next) {
291 				next = l->next;
292 				if (l->records)
293 					RF_Free(l->records,
294 						(raidPtr->numSectorsPerLog *
295 						 sizeof(RF_ParityLogRecord_t)));
296 				RF_Free(l, sizeof(RF_ParityLog_t));
297 			}
298 			return (ENOMEM);
299 		}
300 	}
301 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
302 	if (rc) {
303 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
304 		    __LINE__, rc);
305 		rf_ShutdownParityLoggingPool(raidPtr);
306 		return (rc);
307 	}
308 	/* build pool of region buffers */
309 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
310 	if (rc) {
311 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
312 			     __FILE__, __LINE__, rc);
313 		return (ENOMEM);
314 	}
315 	rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
316 	if (rc) {
317 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
318 			     __FILE__, __LINE__, rc);
319 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
320 		return (ENOMEM);
321 	}
322 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
323 		raidPtr->bytesPerSector;
324 	printf("regionBufferPool.bufferSize %d\n",
325 	       raidPtr->regionBufferPool.bufferSize);
326 
327 	/* for now, only one region at a time may be reintegrated */
328 	raidPtr->regionBufferPool.totalBuffers = 1;
329 
330 	raidPtr->regionBufferPool.availableBuffers =
331 		raidPtr->regionBufferPool.totalBuffers;
332 	raidPtr->regionBufferPool.availBuffersIndex = 0;
333 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
334 	printf("Allocating %d bytes for regionBufferPool\n",
335 	       (int) (raidPtr->regionBufferPool.totalBuffers *
336 		      sizeof(caddr_t)));
337 	RF_Malloc(raidPtr->regionBufferPool.buffers,
338 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
339 		  (caddr_t *));
340 	if (raidPtr->regionBufferPool.buffers == NULL) {
341 		rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
342 		rf_cond_destroy(&raidPtr->regionBufferPool.cond);
343 		return (ENOMEM);
344 	}
345 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
346 		printf("Allocating %d bytes for regionBufferPool#%d\n",
347 		       (int) (raidPtr->regionBufferPool.bufferSize *
348 			      sizeof(char)), i);
349 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
350 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
351 			  (caddr_t));
352 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
353 			rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
354 			rf_cond_destroy(&raidPtr->regionBufferPool.cond);
355 			for (j = 0; j < i; j++) {
356 				RF_Free(raidPtr->regionBufferPool.buffers[i],
357 					raidPtr->regionBufferPool.bufferSize *
358 					sizeof(char));
359 			}
360 			RF_Free(raidPtr->regionBufferPool.buffers,
361 				raidPtr->regionBufferPool.totalBuffers *
362 				sizeof(caddr_t));
363 			return (ENOMEM);
364 		}
365 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
366 		    (long) raidPtr->regionBufferPool.buffers[i]);
367 	}
368 	rc = rf_ShutdownCreate(listp,
369 			       rf_ShutdownParityLoggingRegionBufferPool,
370 			       raidPtr);
371 	if (rc) {
372 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
373 		    __LINE__, rc);
374 		rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
375 		return (rc);
376 	}
377 	/* build pool of parity buffers */
378 	parityBufferCapacity = maxRegionParityRange;
379 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
380 	if (rc) {
381 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
382 			     __FILE__, __LINE__, rc);
383 		return (rc);
384 	}
385 	rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
386 	if (rc) {
387 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
388 			     __FILE__, __LINE__, rc);
389 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
390 		return (ENOMEM);
391 	}
392 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
393 		raidPtr->bytesPerSector;
394 	printf("parityBufferPool.bufferSize %d\n",
395 	       raidPtr->parityBufferPool.bufferSize);
396 
397 	/* for now, only one region at a time may be reintegrated */
398 	raidPtr->parityBufferPool.totalBuffers = 1;
399 
400 	raidPtr->parityBufferPool.availableBuffers =
401 		raidPtr->parityBufferPool.totalBuffers;
402 	raidPtr->parityBufferPool.availBuffersIndex = 0;
403 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
404 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
405 	       (int) (raidPtr->parityBufferPool.totalBuffers *
406 		      sizeof(caddr_t)),
407 	       raidPtr->parityBufferPool.totalBuffers );
408 	RF_Malloc(raidPtr->parityBufferPool.buffers,
409 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
410 		  (caddr_t *));
411 	if (raidPtr->parityBufferPool.buffers == NULL) {
412 		rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
413 		rf_cond_destroy(&raidPtr->parityBufferPool.cond);
414 		return (ENOMEM);
415 	}
416 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
417 		printf("Allocating %d bytes for parityBufferPool#%d\n",
418 		       (int) (raidPtr->parityBufferPool.bufferSize *
419 			      sizeof(char)),i);
420 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
421 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
422 			  (caddr_t));
423 		if (raidPtr->parityBufferPool.buffers == NULL) {
424 			rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
425 			rf_cond_destroy(&raidPtr->parityBufferPool.cond);
426 			for (j = 0; j < i; j++) {
427 				RF_Free(raidPtr->parityBufferPool.buffers[i],
428 					raidPtr->regionBufferPool.bufferSize *
429 					sizeof(char));
430 			}
431 			RF_Free(raidPtr->parityBufferPool.buffers,
432 				raidPtr->regionBufferPool.totalBuffers *
433 				sizeof(caddr_t));
434 			return (ENOMEM);
435 		}
436 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
437 		    (long) raidPtr->parityBufferPool.buffers[i]);
438 	}
439 	rc = rf_ShutdownCreate(listp,
440 			       rf_ShutdownParityLoggingParityBufferPool,
441 			       raidPtr);
442 	if (rc) {
443 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
444 		    __LINE__, rc);
445 		rf_ShutdownParityLoggingParityBufferPool(raidPtr);
446 		return (rc);
447 	}
448 	/* initialize parityLogDiskQueue */
449 	rc = rf_create_managed_mutex(listp,
450 				     &raidPtr->parityLogDiskQueue.mutex);
451 	if (rc) {
452 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n",
453 			     __FILE__, __LINE__, rc);
454 		return (rc);
455 	}
456 	rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
457 	if (rc) {
458 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n",
459 			     __FILE__, __LINE__, rc);
460 		return (rc);
461 	}
462 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
463 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
464 	raidPtr->parityLogDiskQueue.bufHead = NULL;
465 	raidPtr->parityLogDiskQueue.bufTail = NULL;
466 	raidPtr->parityLogDiskQueue.reintHead = NULL;
467 	raidPtr->parityLogDiskQueue.reintTail = NULL;
468 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
469 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
470 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
471 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
472 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
473 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
474 
475 	rc = rf_ShutdownCreate(listp,
476 			       rf_ShutdownParityLoggingDiskQueue,
477 			       raidPtr);
478 	if (rc) {
479 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
480 		    __LINE__, rc);
481 		return (rc);
482 	}
483 	for (i = 0; i < rf_numParityRegions; i++) {
484 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
485 		if (rc) {
486 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
487 			    __LINE__, rc);
488 			for (j = 0; j < i; j++)
489 				FreeRegionInfo(raidPtr, j);
490 			RF_Free(raidPtr->regionInfo,
491 				(rf_numParityRegions *
492 				 sizeof(RF_RegionInfo_t)));
493 			return (ENOMEM);
494 		}
495 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
496 		if (rc) {
497 			RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
498 			    __LINE__, rc);
499 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
500 			for (j = 0; j < i; j++)
501 				FreeRegionInfo(raidPtr, j);
502 			RF_Free(raidPtr->regionInfo,
503 				(rf_numParityRegions *
504 				 sizeof(RF_RegionInfo_t)));
505 			return (ENOMEM);
506 		}
507 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
508 		raidPtr->regionInfo[i].regionStartAddr =
509 			raidPtr->regionLogCapacity * i;
510 		raidPtr->regionInfo[i].parityStartAddr =
511 			raidPtr->regionParityRange * i;
512 		if (i < rf_numParityRegions - 1) {
513 			raidPtr->regionInfo[i].capacity =
514 				raidPtr->regionLogCapacity;
515 			raidPtr->regionInfo[i].numSectorsParity =
516 				raidPtr->regionParityRange;
517 		} else {
518 			raidPtr->regionInfo[i].capacity =
519 				lastRegionCapacity;
520 			raidPtr->regionInfo[i].numSectorsParity =
521 				raidPtr->sectorsPerDisk -
522 				raidPtr->regionParityRange * i;
523 			if (raidPtr->regionInfo[i].numSectorsParity >
524 			    maxRegionParityRange)
525 				maxRegionParityRange =
526 					raidPtr->regionInfo[i].numSectorsParity;
527 		}
528 		raidPtr->regionInfo[i].diskCount = 0;
529 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
530 			  raidPtr->regionInfo[i].regionStartAddr <=
531 			  totalLogCapacity);
532 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
533 			  raidPtr->regionInfo[i].numSectorsParity <=
534 			  raidPtr->sectorsPerDisk);
535 		printf("Allocating %d bytes for region %d\n",
536 		       (int) (raidPtr->regionInfo[i].capacity *
537 			   sizeof(RF_DiskMap_t)), i);
538 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
539 			  (raidPtr->regionInfo[i].capacity *
540 			   sizeof(RF_DiskMap_t)),
541 			  (RF_DiskMap_t *));
542 		if (raidPtr->regionInfo[i].diskMap == NULL) {
543 			rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
544 			rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
545 			for (j = 0; j < i; j++)
546 				FreeRegionInfo(raidPtr, j);
547 			RF_Free(raidPtr->regionInfo,
548 				(rf_numParityRegions *
549 				 sizeof(RF_RegionInfo_t)));
550 			return (ENOMEM);
551 		}
552 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
553 		raidPtr->regionInfo[i].coreLog = NULL;
554 	}
555 	rc = rf_ShutdownCreate(listp,
556 			       rf_ShutdownParityLoggingRegionInfo,
557 			       raidPtr);
558 	if (rc) {
559 		RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
560 		    __LINE__, rc);
561 		rf_ShutdownParityLoggingRegionInfo(raidPtr);
562 		return (rc);
563 	}
564 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
565 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
566 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
567 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
568 	if (rc) {
569 		raidPtr->parityLogDiskQueue.threadState = 0;
570 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
571 		    __FILE__, __LINE__, rc);
572 		return (ENOMEM);
573 	}
574 	/* wait for thread to start */
575 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
576 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
577 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
578 			     raidPtr->parityLogDiskQueue.mutex);
579 	}
580 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
581 
582 	rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
583 	if (rc) {
584 		RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
585 		rf_ShutdownParityLogging(raidPtr);
586 		return (rc);
587 	}
588 	if (rf_parityLogDebug) {
589 		printf("                            size of disk log in sectors: %d\n",
590 		    (int) totalLogCapacity);
591 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
592 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
593 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
594 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
595 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
596 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
597 	}
598 	rf_EnableParityLogging(raidPtr);
599 
600 	return (0);
601 }
602 
603 static void
604 FreeRegionInfo(
605     RF_Raid_t * raidPtr,
606     RF_RegionId_t regionID)
607 {
608 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
609 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
610 		(raidPtr->regionInfo[regionID].capacity *
611 		 sizeof(RF_DiskMap_t)));
612 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
613 		rf_ReleaseParityLogs(raidPtr,
614 				     raidPtr->regionInfo[regionID].coreLog);
615 		raidPtr->regionInfo[regionID].coreLog = NULL;
616 	} else {
617 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
618 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
619 	}
620 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
621 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
622 	rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
623 }
624 
625 
626 static void
627 FreeParityLogQueue(
628     RF_Raid_t * raidPtr,
629     RF_ParityLogQueue_t * queue)
630 {
631 	RF_ParityLog_t *l1, *l2;
632 
633 	RF_LOCK_MUTEX(queue->mutex);
634 	l1 = queue->parityLogs;
635 	while (l1) {
636 		l2 = l1;
637 		l1 = l2->next;
638 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
639 				      sizeof(RF_ParityLogRecord_t)));
640 		RF_Free(l2, sizeof(RF_ParityLog_t));
641 	}
642 	RF_UNLOCK_MUTEX(queue->mutex);
643 	rf_mutex_destroy(&queue->mutex);
644 }
645 
646 
647 static void
648 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
649 {
650 	int     i;
651 
652 	RF_LOCK_MUTEX(queue->mutex);
653 	if (queue->availableBuffers != queue->totalBuffers) {
654 		printf("Attempt to free region queue which is still in use!\n");
655 		RF_ASSERT(0);
656 	}
657 	for (i = 0; i < queue->totalBuffers; i++)
658 		RF_Free(queue->buffers[i], queue->bufferSize);
659 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
660 	RF_UNLOCK_MUTEX(queue->mutex);
661 	rf_mutex_destroy(&queue->mutex);
662 }
663 
664 static void
665 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
666 {
667 	RF_Raid_t *raidPtr;
668 	RF_RegionId_t i;
669 
670 	raidPtr = (RF_Raid_t *) arg;
671 	if (rf_parityLogDebug) {
672 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
673 		       raidPtr->raidid);
674 	}
675 	/* free region information structs */
676 	for (i = 0; i < rf_numParityRegions; i++)
677 		FreeRegionInfo(raidPtr, i);
678 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
679 				      sizeof(raidPtr->regionInfo)));
680 	raidPtr->regionInfo = NULL;
681 }
682 
683 static void
684 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
685 {
686 	RF_Raid_t *raidPtr;
687 
688 	raidPtr = (RF_Raid_t *) arg;
689 	if (rf_parityLogDebug) {
690 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
691 	}
692 	/* free contents of parityLogPool */
693 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
694 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
695 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
696 }
697 
698 static void
699 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
700 {
701 	RF_Raid_t *raidPtr;
702 
703 	raidPtr = (RF_Raid_t *) arg;
704 	if (rf_parityLogDebug) {
705 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
706 		       raidPtr->raidid);
707 	}
708 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
709 }
710 
711 static void
712 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
713 {
714 	RF_Raid_t *raidPtr;
715 
716 	raidPtr = (RF_Raid_t *) arg;
717 	if (rf_parityLogDebug) {
718 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
719 		       raidPtr->raidid);
720 	}
721 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
722 }
723 
724 static void
725 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
726 {
727 	RF_ParityLogData_t *d;
728 	RF_CommonLogData_t *c;
729 	RF_Raid_t *raidPtr;
730 
731 	raidPtr = (RF_Raid_t *) arg;
732 	if (rf_parityLogDebug) {
733 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
734 		       raidPtr->raidid);
735 	}
736 	/* free disk manager stuff */
737 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
738 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
739 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
740 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
741 	while (raidPtr->parityLogDiskQueue.freeDataList) {
742 		d = raidPtr->parityLogDiskQueue.freeDataList;
743 		raidPtr->parityLogDiskQueue.freeDataList =
744 			raidPtr->parityLogDiskQueue.freeDataList->next;
745 		RF_Free(d, sizeof(RF_ParityLogData_t));
746 	}
747 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
748 		c = raidPtr->parityLogDiskQueue.freeCommonList;
749 		rf_mutex_destroy(&c->mutex);
750 		raidPtr->parityLogDiskQueue.freeCommonList =
751 			raidPtr->parityLogDiskQueue.freeCommonList->next;
752 		RF_Free(c, sizeof(RF_CommonLogData_t));
753 	}
754 }
755 
756 static void
757 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
758 {
759 	RF_Raid_t *raidPtr;
760 
761 	raidPtr = (RF_Raid_t *) arg;
762 	if (rf_parityLogDebug) {
763 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
764 	}
765 	/* shutdown disk thread */
766 	/* This has the desirable side-effect of forcing all regions to be
767 	 * reintegrated.  This is necessary since all parity log maps are
768 	 * currently held in volatile memory. */
769 
770 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
771 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
772 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
773 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
774 	/*
775          * pLogDiskThread will now terminate when queues are cleared
776          * now wait for it to be done
777          */
778 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
779 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
780 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
781 			     raidPtr->parityLogDiskQueue.mutex);
782 	}
783 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
784 	if (rf_parityLogDebug) {
785 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
786 	}
787 }
788 
789 int
790 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
791 {
792 	return (20);
793 }
794 
795 RF_HeadSepLimit_t
796 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
797 {
798 	return (10);
799 }
800 /* return the region ID for a given RAID address */
801 RF_RegionId_t
802 rf_MapRegionIDParityLogging(
803     RF_Raid_t * raidPtr,
804     RF_SectorNum_t address)
805 {
806 	RF_RegionId_t regionID;
807 
808 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
809 	regionID = address / raidPtr->regionParityRange;
810 	if (regionID == rf_numParityRegions) {
811 		/* last region may be larger than other regions */
812 		regionID--;
813 	}
814 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
815 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
816 		  raidPtr->regionInfo[regionID].numSectorsParity);
817 	RF_ASSERT(regionID < rf_numParityRegions);
818 	return (regionID);
819 }
820 
821 
822 /* given a logical RAID sector, determine physical disk address of data */
823 void
824 rf_MapSectorParityLogging(
825     RF_Raid_t * raidPtr,
826     RF_RaidAddr_t raidSector,
827     RF_RowCol_t * row,
828     RF_RowCol_t * col,
829     RF_SectorNum_t * diskSector,
830     int remap)
831 {
832 	RF_StripeNum_t SUID = raidSector /
833 		raidPtr->Layout.sectorsPerStripeUnit;
834 	*row = 0;
835 	/* *col = (SUID % (raidPtr->numCol -
836 	 * raidPtr->Layout.numParityLogCol)); */
837 	*col = SUID % raidPtr->Layout.numDataCol;
838 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
839 		raidPtr->Layout.sectorsPerStripeUnit +
840 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
841 }
842 
843 
844 /* given a logical RAID sector, determine physical disk address of parity  */
845 void
846 rf_MapParityParityLogging(
847     RF_Raid_t * raidPtr,
848     RF_RaidAddr_t raidSector,
849     RF_RowCol_t * row,
850     RF_RowCol_t * col,
851     RF_SectorNum_t * diskSector,
852     int remap)
853 {
854 	RF_StripeNum_t SUID = raidSector /
855 		raidPtr->Layout.sectorsPerStripeUnit;
856 
857 	*row = 0;
858 	/* *col =
859 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
860 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
861 	*col = raidPtr->Layout.numDataCol;
862 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
863 		raidPtr->Layout.sectorsPerStripeUnit +
864 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
865 }
866 
867 
868 /* given a regionID and sector offset, determine the physical disk address of the parity log */
869 void
870 rf_MapLogParityLogging(
871     RF_Raid_t * raidPtr,
872     RF_RegionId_t regionID,
873     RF_SectorNum_t regionOffset,
874     RF_RowCol_t * row,
875     RF_RowCol_t * col,
876     RF_SectorNum_t * startSector)
877 {
878 	*row = 0;
879 	*col = raidPtr->numCol - 1;
880 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
881 }
882 
883 
884 /* given a regionID, determine the physical disk address of the logged
885    parity for that region */
886 void
887 rf_MapRegionParity(
888     RF_Raid_t * raidPtr,
889     RF_RegionId_t regionID,
890     RF_RowCol_t * row,
891     RF_RowCol_t * col,
892     RF_SectorNum_t * startSector,
893     RF_SectorCount_t * numSector)
894 {
895 	*row = 0;
896 	*col = raidPtr->numCol - 2;
897 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
898 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
899 }
900 
901 
902 /* given a logical RAID address, determine the participating disks in
903    the stripe */
904 void
905 rf_IdentifyStripeParityLogging(
906     RF_Raid_t * raidPtr,
907     RF_RaidAddr_t addr,
908     RF_RowCol_t ** diskids,
909     RF_RowCol_t * outRow)
910 {
911 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
912 							   addr);
913 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
914 		raidPtr->Layout.layoutSpecificInfo;
915 	*outRow = 0;
916 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
917 }
918 
919 
920 void
921 rf_MapSIDToPSIDParityLogging(
922     RF_RaidLayout_t * layoutPtr,
923     RF_StripeNum_t stripeID,
924     RF_StripeNum_t * psID,
925     RF_ReconUnitNum_t * which_ru)
926 {
927 	*which_ru = 0;
928 	*psID = stripeID;
929 }
930 
931 
932 /* select an algorithm for performing an access.  Returns two pointers,
933  * one to a function that will return information about the DAG, and
934  * another to a function that will create the dag.
935  */
936 void
937 rf_ParityLoggingDagSelect(
938     RF_Raid_t * raidPtr,
939     RF_IoType_t type,
940     RF_AccessStripeMap_t * asmp,
941     RF_VoidFuncPtr * createFunc)
942 {
943 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
944 	RF_PhysDiskAddr_t *failedPDA = NULL;
945 	RF_RowCol_t frow, fcol;
946 	RF_RowStatus_t rstat;
947 	int     prior_recon;
948 
949 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
950 
951 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
952 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
953 		 /* *infoFunc = */ *createFunc = NULL;
954 		return;
955 	} else
956 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
957 
958 			/* if under recon & already reconstructed, redirect
959 			 * the access to the spare drive and eliminate the
960 			 * failure indication */
961 			failedPDA = asmp->failedPDAs[0];
962 			frow = failedPDA->row;
963 			fcol = failedPDA->col;
964 			rstat = raidPtr->status[failedPDA->row];
965 			prior_recon = (rstat == rf_rs_reconfigured) || (
966 			    (rstat == rf_rs_reconstructing) ?
967 			    rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
968 			    );
969 			if (prior_recon) {
970 				RF_RowCol_t or = failedPDA->row, oc = failedPDA->col;
971 				RF_SectorNum_t oo = failedPDA->startSector;
972 				if (layoutPtr->map->flags &
973 				    RF_DISTRIBUTE_SPARE) {
974 					/* redirect to dist spare space */
975 
976 					if (failedPDA == asmp->parityInfo) {
977 
978 						/* parity has failed */
979 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
980 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
981 
982 						if (asmp->parityInfo->next) {	/* redir 2nd component,
983 										 * if any */
984 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
985 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
986 							p->row = failedPDA->row;
987 							p->col = failedPDA->col;
988 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
989 							    SUoffs;	/* cheating:
990 									 * startSector is not
991 									 * really a RAID address */
992 						}
993 					} else
994 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
995 							RF_ASSERT(0);	/* should not ever
996 									 * happen */
997 						} else {
998 
999 							/* data has failed */
1000 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->row,
1001 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
1002 
1003 						}
1004 
1005 				} else {
1006 					/* redirect to dedicated spare space */
1007 
1008 					failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
1009 					failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
1010 
1011 					/* the parity may have two distinct
1012 					 * components, both of which may need
1013 					 * to be redirected */
1014 					if (asmp->parityInfo->next) {
1015 						if (failedPDA == asmp->parityInfo) {
1016 							failedPDA->next->row = failedPDA->row;
1017 							failedPDA->next->col = failedPDA->col;
1018 						} else
1019 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
1020 								asmp->parityInfo->row = failedPDA->row;
1021 								asmp->parityInfo->col = failedPDA->col;
1022 							}
1023 					}
1024 				}
1025 
1026 				RF_ASSERT(failedPDA->col != -1);
1027 
1028 				if (rf_dagDebug || rf_mapDebug) {
1029 					printf("raid%d: Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
1030 					    raidPtr->raidid, type, or, oc, (long) oo, failedPDA->row, failedPDA->col, (long) failedPDA->startSector);
1031 				}
1032 				asmp->numDataFailed = asmp->numParityFailed = 0;
1033 			}
1034 		}
1035 	if (type == RF_IO_TYPE_READ) {
1036 
1037 		if (asmp->numDataFailed == 0)
1038 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
1039 		else
1040 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
1041 
1042 	} else {
1043 
1044 
1045 		/* if mirroring, always use large writes.  If the access
1046 		 * requires two distinct parity updates, always do a small
1047 		 * write.  If the stripe contains a failure but the access
1048 		 * does not, do a small write. The first conditional
1049 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
1050 		 * less-than-or-equal rather than just a less-than because
1051 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
1052 		 * single-stripe-unit updates to use just one disk. */
1053 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
1054 			if (((asmp->numStripeUnitsAccessed <=
1055 			      (layoutPtr->numDataCol / 2)) &&
1056 			     (layoutPtr->numDataCol != 1)) ||
1057 			    (asmp->parityInfo->next != NULL) ||
1058 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
1059 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
1060 			} else
1061 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
1062 		} else
1063 			if (asmp->numParityFailed == 1)
1064 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
1065 			else
1066 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
1067 					*createFunc = NULL;
1068 				else
1069 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
1070 	}
1071 }
1072 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
1073