xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $");
36 
37 #include "rf_archs.h"
38 
39 #if RF_INCLUDE_PARITYLOGGING > 0
40 
41 #include <dev/raidframe/raidframevar.h>
42 
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59 
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
62 					 * IdentifyStripe */
63 }       RF_ParityLoggingConfigInfo_t;
64 
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 
73 int
74 rf_ConfigureParityLogging(
75     RF_ShutdownList_t ** listp,
76     RF_Raid_t * raidPtr,
77     RF_Config_t * cfgPtr)
78 {
79 	int     i, j, startdisk, rc;
80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 	RF_ParityLoggingConfigInfo_t *info;
84 	RF_ParityLog_t *l = NULL, *next;
85 	caddr_t lHeapPtr;
86 
87 	if (rf_numParityRegions <= 0)
88 		return(EINVAL);
89 
90 	/*
91          * We create multiple entries on the shutdown list here, since
92          * this configuration routine is fairly complicated in and of
93          * itself, and this makes backing out of a failed configuration
94          * much simpler.
95          */
96 
97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 
99 	/* create a parity logging configuration structure */
100 	RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 			(RF_ParityLoggingConfigInfo_t *),
102 			raidPtr->cleanupList);
103 	if (info == NULL)
104 		return (ENOMEM);
105 	layoutPtr->layoutSpecificInfo = (void *) info;
106 
107 	/* the stripe identifier must identify the disks in each stripe, IN
108 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 						  (raidPtr->numCol),
111 						  raidPtr->cleanupList);
112 	if (info->stripeIdentifier == NULL)
113 		return (ENOMEM);
114 
115 	startdisk = 0;
116 	for (i = 0; i < (raidPtr->numCol); i++) {
117 		for (j = 0; j < (raidPtr->numCol); j++) {
118 			info->stripeIdentifier[i][j] = (startdisk + j) %
119 				(raidPtr->numCol - 1);
120 		}
121 		if ((--startdisk) < 0)
122 			startdisk = raidPtr->numCol - 1 - 1;
123 	}
124 
125 	/* fill in the remaining layout parameters */
126 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 	layoutPtr->numParityCol = 1;
128 	layoutPtr->numParityLogCol = 1;
129 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 		layoutPtr->numParityLogCol;
131 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 		layoutPtr->sectorsPerStripeUnit;
133 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 		layoutPtr->sectorsPerStripeUnit;
136 
137 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
139 
140 	/* configure parity log parameters
141 	 *
142 	 * parameter               comment/constraints
143 	 * -------------------------------------------
144 	 * numParityRegions*       all regions (except possibly last)
145 	 *                         of equal size
146 	 * totalInCoreLogCapacity* amount of memory in bytes available
147 	 *                         for in-core logs (default 1 MB)
148 	 * numSectorsPerLog#       capacity of an in-core log in sectors
149 	 *                         (1 * disk track)
150 	 * numParityLogs           total number of in-core logs,
151 	 *                         should be at least numParityRegions
152 	 * regionLogCapacity       size of a region log (except possibly
153 	 *                         last one) in sectors
154 	 * totalLogCapacity        total amount of log space in sectors
155 	 *
156 	 * where '*' denotes a user settable parameter.
157 	 * Note that logs are fixed to be the size of a disk track,
158 	 * value #defined in rf_paritylog.h
159 	 *
160 	 */
161 
162 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 	if (rf_parityLogDebug)
165 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
166 
167 	/* reduce fragmentation within a disk region by adjusting the number
168 	 * of regions in an attempt to allow an integral number of logs to fit
169 	 * into a disk region */
170 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 	if (fragmentation > 0)
172 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 			     raidPtr->numSectorsPerLog) < fragmentation) {
175 				rf_numParityRegions++;
176 				raidPtr->regionLogCapacity = totalLogCapacity /
177 					rf_numParityRegions;
178 				fragmentation = raidPtr->regionLogCapacity %
179 					raidPtr->numSectorsPerLog;
180 			}
181 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 			     raidPtr->numSectorsPerLog) < fragmentation) {
183 				rf_numParityRegions--;
184 				raidPtr->regionLogCapacity = totalLogCapacity /
185 					rf_numParityRegions;
186 				fragmentation = raidPtr->regionLogCapacity %
187 					raidPtr->numSectorsPerLog;
188 			}
189 		}
190 	/* ensure integral number of regions per log */
191 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 				      raidPtr->numSectorsPerLog) *
193 		raidPtr->numSectorsPerLog;
194 
195 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 	/* to avoid deadlock, must ensure that enough logs exist for each
198 	 * region to have one simultaneously */
199 	if (raidPtr->numParityLogs < rf_numParityRegions)
200 		raidPtr->numParityLogs = rf_numParityRegions;
201 
202 	/* create region information structs */
203 	printf("Allocating %d bytes for in-core parity region info\n",
204 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 	RF_Malloc(raidPtr->regionInfo,
206 		  (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 		  (RF_RegionInfo_t *));
208 	if (raidPtr->regionInfo == NULL)
209 		return (ENOMEM);
210 
211 	/* last region may not be full capacity */
212 	lastRegionCapacity = raidPtr->regionLogCapacity;
213 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 	       lastRegionCapacity > totalLogCapacity)
215 		lastRegionCapacity = lastRegionCapacity -
216 			raidPtr->numSectorsPerLog;
217 
218 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 		rf_numParityRegions;
220 	maxRegionParityRange = raidPtr->regionParityRange;
221 
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224     regionParityRange++; */
225 
226 	/* build pool of unused parity logs */
227 	printf("Allocating %d bytes for %d parity logs\n",
228 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 	       raidPtr->bytesPerSector,
230 	       raidPtr->numParityLogs);
231 	RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 		  raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 		  (caddr_t));
234 	if (raidPtr->parityLogBufferHeap == NULL)
235 		return (ENOMEM);
236 	lHeapPtr = raidPtr->parityLogBufferHeap;
237 	rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 	if (rc) {
239 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
240 		RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
241 			raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
242 		return (ENOMEM);
243 	}
244 	for (i = 0; i < raidPtr->numParityLogs; i++) {
245 		if (i == 0) {
246 			RF_Malloc(raidPtr->parityLogPool.parityLogs,
247 				  sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
248 			if (raidPtr->parityLogPool.parityLogs == NULL) {
249 				RF_Free(raidPtr->parityLogBufferHeap,
250 					raidPtr->numParityLogs *
251 					raidPtr->numSectorsPerLog *
252 					raidPtr->bytesPerSector);
253 				return (ENOMEM);
254 			}
255 			l = raidPtr->parityLogPool.parityLogs;
256 		} else {
257 			RF_Malloc(l->next, sizeof(RF_ParityLog_t),
258 				  (RF_ParityLog_t *));
259 			if (l->next == NULL) {
260 				RF_Free(raidPtr->parityLogBufferHeap,
261 					raidPtr->numParityLogs *
262 					raidPtr->numSectorsPerLog *
263 					raidPtr->bytesPerSector);
264 				for (l = raidPtr->parityLogPool.parityLogs;
265 				     l;
266 				     l = next) {
267 					next = l->next;
268 					if (l->records)
269 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
270 					RF_Free(l, sizeof(RF_ParityLog_t));
271 				}
272 				return (ENOMEM);
273 			}
274 			l = l->next;
275 		}
276 		l->bufPtr = lHeapPtr;
277 		lHeapPtr += raidPtr->numSectorsPerLog *
278 			raidPtr->bytesPerSector;
279 		RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
280 				       sizeof(RF_ParityLogRecord_t)),
281 			  (RF_ParityLogRecord_t *));
282 		if (l->records == NULL) {
283 			RF_Free(raidPtr->parityLogBufferHeap,
284 				raidPtr->numParityLogs *
285 				raidPtr->numSectorsPerLog *
286 				raidPtr->bytesPerSector);
287 			for (l = raidPtr->parityLogPool.parityLogs;
288 			     l;
289 			     l = next) {
290 				next = l->next;
291 				if (l->records)
292 					RF_Free(l->records,
293 						(raidPtr->numSectorsPerLog *
294 						 sizeof(RF_ParityLogRecord_t)));
295 				RF_Free(l, sizeof(RF_ParityLog_t));
296 			}
297 			return (ENOMEM);
298 		}
299 	}
300 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
301 	/* build pool of region buffers */
302 	rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
303 	if (rc) {
304 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
305 		return (ENOMEM);
306 	}
307 	raidPtr->regionBufferPool.cond = 0;
308 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
309 		raidPtr->bytesPerSector;
310 	printf("regionBufferPool.bufferSize %d\n",
311 	       raidPtr->regionBufferPool.bufferSize);
312 
313 	/* for now, only one region at a time may be reintegrated */
314 	raidPtr->regionBufferPool.totalBuffers = 1;
315 
316 	raidPtr->regionBufferPool.availableBuffers =
317 		raidPtr->regionBufferPool.totalBuffers;
318 	raidPtr->regionBufferPool.availBuffersIndex = 0;
319 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
320 	printf("Allocating %d bytes for regionBufferPool\n",
321 	       (int) (raidPtr->regionBufferPool.totalBuffers *
322 		      sizeof(caddr_t)));
323 	RF_Malloc(raidPtr->regionBufferPool.buffers,
324 		  raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t),
325 		  (caddr_t *));
326 	if (raidPtr->regionBufferPool.buffers == NULL) {
327 		return (ENOMEM);
328 	}
329 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
330 		printf("Allocating %d bytes for regionBufferPool#%d\n",
331 		       (int) (raidPtr->regionBufferPool.bufferSize *
332 			      sizeof(char)), i);
333 		RF_Malloc(raidPtr->regionBufferPool.buffers[i],
334 			  raidPtr->regionBufferPool.bufferSize * sizeof(char),
335 			  (caddr_t));
336 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
337 			for (j = 0; j < i; j++) {
338 				RF_Free(raidPtr->regionBufferPool.buffers[i],
339 					raidPtr->regionBufferPool.bufferSize *
340 					sizeof(char));
341 			}
342 			RF_Free(raidPtr->regionBufferPool.buffers,
343 				raidPtr->regionBufferPool.totalBuffers *
344 				sizeof(caddr_t));
345 			return (ENOMEM);
346 		}
347 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
348 		    (long) raidPtr->regionBufferPool.buffers[i]);
349 	}
350 	rf_ShutdownCreate(listp,
351 			  rf_ShutdownParityLoggingRegionBufferPool,
352 			  raidPtr);
353 	/* build pool of parity buffers */
354 	parityBufferCapacity = maxRegionParityRange;
355 	rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
356 	if (rc) {
357 		rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
358 		return (rc);
359 	}
360 	raidPtr->parityBufferPool.cond = 0;
361 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
362 		raidPtr->bytesPerSector;
363 	printf("parityBufferPool.bufferSize %d\n",
364 	       raidPtr->parityBufferPool.bufferSize);
365 
366 	/* for now, only one region at a time may be reintegrated */
367 	raidPtr->parityBufferPool.totalBuffers = 1;
368 
369 	raidPtr->parityBufferPool.availableBuffers =
370 		raidPtr->parityBufferPool.totalBuffers;
371 	raidPtr->parityBufferPool.availBuffersIndex = 0;
372 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
373 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
374 	       (int) (raidPtr->parityBufferPool.totalBuffers *
375 		      sizeof(caddr_t)),
376 	       raidPtr->parityBufferPool.totalBuffers );
377 	RF_Malloc(raidPtr->parityBufferPool.buffers,
378 		  raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t),
379 		  (caddr_t *));
380 	if (raidPtr->parityBufferPool.buffers == NULL) {
381 		return (ENOMEM);
382 	}
383 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
384 		printf("Allocating %d bytes for parityBufferPool#%d\n",
385 		       (int) (raidPtr->parityBufferPool.bufferSize *
386 			      sizeof(char)),i);
387 		RF_Malloc(raidPtr->parityBufferPool.buffers[i],
388 			  raidPtr->parityBufferPool.bufferSize * sizeof(char),
389 			  (caddr_t));
390 		if (raidPtr->parityBufferPool.buffers == NULL) {
391 			for (j = 0; j < i; j++) {
392 				RF_Free(raidPtr->parityBufferPool.buffers[i],
393 					raidPtr->regionBufferPool.bufferSize *
394 					sizeof(char));
395 			}
396 			RF_Free(raidPtr->parityBufferPool.buffers,
397 				raidPtr->regionBufferPool.totalBuffers *
398 				sizeof(caddr_t));
399 			return (ENOMEM);
400 		}
401 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
402 		    (long) raidPtr->parityBufferPool.buffers[i]);
403 	}
404 	rf_ShutdownCreate(listp,
405 			  rf_ShutdownParityLoggingParityBufferPool,
406 			  raidPtr);
407 	/* initialize parityLogDiskQueue */
408 	rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
409 	raidPtr->parityLogDiskQueue.cond = 0;
410 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
411 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
412 	raidPtr->parityLogDiskQueue.bufHead = NULL;
413 	raidPtr->parityLogDiskQueue.bufTail = NULL;
414 	raidPtr->parityLogDiskQueue.reintHead = NULL;
415 	raidPtr->parityLogDiskQueue.reintTail = NULL;
416 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
417 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
418 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
419 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
420 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
421 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
422 
423 	rf_ShutdownCreate(listp,
424 			  rf_ShutdownParityLoggingDiskQueue,
425 			  raidPtr);
426 	for (i = 0; i < rf_numParityRegions; i++) {
427 		rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
428 		if (rc) {
429 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
430 			for (j = 0; j < i; j++)
431 				FreeRegionInfo(raidPtr, j);
432 			RF_Free(raidPtr->regionInfo,
433 				(rf_numParityRegions *
434 				 sizeof(RF_RegionInfo_t)));
435 			return (ENOMEM);
436 		}
437 		rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
438 		if (rc) {
439 			rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc);
440 			for (j = 0; j < i; j++)
441 				FreeRegionInfo(raidPtr, j);
442 			RF_Free(raidPtr->regionInfo,
443 				(rf_numParityRegions *
444 				 sizeof(RF_RegionInfo_t)));
445 			return (ENOMEM);
446 		}
447 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
448 		raidPtr->regionInfo[i].regionStartAddr =
449 			raidPtr->regionLogCapacity * i;
450 		raidPtr->regionInfo[i].parityStartAddr =
451 			raidPtr->regionParityRange * i;
452 		if (i < rf_numParityRegions - 1) {
453 			raidPtr->regionInfo[i].capacity =
454 				raidPtr->regionLogCapacity;
455 			raidPtr->regionInfo[i].numSectorsParity =
456 				raidPtr->regionParityRange;
457 		} else {
458 			raidPtr->regionInfo[i].capacity =
459 				lastRegionCapacity;
460 			raidPtr->regionInfo[i].numSectorsParity =
461 				raidPtr->sectorsPerDisk -
462 				raidPtr->regionParityRange * i;
463 			if (raidPtr->regionInfo[i].numSectorsParity >
464 			    maxRegionParityRange)
465 				maxRegionParityRange =
466 					raidPtr->regionInfo[i].numSectorsParity;
467 		}
468 		raidPtr->regionInfo[i].diskCount = 0;
469 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
470 			  raidPtr->regionInfo[i].regionStartAddr <=
471 			  totalLogCapacity);
472 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
473 			  raidPtr->regionInfo[i].numSectorsParity <=
474 			  raidPtr->sectorsPerDisk);
475 		printf("Allocating %d bytes for region %d\n",
476 		       (int) (raidPtr->regionInfo[i].capacity *
477 			   sizeof(RF_DiskMap_t)), i);
478 		RF_Malloc(raidPtr->regionInfo[i].diskMap,
479 			  (raidPtr->regionInfo[i].capacity *
480 			   sizeof(RF_DiskMap_t)),
481 			  (RF_DiskMap_t *));
482 		if (raidPtr->regionInfo[i].diskMap == NULL) {
483 			for (j = 0; j < i; j++)
484 				FreeRegionInfo(raidPtr, j);
485 			RF_Free(raidPtr->regionInfo,
486 				(rf_numParityRegions *
487 				 sizeof(RF_RegionInfo_t)));
488 			return (ENOMEM);
489 		}
490 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
491 		raidPtr->regionInfo[i].coreLog = NULL;
492 	}
493 	rf_ShutdownCreate(listp,
494 			  rf_ShutdownParityLoggingRegionInfo,
495 			  raidPtr);
496 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
497 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
498 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
499 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
500 	if (rc) {
501 		raidPtr->parityLogDiskQueue.threadState = 0;
502 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
503 		    __FILE__, __LINE__, rc);
504 		return (ENOMEM);
505 	}
506 	/* wait for thread to start */
507 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
508 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
509 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
510 			     raidPtr->parityLogDiskQueue.mutex);
511 	}
512 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
513 
514 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
515 	if (rf_parityLogDebug) {
516 		printf("                            size of disk log in sectors: %d\n",
517 		    (int) totalLogCapacity);
518 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
519 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
520 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
521 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
522 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
523 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
524 	}
525 	rf_EnableParityLogging(raidPtr);
526 
527 	return (0);
528 }
529 
530 static void
531 FreeRegionInfo(
532     RF_Raid_t * raidPtr,
533     RF_RegionId_t regionID)
534 {
535 	RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
536 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
537 		(raidPtr->regionInfo[regionID].capacity *
538 		 sizeof(RF_DiskMap_t)));
539 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
540 		rf_ReleaseParityLogs(raidPtr,
541 				     raidPtr->regionInfo[regionID].coreLog);
542 		raidPtr->regionInfo[regionID].coreLog = NULL;
543 	} else {
544 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
545 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
546 	}
547 	RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
548 }
549 
550 
551 static void
552 FreeParityLogQueue(
553     RF_Raid_t * raidPtr,
554     RF_ParityLogQueue_t * queue)
555 {
556 	RF_ParityLog_t *l1, *l2;
557 
558 	RF_LOCK_MUTEX(queue->mutex);
559 	l1 = queue->parityLogs;
560 	while (l1) {
561 		l2 = l1;
562 		l1 = l2->next;
563 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
564 				      sizeof(RF_ParityLogRecord_t)));
565 		RF_Free(l2, sizeof(RF_ParityLog_t));
566 	}
567 	RF_UNLOCK_MUTEX(queue->mutex);
568 }
569 
570 
571 static void
572 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
573 {
574 	int     i;
575 
576 	RF_LOCK_MUTEX(queue->mutex);
577 	if (queue->availableBuffers != queue->totalBuffers) {
578 		printf("Attempt to free region queue which is still in use!\n");
579 		RF_ASSERT(0);
580 	}
581 	for (i = 0; i < queue->totalBuffers; i++)
582 		RF_Free(queue->buffers[i], queue->bufferSize);
583 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
584 	RF_UNLOCK_MUTEX(queue->mutex);
585 }
586 
587 static void
588 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
589 {
590 	RF_Raid_t *raidPtr;
591 	RF_RegionId_t i;
592 
593 	raidPtr = (RF_Raid_t *) arg;
594 	if (rf_parityLogDebug) {
595 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
596 		       raidPtr->raidid);
597 	}
598 	/* free region information structs */
599 	for (i = 0; i < rf_numParityRegions; i++)
600 		FreeRegionInfo(raidPtr, i);
601 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
602 				      sizeof(raidPtr->regionInfo)));
603 	raidPtr->regionInfo = NULL;
604 }
605 
606 static void
607 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
608 {
609 	RF_Raid_t *raidPtr;
610 
611 	raidPtr = (RF_Raid_t *) arg;
612 	if (rf_parityLogDebug) {
613 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
614 	}
615 	/* free contents of parityLogPool */
616 	FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
617 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
618 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
619 }
620 
621 static void
622 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
623 {
624 	RF_Raid_t *raidPtr;
625 
626 	raidPtr = (RF_Raid_t *) arg;
627 	if (rf_parityLogDebug) {
628 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
629 		       raidPtr->raidid);
630 	}
631 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
632 }
633 
634 static void
635 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
636 {
637 	RF_Raid_t *raidPtr;
638 
639 	raidPtr = (RF_Raid_t *) arg;
640 	if (rf_parityLogDebug) {
641 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
642 		       raidPtr->raidid);
643 	}
644 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
645 }
646 
647 static void
648 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
649 {
650 	RF_ParityLogData_t *d;
651 	RF_CommonLogData_t *c;
652 	RF_Raid_t *raidPtr;
653 
654 	raidPtr = (RF_Raid_t *) arg;
655 	if (rf_parityLogDebug) {
656 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
657 		       raidPtr->raidid);
658 	}
659 	/* free disk manager stuff */
660 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
661 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
662 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
663 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
664 	while (raidPtr->parityLogDiskQueue.freeDataList) {
665 		d = raidPtr->parityLogDiskQueue.freeDataList;
666 		raidPtr->parityLogDiskQueue.freeDataList =
667 			raidPtr->parityLogDiskQueue.freeDataList->next;
668 		RF_Free(d, sizeof(RF_ParityLogData_t));
669 	}
670 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
671 		c = raidPtr->parityLogDiskQueue.freeCommonList;
672 		raidPtr->parityLogDiskQueue.freeCommonList =
673 			raidPtr->parityLogDiskQueue.freeCommonList->next;
674 		RF_Free(c, sizeof(RF_CommonLogData_t));
675 	}
676 }
677 
678 static void
679 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
680 {
681 	RF_Raid_t *raidPtr;
682 
683 	raidPtr = (RF_Raid_t *) arg;
684 	if (rf_parityLogDebug) {
685 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
686 	}
687 	/* shutdown disk thread */
688 	/* This has the desirable side-effect of forcing all regions to be
689 	 * reintegrated.  This is necessary since all parity log maps are
690 	 * currently held in volatile memory. */
691 
692 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
693 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
694 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
695 	RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
696 	/*
697          * pLogDiskThread will now terminate when queues are cleared
698          * now wait for it to be done
699          */
700 	RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
701 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
702 		RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
703 			     raidPtr->parityLogDiskQueue.mutex);
704 	}
705 	RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
706 	if (rf_parityLogDebug) {
707 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
708 	}
709 }
710 
711 int
712 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
713 {
714 	return (20);
715 }
716 
717 RF_HeadSepLimit_t
718 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
719 {
720 	return (10);
721 }
722 /* return the region ID for a given RAID address */
723 RF_RegionId_t
724 rf_MapRegionIDParityLogging(
725     RF_Raid_t * raidPtr,
726     RF_SectorNum_t address)
727 {
728 	RF_RegionId_t regionID;
729 
730 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
731 	regionID = address / raidPtr->regionParityRange;
732 	if (regionID == rf_numParityRegions) {
733 		/* last region may be larger than other regions */
734 		regionID--;
735 	}
736 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
737 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
738 		  raidPtr->regionInfo[regionID].numSectorsParity);
739 	RF_ASSERT(regionID < rf_numParityRegions);
740 	return (regionID);
741 }
742 
743 
744 /* given a logical RAID sector, determine physical disk address of data */
745 void
746 rf_MapSectorParityLogging(
747     RF_Raid_t * raidPtr,
748     RF_RaidAddr_t raidSector,
749     RF_RowCol_t * col,
750     RF_SectorNum_t * diskSector,
751     int remap)
752 {
753 	RF_StripeNum_t SUID = raidSector /
754 		raidPtr->Layout.sectorsPerStripeUnit;
755 	/* *col = (SUID % (raidPtr->numCol -
756 	 * raidPtr->Layout.numParityLogCol)); */
757 	*col = SUID % raidPtr->Layout.numDataCol;
758 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
759 		raidPtr->Layout.sectorsPerStripeUnit +
760 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
761 }
762 
763 
764 /* given a logical RAID sector, determine physical disk address of parity  */
765 void
766 rf_MapParityParityLogging(
767     RF_Raid_t * raidPtr,
768     RF_RaidAddr_t raidSector,
769     RF_RowCol_t * col,
770     RF_SectorNum_t * diskSector,
771     int remap)
772 {
773 	RF_StripeNum_t SUID = raidSector /
774 		raidPtr->Layout.sectorsPerStripeUnit;
775 
776 	/* *col =
777 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
778 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
779 	*col = raidPtr->Layout.numDataCol;
780 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
781 		raidPtr->Layout.sectorsPerStripeUnit +
782 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
783 }
784 
785 
786 /* given a regionID and sector offset, determine the physical disk address of the parity log */
787 void
788 rf_MapLogParityLogging(
789     RF_Raid_t * raidPtr,
790     RF_RegionId_t regionID,
791     RF_SectorNum_t regionOffset,
792     RF_RowCol_t * col,
793     RF_SectorNum_t * startSector)
794 {
795 	*col = raidPtr->numCol - 1;
796 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
797 }
798 
799 
800 /* given a regionID, determine the physical disk address of the logged
801    parity for that region */
802 void
803 rf_MapRegionParity(
804     RF_Raid_t * raidPtr,
805     RF_RegionId_t regionID,
806     RF_RowCol_t * col,
807     RF_SectorNum_t * startSector,
808     RF_SectorCount_t * numSector)
809 {
810 	*col = raidPtr->numCol - 2;
811 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
812 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
813 }
814 
815 
816 /* given a logical RAID address, determine the participating disks in
817    the stripe */
818 void
819 rf_IdentifyStripeParityLogging(
820     RF_Raid_t * raidPtr,
821     RF_RaidAddr_t addr,
822     RF_RowCol_t ** diskids)
823 {
824 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
825 							   addr);
826 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
827 		raidPtr->Layout.layoutSpecificInfo;
828 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
829 }
830 
831 
832 void
833 rf_MapSIDToPSIDParityLogging(
834     RF_RaidLayout_t * layoutPtr,
835     RF_StripeNum_t stripeID,
836     RF_StripeNum_t * psID,
837     RF_ReconUnitNum_t * which_ru)
838 {
839 	*which_ru = 0;
840 	*psID = stripeID;
841 }
842 
843 
844 /* select an algorithm for performing an access.  Returns two pointers,
845  * one to a function that will return information about the DAG, and
846  * another to a function that will create the dag.
847  */
848 void
849 rf_ParityLoggingDagSelect(
850     RF_Raid_t * raidPtr,
851     RF_IoType_t type,
852     RF_AccessStripeMap_t * asmp,
853     RF_VoidFuncPtr * createFunc)
854 {
855 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
856 	RF_PhysDiskAddr_t *failedPDA = NULL;
857 	RF_RowCol_t fcol;
858 	RF_RowStatus_t rstat;
859 	int     prior_recon;
860 
861 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
862 
863 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
864 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
865 		*createFunc = NULL;
866 		return;
867 	} else
868 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
869 
870 			/* if under recon & already reconstructed, redirect
871 			 * the access to the spare drive and eliminate the
872 			 * failure indication */
873 			failedPDA = asmp->failedPDAs[0];
874 			fcol = failedPDA->col;
875 			rstat = raidPtr->status;
876 			prior_recon = (rstat == rf_rs_reconfigured) || (
877 			    (rstat == rf_rs_reconstructing) ?
878 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
879 			    );
880 			if (prior_recon) {
881 				RF_RowCol_t oc = failedPDA->col;
882 				RF_SectorNum_t oo = failedPDA->startSector;
883 				if (layoutPtr->map->flags &
884 				    RF_DISTRIBUTE_SPARE) {
885 					/* redirect to dist spare space */
886 
887 					if (failedPDA == asmp->parityInfo) {
888 
889 						/* parity has failed */
890 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
891 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
892 
893 						if (asmp->parityInfo->next) {	/* redir 2nd component,
894 										 * if any */
895 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
896 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
897 							p->col = failedPDA->col;
898 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
899 							    SUoffs;	/* cheating:
900 									 * startSector is not
901 									 * really a RAID address */
902 						}
903 					} else
904 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
905 							RF_ASSERT(0);	/* should not ever
906 									 * happen */
907 						} else {
908 
909 							/* data has failed */
910 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
911 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
912 
913 						}
914 
915 				} else {
916 					/* redirect to dedicated spare space */
917 
918 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
919 
920 					/* the parity may have two distinct
921 					 * components, both of which may need
922 					 * to be redirected */
923 					if (asmp->parityInfo->next) {
924 						if (failedPDA == asmp->parityInfo) {
925 							failedPDA->next->col = failedPDA->col;
926 						} else
927 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
928 								asmp->parityInfo->col = failedPDA->col;
929 							}
930 					}
931 				}
932 
933 				RF_ASSERT(failedPDA->col != -1);
934 
935 				if (rf_dagDebug || rf_mapDebug) {
936 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
937 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
938 				}
939 				asmp->numDataFailed = asmp->numParityFailed = 0;
940 			}
941 		}
942 	if (type == RF_IO_TYPE_READ) {
943 
944 		if (asmp->numDataFailed == 0)
945 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
946 		else
947 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
948 
949 	} else {
950 
951 
952 		/* if mirroring, always use large writes.  If the access
953 		 * requires two distinct parity updates, always do a small
954 		 * write.  If the stripe contains a failure but the access
955 		 * does not, do a small write. The first conditional
956 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
957 		 * less-than-or-equal rather than just a less-than because
958 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
959 		 * single-stripe-unit updates to use just one disk. */
960 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
961 			if (((asmp->numStripeUnitsAccessed <=
962 			      (layoutPtr->numDataCol / 2)) &&
963 			     (layoutPtr->numDataCol != 1)) ||
964 			    (asmp->parityInfo->next != NULL) ||
965 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
966 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
967 			} else
968 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
969 		} else
970 			if (asmp->numParityFailed == 1)
971 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
972 			else
973 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
974 					*createFunc = NULL;
975 				else
976 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
977 	}
978 }
979 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
980