1 /* $NetBSD: rf_netbsdkintf.c,v 1.159 2003/05/10 23:12:46 thorpej Exp $ */ 2 /*- 3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Greg Oster; Jason R. Thorpe. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the NetBSD 20 * Foundation, Inc. and its contributors. 21 * 4. Neither the name of The NetBSD Foundation nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1988 University of Utah. 40 * Copyright (c) 1990, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software contributed to Berkeley by 44 * the Systems Programming Group of the University of Utah Computer 45 * Science Department. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 * 75 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 76 * 77 * @(#)cd.c 8.2 (Berkeley) 11/16/93 78 */ 79 80 /* 81 * Copyright (c) 1995 Carnegie-Mellon University. 82 * All rights reserved. 83 * 84 * Authors: Mark Holland, Jim Zelenka 85 * 86 * Permission to use, copy, modify and distribute this software and 87 * its documentation is hereby granted, provided that both the copyright 88 * notice and this permission notice appear in all copies of the 89 * software, derivative works or modified versions, and any portions 90 * thereof, and that both notices appear in supporting documentation. 91 * 92 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 93 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 94 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 95 * 96 * Carnegie Mellon requests users of this software to return to 97 * 98 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 99 * School of Computer Science 100 * Carnegie Mellon University 101 * Pittsburgh PA 15213-3890 102 * 103 * any improvements or extensions that they make and grant Carnegie the 104 * rights to redistribute these changes. 105 */ 106 107 /*********************************************************** 108 * 109 * rf_kintf.c -- the kernel interface routines for RAIDframe 110 * 111 ***********************************************************/ 112 113 #include <sys/cdefs.h> 114 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.159 2003/05/10 23:12:46 thorpej Exp $"); 115 116 #include <sys/param.h> 117 #include <sys/errno.h> 118 #include <sys/pool.h> 119 #include <sys/proc.h> 120 #include <sys/queue.h> 121 #include <sys/disk.h> 122 #include <sys/device.h> 123 #include <sys/stat.h> 124 #include <sys/ioctl.h> 125 #include <sys/fcntl.h> 126 #include <sys/systm.h> 127 #include <sys/namei.h> 128 #include <sys/vnode.h> 129 #include <sys/disklabel.h> 130 #include <sys/conf.h> 131 #include <sys/lock.h> 132 #include <sys/buf.h> 133 #include <sys/user.h> 134 #include <sys/reboot.h> 135 136 #include <dev/raidframe/raidframevar.h> 137 #include <dev/raidframe/raidframeio.h> 138 #include "raid.h" 139 #include "opt_raid_autoconfig.h" 140 #include "rf_raid.h" 141 #include "rf_copyback.h" 142 #include "rf_dag.h" 143 #include "rf_dagflags.h" 144 #include "rf_desc.h" 145 #include "rf_diskqueue.h" 146 #include "rf_etimer.h" 147 #include "rf_general.h" 148 #include "rf_kintf.h" 149 #include "rf_options.h" 150 #include "rf_driver.h" 151 #include "rf_parityscan.h" 152 #include "rf_threadstuff.h" 153 154 #ifdef DEBUG 155 int rf_kdebug_level = 0; 156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a 157 #else /* DEBUG */ 158 #define db1_printf(a) { } 159 #endif /* DEBUG */ 160 161 static RF_Raid_t **raidPtrs; /* global raid device descriptors */ 162 163 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex) 164 165 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a 166 * spare table */ 167 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from 168 * installation process */ 169 170 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures"); 171 172 /* prototypes */ 173 static void KernelWakeupFunc(struct buf * bp); 174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag, 175 dev_t dev, RF_SectorNum_t startSect, 176 RF_SectorCount_t numSect, caddr_t buf, 177 void (*cbFunc) (struct buf *), void *cbArg, 178 int logBytesPerSector, struct proc * b_proc); 179 static void raidinit(RF_Raid_t *); 180 181 void raidattach(int); 182 183 dev_type_open(raidopen); 184 dev_type_close(raidclose); 185 dev_type_read(raidread); 186 dev_type_write(raidwrite); 187 dev_type_ioctl(raidioctl); 188 dev_type_strategy(raidstrategy); 189 dev_type_dump(raiddump); 190 dev_type_size(raidsize); 191 192 const struct bdevsw raid_bdevsw = { 193 raidopen, raidclose, raidstrategy, raidioctl, 194 raiddump, raidsize, D_DISK 195 }; 196 197 const struct cdevsw raid_cdevsw = { 198 raidopen, raidclose, raidread, raidwrite, raidioctl, 199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 200 }; 201 202 /* 203 * Pilfered from ccd.c 204 */ 205 206 struct raidbuf { 207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */ 208 struct buf *rf_obp; /* ptr. to original I/O buf */ 209 RF_DiskQueueData_t *req;/* the request that this was part of.. */ 210 }; 211 212 /* component buffer pool */ 213 struct pool raidframe_cbufpool; 214 215 /* XXX Not sure if the following should be replacing the raidPtrs above, 216 or if it should be used in conjunction with that... 217 */ 218 219 struct raid_softc { 220 int sc_flags; /* flags */ 221 int sc_cflags; /* configuration flags */ 222 size_t sc_size; /* size of the raid device */ 223 char sc_xname[20]; /* XXX external name */ 224 struct disk sc_dkdev; /* generic disk device info */ 225 struct bufq_state buf_queue; /* used for the device queue */ 226 }; 227 /* sc_flags */ 228 #define RAIDF_INITED 0x01 /* unit has been initialized */ 229 #define RAIDF_WLABEL 0x02 /* label area is writable */ 230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */ 231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */ 232 #define RAIDF_LOCKED 0x80 /* unit is locked */ 233 234 #define raidunit(x) DISKUNIT(x) 235 int numraid = 0; 236 237 /* 238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. 239 * Be aware that large numbers can allow the driver to consume a lot of 240 * kernel memory, especially on writes, and in degraded mode reads. 241 * 242 * For example: with a stripe width of 64 blocks (32k) and 5 disks, 243 * a single 64K write will typically require 64K for the old data, 244 * 64K for the old parity, and 64K for the new parity, for a total 245 * of 192K (if the parity buffer is not re-used immediately). 246 * Even it if is used immediately, that's still 128K, which when multiplied 247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. 248 * 249 * Now in degraded mode, for example, a 64K read on the above setup may 250 * require data reconstruction, which will require *all* of the 4 remaining 251 * disks to participate -- 4 * 32K/disk == 128K again. 252 */ 253 254 #ifndef RAIDOUTSTANDING 255 #define RAIDOUTSTANDING 6 256 #endif 257 258 #define RAIDLABELDEV(dev) \ 259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART)) 260 261 /* declared here, and made public, for the benefit of KVM stuff.. */ 262 struct raid_softc *raid_softc; 263 264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, 265 struct disklabel *); 266 static void raidgetdisklabel(dev_t); 267 static void raidmakedisklabel(struct raid_softc *); 268 269 static int raidlock(struct raid_softc *); 270 static void raidunlock(struct raid_softc *); 271 272 static void rf_markalldirty(RF_Raid_t *); 273 274 struct device *raidrootdev; 275 276 void rf_ReconThread(struct rf_recon_req *); 277 /* XXX what I want is: */ 278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */ 279 void rf_RewriteParityThread(RF_Raid_t *raidPtr); 280 void rf_CopybackThread(RF_Raid_t *raidPtr); 281 void rf_ReconstructInPlaceThread(struct rf_recon_req *); 282 int rf_autoconfig(struct device *self); 283 void rf_buildroothack(RF_ConfigSet_t *); 284 285 RF_AutoConfig_t *rf_find_raid_components(void); 286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); 287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); 288 static int rf_reasonable_label(RF_ComponentLabel_t *); 289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); 290 int rf_set_autoconfig(RF_Raid_t *, int); 291 int rf_set_rootpartition(RF_Raid_t *, int); 292 void rf_release_all_vps(RF_ConfigSet_t *); 293 void rf_cleanup_config_set(RF_ConfigSet_t *); 294 int rf_have_enough_components(RF_ConfigSet_t *); 295 int rf_auto_config_set(RF_ConfigSet_t *, int *); 296 297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not 298 allow autoconfig to take place. 299 Note that this is overridden by having 300 RAID_AUTOCONFIG as an option in the 301 kernel config file. */ 302 303 void 304 raidattach(num) 305 int num; 306 { 307 int raidID; 308 int i, rc; 309 310 #ifdef DEBUG 311 printf("raidattach: Asked for %d units\n", num); 312 #endif 313 314 if (num <= 0) { 315 #ifdef DIAGNOSTIC 316 panic("raidattach: count <= 0"); 317 #endif 318 return; 319 } 320 /* This is where all the initialization stuff gets done. */ 321 322 numraid = num; 323 324 /* Make some space for requested number of units... */ 325 326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **)); 327 if (raidPtrs == NULL) { 328 panic("raidPtrs is NULL!!"); 329 } 330 331 /* Initialize the component buffer pool. */ 332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0, 333 0, 0, "raidpl", NULL); 334 335 rc = rf_mutex_init(&rf_sparet_wait_mutex); 336 if (rc) { 337 RF_PANIC(); 338 } 339 340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; 341 342 for (i = 0; i < num; i++) 343 raidPtrs[i] = NULL; 344 rc = rf_BootRaidframe(); 345 if (rc == 0) 346 printf("Kernelized RAIDframe activated\n"); 347 else 348 panic("Serious error booting RAID!!"); 349 350 /* put together some datastructures like the CCD device does.. This 351 * lets us lock the device and what-not when it gets opened. */ 352 353 raid_softc = (struct raid_softc *) 354 malloc(num * sizeof(struct raid_softc), 355 M_RAIDFRAME, M_NOWAIT); 356 if (raid_softc == NULL) { 357 printf("WARNING: no memory for RAIDframe driver\n"); 358 return; 359 } 360 361 memset(raid_softc, 0, num * sizeof(struct raid_softc)); 362 363 raidrootdev = (struct device *)malloc(num * sizeof(struct device), 364 M_RAIDFRAME, M_NOWAIT); 365 if (raidrootdev == NULL) { 366 panic("No memory for RAIDframe driver!!?!?!"); 367 } 368 369 for (raidID = 0; raidID < num; raidID++) { 370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS); 371 372 raidrootdev[raidID].dv_class = DV_DISK; 373 raidrootdev[raidID].dv_cfdata = NULL; 374 raidrootdev[raidID].dv_unit = raidID; 375 raidrootdev[raidID].dv_parent = NULL; 376 raidrootdev[raidID].dv_flags = 0; 377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID); 378 379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t), 380 (RF_Raid_t *)); 381 if (raidPtrs[raidID] == NULL) { 382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID); 383 numraid = raidID; 384 return; 385 } 386 } 387 388 #ifdef RAID_AUTOCONFIG 389 raidautoconfig = 1; 390 #endif 391 392 /* 393 * Register a finalizer which will be used to auto-config RAID 394 * sets once all real hardware devices have been found. 395 */ 396 if (config_finalize_register(NULL, rf_autoconfig) != 0) 397 printf("WARNING: unable to register RAIDframe finalizer\n"); 398 } 399 400 int 401 rf_autoconfig(struct device *self) 402 { 403 RF_AutoConfig_t *ac_list; 404 RF_ConfigSet_t *config_sets; 405 406 if (raidautoconfig == 0) 407 return (0); 408 409 /* XXX This code can only be run once. */ 410 raidautoconfig = 0; 411 412 /* 1. locate all RAID components on the system */ 413 #ifdef DEBUG 414 printf("Searching for RAID components...\n"); 415 #endif 416 ac_list = rf_find_raid_components(); 417 418 /* 2. Sort them into their respective sets. */ 419 config_sets = rf_create_auto_sets(ac_list); 420 421 /* 422 * 3. Evaluate each set andconfigure the valid ones. 423 * This gets done in rf_buildroothack(). 424 */ 425 rf_buildroothack(config_sets); 426 427 return (1); 428 } 429 430 void 431 rf_buildroothack(RF_ConfigSet_t *config_sets) 432 { 433 RF_ConfigSet_t *cset; 434 RF_ConfigSet_t *next_cset; 435 int retcode; 436 int raidID; 437 int rootID; 438 int num_root; 439 440 rootID = 0; 441 num_root = 0; 442 cset = config_sets; 443 while(cset != NULL ) { 444 next_cset = cset->next; 445 if (rf_have_enough_components(cset) && 446 cset->ac->clabel->autoconfigure==1) { 447 retcode = rf_auto_config_set(cset,&raidID); 448 if (!retcode) { 449 if (cset->rootable) { 450 rootID = raidID; 451 num_root++; 452 } 453 } else { 454 /* The autoconfig didn't work :( */ 455 #if DEBUG 456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID); 457 #endif 458 rf_release_all_vps(cset); 459 } 460 } else { 461 /* we're not autoconfiguring this set... 462 release the associated resources */ 463 rf_release_all_vps(cset); 464 } 465 /* cleanup */ 466 rf_cleanup_config_set(cset); 467 cset = next_cset; 468 } 469 470 /* we found something bootable... */ 471 472 if (num_root == 1) { 473 booted_device = &raidrootdev[rootID]; 474 } else if (num_root > 1) { 475 /* we can't guess.. require the user to answer... */ 476 boothowto |= RB_ASKNAME; 477 } 478 } 479 480 481 int 482 raidsize(dev) 483 dev_t dev; 484 { 485 struct raid_softc *rs; 486 struct disklabel *lp; 487 int part, unit, omask, size; 488 489 unit = raidunit(dev); 490 if (unit >= numraid) 491 return (-1); 492 rs = &raid_softc[unit]; 493 494 if ((rs->sc_flags & RAIDF_INITED) == 0) 495 return (-1); 496 497 part = DISKPART(dev); 498 omask = rs->sc_dkdev.dk_openmask & (1 << part); 499 lp = rs->sc_dkdev.dk_label; 500 501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc)) 502 return (-1); 503 504 if (lp->d_partitions[part].p_fstype != FS_SWAP) 505 size = -1; 506 else 507 size = lp->d_partitions[part].p_size * 508 (lp->d_secsize / DEV_BSIZE); 509 510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc)) 511 return (-1); 512 513 return (size); 514 515 } 516 517 int 518 raiddump(dev, blkno, va, size) 519 dev_t dev; 520 daddr_t blkno; 521 caddr_t va; 522 size_t size; 523 { 524 /* Not implemented. */ 525 return ENXIO; 526 } 527 /* ARGSUSED */ 528 int 529 raidopen(dev, flags, fmt, p) 530 dev_t dev; 531 int flags, fmt; 532 struct proc *p; 533 { 534 int unit = raidunit(dev); 535 struct raid_softc *rs; 536 struct disklabel *lp; 537 int part, pmask; 538 int error = 0; 539 540 if (unit >= numraid) 541 return (ENXIO); 542 rs = &raid_softc[unit]; 543 544 if ((error = raidlock(rs)) != 0) 545 return (error); 546 lp = rs->sc_dkdev.dk_label; 547 548 part = DISKPART(dev); 549 pmask = (1 << part); 550 551 if ((rs->sc_flags & RAIDF_INITED) && 552 (rs->sc_dkdev.dk_openmask == 0)) 553 raidgetdisklabel(dev); 554 555 /* make sure that this partition exists */ 556 557 if (part != RAW_PART) { 558 if (((rs->sc_flags & RAIDF_INITED) == 0) || 559 ((part >= lp->d_npartitions) || 560 (lp->d_partitions[part].p_fstype == FS_UNUSED))) { 561 error = ENXIO; 562 raidunlock(rs); 563 return (error); 564 } 565 } 566 /* Prevent this unit from being unconfigured while open. */ 567 switch (fmt) { 568 case S_IFCHR: 569 rs->sc_dkdev.dk_copenmask |= pmask; 570 break; 571 572 case S_IFBLK: 573 rs->sc_dkdev.dk_bopenmask |= pmask; 574 break; 575 } 576 577 if ((rs->sc_dkdev.dk_openmask == 0) && 578 ((rs->sc_flags & RAIDF_INITED) != 0)) { 579 /* First one... mark things as dirty... Note that we *MUST* 580 have done a configure before this. I DO NOT WANT TO BE 581 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED 582 THAT THEY BELONG TOGETHER!!!!! */ 583 /* XXX should check to see if we're only open for reading 584 here... If so, we needn't do this, but then need some 585 other way of keeping track of what's happened.. */ 586 587 rf_markalldirty( raidPtrs[unit] ); 588 } 589 590 591 rs->sc_dkdev.dk_openmask = 592 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 593 594 raidunlock(rs); 595 596 return (error); 597 598 599 } 600 /* ARGSUSED */ 601 int 602 raidclose(dev, flags, fmt, p) 603 dev_t dev; 604 int flags, fmt; 605 struct proc *p; 606 { 607 int unit = raidunit(dev); 608 struct raid_softc *rs; 609 int error = 0; 610 int part; 611 612 if (unit >= numraid) 613 return (ENXIO); 614 rs = &raid_softc[unit]; 615 616 if ((error = raidlock(rs)) != 0) 617 return (error); 618 619 part = DISKPART(dev); 620 621 /* ...that much closer to allowing unconfiguration... */ 622 switch (fmt) { 623 case S_IFCHR: 624 rs->sc_dkdev.dk_copenmask &= ~(1 << part); 625 break; 626 627 case S_IFBLK: 628 rs->sc_dkdev.dk_bopenmask &= ~(1 << part); 629 break; 630 } 631 rs->sc_dkdev.dk_openmask = 632 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 633 634 if ((rs->sc_dkdev.dk_openmask == 0) && 635 ((rs->sc_flags & RAIDF_INITED) != 0)) { 636 /* Last one... device is not unconfigured yet. 637 Device shutdown has taken care of setting the 638 clean bits if RAIDF_INITED is not set 639 mark things as clean... */ 640 641 rf_update_component_labels(raidPtrs[unit], 642 RF_FINAL_COMPONENT_UPDATE); 643 if (doing_shutdown) { 644 /* last one, and we're going down, so 645 lights out for this RAID set too. */ 646 error = rf_Shutdown(raidPtrs[unit]); 647 648 /* It's no longer initialized... */ 649 rs->sc_flags &= ~RAIDF_INITED; 650 651 /* Detach the disk. */ 652 disk_detach(&rs->sc_dkdev); 653 } 654 } 655 656 raidunlock(rs); 657 return (0); 658 659 } 660 661 void 662 raidstrategy(bp) 663 struct buf *bp; 664 { 665 int s; 666 667 unsigned int raidID = raidunit(bp->b_dev); 668 RF_Raid_t *raidPtr; 669 struct raid_softc *rs = &raid_softc[raidID]; 670 struct disklabel *lp; 671 int wlabel; 672 673 if ((rs->sc_flags & RAIDF_INITED) ==0) { 674 bp->b_error = ENXIO; 675 bp->b_flags |= B_ERROR; 676 bp->b_resid = bp->b_bcount; 677 biodone(bp); 678 return; 679 } 680 if (raidID >= numraid || !raidPtrs[raidID]) { 681 bp->b_error = ENODEV; 682 bp->b_flags |= B_ERROR; 683 bp->b_resid = bp->b_bcount; 684 biodone(bp); 685 return; 686 } 687 raidPtr = raidPtrs[raidID]; 688 if (!raidPtr->valid) { 689 bp->b_error = ENODEV; 690 bp->b_flags |= B_ERROR; 691 bp->b_resid = bp->b_bcount; 692 biodone(bp); 693 return; 694 } 695 if (bp->b_bcount == 0) { 696 db1_printf(("b_bcount is zero..\n")); 697 biodone(bp); 698 return; 699 } 700 lp = rs->sc_dkdev.dk_label; 701 702 /* 703 * Do bounds checking and adjust transfer. If there's an 704 * error, the bounds check will flag that for us. 705 */ 706 707 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING); 708 if (DISKPART(bp->b_dev) != RAW_PART) 709 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) { 710 db1_printf(("Bounds check failed!!:%d %d\n", 711 (int) bp->b_blkno, (int) wlabel)); 712 biodone(bp); 713 return; 714 } 715 s = splbio(); 716 717 bp->b_resid = 0; 718 719 /* stuff it onto our queue */ 720 BUFQ_PUT(&rs->buf_queue, bp); 721 722 raidstart(raidPtrs[raidID]); 723 724 splx(s); 725 } 726 /* ARGSUSED */ 727 int 728 raidread(dev, uio, flags) 729 dev_t dev; 730 struct uio *uio; 731 int flags; 732 { 733 int unit = raidunit(dev); 734 struct raid_softc *rs; 735 int part; 736 737 if (unit >= numraid) 738 return (ENXIO); 739 rs = &raid_softc[unit]; 740 741 if ((rs->sc_flags & RAIDF_INITED) == 0) 742 return (ENXIO); 743 part = DISKPART(dev); 744 745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio)); 746 747 } 748 /* ARGSUSED */ 749 int 750 raidwrite(dev, uio, flags) 751 dev_t dev; 752 struct uio *uio; 753 int flags; 754 { 755 int unit = raidunit(dev); 756 struct raid_softc *rs; 757 758 if (unit >= numraid) 759 return (ENXIO); 760 rs = &raid_softc[unit]; 761 762 if ((rs->sc_flags & RAIDF_INITED) == 0) 763 return (ENXIO); 764 765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio)); 766 767 } 768 769 int 770 raidioctl(dev, cmd, data, flag, p) 771 dev_t dev; 772 u_long cmd; 773 caddr_t data; 774 int flag; 775 struct proc *p; 776 { 777 int unit = raidunit(dev); 778 int error = 0; 779 int part, pmask; 780 struct raid_softc *rs; 781 RF_Config_t *k_cfg, *u_cfg; 782 RF_Raid_t *raidPtr; 783 RF_RaidDisk_t *diskPtr; 784 RF_AccTotals_t *totals; 785 RF_DeviceConfig_t *d_cfg, **ucfgp; 786 u_char *specific_buf; 787 int retcode = 0; 788 int row; 789 int column; 790 int raidid; 791 struct rf_recon_req *rrcopy, *rr; 792 RF_ComponentLabel_t *clabel; 793 RF_ComponentLabel_t ci_label; 794 RF_ComponentLabel_t **clabel_ptr; 795 RF_SingleComponent_t *sparePtr,*componentPtr; 796 RF_SingleComponent_t hot_spare; 797 RF_SingleComponent_t component; 798 RF_ProgressInfo_t progressInfo, **progressInfoPtr; 799 int i, j, d; 800 #ifdef __HAVE_OLD_DISKLABEL 801 struct disklabel newlabel; 802 #endif 803 804 if (unit >= numraid) 805 return (ENXIO); 806 rs = &raid_softc[unit]; 807 raidPtr = raidPtrs[unit]; 808 809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev, 810 (int) DISKPART(dev), (int) unit, (int) cmd)); 811 812 /* Must be open for writes for these commands... */ 813 switch (cmd) { 814 case DIOCSDINFO: 815 case DIOCWDINFO: 816 #ifdef __HAVE_OLD_DISKLABEL 817 case ODIOCWDINFO: 818 case ODIOCSDINFO: 819 #endif 820 case DIOCWLABEL: 821 if ((flag & FWRITE) == 0) 822 return (EBADF); 823 } 824 825 /* Must be initialized for these... */ 826 switch (cmd) { 827 case DIOCGDINFO: 828 case DIOCSDINFO: 829 case DIOCWDINFO: 830 #ifdef __HAVE_OLD_DISKLABEL 831 case ODIOCGDINFO: 832 case ODIOCWDINFO: 833 case ODIOCSDINFO: 834 case ODIOCGDEFLABEL: 835 #endif 836 case DIOCGPART: 837 case DIOCWLABEL: 838 case DIOCGDEFLABEL: 839 case RAIDFRAME_SHUTDOWN: 840 case RAIDFRAME_REWRITEPARITY: 841 case RAIDFRAME_GET_INFO: 842 case RAIDFRAME_RESET_ACCTOTALS: 843 case RAIDFRAME_GET_ACCTOTALS: 844 case RAIDFRAME_KEEP_ACCTOTALS: 845 case RAIDFRAME_GET_SIZE: 846 case RAIDFRAME_FAIL_DISK: 847 case RAIDFRAME_COPYBACK: 848 case RAIDFRAME_CHECK_RECON_STATUS: 849 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 850 case RAIDFRAME_GET_COMPONENT_LABEL: 851 case RAIDFRAME_SET_COMPONENT_LABEL: 852 case RAIDFRAME_ADD_HOT_SPARE: 853 case RAIDFRAME_REMOVE_HOT_SPARE: 854 case RAIDFRAME_INIT_LABELS: 855 case RAIDFRAME_REBUILD_IN_PLACE: 856 case RAIDFRAME_CHECK_PARITY: 857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 859 case RAIDFRAME_CHECK_COPYBACK_STATUS: 860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 861 case RAIDFRAME_SET_AUTOCONFIG: 862 case RAIDFRAME_SET_ROOT: 863 case RAIDFRAME_DELETE_COMPONENT: 864 case RAIDFRAME_INCORPORATE_HOT_SPARE: 865 if ((rs->sc_flags & RAIDF_INITED) == 0) 866 return (ENXIO); 867 } 868 869 switch (cmd) { 870 871 /* configure the system */ 872 case RAIDFRAME_CONFIGURE: 873 874 if (raidPtr->valid) { 875 /* There is a valid RAID set running on this unit! */ 876 printf("raid%d: Device already configured!\n",unit); 877 return(EINVAL); 878 } 879 880 /* copy-in the configuration information */ 881 /* data points to a pointer to the configuration structure */ 882 883 u_cfg = *((RF_Config_t **) data); 884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *)); 885 if (k_cfg == NULL) { 886 return (ENOMEM); 887 } 888 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t)); 889 if (retcode) { 890 RF_Free(k_cfg, sizeof(RF_Config_t)); 891 db1_printf(("rf_ioctl: retcode=%d copyin.1\n", 892 retcode)); 893 return (retcode); 894 } 895 /* allocate a buffer for the layout-specific data, and copy it 896 * in */ 897 if (k_cfg->layoutSpecificSize) { 898 if (k_cfg->layoutSpecificSize > 10000) { 899 /* sanity check */ 900 RF_Free(k_cfg, sizeof(RF_Config_t)); 901 return (EINVAL); 902 } 903 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize, 904 (u_char *)); 905 if (specific_buf == NULL) { 906 RF_Free(k_cfg, sizeof(RF_Config_t)); 907 return (ENOMEM); 908 } 909 retcode = copyin(k_cfg->layoutSpecific, specific_buf, 910 k_cfg->layoutSpecificSize); 911 if (retcode) { 912 RF_Free(k_cfg, sizeof(RF_Config_t)); 913 RF_Free(specific_buf, 914 k_cfg->layoutSpecificSize); 915 db1_printf(("rf_ioctl: retcode=%d copyin.2\n", 916 retcode)); 917 return (retcode); 918 } 919 } else 920 specific_buf = NULL; 921 k_cfg->layoutSpecific = specific_buf; 922 923 /* should do some kind of sanity check on the configuration. 924 * Store the sum of all the bytes in the last byte? */ 925 926 /* configure the system */ 927 928 /* 929 * Clear the entire RAID descriptor, just to make sure 930 * there is no stale data left in the case of a 931 * reconfiguration 932 */ 933 memset((char *) raidPtr, 0, sizeof(RF_Raid_t)); 934 raidPtr->raidid = unit; 935 936 retcode = rf_Configure(raidPtr, k_cfg, NULL); 937 938 if (retcode == 0) { 939 940 /* allow this many simultaneous IO's to 941 this RAID device */ 942 raidPtr->openings = RAIDOUTSTANDING; 943 944 raidinit(raidPtr); 945 rf_markalldirty(raidPtr); 946 } 947 /* free the buffers. No return code here. */ 948 if (k_cfg->layoutSpecificSize) { 949 RF_Free(specific_buf, k_cfg->layoutSpecificSize); 950 } 951 RF_Free(k_cfg, sizeof(RF_Config_t)); 952 953 return (retcode); 954 955 /* shutdown the system */ 956 case RAIDFRAME_SHUTDOWN: 957 958 if ((error = raidlock(rs)) != 0) 959 return (error); 960 961 /* 962 * If somebody has a partition mounted, we shouldn't 963 * shutdown. 964 */ 965 966 part = DISKPART(dev); 967 pmask = (1 << part); 968 if ((rs->sc_dkdev.dk_openmask & ~pmask) || 969 ((rs->sc_dkdev.dk_bopenmask & pmask) && 970 (rs->sc_dkdev.dk_copenmask & pmask))) { 971 raidunlock(rs); 972 return (EBUSY); 973 } 974 975 retcode = rf_Shutdown(raidPtr); 976 977 /* It's no longer initialized... */ 978 rs->sc_flags &= ~RAIDF_INITED; 979 980 /* Detach the disk. */ 981 disk_detach(&rs->sc_dkdev); 982 983 raidunlock(rs); 984 985 return (retcode); 986 case RAIDFRAME_GET_COMPONENT_LABEL: 987 clabel_ptr = (RF_ComponentLabel_t **) data; 988 /* need to read the component label for the disk indicated 989 by row,column in clabel */ 990 991 /* For practice, let's get it directly fromdisk, rather 992 than from the in-core copy */ 993 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ), 994 (RF_ComponentLabel_t *)); 995 if (clabel == NULL) 996 return (ENOMEM); 997 998 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t)); 999 1000 retcode = copyin( *clabel_ptr, clabel, 1001 sizeof(RF_ComponentLabel_t)); 1002 1003 if (retcode) { 1004 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1005 return(retcode); 1006 } 1007 1008 row = clabel->row; 1009 column = clabel->column; 1010 1011 if ((row < 0) || (row >= raidPtr->numRow) || 1012 (column < 0) || (column >= raidPtr->numCol + 1013 raidPtr->numSpare)) { 1014 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1015 return(EINVAL); 1016 } 1017 1018 raidread_component_label(raidPtr->Disks[row][column].dev, 1019 raidPtr->raid_cinfo[row][column].ci_vp, 1020 clabel ); 1021 1022 retcode = copyout(clabel, *clabel_ptr, 1023 sizeof(RF_ComponentLabel_t)); 1024 RF_Free(clabel, sizeof(RF_ComponentLabel_t)); 1025 return (retcode); 1026 1027 case RAIDFRAME_SET_COMPONENT_LABEL: 1028 clabel = (RF_ComponentLabel_t *) data; 1029 1030 /* XXX check the label for valid stuff... */ 1031 /* Note that some things *should not* get modified -- 1032 the user should be re-initing the labels instead of 1033 trying to patch things. 1034 */ 1035 1036 raidid = raidPtr->raidid; 1037 printf("raid%d: Got component label:\n", raidid); 1038 printf("raid%d: Version: %d\n", raidid, clabel->version); 1039 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number); 1040 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter); 1041 printf("raid%d: Row: %d\n", raidid, clabel->row); 1042 printf("raid%d: Column: %d\n", raidid, clabel->column); 1043 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows); 1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns); 1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean); 1046 printf("raid%d: Status: %d\n", raidid, clabel->status); 1047 1048 row = clabel->row; 1049 column = clabel->column; 1050 1051 if ((row < 0) || (row >= raidPtr->numRow) || 1052 (column < 0) || (column >= raidPtr->numCol)) { 1053 return(EINVAL); 1054 } 1055 1056 /* XXX this isn't allowed to do anything for now :-) */ 1057 1058 /* XXX and before it is, we need to fill in the rest 1059 of the fields!?!?!?! */ 1060 #if 0 1061 raidwrite_component_label( 1062 raidPtr->Disks[row][column].dev, 1063 raidPtr->raid_cinfo[row][column].ci_vp, 1064 clabel ); 1065 #endif 1066 return (0); 1067 1068 case RAIDFRAME_INIT_LABELS: 1069 clabel = (RF_ComponentLabel_t *) data; 1070 /* 1071 we only want the serial number from 1072 the above. We get all the rest of the information 1073 from the config that was used to create this RAID 1074 set. 1075 */ 1076 1077 raidPtr->serial_number = clabel->serial_number; 1078 1079 raid_init_component_label(raidPtr, &ci_label); 1080 ci_label.serial_number = clabel->serial_number; 1081 1082 for(row=0;row<raidPtr->numRow;row++) { 1083 ci_label.row = row; 1084 for(column=0;column<raidPtr->numCol;column++) { 1085 diskPtr = &raidPtr->Disks[row][column]; 1086 if (!RF_DEAD_DISK(diskPtr->status)) { 1087 ci_label.partitionSize = diskPtr->partitionSize; 1088 ci_label.column = column; 1089 raidwrite_component_label( 1090 raidPtr->Disks[row][column].dev, 1091 raidPtr->raid_cinfo[row][column].ci_vp, 1092 &ci_label ); 1093 } 1094 } 1095 } 1096 1097 return (retcode); 1098 case RAIDFRAME_SET_AUTOCONFIG: 1099 d = rf_set_autoconfig(raidPtr, *(int *) data); 1100 printf("raid%d: New autoconfig value is: %d\n", 1101 raidPtr->raidid, d); 1102 *(int *) data = d; 1103 return (retcode); 1104 1105 case RAIDFRAME_SET_ROOT: 1106 d = rf_set_rootpartition(raidPtr, *(int *) data); 1107 printf("raid%d: New rootpartition value is: %d\n", 1108 raidPtr->raidid, d); 1109 *(int *) data = d; 1110 return (retcode); 1111 1112 /* initialize all parity */ 1113 case RAIDFRAME_REWRITEPARITY: 1114 1115 if (raidPtr->Layout.map->faultsTolerated == 0) { 1116 /* Parity for RAID 0 is trivially correct */ 1117 raidPtr->parity_good = RF_RAID_CLEAN; 1118 return(0); 1119 } 1120 1121 if (raidPtr->parity_rewrite_in_progress == 1) { 1122 /* Re-write is already in progress! */ 1123 return(EINVAL); 1124 } 1125 1126 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, 1127 rf_RewriteParityThread, 1128 raidPtr,"raid_parity"); 1129 return (retcode); 1130 1131 1132 case RAIDFRAME_ADD_HOT_SPARE: 1133 sparePtr = (RF_SingleComponent_t *) data; 1134 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t)); 1135 retcode = rf_add_hot_spare(raidPtr, &hot_spare); 1136 return(retcode); 1137 1138 case RAIDFRAME_REMOVE_HOT_SPARE: 1139 return(retcode); 1140 1141 case RAIDFRAME_DELETE_COMPONENT: 1142 componentPtr = (RF_SingleComponent_t *)data; 1143 memcpy( &component, componentPtr, 1144 sizeof(RF_SingleComponent_t)); 1145 retcode = rf_delete_component(raidPtr, &component); 1146 return(retcode); 1147 1148 case RAIDFRAME_INCORPORATE_HOT_SPARE: 1149 componentPtr = (RF_SingleComponent_t *)data; 1150 memcpy( &component, componentPtr, 1151 sizeof(RF_SingleComponent_t)); 1152 retcode = rf_incorporate_hot_spare(raidPtr, &component); 1153 return(retcode); 1154 1155 case RAIDFRAME_REBUILD_IN_PLACE: 1156 1157 if (raidPtr->Layout.map->faultsTolerated == 0) { 1158 /* Can't do this on a RAID 0!! */ 1159 return(EINVAL); 1160 } 1161 1162 if (raidPtr->recon_in_progress == 1) { 1163 /* a reconstruct is already in progress! */ 1164 return(EINVAL); 1165 } 1166 1167 componentPtr = (RF_SingleComponent_t *) data; 1168 memcpy( &component, componentPtr, 1169 sizeof(RF_SingleComponent_t)); 1170 row = component.row; 1171 column = component.column; 1172 1173 if ((row < 0) || (row >= raidPtr->numRow) || 1174 (column < 0) || (column >= raidPtr->numCol)) { 1175 return(EINVAL); 1176 } 1177 1178 RF_LOCK_MUTEX(raidPtr->mutex); 1179 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) && 1180 (raidPtr->numFailures > 0)) { 1181 /* XXX 0 above shouldn't be constant!!! */ 1182 /* some component other than this has failed. 1183 Let's not make things worse than they already 1184 are... */ 1185 printf("raid%d: Unable to reconstruct to disk at:\n", 1186 raidPtr->raidid); 1187 printf("raid%d: Row: %d Col: %d Too many failures.\n", 1188 raidPtr->raidid, row, column); 1189 RF_UNLOCK_MUTEX(raidPtr->mutex); 1190 return (EINVAL); 1191 } 1192 if (raidPtr->Disks[row][column].status == 1193 rf_ds_reconstructing) { 1194 printf("raid%d: Unable to reconstruct to disk at:\n", 1195 raidPtr->raidid); 1196 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column); 1197 1198 RF_UNLOCK_MUTEX(raidPtr->mutex); 1199 return (EINVAL); 1200 } 1201 if (raidPtr->Disks[row][column].status == rf_ds_spared) { 1202 RF_UNLOCK_MUTEX(raidPtr->mutex); 1203 return (EINVAL); 1204 } 1205 RF_UNLOCK_MUTEX(raidPtr->mutex); 1206 1207 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1208 if (rrcopy == NULL) 1209 return(ENOMEM); 1210 1211 rrcopy->raidPtr = (void *) raidPtr; 1212 rrcopy->row = row; 1213 rrcopy->col = column; 1214 1215 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1216 rf_ReconstructInPlaceThread, 1217 rrcopy,"raid_reconip"); 1218 return(retcode); 1219 1220 case RAIDFRAME_GET_INFO: 1221 if (!raidPtr->valid) 1222 return (ENODEV); 1223 ucfgp = (RF_DeviceConfig_t **) data; 1224 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t), 1225 (RF_DeviceConfig_t *)); 1226 if (d_cfg == NULL) 1227 return (ENOMEM); 1228 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t)); 1229 d_cfg->rows = raidPtr->numRow; 1230 d_cfg->cols = raidPtr->numCol; 1231 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol; 1232 if (d_cfg->ndevs >= RF_MAX_DISKS) { 1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1234 return (ENOMEM); 1235 } 1236 d_cfg->nspares = raidPtr->numSpare; 1237 if (d_cfg->nspares >= RF_MAX_DISKS) { 1238 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1239 return (ENOMEM); 1240 } 1241 d_cfg->maxqdepth = raidPtr->maxQueueDepth; 1242 d = 0; 1243 for (i = 0; i < d_cfg->rows; i++) { 1244 for (j = 0; j < d_cfg->cols; j++) { 1245 d_cfg->devs[d] = raidPtr->Disks[i][j]; 1246 d++; 1247 } 1248 } 1249 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) { 1250 d_cfg->spares[i] = raidPtr->Disks[0][j]; 1251 } 1252 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t)); 1253 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1254 1255 return (retcode); 1256 1257 case RAIDFRAME_CHECK_PARITY: 1258 *(int *) data = raidPtr->parity_good; 1259 return (0); 1260 1261 case RAIDFRAME_RESET_ACCTOTALS: 1262 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals)); 1263 return (0); 1264 1265 case RAIDFRAME_GET_ACCTOTALS: 1266 totals = (RF_AccTotals_t *) data; 1267 *totals = raidPtr->acc_totals; 1268 return (0); 1269 1270 case RAIDFRAME_KEEP_ACCTOTALS: 1271 raidPtr->keep_acc_totals = *(int *)data; 1272 return (0); 1273 1274 case RAIDFRAME_GET_SIZE: 1275 *(int *) data = raidPtr->totalSectors; 1276 return (0); 1277 1278 /* fail a disk & optionally start reconstruction */ 1279 case RAIDFRAME_FAIL_DISK: 1280 1281 if (raidPtr->Layout.map->faultsTolerated == 0) { 1282 /* Can't do this on a RAID 0!! */ 1283 return(EINVAL); 1284 } 1285 1286 rr = (struct rf_recon_req *) data; 1287 1288 if (rr->row < 0 || rr->row >= raidPtr->numRow 1289 || rr->col < 0 || rr->col >= raidPtr->numCol) 1290 return (EINVAL); 1291 1292 1293 RF_LOCK_MUTEX(raidPtr->mutex); 1294 if ((raidPtr->Disks[rr->row][rr->col].status == 1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) { 1296 /* some other component has failed. Let's not make 1297 things worse. XXX wrong for RAID6 */ 1298 RF_UNLOCK_MUTEX(raidPtr->mutex); 1299 return (EINVAL); 1300 } 1301 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) { 1302 /* Can't fail a spared disk! */ 1303 RF_UNLOCK_MUTEX(raidPtr->mutex); 1304 return (EINVAL); 1305 } 1306 RF_UNLOCK_MUTEX(raidPtr->mutex); 1307 1308 /* make a copy of the recon request so that we don't rely on 1309 * the user's buffer */ 1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1311 if (rrcopy == NULL) 1312 return(ENOMEM); 1313 memcpy(rrcopy, rr, sizeof(*rr)); 1314 rrcopy->raidPtr = (void *) raidPtr; 1315 1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1317 rf_ReconThread, 1318 rrcopy,"raid_recon"); 1319 return (0); 1320 1321 /* invoke a copyback operation after recon on whatever disk 1322 * needs it, if any */ 1323 case RAIDFRAME_COPYBACK: 1324 1325 if (raidPtr->Layout.map->faultsTolerated == 0) { 1326 /* This makes no sense on a RAID 0!! */ 1327 return(EINVAL); 1328 } 1329 1330 if (raidPtr->copyback_in_progress == 1) { 1331 /* Copyback is already in progress! */ 1332 return(EINVAL); 1333 } 1334 1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread, 1336 rf_CopybackThread, 1337 raidPtr,"raid_copyback"); 1338 return (retcode); 1339 1340 /* return the percentage completion of reconstruction */ 1341 case RAIDFRAME_CHECK_RECON_STATUS: 1342 if (raidPtr->Layout.map->faultsTolerated == 0) { 1343 /* This makes no sense on a RAID 0, so tell the 1344 user it's done. */ 1345 *(int *) data = 100; 1346 return(0); 1347 } 1348 row = 0; /* XXX we only consider a single row... */ 1349 if (raidPtr->status[row] != rf_rs_reconstructing) 1350 *(int *) data = 100; 1351 else 1352 *(int *) data = raidPtr->reconControl[row]->percentComplete; 1353 return (0); 1354 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 1355 progressInfoPtr = (RF_ProgressInfo_t **) data; 1356 row = 0; /* XXX we only consider a single row... */ 1357 if (raidPtr->status[row] != rf_rs_reconstructing) { 1358 progressInfo.remaining = 0; 1359 progressInfo.completed = 100; 1360 progressInfo.total = 100; 1361 } else { 1362 progressInfo.total = 1363 raidPtr->reconControl[row]->numRUsTotal; 1364 progressInfo.completed = 1365 raidPtr->reconControl[row]->numRUsComplete; 1366 progressInfo.remaining = progressInfo.total - 1367 progressInfo.completed; 1368 } 1369 retcode = copyout(&progressInfo, *progressInfoPtr, 1370 sizeof(RF_ProgressInfo_t)); 1371 return (retcode); 1372 1373 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 1374 if (raidPtr->Layout.map->faultsTolerated == 0) { 1375 /* This makes no sense on a RAID 0, so tell the 1376 user it's done. */ 1377 *(int *) data = 100; 1378 return(0); 1379 } 1380 if (raidPtr->parity_rewrite_in_progress == 1) { 1381 *(int *) data = 100 * 1382 raidPtr->parity_rewrite_stripes_done / 1383 raidPtr->Layout.numStripe; 1384 } else { 1385 *(int *) data = 100; 1386 } 1387 return (0); 1388 1389 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 1390 progressInfoPtr = (RF_ProgressInfo_t **) data; 1391 if (raidPtr->parity_rewrite_in_progress == 1) { 1392 progressInfo.total = raidPtr->Layout.numStripe; 1393 progressInfo.completed = 1394 raidPtr->parity_rewrite_stripes_done; 1395 progressInfo.remaining = progressInfo.total - 1396 progressInfo.completed; 1397 } else { 1398 progressInfo.remaining = 0; 1399 progressInfo.completed = 100; 1400 progressInfo.total = 100; 1401 } 1402 retcode = copyout(&progressInfo, *progressInfoPtr, 1403 sizeof(RF_ProgressInfo_t)); 1404 return (retcode); 1405 1406 case RAIDFRAME_CHECK_COPYBACK_STATUS: 1407 if (raidPtr->Layout.map->faultsTolerated == 0) { 1408 /* This makes no sense on a RAID 0 */ 1409 *(int *) data = 100; 1410 return(0); 1411 } 1412 if (raidPtr->copyback_in_progress == 1) { 1413 *(int *) data = 100 * raidPtr->copyback_stripes_done / 1414 raidPtr->Layout.numStripe; 1415 } else { 1416 *(int *) data = 100; 1417 } 1418 return (0); 1419 1420 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 1421 progressInfoPtr = (RF_ProgressInfo_t **) data; 1422 if (raidPtr->copyback_in_progress == 1) { 1423 progressInfo.total = raidPtr->Layout.numStripe; 1424 progressInfo.completed = 1425 raidPtr->copyback_stripes_done; 1426 progressInfo.remaining = progressInfo.total - 1427 progressInfo.completed; 1428 } else { 1429 progressInfo.remaining = 0; 1430 progressInfo.completed = 100; 1431 progressInfo.total = 100; 1432 } 1433 retcode = copyout(&progressInfo, *progressInfoPtr, 1434 sizeof(RF_ProgressInfo_t)); 1435 return (retcode); 1436 1437 /* the sparetable daemon calls this to wait for the kernel to 1438 * need a spare table. this ioctl does not return until a 1439 * spare table is needed. XXX -- calling mpsleep here in the 1440 * ioctl code is almost certainly wrong and evil. -- XXX XXX 1441 * -- I should either compute the spare table in the kernel, 1442 * or have a different -- XXX XXX -- interface (a different 1443 * character device) for delivering the table -- XXX */ 1444 #if 0 1445 case RAIDFRAME_SPARET_WAIT: 1446 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1447 while (!rf_sparet_wait_queue) 1448 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE); 1449 waitreq = rf_sparet_wait_queue; 1450 rf_sparet_wait_queue = rf_sparet_wait_queue->next; 1451 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1452 1453 /* structure assignment */ 1454 *((RF_SparetWait_t *) data) = *waitreq; 1455 1456 RF_Free(waitreq, sizeof(*waitreq)); 1457 return (0); 1458 1459 /* wakes up a process waiting on SPARET_WAIT and puts an error 1460 * code in it that will cause the dameon to exit */ 1461 case RAIDFRAME_ABORT_SPARET_WAIT: 1462 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1463 waitreq->fcol = -1; 1464 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1465 waitreq->next = rf_sparet_wait_queue; 1466 rf_sparet_wait_queue = waitreq; 1467 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1468 wakeup(&rf_sparet_wait_queue); 1469 return (0); 1470 1471 /* used by the spare table daemon to deliver a spare table 1472 * into the kernel */ 1473 case RAIDFRAME_SEND_SPARET: 1474 1475 /* install the spare table */ 1476 retcode = rf_SetSpareTable(raidPtr, *(void **) data); 1477 1478 /* respond to the requestor. the return status of the spare 1479 * table installation is passed in the "fcol" field */ 1480 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1481 waitreq->fcol = retcode; 1482 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1483 waitreq->next = rf_sparet_resp_queue; 1484 rf_sparet_resp_queue = waitreq; 1485 wakeup(&rf_sparet_resp_queue); 1486 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1487 1488 return (retcode); 1489 #endif 1490 1491 default: 1492 break; /* fall through to the os-specific code below */ 1493 1494 } 1495 1496 if (!raidPtr->valid) 1497 return (EINVAL); 1498 1499 /* 1500 * Add support for "regular" device ioctls here. 1501 */ 1502 1503 switch (cmd) { 1504 case DIOCGDINFO: 1505 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label); 1506 break; 1507 #ifdef __HAVE_OLD_DISKLABEL 1508 case ODIOCGDINFO: 1509 newlabel = *(rs->sc_dkdev.dk_label); 1510 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1511 return ENOTTY; 1512 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1513 break; 1514 #endif 1515 1516 case DIOCGPART: 1517 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label; 1518 ((struct partinfo *) data)->part = 1519 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)]; 1520 break; 1521 1522 case DIOCWDINFO: 1523 case DIOCSDINFO: 1524 #ifdef __HAVE_OLD_DISKLABEL 1525 case ODIOCWDINFO: 1526 case ODIOCSDINFO: 1527 #endif 1528 { 1529 struct disklabel *lp; 1530 #ifdef __HAVE_OLD_DISKLABEL 1531 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) { 1532 memset(&newlabel, 0, sizeof newlabel); 1533 memcpy(&newlabel, data, sizeof (struct olddisklabel)); 1534 lp = &newlabel; 1535 } else 1536 #endif 1537 lp = (struct disklabel *)data; 1538 1539 if ((error = raidlock(rs)) != 0) 1540 return (error); 1541 1542 rs->sc_flags |= RAIDF_LABELLING; 1543 1544 error = setdisklabel(rs->sc_dkdev.dk_label, 1545 lp, 0, rs->sc_dkdev.dk_cpulabel); 1546 if (error == 0) { 1547 if (cmd == DIOCWDINFO 1548 #ifdef __HAVE_OLD_DISKLABEL 1549 || cmd == ODIOCWDINFO 1550 #endif 1551 ) 1552 error = writedisklabel(RAIDLABELDEV(dev), 1553 raidstrategy, rs->sc_dkdev.dk_label, 1554 rs->sc_dkdev.dk_cpulabel); 1555 } 1556 rs->sc_flags &= ~RAIDF_LABELLING; 1557 1558 raidunlock(rs); 1559 1560 if (error) 1561 return (error); 1562 break; 1563 } 1564 1565 case DIOCWLABEL: 1566 if (*(int *) data != 0) 1567 rs->sc_flags |= RAIDF_WLABEL; 1568 else 1569 rs->sc_flags &= ~RAIDF_WLABEL; 1570 break; 1571 1572 case DIOCGDEFLABEL: 1573 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data); 1574 break; 1575 1576 #ifdef __HAVE_OLD_DISKLABEL 1577 case ODIOCGDEFLABEL: 1578 raidgetdefaultlabel(raidPtr, rs, &newlabel); 1579 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1580 return ENOTTY; 1581 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1582 break; 1583 #endif 1584 1585 default: 1586 retcode = ENOTTY; 1587 } 1588 return (retcode); 1589 1590 } 1591 1592 1593 /* raidinit -- complete the rest of the initialization for the 1594 RAIDframe device. */ 1595 1596 1597 static void 1598 raidinit(raidPtr) 1599 RF_Raid_t *raidPtr; 1600 { 1601 struct raid_softc *rs; 1602 int unit; 1603 1604 unit = raidPtr->raidid; 1605 1606 rs = &raid_softc[unit]; 1607 1608 /* XXX should check return code first... */ 1609 rs->sc_flags |= RAIDF_INITED; 1610 1611 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */ 1612 1613 rs->sc_dkdev.dk_name = rs->sc_xname; 1614 1615 /* disk_attach actually creates space for the CPU disklabel, among 1616 * other things, so it's critical to call this *BEFORE* we try putzing 1617 * with disklabels. */ 1618 1619 disk_attach(&rs->sc_dkdev); 1620 1621 /* XXX There may be a weird interaction here between this, and 1622 * protectedSectors, as used in RAIDframe. */ 1623 1624 rs->sc_size = raidPtr->totalSectors; 1625 1626 } 1627 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 1628 /* wake up the daemon & tell it to get us a spare table 1629 * XXX 1630 * the entries in the queues should be tagged with the raidPtr 1631 * so that in the extremely rare case that two recons happen at once, 1632 * we know for which device were requesting a spare table 1633 * XXX 1634 * 1635 * XXX This code is not currently used. GO 1636 */ 1637 int 1638 rf_GetSpareTableFromDaemon(req) 1639 RF_SparetWait_t *req; 1640 { 1641 int retcode; 1642 1643 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1644 req->next = rf_sparet_wait_queue; 1645 rf_sparet_wait_queue = req; 1646 wakeup(&rf_sparet_wait_queue); 1647 1648 /* mpsleep unlocks the mutex */ 1649 while (!rf_sparet_resp_queue) { 1650 tsleep(&rf_sparet_resp_queue, PRIBIO, 1651 "raidframe getsparetable", 0); 1652 } 1653 req = rf_sparet_resp_queue; 1654 rf_sparet_resp_queue = req->next; 1655 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1656 1657 retcode = req->fcol; 1658 RF_Free(req, sizeof(*req)); /* this is not the same req as we 1659 * alloc'd */ 1660 return (retcode); 1661 } 1662 #endif 1663 1664 /* a wrapper around rf_DoAccess that extracts appropriate info from the 1665 * bp & passes it down. 1666 * any calls originating in the kernel must use non-blocking I/O 1667 * do some extra sanity checking to return "appropriate" error values for 1668 * certain conditions (to make some standard utilities work) 1669 * 1670 * Formerly known as: rf_DoAccessKernel 1671 */ 1672 void 1673 raidstart(raidPtr) 1674 RF_Raid_t *raidPtr; 1675 { 1676 RF_SectorCount_t num_blocks, pb, sum; 1677 RF_RaidAddr_t raid_addr; 1678 struct partition *pp; 1679 daddr_t blocknum; 1680 int unit; 1681 struct raid_softc *rs; 1682 int do_async; 1683 struct buf *bp; 1684 1685 unit = raidPtr->raidid; 1686 rs = &raid_softc[unit]; 1687 1688 /* quick check to see if anything has died recently */ 1689 RF_LOCK_MUTEX(raidPtr->mutex); 1690 if (raidPtr->numNewFailures > 0) { 1691 RF_UNLOCK_MUTEX(raidPtr->mutex); 1692 rf_update_component_labels(raidPtr, 1693 RF_NORMAL_COMPONENT_UPDATE); 1694 RF_LOCK_MUTEX(raidPtr->mutex); 1695 raidPtr->numNewFailures--; 1696 } 1697 1698 /* Check to see if we're at the limit... */ 1699 while (raidPtr->openings > 0) { 1700 RF_UNLOCK_MUTEX(raidPtr->mutex); 1701 1702 /* get the next item, if any, from the queue */ 1703 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) { 1704 /* nothing more to do */ 1705 return; 1706 } 1707 1708 /* Ok, for the bp we have here, bp->b_blkno is relative to the 1709 * partition.. Need to make it absolute to the underlying 1710 * device.. */ 1711 1712 blocknum = bp->b_blkno; 1713 if (DISKPART(bp->b_dev) != RAW_PART) { 1714 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)]; 1715 blocknum += pp->p_offset; 1716 } 1717 1718 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, 1719 (int) blocknum)); 1720 1721 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount)); 1722 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid)); 1723 1724 /* *THIS* is where we adjust what block we're going to... 1725 * but DO NOT TOUCH bp->b_blkno!!! */ 1726 raid_addr = blocknum; 1727 1728 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector; 1729 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0; 1730 sum = raid_addr + num_blocks + pb; 1731 if (1 || rf_debugKernelAccess) { 1732 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n", 1733 (int) raid_addr, (int) sum, (int) num_blocks, 1734 (int) pb, (int) bp->b_resid)); 1735 } 1736 if ((sum > raidPtr->totalSectors) || (sum < raid_addr) 1737 || (sum < num_blocks) || (sum < pb)) { 1738 bp->b_error = ENOSPC; 1739 bp->b_flags |= B_ERROR; 1740 bp->b_resid = bp->b_bcount; 1741 biodone(bp); 1742 RF_LOCK_MUTEX(raidPtr->mutex); 1743 continue; 1744 } 1745 /* 1746 * XXX rf_DoAccess() should do this, not just DoAccessKernel() 1747 */ 1748 1749 if (bp->b_bcount & raidPtr->sectorMask) { 1750 bp->b_error = EINVAL; 1751 bp->b_flags |= B_ERROR; 1752 bp->b_resid = bp->b_bcount; 1753 biodone(bp); 1754 RF_LOCK_MUTEX(raidPtr->mutex); 1755 continue; 1756 1757 } 1758 db1_printf(("Calling DoAccess..\n")); 1759 1760 1761 RF_LOCK_MUTEX(raidPtr->mutex); 1762 raidPtr->openings--; 1763 RF_UNLOCK_MUTEX(raidPtr->mutex); 1764 1765 /* 1766 * Everything is async. 1767 */ 1768 do_async = 1; 1769 1770 disk_busy(&rs->sc_dkdev); 1771 1772 /* XXX we're still at splbio() here... do we *really* 1773 need to be? */ 1774 1775 /* don't ever condition on bp->b_flags & B_WRITE. 1776 * always condition on B_READ instead */ 1777 1778 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ? 1779 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, 1780 do_async, raid_addr, num_blocks, 1781 bp->b_data, bp, RF_DAG_NONBLOCKING_IO); 1782 1783 if (bp->b_error) { 1784 bp->b_flags |= B_ERROR; 1785 } 1786 1787 RF_LOCK_MUTEX(raidPtr->mutex); 1788 } 1789 RF_UNLOCK_MUTEX(raidPtr->mutex); 1790 } 1791 1792 1793 1794 1795 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */ 1796 1797 int 1798 rf_DispatchKernelIO(queue, req) 1799 RF_DiskQueue_t *queue; 1800 RF_DiskQueueData_t *req; 1801 { 1802 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE; 1803 struct buf *bp; 1804 struct raidbuf *raidbp = NULL; 1805 1806 req->queue = queue; 1807 1808 #if DIAGNOSTIC 1809 if (queue->raidPtr->raidid >= numraid) { 1810 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid, 1811 numraid); 1812 panic("Invalid Unit number in rf_DispatchKernelIO"); 1813 } 1814 #endif 1815 1816 bp = req->bp; 1817 #if 1 1818 /* XXX when there is a physical disk failure, someone is passing us a 1819 * buffer that contains old stuff!! Attempt to deal with this problem 1820 * without taking a performance hit... (not sure where the real bug 1821 * is. It's buried in RAIDframe somewhere) :-( GO ) */ 1822 1823 if (bp->b_flags & B_ERROR) { 1824 bp->b_flags &= ~B_ERROR; 1825 } 1826 if (bp->b_error != 0) { 1827 bp->b_error = 0; 1828 } 1829 #endif 1830 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT); 1831 if (raidbp == NULL) { 1832 bp->b_flags |= B_ERROR; 1833 bp->b_error = ENOMEM; 1834 return (ENOMEM); 1835 } 1836 BUF_INIT(&raidbp->rf_buf); 1837 1838 /* 1839 * context for raidiodone 1840 */ 1841 raidbp->rf_obp = bp; 1842 raidbp->req = req; 1843 1844 switch (req->type) { 1845 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */ 1846 /* XXX need to do something extra here.. */ 1847 /* I'm leaving this in, as I've never actually seen it used, 1848 * and I'd like folks to report it... GO */ 1849 printf(("WAKEUP CALLED\n")); 1850 queue->numOutstanding++; 1851 1852 /* XXX need to glue the original buffer into this?? */ 1853 1854 KernelWakeupFunc(&raidbp->rf_buf); 1855 break; 1856 1857 case RF_IO_TYPE_READ: 1858 case RF_IO_TYPE_WRITE: 1859 1860 if (req->tracerec) { 1861 RF_ETIMER_START(req->tracerec->timer); 1862 } 1863 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp, 1864 op | bp->b_flags, queue->rf_cinfo->ci_dev, 1865 req->sectorOffset, req->numSector, 1866 req->buf, KernelWakeupFunc, (void *) req, 1867 queue->raidPtr->logBytesPerSector, req->b_proc); 1868 1869 if (rf_debugKernelAccess) { 1870 db1_printf(("dispatch: bp->b_blkno = %ld\n", 1871 (long) bp->b_blkno)); 1872 } 1873 queue->numOutstanding++; 1874 queue->last_deq_sector = req->sectorOffset; 1875 /* acc wouldn't have been let in if there were any pending 1876 * reqs at any other priority */ 1877 queue->curPriority = req->priority; 1878 1879 db1_printf(("Going for %c to unit %d row %d col %d\n", 1880 req->type, queue->raidPtr->raidid, 1881 queue->row, queue->col)); 1882 db1_printf(("sector %d count %d (%d bytes) %d\n", 1883 (int) req->sectorOffset, (int) req->numSector, 1884 (int) (req->numSector << 1885 queue->raidPtr->logBytesPerSector), 1886 (int) queue->raidPtr->logBytesPerSector)); 1887 if ((raidbp->rf_buf.b_flags & B_READ) == 0) { 1888 raidbp->rf_buf.b_vp->v_numoutput++; 1889 } 1890 VOP_STRATEGY(&raidbp->rf_buf); 1891 1892 break; 1893 1894 default: 1895 panic("bad req->type in rf_DispatchKernelIO"); 1896 } 1897 db1_printf(("Exiting from DispatchKernelIO\n")); 1898 1899 return (0); 1900 } 1901 /* this is the callback function associated with a I/O invoked from 1902 kernel code. 1903 */ 1904 static void 1905 KernelWakeupFunc(vbp) 1906 struct buf *vbp; 1907 { 1908 RF_DiskQueueData_t *req = NULL; 1909 RF_DiskQueue_t *queue; 1910 struct raidbuf *raidbp = (struct raidbuf *) vbp; 1911 struct buf *bp; 1912 int s; 1913 1914 s = splbio(); 1915 db1_printf(("recovering the request queue:\n")); 1916 req = raidbp->req; 1917 1918 bp = raidbp->rf_obp; 1919 1920 queue = (RF_DiskQueue_t *) req->queue; 1921 1922 if (raidbp->rf_buf.b_flags & B_ERROR) { 1923 bp->b_flags |= B_ERROR; 1924 bp->b_error = raidbp->rf_buf.b_error ? 1925 raidbp->rf_buf.b_error : EIO; 1926 } 1927 1928 /* XXX methinks this could be wrong... */ 1929 #if 1 1930 bp->b_resid = raidbp->rf_buf.b_resid; 1931 #endif 1932 1933 if (req->tracerec) { 1934 RF_ETIMER_STOP(req->tracerec->timer); 1935 RF_ETIMER_EVAL(req->tracerec->timer); 1936 RF_LOCK_MUTEX(rf_tracing_mutex); 1937 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); 1938 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); 1939 req->tracerec->num_phys_ios++; 1940 RF_UNLOCK_MUTEX(rf_tracing_mutex); 1941 } 1942 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */ 1943 1944 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go 1945 * ballistic, and mark the component as hosed... */ 1946 1947 if (bp->b_flags & B_ERROR) { 1948 /* Mark the disk as dead */ 1949 /* but only mark it once... */ 1950 if (queue->raidPtr->Disks[queue->row][queue->col].status == 1951 rf_ds_optimal) { 1952 printf("raid%d: IO Error. Marking %s as failed.\n", 1953 queue->raidPtr->raidid, 1954 queue->raidPtr->Disks[queue->row][queue->col].devname); 1955 queue->raidPtr->Disks[queue->row][queue->col].status = 1956 rf_ds_failed; 1957 queue->raidPtr->status[queue->row] = rf_rs_degraded; 1958 queue->raidPtr->numFailures++; 1959 queue->raidPtr->numNewFailures++; 1960 } else { /* Disk is already dead... */ 1961 /* printf("Disk already marked as dead!\n"); */ 1962 } 1963 1964 } 1965 1966 pool_put(&raidframe_cbufpool, raidbp); 1967 1968 /* Fill in the error value */ 1969 1970 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0; 1971 1972 simple_lock(&queue->raidPtr->iodone_lock); 1973 1974 /* Drop this one on the "finished" queue... */ 1975 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries); 1976 1977 /* Let the raidio thread know there is work to be done. */ 1978 wakeup(&(queue->raidPtr->iodone)); 1979 1980 simple_unlock(&queue->raidPtr->iodone_lock); 1981 1982 splx(s); 1983 } 1984 1985 1986 1987 /* 1988 * initialize a buf structure for doing an I/O in the kernel. 1989 */ 1990 static void 1991 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg, 1992 logBytesPerSector, b_proc) 1993 struct buf *bp; 1994 struct vnode *b_vp; 1995 unsigned rw_flag; 1996 dev_t dev; 1997 RF_SectorNum_t startSect; 1998 RF_SectorCount_t numSect; 1999 caddr_t buf; 2000 void (*cbFunc) (struct buf *); 2001 void *cbArg; 2002 int logBytesPerSector; 2003 struct proc *b_proc; 2004 { 2005 /* bp->b_flags = B_PHYS | rw_flag; */ 2006 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */ 2007 bp->b_bcount = numSect << logBytesPerSector; 2008 bp->b_bufsize = bp->b_bcount; 2009 bp->b_error = 0; 2010 bp->b_dev = dev; 2011 bp->b_data = buf; 2012 bp->b_blkno = startSect; 2013 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */ 2014 if (bp->b_bcount == 0) { 2015 panic("bp->b_bcount is zero in InitBP!!"); 2016 } 2017 bp->b_proc = b_proc; 2018 bp->b_iodone = cbFunc; 2019 bp->b_vp = b_vp; 2020 2021 } 2022 2023 static void 2024 raidgetdefaultlabel(raidPtr, rs, lp) 2025 RF_Raid_t *raidPtr; 2026 struct raid_softc *rs; 2027 struct disklabel *lp; 2028 { 2029 memset(lp, 0, sizeof(*lp)); 2030 2031 /* fabricate a label... */ 2032 lp->d_secperunit = raidPtr->totalSectors; 2033 lp->d_secsize = raidPtr->bytesPerSector; 2034 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe; 2035 lp->d_ntracks = 4 * raidPtr->numCol; 2036 lp->d_ncylinders = raidPtr->totalSectors / 2037 (lp->d_nsectors * lp->d_ntracks); 2038 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; 2039 2040 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename)); 2041 lp->d_type = DTYPE_RAID; 2042 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); 2043 lp->d_rpm = 3600; 2044 lp->d_interleave = 1; 2045 lp->d_flags = 0; 2046 2047 lp->d_partitions[RAW_PART].p_offset = 0; 2048 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors; 2049 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; 2050 lp->d_npartitions = RAW_PART + 1; 2051 2052 lp->d_magic = DISKMAGIC; 2053 lp->d_magic2 = DISKMAGIC; 2054 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label); 2055 2056 } 2057 /* 2058 * Read the disklabel from the raid device. If one is not present, fake one 2059 * up. 2060 */ 2061 static void 2062 raidgetdisklabel(dev) 2063 dev_t dev; 2064 { 2065 int unit = raidunit(dev); 2066 struct raid_softc *rs = &raid_softc[unit]; 2067 const char *errstring; 2068 struct disklabel *lp = rs->sc_dkdev.dk_label; 2069 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel; 2070 RF_Raid_t *raidPtr; 2071 2072 db1_printf(("Getting the disklabel...\n")); 2073 2074 memset(clp, 0, sizeof(*clp)); 2075 2076 raidPtr = raidPtrs[unit]; 2077 2078 raidgetdefaultlabel(raidPtr, rs, lp); 2079 2080 /* 2081 * Call the generic disklabel extraction routine. 2082 */ 2083 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy, 2084 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel); 2085 if (errstring) 2086 raidmakedisklabel(rs); 2087 else { 2088 int i; 2089 struct partition *pp; 2090 2091 /* 2092 * Sanity check whether the found disklabel is valid. 2093 * 2094 * This is necessary since total size of the raid device 2095 * may vary when an interleave is changed even though exactly 2096 * same componets are used, and old disklabel may used 2097 * if that is found. 2098 */ 2099 if (lp->d_secperunit != rs->sc_size) 2100 printf("raid%d: WARNING: %s: " 2101 "total sector size in disklabel (%d) != " 2102 "the size of raid (%ld)\n", unit, rs->sc_xname, 2103 lp->d_secperunit, (long) rs->sc_size); 2104 for (i = 0; i < lp->d_npartitions; i++) { 2105 pp = &lp->d_partitions[i]; 2106 if (pp->p_offset + pp->p_size > rs->sc_size) 2107 printf("raid%d: WARNING: %s: end of partition `%c' " 2108 "exceeds the size of raid (%ld)\n", 2109 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size); 2110 } 2111 } 2112 2113 } 2114 /* 2115 * Take care of things one might want to take care of in the event 2116 * that a disklabel isn't present. 2117 */ 2118 static void 2119 raidmakedisklabel(rs) 2120 struct raid_softc *rs; 2121 { 2122 struct disklabel *lp = rs->sc_dkdev.dk_label; 2123 db1_printf(("Making a label..\n")); 2124 2125 /* 2126 * For historical reasons, if there's no disklabel present 2127 * the raw partition must be marked FS_BSDFFS. 2128 */ 2129 2130 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS; 2131 2132 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname)); 2133 2134 lp->d_checksum = dkcksum(lp); 2135 } 2136 /* 2137 * Lookup the provided name in the filesystem. If the file exists, 2138 * is a valid block device, and isn't being used by anyone else, 2139 * set *vpp to the file's vnode. 2140 * You'll find the original of this in ccd.c 2141 */ 2142 int 2143 raidlookup(path, p, vpp) 2144 char *path; 2145 struct proc *p; 2146 struct vnode **vpp; /* result */ 2147 { 2148 struct nameidata nd; 2149 struct vnode *vp; 2150 struct vattr va; 2151 int error; 2152 2153 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p); 2154 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) { 2155 return (error); 2156 } 2157 vp = nd.ni_vp; 2158 if (vp->v_usecount > 1) { 2159 VOP_UNLOCK(vp, 0); 2160 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2161 return (EBUSY); 2162 } 2163 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) { 2164 VOP_UNLOCK(vp, 0); 2165 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2166 return (error); 2167 } 2168 /* XXX: eventually we should handle VREG, too. */ 2169 if (va.va_type != VBLK) { 2170 VOP_UNLOCK(vp, 0); 2171 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2172 return (ENOTBLK); 2173 } 2174 VOP_UNLOCK(vp, 0); 2175 *vpp = vp; 2176 return (0); 2177 } 2178 /* 2179 * Wait interruptibly for an exclusive lock. 2180 * 2181 * XXX 2182 * Several drivers do this; it should be abstracted and made MP-safe. 2183 * (Hmm... where have we seen this warning before :-> GO ) 2184 */ 2185 static int 2186 raidlock(rs) 2187 struct raid_softc *rs; 2188 { 2189 int error; 2190 2191 while ((rs->sc_flags & RAIDF_LOCKED) != 0) { 2192 rs->sc_flags |= RAIDF_WANTED; 2193 if ((error = 2194 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0) 2195 return (error); 2196 } 2197 rs->sc_flags |= RAIDF_LOCKED; 2198 return (0); 2199 } 2200 /* 2201 * Unlock and wake up any waiters. 2202 */ 2203 static void 2204 raidunlock(rs) 2205 struct raid_softc *rs; 2206 { 2207 2208 rs->sc_flags &= ~RAIDF_LOCKED; 2209 if ((rs->sc_flags & RAIDF_WANTED) != 0) { 2210 rs->sc_flags &= ~RAIDF_WANTED; 2211 wakeup(rs); 2212 } 2213 } 2214 2215 2216 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ 2217 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ 2218 2219 int 2220 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter) 2221 { 2222 RF_ComponentLabel_t clabel; 2223 raidread_component_label(dev, b_vp, &clabel); 2224 clabel.mod_counter = mod_counter; 2225 clabel.clean = RF_RAID_CLEAN; 2226 raidwrite_component_label(dev, b_vp, &clabel); 2227 return(0); 2228 } 2229 2230 2231 int 2232 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter) 2233 { 2234 RF_ComponentLabel_t clabel; 2235 raidread_component_label(dev, b_vp, &clabel); 2236 clabel.mod_counter = mod_counter; 2237 clabel.clean = RF_RAID_DIRTY; 2238 raidwrite_component_label(dev, b_vp, &clabel); 2239 return(0); 2240 } 2241 2242 /* ARGSUSED */ 2243 int 2244 raidread_component_label(dev, b_vp, clabel) 2245 dev_t dev; 2246 struct vnode *b_vp; 2247 RF_ComponentLabel_t *clabel; 2248 { 2249 struct buf *bp; 2250 const struct bdevsw *bdev; 2251 int error; 2252 2253 /* XXX should probably ensure that we don't try to do this if 2254 someone has changed rf_protected_sectors. */ 2255 2256 if (b_vp == NULL) { 2257 /* For whatever reason, this component is not valid. 2258 Don't try to read a component label from it. */ 2259 return(EINVAL); 2260 } 2261 2262 /* get a block of the appropriate size... */ 2263 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2264 bp->b_dev = dev; 2265 2266 /* get our ducks in a row for the read */ 2267 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2268 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2269 bp->b_flags |= B_READ; 2270 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2271 2272 bdev = bdevsw_lookup(bp->b_dev); 2273 if (bdev == NULL) 2274 return (ENXIO); 2275 (*bdev->d_strategy)(bp); 2276 2277 error = biowait(bp); 2278 2279 if (!error) { 2280 memcpy(clabel, bp->b_data, 2281 sizeof(RF_ComponentLabel_t)); 2282 } 2283 2284 brelse(bp); 2285 return(error); 2286 } 2287 /* ARGSUSED */ 2288 int 2289 raidwrite_component_label(dev, b_vp, clabel) 2290 dev_t dev; 2291 struct vnode *b_vp; 2292 RF_ComponentLabel_t *clabel; 2293 { 2294 struct buf *bp; 2295 const struct bdevsw *bdev; 2296 int error; 2297 2298 /* get a block of the appropriate size... */ 2299 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2300 bp->b_dev = dev; 2301 2302 /* get our ducks in a row for the write */ 2303 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2304 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2305 bp->b_flags |= B_WRITE; 2306 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2307 2308 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE ); 2309 2310 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t)); 2311 2312 bdev = bdevsw_lookup(bp->b_dev); 2313 if (bdev == NULL) 2314 return (ENXIO); 2315 (*bdev->d_strategy)(bp); 2316 error = biowait(bp); 2317 brelse(bp); 2318 if (error) { 2319 #if 1 2320 printf("Failed to write RAID component info!\n"); 2321 #endif 2322 } 2323 2324 return(error); 2325 } 2326 2327 void 2328 rf_markalldirty(raidPtr) 2329 RF_Raid_t *raidPtr; 2330 { 2331 RF_ComponentLabel_t clabel; 2332 int sparecol; 2333 int r,c; 2334 int i,j; 2335 int srow, scol; 2336 2337 raidPtr->mod_counter++; 2338 for (r = 0; r < raidPtr->numRow; r++) { 2339 for (c = 0; c < raidPtr->numCol; c++) { 2340 /* we don't want to touch (at all) a disk that has 2341 failed */ 2342 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) { 2343 raidread_component_label( 2344 raidPtr->Disks[r][c].dev, 2345 raidPtr->raid_cinfo[r][c].ci_vp, 2346 &clabel); 2347 if (clabel.status == rf_ds_spared) { 2348 /* XXX do something special... 2349 but whatever you do, don't 2350 try to access it!! */ 2351 } else { 2352 raidmarkdirty( 2353 raidPtr->Disks[r][c].dev, 2354 raidPtr->raid_cinfo[r][c].ci_vp, 2355 raidPtr->mod_counter); 2356 } 2357 } 2358 } 2359 } 2360 2361 for( c = 0; c < raidPtr->numSpare ; c++) { 2362 sparecol = raidPtr->numCol + c; 2363 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { 2364 /* 2365 2366 we claim this disk is "optimal" if it's 2367 rf_ds_used_spare, as that means it should be 2368 directly substitutable for the disk it replaced. 2369 We note that too... 2370 2371 */ 2372 2373 for(i=0;i<raidPtr->numRow;i++) { 2374 for(j=0;j<raidPtr->numCol;j++) { 2375 if ((raidPtr->Disks[i][j].spareRow == 2376 0) && 2377 (raidPtr->Disks[i][j].spareCol == 2378 sparecol)) { 2379 srow = i; 2380 scol = j; 2381 break; 2382 } 2383 } 2384 } 2385 2386 raidread_component_label( 2387 raidPtr->Disks[0][sparecol].dev, 2388 raidPtr->raid_cinfo[0][sparecol].ci_vp, 2389 &clabel); 2390 /* make sure status is noted */ 2391 2392 raid_init_component_label(raidPtr, &clabel); 2393 2394 clabel.row = srow; 2395 clabel.column = scol; 2396 /* Note: we *don't* change status from rf_ds_used_spare 2397 to rf_ds_optimal */ 2398 /* clabel.status = rf_ds_optimal; */ 2399 2400 raidmarkdirty(raidPtr->Disks[0][sparecol].dev, 2401 raidPtr->raid_cinfo[0][sparecol].ci_vp, 2402 raidPtr->mod_counter); 2403 } 2404 } 2405 } 2406 2407 2408 void 2409 rf_update_component_labels(raidPtr, final) 2410 RF_Raid_t *raidPtr; 2411 int final; 2412 { 2413 RF_ComponentLabel_t clabel; 2414 int sparecol; 2415 int r,c; 2416 int i,j; 2417 int srow, scol; 2418 2419 srow = -1; 2420 scol = -1; 2421 2422 /* XXX should do extra checks to make sure things really are clean, 2423 rather than blindly setting the clean bit... */ 2424 2425 raidPtr->mod_counter++; 2426 2427 for (r = 0; r < raidPtr->numRow; r++) { 2428 for (c = 0; c < raidPtr->numCol; c++) { 2429 if (raidPtr->Disks[r][c].status == rf_ds_optimal) { 2430 raidread_component_label( 2431 raidPtr->Disks[r][c].dev, 2432 raidPtr->raid_cinfo[r][c].ci_vp, 2433 &clabel); 2434 /* make sure status is noted */ 2435 clabel.status = rf_ds_optimal; 2436 /* bump the counter */ 2437 clabel.mod_counter = raidPtr->mod_counter; 2438 2439 raidwrite_component_label( 2440 raidPtr->Disks[r][c].dev, 2441 raidPtr->raid_cinfo[r][c].ci_vp, 2442 &clabel); 2443 if (final == RF_FINAL_COMPONENT_UPDATE) { 2444 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2445 raidmarkclean( 2446 raidPtr->Disks[r][c].dev, 2447 raidPtr->raid_cinfo[r][c].ci_vp, 2448 raidPtr->mod_counter); 2449 } 2450 } 2451 } 2452 /* else we don't touch it.. */ 2453 } 2454 } 2455 2456 for( c = 0; c < raidPtr->numSpare ; c++) { 2457 sparecol = raidPtr->numCol + c; 2458 /* Need to ensure that the reconstruct actually completed! */ 2459 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { 2460 /* 2461 2462 we claim this disk is "optimal" if it's 2463 rf_ds_used_spare, as that means it should be 2464 directly substitutable for the disk it replaced. 2465 We note that too... 2466 2467 */ 2468 2469 for(i=0;i<raidPtr->numRow;i++) { 2470 for(j=0;j<raidPtr->numCol;j++) { 2471 if ((raidPtr->Disks[i][j].spareRow == 2472 0) && 2473 (raidPtr->Disks[i][j].spareCol == 2474 sparecol)) { 2475 srow = i; 2476 scol = j; 2477 break; 2478 } 2479 } 2480 } 2481 2482 /* XXX shouldn't *really* need this... */ 2483 raidread_component_label( 2484 raidPtr->Disks[0][sparecol].dev, 2485 raidPtr->raid_cinfo[0][sparecol].ci_vp, 2486 &clabel); 2487 /* make sure status is noted */ 2488 2489 raid_init_component_label(raidPtr, &clabel); 2490 2491 clabel.mod_counter = raidPtr->mod_counter; 2492 clabel.row = srow; 2493 clabel.column = scol; 2494 clabel.status = rf_ds_optimal; 2495 2496 raidwrite_component_label( 2497 raidPtr->Disks[0][sparecol].dev, 2498 raidPtr->raid_cinfo[0][sparecol].ci_vp, 2499 &clabel); 2500 if (final == RF_FINAL_COMPONENT_UPDATE) { 2501 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2502 raidmarkclean( raidPtr->Disks[0][sparecol].dev, 2503 raidPtr->raid_cinfo[0][sparecol].ci_vp, 2504 raidPtr->mod_counter); 2505 } 2506 } 2507 } 2508 } 2509 } 2510 2511 void 2512 rf_close_component(raidPtr, vp, auto_configured) 2513 RF_Raid_t *raidPtr; 2514 struct vnode *vp; 2515 int auto_configured; 2516 { 2517 struct proc *p; 2518 2519 p = raidPtr->engine_thread; 2520 2521 if (vp != NULL) { 2522 if (auto_configured == 1) { 2523 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2524 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2525 vput(vp); 2526 2527 } else { 2528 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2529 } 2530 } 2531 } 2532 2533 2534 void 2535 rf_UnconfigureVnodes(raidPtr) 2536 RF_Raid_t *raidPtr; 2537 { 2538 int r,c; 2539 struct vnode *vp; 2540 int acd; 2541 2542 2543 /* We take this opportunity to close the vnodes like we should.. */ 2544 2545 for (r = 0; r < raidPtr->numRow; r++) { 2546 for (c = 0; c < raidPtr->numCol; c++) { 2547 vp = raidPtr->raid_cinfo[r][c].ci_vp; 2548 acd = raidPtr->Disks[r][c].auto_configured; 2549 rf_close_component(raidPtr, vp, acd); 2550 raidPtr->raid_cinfo[r][c].ci_vp = NULL; 2551 raidPtr->Disks[r][c].auto_configured = 0; 2552 } 2553 } 2554 for (r = 0; r < raidPtr->numSpare; r++) { 2555 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp; 2556 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured; 2557 rf_close_component(raidPtr, vp, acd); 2558 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL; 2559 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0; 2560 } 2561 } 2562 2563 2564 void 2565 rf_ReconThread(req) 2566 struct rf_recon_req *req; 2567 { 2568 int s; 2569 RF_Raid_t *raidPtr; 2570 2571 s = splbio(); 2572 raidPtr = (RF_Raid_t *) req->raidPtr; 2573 raidPtr->recon_in_progress = 1; 2574 2575 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col, 2576 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); 2577 2578 /* XXX get rid of this! we don't need it at all.. */ 2579 RF_Free(req, sizeof(*req)); 2580 2581 raidPtr->recon_in_progress = 0; 2582 splx(s); 2583 2584 /* That's all... */ 2585 kthread_exit(0); /* does not return */ 2586 } 2587 2588 void 2589 rf_RewriteParityThread(raidPtr) 2590 RF_Raid_t *raidPtr; 2591 { 2592 int retcode; 2593 int s; 2594 2595 raidPtr->parity_rewrite_in_progress = 1; 2596 s = splbio(); 2597 retcode = rf_RewriteParity(raidPtr); 2598 splx(s); 2599 if (retcode) { 2600 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid); 2601 } else { 2602 /* set the clean bit! If we shutdown correctly, 2603 the clean bit on each component label will get 2604 set */ 2605 raidPtr->parity_good = RF_RAID_CLEAN; 2606 } 2607 raidPtr->parity_rewrite_in_progress = 0; 2608 2609 /* Anyone waiting for us to stop? If so, inform them... */ 2610 if (raidPtr->waitShutdown) { 2611 wakeup(&raidPtr->parity_rewrite_in_progress); 2612 } 2613 2614 /* That's all... */ 2615 kthread_exit(0); /* does not return */ 2616 } 2617 2618 2619 void 2620 rf_CopybackThread(raidPtr) 2621 RF_Raid_t *raidPtr; 2622 { 2623 int s; 2624 2625 raidPtr->copyback_in_progress = 1; 2626 s = splbio(); 2627 rf_CopybackReconstructedData(raidPtr); 2628 splx(s); 2629 raidPtr->copyback_in_progress = 0; 2630 2631 /* That's all... */ 2632 kthread_exit(0); /* does not return */ 2633 } 2634 2635 2636 void 2637 rf_ReconstructInPlaceThread(req) 2638 struct rf_recon_req *req; 2639 { 2640 int s; 2641 RF_Raid_t *raidPtr; 2642 2643 s = splbio(); 2644 raidPtr = req->raidPtr; 2645 raidPtr->recon_in_progress = 1; 2646 rf_ReconstructInPlace(raidPtr, req->row, req->col); 2647 RF_Free(req, sizeof(*req)); 2648 raidPtr->recon_in_progress = 0; 2649 splx(s); 2650 2651 /* That's all... */ 2652 kthread_exit(0); /* does not return */ 2653 } 2654 2655 RF_AutoConfig_t * 2656 rf_find_raid_components() 2657 { 2658 struct vnode *vp; 2659 struct disklabel label; 2660 struct device *dv; 2661 dev_t dev; 2662 int bmajor; 2663 int error; 2664 int i; 2665 int good_one; 2666 RF_ComponentLabel_t *clabel; 2667 RF_AutoConfig_t *ac_list; 2668 RF_AutoConfig_t *ac; 2669 2670 2671 /* initialize the AutoConfig list */ 2672 ac_list = NULL; 2673 2674 /* we begin by trolling through *all* the devices on the system */ 2675 2676 for (dv = alldevs.tqh_first; dv != NULL; 2677 dv = dv->dv_list.tqe_next) { 2678 2679 /* we are only interested in disks... */ 2680 if (dv->dv_class != DV_DISK) 2681 continue; 2682 2683 /* we don't care about floppies... */ 2684 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) { 2685 continue; 2686 } 2687 2688 /* we don't care about CD's... */ 2689 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) { 2690 continue; 2691 } 2692 2693 /* hdfd is the Atari/Hades floppy driver */ 2694 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) { 2695 continue; 2696 } 2697 /* fdisa is the Atari/Milan floppy driver */ 2698 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) { 2699 continue; 2700 } 2701 2702 /* need to find the device_name_to_block_device_major stuff */ 2703 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0); 2704 2705 /* get a vnode for the raw partition of this disk */ 2706 2707 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART); 2708 if (bdevvp(dev, &vp)) 2709 panic("RAID can't alloc vnode"); 2710 2711 error = VOP_OPEN(vp, FREAD, NOCRED, 0); 2712 2713 if (error) { 2714 /* "Who cares." Continue looking 2715 for something that exists*/ 2716 vput(vp); 2717 continue; 2718 } 2719 2720 /* Ok, the disk exists. Go get the disklabel. */ 2721 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0); 2722 if (error) { 2723 /* 2724 * XXX can't happen - open() would 2725 * have errored out (or faked up one) 2726 */ 2727 printf("can't get label for dev %s%c (%d)!?!?\n", 2728 dv->dv_xname, 'a' + RAW_PART, error); 2729 } 2730 2731 /* don't need this any more. We'll allocate it again 2732 a little later if we really do... */ 2733 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2734 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2735 vput(vp); 2736 2737 for (i=0; i < label.d_npartitions; i++) { 2738 /* We only support partitions marked as RAID */ 2739 if (label.d_partitions[i].p_fstype != FS_RAID) 2740 continue; 2741 2742 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i); 2743 if (bdevvp(dev, &vp)) 2744 panic("RAID can't alloc vnode"); 2745 2746 error = VOP_OPEN(vp, FREAD, NOCRED, 0); 2747 if (error) { 2748 /* Whatever... */ 2749 vput(vp); 2750 continue; 2751 } 2752 2753 good_one = 0; 2754 2755 clabel = (RF_ComponentLabel_t *) 2756 malloc(sizeof(RF_ComponentLabel_t), 2757 M_RAIDFRAME, M_NOWAIT); 2758 if (clabel == NULL) { 2759 /* XXX CLEANUP HERE */ 2760 printf("RAID auto config: out of memory!\n"); 2761 return(NULL); /* XXX probably should panic? */ 2762 } 2763 2764 if (!raidread_component_label(dev, vp, clabel)) { 2765 /* Got the label. Does it look reasonable? */ 2766 if (rf_reasonable_label(clabel) && 2767 (clabel->partitionSize <= 2768 label.d_partitions[i].p_size)) { 2769 #if DEBUG 2770 printf("Component on: %s%c: %d\n", 2771 dv->dv_xname, 'a'+i, 2772 label.d_partitions[i].p_size); 2773 rf_print_component_label(clabel); 2774 #endif 2775 /* if it's reasonable, add it, 2776 else ignore it. */ 2777 ac = (RF_AutoConfig_t *) 2778 malloc(sizeof(RF_AutoConfig_t), 2779 M_RAIDFRAME, 2780 M_NOWAIT); 2781 if (ac == NULL) { 2782 /* XXX should panic?? */ 2783 return(NULL); 2784 } 2785 2786 sprintf(ac->devname, "%s%c", 2787 dv->dv_xname, 'a'+i); 2788 ac->dev = dev; 2789 ac->vp = vp; 2790 ac->clabel = clabel; 2791 ac->next = ac_list; 2792 ac_list = ac; 2793 good_one = 1; 2794 } 2795 } 2796 if (!good_one) { 2797 /* cleanup */ 2798 free(clabel, M_RAIDFRAME); 2799 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2800 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2801 vput(vp); 2802 } 2803 } 2804 } 2805 return(ac_list); 2806 } 2807 2808 static int 2809 rf_reasonable_label(clabel) 2810 RF_ComponentLabel_t *clabel; 2811 { 2812 2813 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) || 2814 (clabel->version==RF_COMPONENT_LABEL_VERSION)) && 2815 ((clabel->clean == RF_RAID_CLEAN) || 2816 (clabel->clean == RF_RAID_DIRTY)) && 2817 clabel->row >=0 && 2818 clabel->column >= 0 && 2819 clabel->num_rows > 0 && 2820 clabel->num_columns > 0 && 2821 clabel->row < clabel->num_rows && 2822 clabel->column < clabel->num_columns && 2823 clabel->blockSize > 0 && 2824 clabel->numBlocks > 0) { 2825 /* label looks reasonable enough... */ 2826 return(1); 2827 } 2828 return(0); 2829 } 2830 2831 2832 #if DEBUG 2833 void 2834 rf_print_component_label(clabel) 2835 RF_ComponentLabel_t *clabel; 2836 { 2837 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", 2838 clabel->row, clabel->column, 2839 clabel->num_rows, clabel->num_columns); 2840 printf(" Version: %d Serial Number: %d Mod Counter: %d\n", 2841 clabel->version, clabel->serial_number, 2842 clabel->mod_counter); 2843 printf(" Clean: %s Status: %d\n", 2844 clabel->clean ? "Yes" : "No", clabel->status ); 2845 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", 2846 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); 2847 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n", 2848 (char) clabel->parityConfig, clabel->blockSize, 2849 clabel->numBlocks); 2850 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" ); 2851 printf(" Contains root partition: %s\n", 2852 clabel->root_partition ? "Yes" : "No" ); 2853 printf(" Last configured as: raid%d\n", clabel->last_unit ); 2854 #if 0 2855 printf(" Config order: %d\n", clabel->config_order); 2856 #endif 2857 2858 } 2859 #endif 2860 2861 RF_ConfigSet_t * 2862 rf_create_auto_sets(ac_list) 2863 RF_AutoConfig_t *ac_list; 2864 { 2865 RF_AutoConfig_t *ac; 2866 RF_ConfigSet_t *config_sets; 2867 RF_ConfigSet_t *cset; 2868 RF_AutoConfig_t *ac_next; 2869 2870 2871 config_sets = NULL; 2872 2873 /* Go through the AutoConfig list, and figure out which components 2874 belong to what sets. */ 2875 ac = ac_list; 2876 while(ac!=NULL) { 2877 /* we're going to putz with ac->next, so save it here 2878 for use at the end of the loop */ 2879 ac_next = ac->next; 2880 2881 if (config_sets == NULL) { 2882 /* will need at least this one... */ 2883 config_sets = (RF_ConfigSet_t *) 2884 malloc(sizeof(RF_ConfigSet_t), 2885 M_RAIDFRAME, M_NOWAIT); 2886 if (config_sets == NULL) { 2887 panic("rf_create_auto_sets: No memory!"); 2888 } 2889 /* this one is easy :) */ 2890 config_sets->ac = ac; 2891 config_sets->next = NULL; 2892 config_sets->rootable = 0; 2893 ac->next = NULL; 2894 } else { 2895 /* which set does this component fit into? */ 2896 cset = config_sets; 2897 while(cset!=NULL) { 2898 if (rf_does_it_fit(cset, ac)) { 2899 /* looks like it matches... */ 2900 ac->next = cset->ac; 2901 cset->ac = ac; 2902 break; 2903 } 2904 cset = cset->next; 2905 } 2906 if (cset==NULL) { 2907 /* didn't find a match above... new set..*/ 2908 cset = (RF_ConfigSet_t *) 2909 malloc(sizeof(RF_ConfigSet_t), 2910 M_RAIDFRAME, M_NOWAIT); 2911 if (cset == NULL) { 2912 panic("rf_create_auto_sets: No memory!"); 2913 } 2914 cset->ac = ac; 2915 ac->next = NULL; 2916 cset->next = config_sets; 2917 cset->rootable = 0; 2918 config_sets = cset; 2919 } 2920 } 2921 ac = ac_next; 2922 } 2923 2924 2925 return(config_sets); 2926 } 2927 2928 static int 2929 rf_does_it_fit(cset, ac) 2930 RF_ConfigSet_t *cset; 2931 RF_AutoConfig_t *ac; 2932 { 2933 RF_ComponentLabel_t *clabel1, *clabel2; 2934 2935 /* If this one matches the *first* one in the set, that's good 2936 enough, since the other members of the set would have been 2937 through here too... */ 2938 /* note that we are not checking partitionSize here.. 2939 2940 Note that we are also not checking the mod_counters here. 2941 If everything else matches execpt the mod_counter, that's 2942 good enough for this test. We will deal with the mod_counters 2943 a little later in the autoconfiguration process. 2944 2945 (clabel1->mod_counter == clabel2->mod_counter) && 2946 2947 The reason we don't check for this is that failed disks 2948 will have lower modification counts. If those disks are 2949 not added to the set they used to belong to, then they will 2950 form their own set, which may result in 2 different sets, 2951 for example, competing to be configured at raid0, and 2952 perhaps competing to be the root filesystem set. If the 2953 wrong ones get configured, or both attempt to become /, 2954 weird behaviour and or serious lossage will occur. Thus we 2955 need to bring them into the fold here, and kick them out at 2956 a later point. 2957 2958 */ 2959 2960 clabel1 = cset->ac->clabel; 2961 clabel2 = ac->clabel; 2962 if ((clabel1->version == clabel2->version) && 2963 (clabel1->serial_number == clabel2->serial_number) && 2964 (clabel1->num_rows == clabel2->num_rows) && 2965 (clabel1->num_columns == clabel2->num_columns) && 2966 (clabel1->sectPerSU == clabel2->sectPerSU) && 2967 (clabel1->SUsPerPU == clabel2->SUsPerPU) && 2968 (clabel1->SUsPerRU == clabel2->SUsPerRU) && 2969 (clabel1->parityConfig == clabel2->parityConfig) && 2970 (clabel1->maxOutstanding == clabel2->maxOutstanding) && 2971 (clabel1->blockSize == clabel2->blockSize) && 2972 (clabel1->numBlocks == clabel2->numBlocks) && 2973 (clabel1->autoconfigure == clabel2->autoconfigure) && 2974 (clabel1->root_partition == clabel2->root_partition) && 2975 (clabel1->last_unit == clabel2->last_unit) && 2976 (clabel1->config_order == clabel2->config_order)) { 2977 /* if it get's here, it almost *has* to be a match */ 2978 } else { 2979 /* it's not consistent with somebody in the set.. 2980 punt */ 2981 return(0); 2982 } 2983 /* all was fine.. it must fit... */ 2984 return(1); 2985 } 2986 2987 int 2988 rf_have_enough_components(cset) 2989 RF_ConfigSet_t *cset; 2990 { 2991 RF_AutoConfig_t *ac; 2992 RF_AutoConfig_t *auto_config; 2993 RF_ComponentLabel_t *clabel; 2994 int r,c; 2995 int num_rows; 2996 int num_cols; 2997 int num_missing; 2998 int mod_counter; 2999 int mod_counter_found; 3000 int even_pair_failed; 3001 char parity_type; 3002 3003 3004 /* check to see that we have enough 'live' components 3005 of this set. If so, we can configure it if necessary */ 3006 3007 num_rows = cset->ac->clabel->num_rows; 3008 num_cols = cset->ac->clabel->num_columns; 3009 parity_type = cset->ac->clabel->parityConfig; 3010 3011 /* XXX Check for duplicate components!?!?!? */ 3012 3013 /* Determine what the mod_counter is supposed to be for this set. */ 3014 3015 mod_counter_found = 0; 3016 mod_counter = 0; 3017 ac = cset->ac; 3018 while(ac!=NULL) { 3019 if (mod_counter_found==0) { 3020 mod_counter = ac->clabel->mod_counter; 3021 mod_counter_found = 1; 3022 } else { 3023 if (ac->clabel->mod_counter > mod_counter) { 3024 mod_counter = ac->clabel->mod_counter; 3025 } 3026 } 3027 ac = ac->next; 3028 } 3029 3030 num_missing = 0; 3031 auto_config = cset->ac; 3032 3033 for(r=0; r<num_rows; r++) { 3034 even_pair_failed = 0; 3035 for(c=0; c<num_cols; c++) { 3036 ac = auto_config; 3037 while(ac!=NULL) { 3038 if ((ac->clabel->row == r) && 3039 (ac->clabel->column == c) && 3040 (ac->clabel->mod_counter == mod_counter)) { 3041 /* it's this one... */ 3042 #if DEBUG 3043 printf("Found: %s at %d,%d\n", 3044 ac->devname,r,c); 3045 #endif 3046 break; 3047 } 3048 ac=ac->next; 3049 } 3050 if (ac==NULL) { 3051 /* Didn't find one here! */ 3052 /* special case for RAID 1, especially 3053 where there are more than 2 3054 components (where RAIDframe treats 3055 things a little differently :( ) */ 3056 if (parity_type == '1') { 3057 if (c%2 == 0) { /* even component */ 3058 even_pair_failed = 1; 3059 } else { /* odd component. If 3060 we're failed, and 3061 so is the even 3062 component, it's 3063 "Good Night, Charlie" */ 3064 if (even_pair_failed == 1) { 3065 return(0); 3066 } 3067 } 3068 } else { 3069 /* normal accounting */ 3070 num_missing++; 3071 } 3072 } 3073 if ((parity_type == '1') && (c%2 == 1)) { 3074 /* Just did an even component, and we didn't 3075 bail.. reset the even_pair_failed flag, 3076 and go on to the next component.... */ 3077 even_pair_failed = 0; 3078 } 3079 } 3080 } 3081 3082 clabel = cset->ac->clabel; 3083 3084 if (((clabel->parityConfig == '0') && (num_missing > 0)) || 3085 ((clabel->parityConfig == '4') && (num_missing > 1)) || 3086 ((clabel->parityConfig == '5') && (num_missing > 1))) { 3087 /* XXX this needs to be made *much* more general */ 3088 /* Too many failures */ 3089 return(0); 3090 } 3091 /* otherwise, all is well, and we've got enough to take a kick 3092 at autoconfiguring this set */ 3093 return(1); 3094 } 3095 3096 void 3097 rf_create_configuration(ac,config,raidPtr) 3098 RF_AutoConfig_t *ac; 3099 RF_Config_t *config; 3100 RF_Raid_t *raidPtr; 3101 { 3102 RF_ComponentLabel_t *clabel; 3103 int i; 3104 3105 clabel = ac->clabel; 3106 3107 /* 1. Fill in the common stuff */ 3108 config->numRow = clabel->num_rows; 3109 config->numCol = clabel->num_columns; 3110 config->numSpare = 0; /* XXX should this be set here? */ 3111 config->sectPerSU = clabel->sectPerSU; 3112 config->SUsPerPU = clabel->SUsPerPU; 3113 config->SUsPerRU = clabel->SUsPerRU; 3114 config->parityConfig = clabel->parityConfig; 3115 /* XXX... */ 3116 strcpy(config->diskQueueType,"fifo"); 3117 config->maxOutstandingDiskReqs = clabel->maxOutstanding; 3118 config->layoutSpecificSize = 0; /* XXX ?? */ 3119 3120 while(ac!=NULL) { 3121 /* row/col values will be in range due to the checks 3122 in reasonable_label() */ 3123 strcpy(config->devnames[ac->clabel->row][ac->clabel->column], 3124 ac->devname); 3125 ac = ac->next; 3126 } 3127 3128 for(i=0;i<RF_MAXDBGV;i++) { 3129 config->debugVars[i][0] = NULL; 3130 } 3131 } 3132 3133 int 3134 rf_set_autoconfig(raidPtr, new_value) 3135 RF_Raid_t *raidPtr; 3136 int new_value; 3137 { 3138 RF_ComponentLabel_t clabel; 3139 struct vnode *vp; 3140 dev_t dev; 3141 int row, column; 3142 int sparecol; 3143 3144 raidPtr->autoconfigure = new_value; 3145 for(row=0; row<raidPtr->numRow; row++) { 3146 for(column=0; column<raidPtr->numCol; column++) { 3147 if (raidPtr->Disks[row][column].status == 3148 rf_ds_optimal) { 3149 dev = raidPtr->Disks[row][column].dev; 3150 vp = raidPtr->raid_cinfo[row][column].ci_vp; 3151 raidread_component_label(dev, vp, &clabel); 3152 clabel.autoconfigure = new_value; 3153 raidwrite_component_label(dev, vp, &clabel); 3154 } 3155 } 3156 } 3157 for(column = 0; column < raidPtr->numSpare ; column++) { 3158 sparecol = raidPtr->numCol + column; 3159 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { 3160 dev = raidPtr->Disks[0][sparecol].dev; 3161 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp; 3162 raidread_component_label(dev, vp, &clabel); 3163 clabel.autoconfigure = new_value; 3164 raidwrite_component_label(dev, vp, &clabel); 3165 } 3166 } 3167 return(new_value); 3168 } 3169 3170 int 3171 rf_set_rootpartition(raidPtr, new_value) 3172 RF_Raid_t *raidPtr; 3173 int new_value; 3174 { 3175 RF_ComponentLabel_t clabel; 3176 struct vnode *vp; 3177 dev_t dev; 3178 int row, column; 3179 int sparecol; 3180 3181 raidPtr->root_partition = new_value; 3182 for(row=0; row<raidPtr->numRow; row++) { 3183 for(column=0; column<raidPtr->numCol; column++) { 3184 if (raidPtr->Disks[row][column].status == 3185 rf_ds_optimal) { 3186 dev = raidPtr->Disks[row][column].dev; 3187 vp = raidPtr->raid_cinfo[row][column].ci_vp; 3188 raidread_component_label(dev, vp, &clabel); 3189 clabel.root_partition = new_value; 3190 raidwrite_component_label(dev, vp, &clabel); 3191 } 3192 } 3193 } 3194 for(column = 0; column < raidPtr->numSpare ; column++) { 3195 sparecol = raidPtr->numCol + column; 3196 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) { 3197 dev = raidPtr->Disks[0][sparecol].dev; 3198 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp; 3199 raidread_component_label(dev, vp, &clabel); 3200 clabel.root_partition = new_value; 3201 raidwrite_component_label(dev, vp, &clabel); 3202 } 3203 } 3204 return(new_value); 3205 } 3206 3207 void 3208 rf_release_all_vps(cset) 3209 RF_ConfigSet_t *cset; 3210 { 3211 RF_AutoConfig_t *ac; 3212 3213 ac = cset->ac; 3214 while(ac!=NULL) { 3215 /* Close the vp, and give it back */ 3216 if (ac->vp) { 3217 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY); 3218 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0); 3219 vput(ac->vp); 3220 ac->vp = NULL; 3221 } 3222 ac = ac->next; 3223 } 3224 } 3225 3226 3227 void 3228 rf_cleanup_config_set(cset) 3229 RF_ConfigSet_t *cset; 3230 { 3231 RF_AutoConfig_t *ac; 3232 RF_AutoConfig_t *next_ac; 3233 3234 ac = cset->ac; 3235 while(ac!=NULL) { 3236 next_ac = ac->next; 3237 /* nuke the label */ 3238 free(ac->clabel, M_RAIDFRAME); 3239 /* cleanup the config structure */ 3240 free(ac, M_RAIDFRAME); 3241 /* "next.." */ 3242 ac = next_ac; 3243 } 3244 /* and, finally, nuke the config set */ 3245 free(cset, M_RAIDFRAME); 3246 } 3247 3248 3249 void 3250 raid_init_component_label(raidPtr, clabel) 3251 RF_Raid_t *raidPtr; 3252 RF_ComponentLabel_t *clabel; 3253 { 3254 /* current version number */ 3255 clabel->version = RF_COMPONENT_LABEL_VERSION; 3256 clabel->serial_number = raidPtr->serial_number; 3257 clabel->mod_counter = raidPtr->mod_counter; 3258 clabel->num_rows = raidPtr->numRow; 3259 clabel->num_columns = raidPtr->numCol; 3260 clabel->clean = RF_RAID_DIRTY; /* not clean */ 3261 clabel->status = rf_ds_optimal; /* "It's good!" */ 3262 3263 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; 3264 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; 3265 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; 3266 3267 clabel->blockSize = raidPtr->bytesPerSector; 3268 clabel->numBlocks = raidPtr->sectorsPerDisk; 3269 3270 /* XXX not portable */ 3271 clabel->parityConfig = raidPtr->Layout.map->parityConfig; 3272 clabel->maxOutstanding = raidPtr->maxOutstanding; 3273 clabel->autoconfigure = raidPtr->autoconfigure; 3274 clabel->root_partition = raidPtr->root_partition; 3275 clabel->last_unit = raidPtr->raidid; 3276 clabel->config_order = raidPtr->config_order; 3277 } 3278 3279 int 3280 rf_auto_config_set(cset,unit) 3281 RF_ConfigSet_t *cset; 3282 int *unit; 3283 { 3284 RF_Raid_t *raidPtr; 3285 RF_Config_t *config; 3286 int raidID; 3287 int retcode; 3288 3289 #if DEBUG 3290 printf("RAID autoconfigure\n"); 3291 #endif 3292 3293 retcode = 0; 3294 *unit = -1; 3295 3296 /* 1. Create a config structure */ 3297 3298 config = (RF_Config_t *)malloc(sizeof(RF_Config_t), 3299 M_RAIDFRAME, 3300 M_NOWAIT); 3301 if (config==NULL) { 3302 printf("Out of mem!?!?\n"); 3303 /* XXX do something more intelligent here. */ 3304 return(1); 3305 } 3306 3307 memset(config, 0, sizeof(RF_Config_t)); 3308 3309 /* 3310 2. Figure out what RAID ID this one is supposed to live at 3311 See if we can get the same RAID dev that it was configured 3312 on last time.. 3313 */ 3314 3315 raidID = cset->ac->clabel->last_unit; 3316 if ((raidID < 0) || (raidID >= numraid)) { 3317 /* let's not wander off into lala land. */ 3318 raidID = numraid - 1; 3319 } 3320 if (raidPtrs[raidID]->valid != 0) { 3321 3322 /* 3323 Nope... Go looking for an alternative... 3324 Start high so we don't immediately use raid0 if that's 3325 not taken. 3326 */ 3327 3328 for(raidID = numraid - 1; raidID >= 0; raidID--) { 3329 if (raidPtrs[raidID]->valid == 0) { 3330 /* can use this one! */ 3331 break; 3332 } 3333 } 3334 } 3335 3336 if (raidID < 0) { 3337 /* punt... */ 3338 printf("Unable to auto configure this set!\n"); 3339 printf("(Out of RAID devs!)\n"); 3340 return(1); 3341 } 3342 3343 #if DEBUG 3344 printf("Configuring raid%d:\n",raidID); 3345 #endif 3346 3347 raidPtr = raidPtrs[raidID]; 3348 3349 /* XXX all this stuff should be done SOMEWHERE ELSE! */ 3350 raidPtr->raidid = raidID; 3351 raidPtr->openings = RAIDOUTSTANDING; 3352 3353 /* 3. Build the configuration structure */ 3354 rf_create_configuration(cset->ac, config, raidPtr); 3355 3356 /* 4. Do the configuration */ 3357 retcode = rf_Configure(raidPtr, config, cset->ac); 3358 3359 if (retcode == 0) { 3360 3361 raidinit(raidPtrs[raidID]); 3362 3363 rf_markalldirty(raidPtrs[raidID]); 3364 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */ 3365 if (cset->ac->clabel->root_partition==1) { 3366 /* everything configured just fine. Make a note 3367 that this set is eligible to be root. */ 3368 cset->rootable = 1; 3369 /* XXX do this here? */ 3370 raidPtrs[raidID]->root_partition = 1; 3371 } 3372 } 3373 3374 /* 5. Cleanup */ 3375 free(config, M_RAIDFRAME); 3376 3377 *unit = raidID; 3378 return(retcode); 3379 } 3380 3381 void 3382 rf_disk_unbusy(desc) 3383 RF_RaidAccessDesc_t *desc; 3384 { 3385 struct buf *bp; 3386 3387 bp = (struct buf *)desc->bp; 3388 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev, 3389 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); 3390 } 3391