xref: /netbsd-src/sys/dev/raidframe/rf_netbsdkintf.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: rf_netbsdkintf.c,v 1.221 2006/10/12 01:31:51 christos Exp $	*/
2 /*-
3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Greg Oster; Jason R. Thorpe.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *        This product includes software developed by the NetBSD
20  *        Foundation, Inc. and its contributors.
21  * 4. Neither the name of The NetBSD Foundation nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1990, 1993
40  *      The Regents of the University of California.  All rights reserved.
41  *
42  * This code is derived from software contributed to Berkeley by
43  * the Systems Programming Group of the University of Utah Computer
44  * Science Department.
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
71  *
72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
73  */
74 
75 /*
76  * Copyright (c) 1988 University of Utah.
77  *
78  * This code is derived from software contributed to Berkeley by
79  * the Systems Programming Group of the University of Utah Computer
80  * Science Department.
81  *
82  * Redistribution and use in source and binary forms, with or without
83  * modification, are permitted provided that the following conditions
84  * are met:
85  * 1. Redistributions of source code must retain the above copyright
86  *    notice, this list of conditions and the following disclaimer.
87  * 2. Redistributions in binary form must reproduce the above copyright
88  *    notice, this list of conditions and the following disclaimer in the
89  *    documentation and/or other materials provided with the distribution.
90  * 3. All advertising materials mentioning features or use of this software
91  *    must display the following acknowledgement:
92  *      This product includes software developed by the University of
93  *      California, Berkeley and its contributors.
94  * 4. Neither the name of the University nor the names of its contributors
95  *    may be used to endorse or promote products derived from this software
96  *    without specific prior written permission.
97  *
98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108  * SUCH DAMAGE.
109  *
110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
111  *
112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
113  */
114 
115 /*
116  * Copyright (c) 1995 Carnegie-Mellon University.
117  * All rights reserved.
118  *
119  * Authors: Mark Holland, Jim Zelenka
120  *
121  * Permission to use, copy, modify and distribute this software and
122  * its documentation is hereby granted, provided that both the copyright
123  * notice and this permission notice appear in all copies of the
124  * software, derivative works or modified versions, and any portions
125  * thereof, and that both notices appear in supporting documentation.
126  *
127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130  *
131  * Carnegie Mellon requests users of this software to return to
132  *
133  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
134  *  School of Computer Science
135  *  Carnegie Mellon University
136  *  Pittsburgh PA 15213-3890
137  *
138  * any improvements or extensions that they make and grant Carnegie the
139  * rights to redistribute these changes.
140  */
141 
142 /***********************************************************
143  *
144  * rf_kintf.c -- the kernel interface routines for RAIDframe
145  *
146  ***********************************************************/
147 
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.221 2006/10/12 01:31:51 christos Exp $");
150 
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171 #include <sys/kauth.h>
172 
173 #include <dev/raidframe/raidframevar.h>
174 #include <dev/raidframe/raidframeio.h>
175 #include "raid.h"
176 #include "opt_raid_autoconfig.h"
177 #include "rf_raid.h"
178 #include "rf_copyback.h"
179 #include "rf_dag.h"
180 #include "rf_dagflags.h"
181 #include "rf_desc.h"
182 #include "rf_diskqueue.h"
183 #include "rf_etimer.h"
184 #include "rf_general.h"
185 #include "rf_kintf.h"
186 #include "rf_options.h"
187 #include "rf_driver.h"
188 #include "rf_parityscan.h"
189 #include "rf_threadstuff.h"
190 
191 #ifdef DEBUG
192 int     rf_kdebug_level = 0;
193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
194 #else				/* DEBUG */
195 #define db1_printf(a) { }
196 #endif				/* DEBUG */
197 
198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
199 
200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
201 
202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
203 						 * spare table */
204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
205 						 * installation process */
206 
207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
208 
209 /* prototypes */
210 static void KernelWakeupFunc(struct buf *);
211 static void InitBP(struct buf *, struct vnode *, unsigned,
212     dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
213     void *, int, struct proc *);
214 static void raidinit(RF_Raid_t *);
215 
216 void raidattach(int);
217 static int raid_match(struct device *, struct cfdata *, void *);
218 static void raid_attach(struct device *, struct device *, void *);
219 static int raid_detach(struct device *, int);
220 
221 dev_type_open(raidopen);
222 dev_type_close(raidclose);
223 dev_type_read(raidread);
224 dev_type_write(raidwrite);
225 dev_type_ioctl(raidioctl);
226 dev_type_strategy(raidstrategy);
227 dev_type_dump(raiddump);
228 dev_type_size(raidsize);
229 
230 const struct bdevsw raid_bdevsw = {
231 	raidopen, raidclose, raidstrategy, raidioctl,
232 	raiddump, raidsize, D_DISK
233 };
234 
235 const struct cdevsw raid_cdevsw = {
236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
238 };
239 
240 /* XXX Not sure if the following should be replacing the raidPtrs above,
241    or if it should be used in conjunction with that...
242 */
243 
244 struct raid_softc {
245 	struct device *sc_dev;
246 	int     sc_flags;	/* flags */
247 	int     sc_cflags;	/* configuration flags */
248 	uint64_t sc_size;	/* size of the raid device */
249 	char    sc_xname[20];	/* XXX external name */
250 	struct disk sc_dkdev;	/* generic disk device info */
251 	struct bufq_state *buf_queue;	/* used for the device queue */
252 };
253 /* sc_flags */
254 #define RAIDF_INITED	0x01	/* unit has been initialized */
255 #define RAIDF_WLABEL	0x02	/* label area is writable */
256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
258 #define RAIDF_LOCKED	0x80	/* unit is locked */
259 
260 #define	raidunit(x)	DISKUNIT(x)
261 int numraid = 0;
262 
263 extern struct cfdriver raid_cd;
264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
265     raid_match, raid_attach, raid_detach, NULL);
266 
267 /*
268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269  * Be aware that large numbers can allow the driver to consume a lot of
270  * kernel memory, especially on writes, and in degraded mode reads.
271  *
272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273  * a single 64K write will typically require 64K for the old data,
274  * 64K for the old parity, and 64K for the new parity, for a total
275  * of 192K (if the parity buffer is not re-used immediately).
276  * Even it if is used immediately, that's still 128K, which when multiplied
277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278  *
279  * Now in degraded mode, for example, a 64K read on the above setup may
280  * require data reconstruction, which will require *all* of the 4 remaining
281  * disks to participate -- 4 * 32K/disk == 128K again.
282  */
283 
284 #ifndef RAIDOUTSTANDING
285 #define RAIDOUTSTANDING   6
286 #endif
287 
288 #define RAIDLABELDEV(dev)	\
289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290 
291 /* declared here, and made public, for the benefit of KVM stuff.. */
292 struct raid_softc *raid_softc;
293 
294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
295 				     struct disklabel *);
296 static void raidgetdisklabel(dev_t);
297 static void raidmakedisklabel(struct raid_softc *);
298 
299 static int raidlock(struct raid_softc *);
300 static void raidunlock(struct raid_softc *);
301 
302 static void rf_markalldirty(RF_Raid_t *);
303 
304 void rf_ReconThread(struct rf_recon_req *);
305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
306 void rf_CopybackThread(RF_Raid_t *raidPtr);
307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
308 int rf_autoconfig(struct device *self);
309 void rf_buildroothack(RF_ConfigSet_t *);
310 
311 RF_AutoConfig_t *rf_find_raid_components(void);
312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
314 static int rf_reasonable_label(RF_ComponentLabel_t *);
315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
316 int rf_set_autoconfig(RF_Raid_t *, int);
317 int rf_set_rootpartition(RF_Raid_t *, int);
318 void rf_release_all_vps(RF_ConfigSet_t *);
319 void rf_cleanup_config_set(RF_ConfigSet_t *);
320 int rf_have_enough_components(RF_ConfigSet_t *);
321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
322 
323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
324 				  allow autoconfig to take place.
325 				  Note that this is overridden by having
326 				  RAID_AUTOCONFIG as an option in the
327 				  kernel config file.  */
328 
329 struct RF_Pools_s rf_pools;
330 
331 void
332 raidattach(int num)
333 {
334 	int raidID;
335 	int i, rc;
336 
337 #ifdef DEBUG
338 	printf("raidattach: Asked for %d units\n", num);
339 #endif
340 
341 	if (num <= 0) {
342 #ifdef DIAGNOSTIC
343 		panic("raidattach: count <= 0");
344 #endif
345 		return;
346 	}
347 	/* This is where all the initialization stuff gets done. */
348 
349 	numraid = num;
350 
351 	/* Make some space for requested number of units... */
352 
353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
354 	if (raidPtrs == NULL) {
355 		panic("raidPtrs is NULL!!");
356 	}
357 
358 	rf_mutex_init(&rf_sparet_wait_mutex);
359 
360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
361 
362 	for (i = 0; i < num; i++)
363 		raidPtrs[i] = NULL;
364 	rc = rf_BootRaidframe();
365 	if (rc == 0)
366 		printf("Kernelized RAIDframe activated\n");
367 	else
368 		panic("Serious error booting RAID!!");
369 
370 	/* put together some datastructures like the CCD device does.. This
371 	 * lets us lock the device and what-not when it gets opened. */
372 
373 	raid_softc = (struct raid_softc *)
374 		malloc(num * sizeof(struct raid_softc),
375 		       M_RAIDFRAME, M_NOWAIT);
376 	if (raid_softc == NULL) {
377 		printf("WARNING: no memory for RAIDframe driver\n");
378 		return;
379 	}
380 
381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
382 
383 	for (raidID = 0; raidID < num; raidID++) {
384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
385 
386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
387 			  (RF_Raid_t *));
388 		if (raidPtrs[raidID] == NULL) {
389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
390 			numraid = raidID;
391 			return;
392 		}
393 	}
394 
395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
396 		printf("config_cfattach_attach failed?\n");
397 	}
398 
399 #ifdef RAID_AUTOCONFIG
400 	raidautoconfig = 1;
401 #endif
402 
403 	/*
404 	 * Register a finalizer which will be used to auto-config RAID
405 	 * sets once all real hardware devices have been found.
406 	 */
407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
408 		printf("WARNING: unable to register RAIDframe finalizer\n");
409 }
410 
411 int
412 rf_autoconfig(struct device *self __unused)
413 {
414 	RF_AutoConfig_t *ac_list;
415 	RF_ConfigSet_t *config_sets;
416 	int i;
417 
418 	if (raidautoconfig == 0)
419 		return (0);
420 
421 	/* XXX This code can only be run once. */
422 	raidautoconfig = 0;
423 
424 	/* 1. locate all RAID components on the system */
425 #ifdef DEBUG
426 	printf("Searching for RAID components...\n");
427 #endif
428 	ac_list = rf_find_raid_components();
429 
430 	/* 2. Sort them into their respective sets. */
431 	config_sets = rf_create_auto_sets(ac_list);
432 
433 	/*
434 	 * 3. Evaluate each set andconfigure the valid ones.
435 	 * This gets done in rf_buildroothack().
436 	 */
437 	rf_buildroothack(config_sets);
438 
439 	for (i = 0; i < numraid; i++)
440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
442 
443 	return 1;
444 }
445 
446 void
447 rf_buildroothack(RF_ConfigSet_t *config_sets)
448 {
449 	RF_ConfigSet_t *cset;
450 	RF_ConfigSet_t *next_cset;
451 	int retcode;
452 	int raidID;
453 	int rootID;
454 	int num_root;
455 
456 	rootID = 0;
457 	num_root = 0;
458 	cset = config_sets;
459 	while(cset != NULL ) {
460 		next_cset = cset->next;
461 		if (rf_have_enough_components(cset) &&
462 		    cset->ac->clabel->autoconfigure==1) {
463 			retcode = rf_auto_config_set(cset,&raidID);
464 			if (!retcode) {
465 #ifdef DEBUG
466 				printf("raid%d: configured ok\n", raidID);
467 #endif
468 				if (cset->rootable) {
469 					rootID = raidID;
470 					num_root++;
471 				}
472 			} else {
473 				/* The autoconfig didn't work :( */
474 #if DEBUG
475 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
476 #endif
477 				rf_release_all_vps(cset);
478 			}
479 		} else {
480 #ifdef DEBUG
481 			printf("raid%d: not enough components\n", raidID);
482 #endif
483 			/* we're not autoconfiguring this set...
484 			   release the associated resources */
485 			rf_release_all_vps(cset);
486 		}
487 		/* cleanup */
488 		rf_cleanup_config_set(cset);
489 		cset = next_cset;
490 	}
491 
492 	/* we found something bootable... */
493 
494 	if (num_root == 1) {
495 		booted_device = raid_softc[rootID].sc_dev;
496 	} else if (num_root > 1) {
497 		/* we can't guess.. require the user to answer... */
498 		boothowto |= RB_ASKNAME;
499 	}
500 }
501 
502 
503 int
504 raidsize(dev_t dev)
505 {
506 	struct raid_softc *rs;
507 	struct disklabel *lp;
508 	int     part, unit, omask, size;
509 
510 	unit = raidunit(dev);
511 	if (unit >= numraid)
512 		return (-1);
513 	rs = &raid_softc[unit];
514 
515 	if ((rs->sc_flags & RAIDF_INITED) == 0)
516 		return (-1);
517 
518 	part = DISKPART(dev);
519 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
520 	lp = rs->sc_dkdev.dk_label;
521 
522 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
523 		return (-1);
524 
525 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
526 		size = -1;
527 	else
528 		size = lp->d_partitions[part].p_size *
529 		    (lp->d_secsize / DEV_BSIZE);
530 
531 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
532 		return (-1);
533 
534 	return (size);
535 
536 }
537 
538 int
539 raiddump(dev_t dev __unused, daddr_t blkno __unused, caddr_t va __unused,
540     size_t  size __unused)
541 {
542 	/* Not implemented. */
543 	return ENXIO;
544 }
545 /* ARGSUSED */
546 int
547 raidopen(dev_t dev, int flags __unused, int fmt __unused,
548     struct lwp *l __unused)
549 {
550 	int     unit = raidunit(dev);
551 	struct raid_softc *rs;
552 	struct disklabel *lp;
553 	int     part, pmask;
554 	int     error = 0;
555 
556 	if (unit >= numraid)
557 		return (ENXIO);
558 	rs = &raid_softc[unit];
559 
560 	if ((error = raidlock(rs)) != 0)
561 		return (error);
562 	lp = rs->sc_dkdev.dk_label;
563 
564 	part = DISKPART(dev);
565 
566 	/*
567 	 * If there are wedges, and this is not RAW_PART, then we
568 	 * need to fail.
569 	 */
570 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
571 		error = EBUSY;
572 		goto bad;
573 	}
574 	pmask = (1 << part);
575 
576 	if ((rs->sc_flags & RAIDF_INITED) &&
577 	    (rs->sc_dkdev.dk_openmask == 0))
578 		raidgetdisklabel(dev);
579 
580 	/* make sure that this partition exists */
581 
582 	if (part != RAW_PART) {
583 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
584 		    ((part >= lp->d_npartitions) ||
585 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
586 			error = ENXIO;
587 			goto bad;
588 		}
589 	}
590 	/* Prevent this unit from being unconfigured while open. */
591 	switch (fmt) {
592 	case S_IFCHR:
593 		rs->sc_dkdev.dk_copenmask |= pmask;
594 		break;
595 
596 	case S_IFBLK:
597 		rs->sc_dkdev.dk_bopenmask |= pmask;
598 		break;
599 	}
600 
601 	if ((rs->sc_dkdev.dk_openmask == 0) &&
602 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
603 		/* First one... mark things as dirty... Note that we *MUST*
604 		 have done a configure before this.  I DO NOT WANT TO BE
605 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
606 		 THAT THEY BELONG TOGETHER!!!!! */
607 		/* XXX should check to see if we're only open for reading
608 		   here... If so, we needn't do this, but then need some
609 		   other way of keeping track of what's happened.. */
610 
611 		rf_markalldirty( raidPtrs[unit] );
612 	}
613 
614 
615 	rs->sc_dkdev.dk_openmask =
616 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
617 
618 bad:
619 	raidunlock(rs);
620 
621 	return (error);
622 
623 
624 }
625 /* ARGSUSED */
626 int
627 raidclose(dev_t dev, int flags __unused, int fmt, struct lwp *l __unused)
628 {
629 	int     unit = raidunit(dev);
630 	struct cfdata *cf;
631 	struct raid_softc *rs;
632 	int     error = 0;
633 	int     part;
634 
635 	if (unit >= numraid)
636 		return (ENXIO);
637 	rs = &raid_softc[unit];
638 
639 	if ((error = raidlock(rs)) != 0)
640 		return (error);
641 
642 	part = DISKPART(dev);
643 
644 	/* ...that much closer to allowing unconfiguration... */
645 	switch (fmt) {
646 	case S_IFCHR:
647 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
648 		break;
649 
650 	case S_IFBLK:
651 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
652 		break;
653 	}
654 	rs->sc_dkdev.dk_openmask =
655 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
656 
657 	if ((rs->sc_dkdev.dk_openmask == 0) &&
658 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
659 		/* Last one... device is not unconfigured yet.
660 		   Device shutdown has taken care of setting the
661 		   clean bits if RAIDF_INITED is not set
662 		   mark things as clean... */
663 
664 		rf_update_component_labels(raidPtrs[unit],
665 						 RF_FINAL_COMPONENT_UPDATE);
666 		if (doing_shutdown) {
667 			/* last one, and we're going down, so
668 			   lights out for this RAID set too. */
669 			error = rf_Shutdown(raidPtrs[unit]);
670 
671 			/* It's no longer initialized... */
672 			rs->sc_flags &= ~RAIDF_INITED;
673 
674 			/* detach the device */
675 
676 			cf = device_cfdata(rs->sc_dev);
677 			error = config_detach(rs->sc_dev, DETACH_QUIET);
678 			free(cf, M_RAIDFRAME);
679 
680 			/* Detach the disk. */
681 			pseudo_disk_detach(&rs->sc_dkdev);
682 		}
683 	}
684 
685 	raidunlock(rs);
686 	return (0);
687 
688 }
689 
690 void
691 raidstrategy(struct buf *bp)
692 {
693 	int s;
694 
695 	unsigned int raidID = raidunit(bp->b_dev);
696 	RF_Raid_t *raidPtr;
697 	struct raid_softc *rs = &raid_softc[raidID];
698 	int     wlabel;
699 
700 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
701 		bp->b_error = ENXIO;
702 		bp->b_flags |= B_ERROR;
703 		goto done;
704 	}
705 	if (raidID >= numraid || !raidPtrs[raidID]) {
706 		bp->b_error = ENODEV;
707 		bp->b_flags |= B_ERROR;
708 		goto done;
709 	}
710 	raidPtr = raidPtrs[raidID];
711 	if (!raidPtr->valid) {
712 		bp->b_error = ENODEV;
713 		bp->b_flags |= B_ERROR;
714 		goto done;
715 	}
716 	if (bp->b_bcount == 0) {
717 		db1_printf(("b_bcount is zero..\n"));
718 		goto done;
719 	}
720 
721 	/*
722 	 * Do bounds checking and adjust transfer.  If there's an
723 	 * error, the bounds check will flag that for us.
724 	 */
725 
726 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
727 	if (DISKPART(bp->b_dev) == RAW_PART) {
728 		uint64_t size; /* device size in DEV_BSIZE unit */
729 
730 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
731 			size = raidPtr->totalSectors <<
732 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
733 		} else {
734 			size = raidPtr->totalSectors >>
735 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
736 		}
737 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
738 			goto done;
739 		}
740 	} else {
741 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
742 			db1_printf(("Bounds check failed!!:%d %d\n",
743 				(int) bp->b_blkno, (int) wlabel));
744 			goto done;
745 		}
746 	}
747 	s = splbio();
748 
749 	bp->b_resid = 0;
750 
751 	/* stuff it onto our queue */
752 	BUFQ_PUT(rs->buf_queue, bp);
753 
754 	/* scheduled the IO to happen at the next convenient time */
755 	wakeup(&(raidPtrs[raidID]->iodone));
756 
757 	splx(s);
758 	return;
759 
760 done:
761 	bp->b_resid = bp->b_bcount;
762 	biodone(bp);
763 }
764 /* ARGSUSED */
765 int
766 raidread(dev_t dev, struct uio *uio, int flags __unused)
767 {
768 	int     unit = raidunit(dev);
769 	struct raid_softc *rs;
770 
771 	if (unit >= numraid)
772 		return (ENXIO);
773 	rs = &raid_softc[unit];
774 
775 	if ((rs->sc_flags & RAIDF_INITED) == 0)
776 		return (ENXIO);
777 
778 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
779 
780 }
781 /* ARGSUSED */
782 int
783 raidwrite(dev_t dev, struct uio *uio, int flags __unused)
784 {
785 	int     unit = raidunit(dev);
786 	struct raid_softc *rs;
787 
788 	if (unit >= numraid)
789 		return (ENXIO);
790 	rs = &raid_softc[unit];
791 
792 	if ((rs->sc_flags & RAIDF_INITED) == 0)
793 		return (ENXIO);
794 
795 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
796 
797 }
798 
799 int
800 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
801 {
802 	int     unit = raidunit(dev);
803 	int     error = 0;
804 	int     part, pmask;
805 	struct cfdata *cf;
806 	struct raid_softc *rs;
807 	RF_Config_t *k_cfg, *u_cfg;
808 	RF_Raid_t *raidPtr;
809 	RF_RaidDisk_t *diskPtr;
810 	RF_AccTotals_t *totals;
811 	RF_DeviceConfig_t *d_cfg, **ucfgp;
812 	u_char *specific_buf;
813 	int retcode = 0;
814 	int column;
815 	int raidid;
816 	struct rf_recon_req *rrcopy, *rr;
817 	RF_ComponentLabel_t *clabel;
818 	RF_ComponentLabel_t *ci_label;
819 	RF_ComponentLabel_t **clabel_ptr;
820 	RF_SingleComponent_t *sparePtr,*componentPtr;
821 	RF_SingleComponent_t component;
822 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
823 	int i, j, d;
824 #ifdef __HAVE_OLD_DISKLABEL
825 	struct disklabel newlabel;
826 #endif
827 	struct dkwedge_info *dkw;
828 
829 	if (unit >= numraid)
830 		return (ENXIO);
831 	rs = &raid_softc[unit];
832 	raidPtr = raidPtrs[unit];
833 
834 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
835 		(int) DISKPART(dev), (int) unit, (int) cmd));
836 
837 	/* Must be open for writes for these commands... */
838 	switch (cmd) {
839 #ifdef DIOCGSECTORSIZE
840 	case DIOCGSECTORSIZE:
841 		*(u_int *)data = raidPtr->bytesPerSector;
842 		return 0;
843 	case DIOCGMEDIASIZE:
844 		*(off_t *)data =
845 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
846 		return 0;
847 #endif
848 	case DIOCSDINFO:
849 	case DIOCWDINFO:
850 #ifdef __HAVE_OLD_DISKLABEL
851 	case ODIOCWDINFO:
852 	case ODIOCSDINFO:
853 #endif
854 	case DIOCWLABEL:
855 	case DIOCAWEDGE:
856 	case DIOCDWEDGE:
857 		if ((flag & FWRITE) == 0)
858 			return (EBADF);
859 	}
860 
861 	/* Must be initialized for these... */
862 	switch (cmd) {
863 	case DIOCGDINFO:
864 	case DIOCSDINFO:
865 	case DIOCWDINFO:
866 #ifdef __HAVE_OLD_DISKLABEL
867 	case ODIOCGDINFO:
868 	case ODIOCWDINFO:
869 	case ODIOCSDINFO:
870 	case ODIOCGDEFLABEL:
871 #endif
872 	case DIOCGPART:
873 	case DIOCWLABEL:
874 	case DIOCGDEFLABEL:
875 	case DIOCAWEDGE:
876 	case DIOCDWEDGE:
877 	case DIOCLWEDGES:
878 	case RAIDFRAME_SHUTDOWN:
879 	case RAIDFRAME_REWRITEPARITY:
880 	case RAIDFRAME_GET_INFO:
881 	case RAIDFRAME_RESET_ACCTOTALS:
882 	case RAIDFRAME_GET_ACCTOTALS:
883 	case RAIDFRAME_KEEP_ACCTOTALS:
884 	case RAIDFRAME_GET_SIZE:
885 	case RAIDFRAME_FAIL_DISK:
886 	case RAIDFRAME_COPYBACK:
887 	case RAIDFRAME_CHECK_RECON_STATUS:
888 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
889 	case RAIDFRAME_GET_COMPONENT_LABEL:
890 	case RAIDFRAME_SET_COMPONENT_LABEL:
891 	case RAIDFRAME_ADD_HOT_SPARE:
892 	case RAIDFRAME_REMOVE_HOT_SPARE:
893 	case RAIDFRAME_INIT_LABELS:
894 	case RAIDFRAME_REBUILD_IN_PLACE:
895 	case RAIDFRAME_CHECK_PARITY:
896 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
897 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
898 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
899 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
900 	case RAIDFRAME_SET_AUTOCONFIG:
901 	case RAIDFRAME_SET_ROOT:
902 	case RAIDFRAME_DELETE_COMPONENT:
903 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
904 		if ((rs->sc_flags & RAIDF_INITED) == 0)
905 			return (ENXIO);
906 	}
907 
908 	switch (cmd) {
909 
910 		/* configure the system */
911 	case RAIDFRAME_CONFIGURE:
912 
913 		if (raidPtr->valid) {
914 			/* There is a valid RAID set running on this unit! */
915 			printf("raid%d: Device already configured!\n",unit);
916 			return(EINVAL);
917 		}
918 
919 		/* copy-in the configuration information */
920 		/* data points to a pointer to the configuration structure */
921 
922 		u_cfg = *((RF_Config_t **) data);
923 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
924 		if (k_cfg == NULL) {
925 			return (ENOMEM);
926 		}
927 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
928 		if (retcode) {
929 			RF_Free(k_cfg, sizeof(RF_Config_t));
930 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
931 				retcode));
932 			return (retcode);
933 		}
934 		/* allocate a buffer for the layout-specific data, and copy it
935 		 * in */
936 		if (k_cfg->layoutSpecificSize) {
937 			if (k_cfg->layoutSpecificSize > 10000) {
938 				/* sanity check */
939 				RF_Free(k_cfg, sizeof(RF_Config_t));
940 				return (EINVAL);
941 			}
942 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
943 			    (u_char *));
944 			if (specific_buf == NULL) {
945 				RF_Free(k_cfg, sizeof(RF_Config_t));
946 				return (ENOMEM);
947 			}
948 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
949 			    k_cfg->layoutSpecificSize);
950 			if (retcode) {
951 				RF_Free(k_cfg, sizeof(RF_Config_t));
952 				RF_Free(specific_buf,
953 					k_cfg->layoutSpecificSize);
954 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
955 					retcode));
956 				return (retcode);
957 			}
958 		} else
959 			specific_buf = NULL;
960 		k_cfg->layoutSpecific = specific_buf;
961 
962 		/* should do some kind of sanity check on the configuration.
963 		 * Store the sum of all the bytes in the last byte? */
964 
965 		/* configure the system */
966 
967 		/*
968 		 * Clear the entire RAID descriptor, just to make sure
969 		 *  there is no stale data left in the case of a
970 		 *  reconfiguration
971 		 */
972 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
973 		raidPtr->raidid = unit;
974 
975 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
976 
977 		if (retcode == 0) {
978 
979 			/* allow this many simultaneous IO's to
980 			   this RAID device */
981 			raidPtr->openings = RAIDOUTSTANDING;
982 
983 			raidinit(raidPtr);
984 			rf_markalldirty(raidPtr);
985 		}
986 		/* free the buffers.  No return code here. */
987 		if (k_cfg->layoutSpecificSize) {
988 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
989 		}
990 		RF_Free(k_cfg, sizeof(RF_Config_t));
991 
992 		return (retcode);
993 
994 		/* shutdown the system */
995 	case RAIDFRAME_SHUTDOWN:
996 
997 		if ((error = raidlock(rs)) != 0)
998 			return (error);
999 
1000 		/*
1001 		 * If somebody has a partition mounted, we shouldn't
1002 		 * shutdown.
1003 		 */
1004 
1005 		part = DISKPART(dev);
1006 		pmask = (1 << part);
1007 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1008 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1009 			(rs->sc_dkdev.dk_copenmask & pmask))) {
1010 			raidunlock(rs);
1011 			return (EBUSY);
1012 		}
1013 
1014 		retcode = rf_Shutdown(raidPtr);
1015 
1016 		/* It's no longer initialized... */
1017 		rs->sc_flags &= ~RAIDF_INITED;
1018 
1019 		/* free the pseudo device attach bits */
1020 
1021 		cf = device_cfdata(rs->sc_dev);
1022 		/* XXX this causes us to not return any errors
1023 		   from the above call to rf_Shutdown() */
1024 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1025 		free(cf, M_RAIDFRAME);
1026 
1027 		/* Detach the disk. */
1028 		pseudo_disk_detach(&rs->sc_dkdev);
1029 
1030 		raidunlock(rs);
1031 
1032 		return (retcode);
1033 	case RAIDFRAME_GET_COMPONENT_LABEL:
1034 		clabel_ptr = (RF_ComponentLabel_t **) data;
1035 		/* need to read the component label for the disk indicated
1036 		   by row,column in clabel */
1037 
1038 		/* For practice, let's get it directly fromdisk, rather
1039 		   than from the in-core copy */
1040 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1041 			   (RF_ComponentLabel_t *));
1042 		if (clabel == NULL)
1043 			return (ENOMEM);
1044 
1045 		retcode = copyin( *clabel_ptr, clabel,
1046 				  sizeof(RF_ComponentLabel_t));
1047 
1048 		if (retcode) {
1049 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1050 			return(retcode);
1051 		}
1052 
1053 		clabel->row = 0; /* Don't allow looking at anything else.*/
1054 
1055 		column = clabel->column;
1056 
1057 		if ((column < 0) || (column >= raidPtr->numCol +
1058 				     raidPtr->numSpare)) {
1059 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1060 			return(EINVAL);
1061 		}
1062 
1063 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
1064 				raidPtr->raid_cinfo[column].ci_vp,
1065 				clabel );
1066 
1067 		if (retcode == 0) {
1068 			retcode = copyout(clabel, *clabel_ptr,
1069 					  sizeof(RF_ComponentLabel_t));
1070 		}
1071 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1072 		return (retcode);
1073 
1074 	case RAIDFRAME_SET_COMPONENT_LABEL:
1075 		clabel = (RF_ComponentLabel_t *) data;
1076 
1077 		/* XXX check the label for valid stuff... */
1078 		/* Note that some things *should not* get modified --
1079 		   the user should be re-initing the labels instead of
1080 		   trying to patch things.
1081 		   */
1082 
1083 		raidid = raidPtr->raidid;
1084 #if DEBUG
1085 		printf("raid%d: Got component label:\n", raidid);
1086 		printf("raid%d: Version: %d\n", raidid, clabel->version);
1087 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1088 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1089 		printf("raid%d: Column: %d\n", raidid, clabel->column);
1090 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1091 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1092 		printf("raid%d: Status: %d\n", raidid, clabel->status);
1093 #endif
1094 		clabel->row = 0;
1095 		column = clabel->column;
1096 
1097 		if ((column < 0) || (column >= raidPtr->numCol)) {
1098 			return(EINVAL);
1099 		}
1100 
1101 		/* XXX this isn't allowed to do anything for now :-) */
1102 
1103 		/* XXX and before it is, we need to fill in the rest
1104 		   of the fields!?!?!?! */
1105 #if 0
1106 		raidwrite_component_label(
1107 		     raidPtr->Disks[column].dev,
1108 			    raidPtr->raid_cinfo[column].ci_vp,
1109 			    clabel );
1110 #endif
1111 		return (0);
1112 
1113 	case RAIDFRAME_INIT_LABELS:
1114 		clabel = (RF_ComponentLabel_t *) data;
1115 		/*
1116 		   we only want the serial number from
1117 		   the above.  We get all the rest of the information
1118 		   from the config that was used to create this RAID
1119 		   set.
1120 		   */
1121 
1122 		raidPtr->serial_number = clabel->serial_number;
1123 
1124 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1125 			  (RF_ComponentLabel_t *));
1126 		if (ci_label == NULL)
1127 			return (ENOMEM);
1128 
1129 		raid_init_component_label(raidPtr, ci_label);
1130 		ci_label->serial_number = clabel->serial_number;
1131 		ci_label->row = 0; /* we dont' pretend to support more */
1132 
1133 		for(column=0;column<raidPtr->numCol;column++) {
1134 			diskPtr = &raidPtr->Disks[column];
1135 			if (!RF_DEAD_DISK(diskPtr->status)) {
1136 				ci_label->partitionSize = diskPtr->partitionSize;
1137 				ci_label->column = column;
1138 				raidwrite_component_label(
1139 							  raidPtr->Disks[column].dev,
1140 							  raidPtr->raid_cinfo[column].ci_vp,
1141 							  ci_label );
1142 			}
1143 		}
1144 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1145 
1146 		return (retcode);
1147 	case RAIDFRAME_SET_AUTOCONFIG:
1148 		d = rf_set_autoconfig(raidPtr, *(int *) data);
1149 		printf("raid%d: New autoconfig value is: %d\n",
1150 		       raidPtr->raidid, d);
1151 		*(int *) data = d;
1152 		return (retcode);
1153 
1154 	case RAIDFRAME_SET_ROOT:
1155 		d = rf_set_rootpartition(raidPtr, *(int *) data);
1156 		printf("raid%d: New rootpartition value is: %d\n",
1157 		       raidPtr->raidid, d);
1158 		*(int *) data = d;
1159 		return (retcode);
1160 
1161 		/* initialize all parity */
1162 	case RAIDFRAME_REWRITEPARITY:
1163 
1164 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1165 			/* Parity for RAID 0 is trivially correct */
1166 			raidPtr->parity_good = RF_RAID_CLEAN;
1167 			return(0);
1168 		}
1169 
1170 		if (raidPtr->parity_rewrite_in_progress == 1) {
1171 			/* Re-write is already in progress! */
1172 			return(EINVAL);
1173 		}
1174 
1175 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1176 					   rf_RewriteParityThread,
1177 					   raidPtr,"raid_parity");
1178 		return (retcode);
1179 
1180 
1181 	case RAIDFRAME_ADD_HOT_SPARE:
1182 		sparePtr = (RF_SingleComponent_t *) data;
1183 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1184 		retcode = rf_add_hot_spare(raidPtr, &component);
1185 		return(retcode);
1186 
1187 	case RAIDFRAME_REMOVE_HOT_SPARE:
1188 		return(retcode);
1189 
1190 	case RAIDFRAME_DELETE_COMPONENT:
1191 		componentPtr = (RF_SingleComponent_t *)data;
1192 		memcpy( &component, componentPtr,
1193 			sizeof(RF_SingleComponent_t));
1194 		retcode = rf_delete_component(raidPtr, &component);
1195 		return(retcode);
1196 
1197 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1198 		componentPtr = (RF_SingleComponent_t *)data;
1199 		memcpy( &component, componentPtr,
1200 			sizeof(RF_SingleComponent_t));
1201 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
1202 		return(retcode);
1203 
1204 	case RAIDFRAME_REBUILD_IN_PLACE:
1205 
1206 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1207 			/* Can't do this on a RAID 0!! */
1208 			return(EINVAL);
1209 		}
1210 
1211 		if (raidPtr->recon_in_progress == 1) {
1212 			/* a reconstruct is already in progress! */
1213 			return(EINVAL);
1214 		}
1215 
1216 		componentPtr = (RF_SingleComponent_t *) data;
1217 		memcpy( &component, componentPtr,
1218 			sizeof(RF_SingleComponent_t));
1219 		component.row = 0; /* we don't support any more */
1220 		column = component.column;
1221 
1222 		if ((column < 0) || (column >= raidPtr->numCol)) {
1223 			return(EINVAL);
1224 		}
1225 
1226 		RF_LOCK_MUTEX(raidPtr->mutex);
1227 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1228 		    (raidPtr->numFailures > 0)) {
1229 			/* XXX 0 above shouldn't be constant!!! */
1230 			/* some component other than this has failed.
1231 			   Let's not make things worse than they already
1232 			   are... */
1233 			printf("raid%d: Unable to reconstruct to disk at:\n",
1234 			       raidPtr->raidid);
1235 			printf("raid%d:     Col: %d   Too many failures.\n",
1236 			       raidPtr->raidid, column);
1237 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1238 			return (EINVAL);
1239 		}
1240 		if (raidPtr->Disks[column].status ==
1241 		    rf_ds_reconstructing) {
1242 			printf("raid%d: Unable to reconstruct to disk at:\n",
1243 			       raidPtr->raidid);
1244 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
1245 
1246 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1247 			return (EINVAL);
1248 		}
1249 		if (raidPtr->Disks[column].status == rf_ds_spared) {
1250 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1251 			return (EINVAL);
1252 		}
1253 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1254 
1255 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1256 		if (rrcopy == NULL)
1257 			return(ENOMEM);
1258 
1259 		rrcopy->raidPtr = (void *) raidPtr;
1260 		rrcopy->col = column;
1261 
1262 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1263 					   rf_ReconstructInPlaceThread,
1264 					   rrcopy,"raid_reconip");
1265 		return(retcode);
1266 
1267 	case RAIDFRAME_GET_INFO:
1268 		if (!raidPtr->valid)
1269 			return (ENODEV);
1270 		ucfgp = (RF_DeviceConfig_t **) data;
1271 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1272 			  (RF_DeviceConfig_t *));
1273 		if (d_cfg == NULL)
1274 			return (ENOMEM);
1275 		d_cfg->rows = 1; /* there is only 1 row now */
1276 		d_cfg->cols = raidPtr->numCol;
1277 		d_cfg->ndevs = raidPtr->numCol;
1278 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
1279 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1280 			return (ENOMEM);
1281 		}
1282 		d_cfg->nspares = raidPtr->numSpare;
1283 		if (d_cfg->nspares >= RF_MAX_DISKS) {
1284 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1285 			return (ENOMEM);
1286 		}
1287 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1288 		d = 0;
1289 		for (j = 0; j < d_cfg->cols; j++) {
1290 			d_cfg->devs[d] = raidPtr->Disks[j];
1291 			d++;
1292 		}
1293 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1294 			d_cfg->spares[i] = raidPtr->Disks[j];
1295 		}
1296 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1297 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1298 
1299 		return (retcode);
1300 
1301 	case RAIDFRAME_CHECK_PARITY:
1302 		*(int *) data = raidPtr->parity_good;
1303 		return (0);
1304 
1305 	case RAIDFRAME_RESET_ACCTOTALS:
1306 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1307 		return (0);
1308 
1309 	case RAIDFRAME_GET_ACCTOTALS:
1310 		totals = (RF_AccTotals_t *) data;
1311 		*totals = raidPtr->acc_totals;
1312 		return (0);
1313 
1314 	case RAIDFRAME_KEEP_ACCTOTALS:
1315 		raidPtr->keep_acc_totals = *(int *)data;
1316 		return (0);
1317 
1318 	case RAIDFRAME_GET_SIZE:
1319 		*(int *) data = raidPtr->totalSectors;
1320 		return (0);
1321 
1322 		/* fail a disk & optionally start reconstruction */
1323 	case RAIDFRAME_FAIL_DISK:
1324 
1325 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1326 			/* Can't do this on a RAID 0!! */
1327 			return(EINVAL);
1328 		}
1329 
1330 		rr = (struct rf_recon_req *) data;
1331 		rr->row = 0;
1332 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
1333 			return (EINVAL);
1334 
1335 
1336 		RF_LOCK_MUTEX(raidPtr->mutex);
1337 		if (raidPtr->status == rf_rs_reconstructing) {
1338 			/* you can't fail a disk while we're reconstructing! */
1339 			/* XXX wrong for RAID6 */
1340 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1341 			return (EINVAL);
1342 		}
1343 		if ((raidPtr->Disks[rr->col].status ==
1344 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1345 			/* some other component has failed.  Let's not make
1346 			   things worse. XXX wrong for RAID6 */
1347 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1348 			return (EINVAL);
1349 		}
1350 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1351 			/* Can't fail a spared disk! */
1352 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1353 			return (EINVAL);
1354 		}
1355 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1356 
1357 		/* make a copy of the recon request so that we don't rely on
1358 		 * the user's buffer */
1359 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1360 		if (rrcopy == NULL)
1361 			return(ENOMEM);
1362 		memcpy(rrcopy, rr, sizeof(*rr));
1363 		rrcopy->raidPtr = (void *) raidPtr;
1364 
1365 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1366 					   rf_ReconThread,
1367 					   rrcopy,"raid_recon");
1368 		return (0);
1369 
1370 		/* invoke a copyback operation after recon on whatever disk
1371 		 * needs it, if any */
1372 	case RAIDFRAME_COPYBACK:
1373 
1374 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1375 			/* This makes no sense on a RAID 0!! */
1376 			return(EINVAL);
1377 		}
1378 
1379 		if (raidPtr->copyback_in_progress == 1) {
1380 			/* Copyback is already in progress! */
1381 			return(EINVAL);
1382 		}
1383 
1384 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1385 					   rf_CopybackThread,
1386 					   raidPtr,"raid_copyback");
1387 		return (retcode);
1388 
1389 		/* return the percentage completion of reconstruction */
1390 	case RAIDFRAME_CHECK_RECON_STATUS:
1391 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1392 			/* This makes no sense on a RAID 0, so tell the
1393 			   user it's done. */
1394 			*(int *) data = 100;
1395 			return(0);
1396 		}
1397 		if (raidPtr->status != rf_rs_reconstructing)
1398 			*(int *) data = 100;
1399 		else {
1400 			if (raidPtr->reconControl->numRUsTotal > 0) {
1401 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1402 			} else {
1403 				*(int *) data = 0;
1404 			}
1405 		}
1406 		return (0);
1407 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1408 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1409 		if (raidPtr->status != rf_rs_reconstructing) {
1410 			progressInfo.remaining = 0;
1411 			progressInfo.completed = 100;
1412 			progressInfo.total = 100;
1413 		} else {
1414 			progressInfo.total =
1415 				raidPtr->reconControl->numRUsTotal;
1416 			progressInfo.completed =
1417 				raidPtr->reconControl->numRUsComplete;
1418 			progressInfo.remaining = progressInfo.total -
1419 				progressInfo.completed;
1420 		}
1421 		retcode = copyout(&progressInfo, *progressInfoPtr,
1422 				  sizeof(RF_ProgressInfo_t));
1423 		return (retcode);
1424 
1425 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1426 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1427 			/* This makes no sense on a RAID 0, so tell the
1428 			   user it's done. */
1429 			*(int *) data = 100;
1430 			return(0);
1431 		}
1432 		if (raidPtr->parity_rewrite_in_progress == 1) {
1433 			*(int *) data = 100 *
1434 				raidPtr->parity_rewrite_stripes_done /
1435 				raidPtr->Layout.numStripe;
1436 		} else {
1437 			*(int *) data = 100;
1438 		}
1439 		return (0);
1440 
1441 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1442 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1443 		if (raidPtr->parity_rewrite_in_progress == 1) {
1444 			progressInfo.total = raidPtr->Layout.numStripe;
1445 			progressInfo.completed =
1446 				raidPtr->parity_rewrite_stripes_done;
1447 			progressInfo.remaining = progressInfo.total -
1448 				progressInfo.completed;
1449 		} else {
1450 			progressInfo.remaining = 0;
1451 			progressInfo.completed = 100;
1452 			progressInfo.total = 100;
1453 		}
1454 		retcode = copyout(&progressInfo, *progressInfoPtr,
1455 				  sizeof(RF_ProgressInfo_t));
1456 		return (retcode);
1457 
1458 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1459 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1460 			/* This makes no sense on a RAID 0 */
1461 			*(int *) data = 100;
1462 			return(0);
1463 		}
1464 		if (raidPtr->copyback_in_progress == 1) {
1465 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
1466 				raidPtr->Layout.numStripe;
1467 		} else {
1468 			*(int *) data = 100;
1469 		}
1470 		return (0);
1471 
1472 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1473 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1474 		if (raidPtr->copyback_in_progress == 1) {
1475 			progressInfo.total = raidPtr->Layout.numStripe;
1476 			progressInfo.completed =
1477 				raidPtr->copyback_stripes_done;
1478 			progressInfo.remaining = progressInfo.total -
1479 				progressInfo.completed;
1480 		} else {
1481 			progressInfo.remaining = 0;
1482 			progressInfo.completed = 100;
1483 			progressInfo.total = 100;
1484 		}
1485 		retcode = copyout(&progressInfo, *progressInfoPtr,
1486 				  sizeof(RF_ProgressInfo_t));
1487 		return (retcode);
1488 
1489 		/* the sparetable daemon calls this to wait for the kernel to
1490 		 * need a spare table. this ioctl does not return until a
1491 		 * spare table is needed. XXX -- calling mpsleep here in the
1492 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1493 		 * -- I should either compute the spare table in the kernel,
1494 		 * or have a different -- XXX XXX -- interface (a different
1495 		 * character device) for delivering the table     -- XXX */
1496 #if 0
1497 	case RAIDFRAME_SPARET_WAIT:
1498 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1499 		while (!rf_sparet_wait_queue)
1500 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1501 		waitreq = rf_sparet_wait_queue;
1502 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1503 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1504 
1505 		/* structure assignment */
1506 		*((RF_SparetWait_t *) data) = *waitreq;
1507 
1508 		RF_Free(waitreq, sizeof(*waitreq));
1509 		return (0);
1510 
1511 		/* wakes up a process waiting on SPARET_WAIT and puts an error
1512 		 * code in it that will cause the dameon to exit */
1513 	case RAIDFRAME_ABORT_SPARET_WAIT:
1514 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1515 		waitreq->fcol = -1;
1516 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1517 		waitreq->next = rf_sparet_wait_queue;
1518 		rf_sparet_wait_queue = waitreq;
1519 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1520 		wakeup(&rf_sparet_wait_queue);
1521 		return (0);
1522 
1523 		/* used by the spare table daemon to deliver a spare table
1524 		 * into the kernel */
1525 	case RAIDFRAME_SEND_SPARET:
1526 
1527 		/* install the spare table */
1528 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1529 
1530 		/* respond to the requestor.  the return status of the spare
1531 		 * table installation is passed in the "fcol" field */
1532 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1533 		waitreq->fcol = retcode;
1534 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1535 		waitreq->next = rf_sparet_resp_queue;
1536 		rf_sparet_resp_queue = waitreq;
1537 		wakeup(&rf_sparet_resp_queue);
1538 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1539 
1540 		return (retcode);
1541 #endif
1542 
1543 	default:
1544 		break; /* fall through to the os-specific code below */
1545 
1546 	}
1547 
1548 	if (!raidPtr->valid)
1549 		return (EINVAL);
1550 
1551 	/*
1552 	 * Add support for "regular" device ioctls here.
1553 	 */
1554 
1555 	switch (cmd) {
1556 	case DIOCGDINFO:
1557 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1558 		break;
1559 #ifdef __HAVE_OLD_DISKLABEL
1560 	case ODIOCGDINFO:
1561 		newlabel = *(rs->sc_dkdev.dk_label);
1562 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1563 			return ENOTTY;
1564 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1565 		break;
1566 #endif
1567 
1568 	case DIOCGPART:
1569 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1570 		((struct partinfo *) data)->part =
1571 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1572 		break;
1573 
1574 	case DIOCWDINFO:
1575 	case DIOCSDINFO:
1576 #ifdef __HAVE_OLD_DISKLABEL
1577 	case ODIOCWDINFO:
1578 	case ODIOCSDINFO:
1579 #endif
1580 	{
1581 		struct disklabel *lp;
1582 #ifdef __HAVE_OLD_DISKLABEL
1583 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1584 			memset(&newlabel, 0, sizeof newlabel);
1585 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
1586 			lp = &newlabel;
1587 		} else
1588 #endif
1589 		lp = (struct disklabel *)data;
1590 
1591 		if ((error = raidlock(rs)) != 0)
1592 			return (error);
1593 
1594 		rs->sc_flags |= RAIDF_LABELLING;
1595 
1596 		error = setdisklabel(rs->sc_dkdev.dk_label,
1597 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
1598 		if (error == 0) {
1599 			if (cmd == DIOCWDINFO
1600 #ifdef __HAVE_OLD_DISKLABEL
1601 			    || cmd == ODIOCWDINFO
1602 #endif
1603 			   )
1604 				error = writedisklabel(RAIDLABELDEV(dev),
1605 				    raidstrategy, rs->sc_dkdev.dk_label,
1606 				    rs->sc_dkdev.dk_cpulabel);
1607 		}
1608 		rs->sc_flags &= ~RAIDF_LABELLING;
1609 
1610 		raidunlock(rs);
1611 
1612 		if (error)
1613 			return (error);
1614 		break;
1615 	}
1616 
1617 	case DIOCWLABEL:
1618 		if (*(int *) data != 0)
1619 			rs->sc_flags |= RAIDF_WLABEL;
1620 		else
1621 			rs->sc_flags &= ~RAIDF_WLABEL;
1622 		break;
1623 
1624 	case DIOCGDEFLABEL:
1625 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1626 		break;
1627 
1628 #ifdef __HAVE_OLD_DISKLABEL
1629 	case ODIOCGDEFLABEL:
1630 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
1631 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1632 			return ENOTTY;
1633 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1634 		break;
1635 #endif
1636 
1637 	case DIOCAWEDGE:
1638 	case DIOCDWEDGE:
1639 	    	dkw = (void *)data;
1640 
1641 		/* If the ioctl happens here, the parent is us. */
1642 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
1643 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1644 
1645 	case DIOCLWEDGES:
1646 		return dkwedge_list(&rs->sc_dkdev,
1647 		    (struct dkwedge_list *)data, l);
1648 
1649 	default:
1650 		retcode = ENOTTY;
1651 	}
1652 	return (retcode);
1653 
1654 }
1655 
1656 
1657 /* raidinit -- complete the rest of the initialization for the
1658    RAIDframe device.  */
1659 
1660 
1661 static void
1662 raidinit(RF_Raid_t *raidPtr)
1663 {
1664 	struct cfdata *cf;
1665 	struct raid_softc *rs;
1666 	int     unit;
1667 
1668 	unit = raidPtr->raidid;
1669 
1670 	rs = &raid_softc[unit];
1671 
1672 	/* XXX should check return code first... */
1673 	rs->sc_flags |= RAIDF_INITED;
1674 
1675 	/* XXX doesn't check bounds. */
1676 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1677 
1678 	rs->sc_dkdev.dk_name = rs->sc_xname;
1679 
1680 	/* attach the pseudo device */
1681 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1682 	cf->cf_name = raid_cd.cd_name;
1683 	cf->cf_atname = raid_cd.cd_name;
1684 	cf->cf_unit = unit;
1685 	cf->cf_fstate = FSTATE_STAR;
1686 
1687 	rs->sc_dev = config_attach_pseudo(cf);
1688 
1689 	if (rs->sc_dev==NULL) {
1690 		printf("raid%d: config_attach_pseudo failed\n",
1691 		       raidPtr->raidid);
1692 	}
1693 
1694 	/* disk_attach actually creates space for the CPU disklabel, among
1695 	 * other things, so it's critical to call this *BEFORE* we try putzing
1696 	 * with disklabels. */
1697 
1698 	disk_attach(&rs->sc_dkdev);
1699 
1700 	/* XXX There may be a weird interaction here between this, and
1701 	 * protectedSectors, as used in RAIDframe.  */
1702 
1703 	rs->sc_size = raidPtr->totalSectors;
1704 }
1705 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1706 /* wake up the daemon & tell it to get us a spare table
1707  * XXX
1708  * the entries in the queues should be tagged with the raidPtr
1709  * so that in the extremely rare case that two recons happen at once,
1710  * we know for which device were requesting a spare table
1711  * XXX
1712  *
1713  * XXX This code is not currently used. GO
1714  */
1715 int
1716 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1717 {
1718 	int     retcode;
1719 
1720 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1721 	req->next = rf_sparet_wait_queue;
1722 	rf_sparet_wait_queue = req;
1723 	wakeup(&rf_sparet_wait_queue);
1724 
1725 	/* mpsleep unlocks the mutex */
1726 	while (!rf_sparet_resp_queue) {
1727 		tsleep(&rf_sparet_resp_queue, PRIBIO,
1728 		    "raidframe getsparetable", 0);
1729 	}
1730 	req = rf_sparet_resp_queue;
1731 	rf_sparet_resp_queue = req->next;
1732 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1733 
1734 	retcode = req->fcol;
1735 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
1736 					 * alloc'd */
1737 	return (retcode);
1738 }
1739 #endif
1740 
1741 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1742  * bp & passes it down.
1743  * any calls originating in the kernel must use non-blocking I/O
1744  * do some extra sanity checking to return "appropriate" error values for
1745  * certain conditions (to make some standard utilities work)
1746  *
1747  * Formerly known as: rf_DoAccessKernel
1748  */
1749 void
1750 raidstart(RF_Raid_t *raidPtr)
1751 {
1752 	RF_SectorCount_t num_blocks, pb, sum;
1753 	RF_RaidAddr_t raid_addr;
1754 	struct partition *pp;
1755 	daddr_t blocknum;
1756 	int     unit;
1757 	struct raid_softc *rs;
1758 	int     do_async;
1759 	struct buf *bp;
1760 	int rc;
1761 
1762 	unit = raidPtr->raidid;
1763 	rs = &raid_softc[unit];
1764 
1765 	/* quick check to see if anything has died recently */
1766 	RF_LOCK_MUTEX(raidPtr->mutex);
1767 	if (raidPtr->numNewFailures > 0) {
1768 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1769 		rf_update_component_labels(raidPtr,
1770 					   RF_NORMAL_COMPONENT_UPDATE);
1771 		RF_LOCK_MUTEX(raidPtr->mutex);
1772 		raidPtr->numNewFailures--;
1773 	}
1774 
1775 	/* Check to see if we're at the limit... */
1776 	while (raidPtr->openings > 0) {
1777 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1778 
1779 		/* get the next item, if any, from the queue */
1780 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1781 			/* nothing more to do */
1782 			return;
1783 		}
1784 
1785 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
1786 		 * partition.. Need to make it absolute to the underlying
1787 		 * device.. */
1788 
1789 		blocknum = bp->b_blkno;
1790 		if (DISKPART(bp->b_dev) != RAW_PART) {
1791 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1792 			blocknum += pp->p_offset;
1793 		}
1794 
1795 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1796 			    (int) blocknum));
1797 
1798 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1799 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1800 
1801 		/* *THIS* is where we adjust what block we're going to...
1802 		 * but DO NOT TOUCH bp->b_blkno!!! */
1803 		raid_addr = blocknum;
1804 
1805 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1806 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1807 		sum = raid_addr + num_blocks + pb;
1808 		if (1 || rf_debugKernelAccess) {
1809 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1810 				    (int) raid_addr, (int) sum, (int) num_blocks,
1811 				    (int) pb, (int) bp->b_resid));
1812 		}
1813 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1814 		    || (sum < num_blocks) || (sum < pb)) {
1815 			bp->b_error = ENOSPC;
1816 			bp->b_flags |= B_ERROR;
1817 			bp->b_resid = bp->b_bcount;
1818 			biodone(bp);
1819 			RF_LOCK_MUTEX(raidPtr->mutex);
1820 			continue;
1821 		}
1822 		/*
1823 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1824 		 */
1825 
1826 		if (bp->b_bcount & raidPtr->sectorMask) {
1827 			bp->b_error = EINVAL;
1828 			bp->b_flags |= B_ERROR;
1829 			bp->b_resid = bp->b_bcount;
1830 			biodone(bp);
1831 			RF_LOCK_MUTEX(raidPtr->mutex);
1832 			continue;
1833 
1834 		}
1835 		db1_printf(("Calling DoAccess..\n"));
1836 
1837 
1838 		RF_LOCK_MUTEX(raidPtr->mutex);
1839 		raidPtr->openings--;
1840 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1841 
1842 		/*
1843 		 * Everything is async.
1844 		 */
1845 		do_async = 1;
1846 
1847 		disk_busy(&rs->sc_dkdev);
1848 
1849 		/* XXX we're still at splbio() here... do we *really*
1850 		   need to be? */
1851 
1852 		/* don't ever condition on bp->b_flags & B_WRITE.
1853 		 * always condition on B_READ instead */
1854 
1855 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1856 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1857 				 do_async, raid_addr, num_blocks,
1858 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1859 
1860 		if (rc) {
1861 			bp->b_error = rc;
1862 			bp->b_flags |= B_ERROR;
1863 			bp->b_resid = bp->b_bcount;
1864 			biodone(bp);
1865 			/* continue loop */
1866 		}
1867 
1868 		RF_LOCK_MUTEX(raidPtr->mutex);
1869 	}
1870 	RF_UNLOCK_MUTEX(raidPtr->mutex);
1871 }
1872 
1873 
1874 
1875 
1876 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
1877 
1878 int
1879 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1880 {
1881 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1882 	struct buf *bp;
1883 
1884 	req->queue = queue;
1885 
1886 #if DIAGNOSTIC
1887 	if (queue->raidPtr->raidid >= numraid) {
1888 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1889 		    numraid);
1890 		panic("Invalid Unit number in rf_DispatchKernelIO");
1891 	}
1892 #endif
1893 
1894 	bp = req->bp;
1895 
1896 	switch (req->type) {
1897 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
1898 		/* XXX need to do something extra here.. */
1899 		/* I'm leaving this in, as I've never actually seen it used,
1900 		 * and I'd like folks to report it... GO */
1901 		printf(("WAKEUP CALLED\n"));
1902 		queue->numOutstanding++;
1903 
1904 		bp->b_flags = 0;
1905 		bp->b_private = req;
1906 
1907 		KernelWakeupFunc(bp);
1908 		break;
1909 
1910 	case RF_IO_TYPE_READ:
1911 	case RF_IO_TYPE_WRITE:
1912 #if RF_ACC_TRACE > 0
1913 		if (req->tracerec) {
1914 			RF_ETIMER_START(req->tracerec->timer);
1915 		}
1916 #endif
1917 		InitBP(bp, queue->rf_cinfo->ci_vp,
1918 		    op, queue->rf_cinfo->ci_dev,
1919 		    req->sectorOffset, req->numSector,
1920 		    req->buf, KernelWakeupFunc, (void *) req,
1921 		    queue->raidPtr->logBytesPerSector, req->b_proc);
1922 
1923 		if (rf_debugKernelAccess) {
1924 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
1925 				(long) bp->b_blkno));
1926 		}
1927 		queue->numOutstanding++;
1928 		queue->last_deq_sector = req->sectorOffset;
1929 		/* acc wouldn't have been let in if there were any pending
1930 		 * reqs at any other priority */
1931 		queue->curPriority = req->priority;
1932 
1933 		db1_printf(("Going for %c to unit %d col %d\n",
1934 			    req->type, queue->raidPtr->raidid,
1935 			    queue->col));
1936 		db1_printf(("sector %d count %d (%d bytes) %d\n",
1937 			(int) req->sectorOffset, (int) req->numSector,
1938 			(int) (req->numSector <<
1939 			    queue->raidPtr->logBytesPerSector),
1940 			(int) queue->raidPtr->logBytesPerSector));
1941 		VOP_STRATEGY(bp->b_vp, bp);
1942 
1943 		break;
1944 
1945 	default:
1946 		panic("bad req->type in rf_DispatchKernelIO");
1947 	}
1948 	db1_printf(("Exiting from DispatchKernelIO\n"));
1949 
1950 	return (0);
1951 }
1952 /* this is the callback function associated with a I/O invoked from
1953    kernel code.
1954  */
1955 static void
1956 KernelWakeupFunc(struct buf *bp)
1957 {
1958 	RF_DiskQueueData_t *req = NULL;
1959 	RF_DiskQueue_t *queue;
1960 	int s;
1961 
1962 	s = splbio();
1963 	db1_printf(("recovering the request queue:\n"));
1964 	req = bp->b_private;
1965 
1966 	queue = (RF_DiskQueue_t *) req->queue;
1967 
1968 #if RF_ACC_TRACE > 0
1969 	if (req->tracerec) {
1970 		RF_ETIMER_STOP(req->tracerec->timer);
1971 		RF_ETIMER_EVAL(req->tracerec->timer);
1972 		RF_LOCK_MUTEX(rf_tracing_mutex);
1973 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1974 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1975 		req->tracerec->num_phys_ios++;
1976 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
1977 	}
1978 #endif
1979 
1980 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1981 	 * ballistic, and mark the component as hosed... */
1982 
1983 	if (bp->b_flags & B_ERROR) {
1984 		/* Mark the disk as dead */
1985 		/* but only mark it once... */
1986 		/* and only if it wouldn't leave this RAID set
1987 		   completely broken */
1988 		if (((queue->raidPtr->Disks[queue->col].status ==
1989 		      rf_ds_optimal) ||
1990 		     (queue->raidPtr->Disks[queue->col].status ==
1991 		      rf_ds_used_spare)) &&
1992 		     (queue->raidPtr->numFailures <
1993 		      queue->raidPtr->Layout.map->faultsTolerated)) {
1994 			printf("raid%d: IO Error.  Marking %s as failed.\n",
1995 			       queue->raidPtr->raidid,
1996 			       queue->raidPtr->Disks[queue->col].devname);
1997 			queue->raidPtr->Disks[queue->col].status =
1998 			    rf_ds_failed;
1999 			queue->raidPtr->status = rf_rs_degraded;
2000 			queue->raidPtr->numFailures++;
2001 			queue->raidPtr->numNewFailures++;
2002 		} else {	/* Disk is already dead... */
2003 			/* printf("Disk already marked as dead!\n"); */
2004 		}
2005 
2006 	}
2007 
2008 	/* Fill in the error value */
2009 
2010 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
2011 
2012 	simple_lock(&queue->raidPtr->iodone_lock);
2013 
2014 	/* Drop this one on the "finished" queue... */
2015 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2016 
2017 	/* Let the raidio thread know there is work to be done. */
2018 	wakeup(&(queue->raidPtr->iodone));
2019 
2020 	simple_unlock(&queue->raidPtr->iodone_lock);
2021 
2022 	splx(s);
2023 }
2024 
2025 
2026 
2027 /*
2028  * initialize a buf structure for doing an I/O in the kernel.
2029  */
2030 static void
2031 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2032        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
2033        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2034        struct proc *b_proc)
2035 {
2036 	/* bp->b_flags       = B_PHYS | rw_flag; */
2037 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
2038 	bp->b_bcount = numSect << logBytesPerSector;
2039 	bp->b_bufsize = bp->b_bcount;
2040 	bp->b_error = 0;
2041 	bp->b_dev = dev;
2042 	bp->b_data = bf;
2043 	bp->b_blkno = startSect;
2044 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
2045 	if (bp->b_bcount == 0) {
2046 		panic("bp->b_bcount is zero in InitBP!!");
2047 	}
2048 	bp->b_proc = b_proc;
2049 	bp->b_iodone = cbFunc;
2050 	bp->b_private = cbArg;
2051 	bp->b_vp = b_vp;
2052 	if ((bp->b_flags & B_READ) == 0) {
2053 		bp->b_vp->v_numoutput++;
2054 	}
2055 
2056 }
2057 
2058 static void
2059 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2060 		    struct disklabel *lp)
2061 {
2062 	memset(lp, 0, sizeof(*lp));
2063 
2064 	/* fabricate a label... */
2065 	lp->d_secperunit = raidPtr->totalSectors;
2066 	lp->d_secsize = raidPtr->bytesPerSector;
2067 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2068 	lp->d_ntracks = 4 * raidPtr->numCol;
2069 	lp->d_ncylinders = raidPtr->totalSectors /
2070 		(lp->d_nsectors * lp->d_ntracks);
2071 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2072 
2073 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2074 	lp->d_type = DTYPE_RAID;
2075 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2076 	lp->d_rpm = 3600;
2077 	lp->d_interleave = 1;
2078 	lp->d_flags = 0;
2079 
2080 	lp->d_partitions[RAW_PART].p_offset = 0;
2081 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2082 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2083 	lp->d_npartitions = RAW_PART + 1;
2084 
2085 	lp->d_magic = DISKMAGIC;
2086 	lp->d_magic2 = DISKMAGIC;
2087 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2088 
2089 }
2090 /*
2091  * Read the disklabel from the raid device.  If one is not present, fake one
2092  * up.
2093  */
2094 static void
2095 raidgetdisklabel(dev_t dev)
2096 {
2097 	int     unit = raidunit(dev);
2098 	struct raid_softc *rs = &raid_softc[unit];
2099 	const char   *errstring;
2100 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2101 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2102 	RF_Raid_t *raidPtr;
2103 
2104 	db1_printf(("Getting the disklabel...\n"));
2105 
2106 	memset(clp, 0, sizeof(*clp));
2107 
2108 	raidPtr = raidPtrs[unit];
2109 
2110 	raidgetdefaultlabel(raidPtr, rs, lp);
2111 
2112 	/*
2113 	 * Call the generic disklabel extraction routine.
2114 	 */
2115 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2116 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2117 	if (errstring)
2118 		raidmakedisklabel(rs);
2119 	else {
2120 		int     i;
2121 		struct partition *pp;
2122 
2123 		/*
2124 		 * Sanity check whether the found disklabel is valid.
2125 		 *
2126 		 * This is necessary since total size of the raid device
2127 		 * may vary when an interleave is changed even though exactly
2128 		 * same components are used, and old disklabel may used
2129 		 * if that is found.
2130 		 */
2131 		if (lp->d_secperunit != rs->sc_size)
2132 			printf("raid%d: WARNING: %s: "
2133 			    "total sector size in disklabel (%d) != "
2134 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
2135 			    lp->d_secperunit, (long) rs->sc_size);
2136 		for (i = 0; i < lp->d_npartitions; i++) {
2137 			pp = &lp->d_partitions[i];
2138 			if (pp->p_offset + pp->p_size > rs->sc_size)
2139 				printf("raid%d: WARNING: %s: end of partition `%c' "
2140 				       "exceeds the size of raid (%ld)\n",
2141 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2142 		}
2143 	}
2144 
2145 }
2146 /*
2147  * Take care of things one might want to take care of in the event
2148  * that a disklabel isn't present.
2149  */
2150 static void
2151 raidmakedisklabel(struct raid_softc *rs)
2152 {
2153 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2154 	db1_printf(("Making a label..\n"));
2155 
2156 	/*
2157 	 * For historical reasons, if there's no disklabel present
2158 	 * the raw partition must be marked FS_BSDFFS.
2159 	 */
2160 
2161 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2162 
2163 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2164 
2165 	lp->d_checksum = dkcksum(lp);
2166 }
2167 /*
2168  * Wait interruptibly for an exclusive lock.
2169  *
2170  * XXX
2171  * Several drivers do this; it should be abstracted and made MP-safe.
2172  * (Hmm... where have we seen this warning before :->  GO )
2173  */
2174 static int
2175 raidlock(struct raid_softc *rs)
2176 {
2177 	int     error;
2178 
2179 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2180 		rs->sc_flags |= RAIDF_WANTED;
2181 		if ((error =
2182 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2183 			return (error);
2184 	}
2185 	rs->sc_flags |= RAIDF_LOCKED;
2186 	return (0);
2187 }
2188 /*
2189  * Unlock and wake up any waiters.
2190  */
2191 static void
2192 raidunlock(struct raid_softc *rs)
2193 {
2194 
2195 	rs->sc_flags &= ~RAIDF_LOCKED;
2196 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2197 		rs->sc_flags &= ~RAIDF_WANTED;
2198 		wakeup(rs);
2199 	}
2200 }
2201 
2202 
2203 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
2204 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
2205 
2206 int
2207 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2208 {
2209 	RF_ComponentLabel_t clabel;
2210 	raidread_component_label(dev, b_vp, &clabel);
2211 	clabel.mod_counter = mod_counter;
2212 	clabel.clean = RF_RAID_CLEAN;
2213 	raidwrite_component_label(dev, b_vp, &clabel);
2214 	return(0);
2215 }
2216 
2217 
2218 int
2219 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2220 {
2221 	RF_ComponentLabel_t clabel;
2222 	raidread_component_label(dev, b_vp, &clabel);
2223 	clabel.mod_counter = mod_counter;
2224 	clabel.clean = RF_RAID_DIRTY;
2225 	raidwrite_component_label(dev, b_vp, &clabel);
2226 	return(0);
2227 }
2228 
2229 /* ARGSUSED */
2230 int
2231 raidread_component_label(dev_t dev, struct vnode *b_vp,
2232 			 RF_ComponentLabel_t *clabel)
2233 {
2234 	struct buf *bp;
2235 	const struct bdevsw *bdev;
2236 	int error;
2237 
2238 	/* XXX should probably ensure that we don't try to do this if
2239 	   someone has changed rf_protected_sectors. */
2240 
2241 	if (b_vp == NULL) {
2242 		/* For whatever reason, this component is not valid.
2243 		   Don't try to read a component label from it. */
2244 		return(EINVAL);
2245 	}
2246 
2247 	/* get a block of the appropriate size... */
2248 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2249 	bp->b_dev = dev;
2250 
2251 	/* get our ducks in a row for the read */
2252 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2253 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2254 	bp->b_flags |= B_READ;
2255  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2256 
2257 	bdev = bdevsw_lookup(bp->b_dev);
2258 	if (bdev == NULL)
2259 		return (ENXIO);
2260 	(*bdev->d_strategy)(bp);
2261 
2262 	error = biowait(bp);
2263 
2264 	if (!error) {
2265 		memcpy(clabel, bp->b_data,
2266 		       sizeof(RF_ComponentLabel_t));
2267 	}
2268 
2269 	brelse(bp);
2270 	return(error);
2271 }
2272 /* ARGSUSED */
2273 int
2274 raidwrite_component_label(dev_t dev, struct vnode *b_vp __unused,
2275 			  RF_ComponentLabel_t *clabel)
2276 {
2277 	struct buf *bp;
2278 	const struct bdevsw *bdev;
2279 	int error;
2280 
2281 	/* get a block of the appropriate size... */
2282 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2283 	bp->b_dev = dev;
2284 
2285 	/* get our ducks in a row for the write */
2286 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2287 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2288 	bp->b_flags |= B_WRITE;
2289  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2290 
2291 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2292 
2293 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2294 
2295 	bdev = bdevsw_lookup(bp->b_dev);
2296 	if (bdev == NULL)
2297 		return (ENXIO);
2298 	(*bdev->d_strategy)(bp);
2299 	error = biowait(bp);
2300 	brelse(bp);
2301 	if (error) {
2302 #if 1
2303 		printf("Failed to write RAID component info!\n");
2304 #endif
2305 	}
2306 
2307 	return(error);
2308 }
2309 
2310 void
2311 rf_markalldirty(RF_Raid_t *raidPtr)
2312 {
2313 	RF_ComponentLabel_t clabel;
2314 	int sparecol;
2315 	int c;
2316 	int j;
2317 	int scol = -1;
2318 
2319 	raidPtr->mod_counter++;
2320 	for (c = 0; c < raidPtr->numCol; c++) {
2321 		/* we don't want to touch (at all) a disk that has
2322 		   failed */
2323 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2324 			raidread_component_label(
2325 						 raidPtr->Disks[c].dev,
2326 						 raidPtr->raid_cinfo[c].ci_vp,
2327 						 &clabel);
2328 			if (clabel.status == rf_ds_spared) {
2329 				/* XXX do something special...
2330 				   but whatever you do, don't
2331 				   try to access it!! */
2332 			} else {
2333 				raidmarkdirty(
2334 					      raidPtr->Disks[c].dev,
2335 					      raidPtr->raid_cinfo[c].ci_vp,
2336 					      raidPtr->mod_counter);
2337 			}
2338 		}
2339 	}
2340 
2341 	for( c = 0; c < raidPtr->numSpare ; c++) {
2342 		sparecol = raidPtr->numCol + c;
2343 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2344 			/*
2345 
2346 			   we claim this disk is "optimal" if it's
2347 			   rf_ds_used_spare, as that means it should be
2348 			   directly substitutable for the disk it replaced.
2349 			   We note that too...
2350 
2351 			 */
2352 
2353 			for(j=0;j<raidPtr->numCol;j++) {
2354 				if (raidPtr->Disks[j].spareCol == sparecol) {
2355 					scol = j;
2356 					break;
2357 				}
2358 			}
2359 
2360 			raidread_component_label(
2361 				 raidPtr->Disks[sparecol].dev,
2362 				 raidPtr->raid_cinfo[sparecol].ci_vp,
2363 				 &clabel);
2364 			/* make sure status is noted */
2365 
2366 			raid_init_component_label(raidPtr, &clabel);
2367 
2368 			clabel.row = 0;
2369 			clabel.column = scol;
2370 			/* Note: we *don't* change status from rf_ds_used_spare
2371 			   to rf_ds_optimal */
2372 			/* clabel.status = rf_ds_optimal; */
2373 
2374 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
2375 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2376 				      raidPtr->mod_counter);
2377 		}
2378 	}
2379 }
2380 
2381 
2382 void
2383 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2384 {
2385 	RF_ComponentLabel_t clabel;
2386 	int sparecol;
2387 	int c;
2388 	int j;
2389 	int scol;
2390 
2391 	scol = -1;
2392 
2393 	/* XXX should do extra checks to make sure things really are clean,
2394 	   rather than blindly setting the clean bit... */
2395 
2396 	raidPtr->mod_counter++;
2397 
2398 	for (c = 0; c < raidPtr->numCol; c++) {
2399 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
2400 			raidread_component_label(
2401 						 raidPtr->Disks[c].dev,
2402 						 raidPtr->raid_cinfo[c].ci_vp,
2403 						 &clabel);
2404 			/* make sure status is noted */
2405 			clabel.status = rf_ds_optimal;
2406 
2407 			/* bump the counter */
2408 			clabel.mod_counter = raidPtr->mod_counter;
2409 
2410 			/* note what unit we are configured as */
2411 			clabel.last_unit = raidPtr->raidid;
2412 
2413 			raidwrite_component_label(
2414 						  raidPtr->Disks[c].dev,
2415 						  raidPtr->raid_cinfo[c].ci_vp,
2416 						  &clabel);
2417 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2418 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2419 					raidmarkclean(
2420 						      raidPtr->Disks[c].dev,
2421 						      raidPtr->raid_cinfo[c].ci_vp,
2422 						      raidPtr->mod_counter);
2423 				}
2424 			}
2425 		}
2426 		/* else we don't touch it.. */
2427 	}
2428 
2429 	for( c = 0; c < raidPtr->numSpare ; c++) {
2430 		sparecol = raidPtr->numCol + c;
2431 		/* Need to ensure that the reconstruct actually completed! */
2432 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2433 			/*
2434 
2435 			   we claim this disk is "optimal" if it's
2436 			   rf_ds_used_spare, as that means it should be
2437 			   directly substitutable for the disk it replaced.
2438 			   We note that too...
2439 
2440 			 */
2441 
2442 			for(j=0;j<raidPtr->numCol;j++) {
2443 				if (raidPtr->Disks[j].spareCol == sparecol) {
2444 					scol = j;
2445 					break;
2446 				}
2447 			}
2448 
2449 			/* XXX shouldn't *really* need this... */
2450 			raidread_component_label(
2451 				      raidPtr->Disks[sparecol].dev,
2452 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2453 				      &clabel);
2454 			/* make sure status is noted */
2455 
2456 			raid_init_component_label(raidPtr, &clabel);
2457 
2458 			clabel.mod_counter = raidPtr->mod_counter;
2459 			clabel.column = scol;
2460 			clabel.status = rf_ds_optimal;
2461 			clabel.last_unit = raidPtr->raidid;
2462 
2463 			raidwrite_component_label(
2464 				      raidPtr->Disks[sparecol].dev,
2465 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2466 				      &clabel);
2467 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2468 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2469 					raidmarkclean( raidPtr->Disks[sparecol].dev,
2470 						       raidPtr->raid_cinfo[sparecol].ci_vp,
2471 						       raidPtr->mod_counter);
2472 				}
2473 			}
2474 		}
2475 	}
2476 }
2477 
2478 void
2479 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2480 {
2481 	struct proc *p;
2482 	struct lwp *l;
2483 
2484 	p = raidPtr->engine_thread;
2485 	l = LIST_FIRST(&p->p_lwps);
2486 
2487 	if (vp != NULL) {
2488 		if (auto_configured == 1) {
2489 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2490 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2491 			vput(vp);
2492 
2493 		} else {
2494 			(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
2495 		}
2496 	}
2497 }
2498 
2499 
2500 void
2501 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2502 {
2503 	int r,c;
2504 	struct vnode *vp;
2505 	int acd;
2506 
2507 
2508 	/* We take this opportunity to close the vnodes like we should.. */
2509 
2510 	for (c = 0; c < raidPtr->numCol; c++) {
2511 		vp = raidPtr->raid_cinfo[c].ci_vp;
2512 		acd = raidPtr->Disks[c].auto_configured;
2513 		rf_close_component(raidPtr, vp, acd);
2514 		raidPtr->raid_cinfo[c].ci_vp = NULL;
2515 		raidPtr->Disks[c].auto_configured = 0;
2516 	}
2517 
2518 	for (r = 0; r < raidPtr->numSpare; r++) {
2519 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2520 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2521 		rf_close_component(raidPtr, vp, acd);
2522 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2523 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2524 	}
2525 }
2526 
2527 
2528 void
2529 rf_ReconThread(struct rf_recon_req *req)
2530 {
2531 	int     s;
2532 	RF_Raid_t *raidPtr;
2533 
2534 	s = splbio();
2535 	raidPtr = (RF_Raid_t *) req->raidPtr;
2536 	raidPtr->recon_in_progress = 1;
2537 
2538 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2539 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2540 
2541 	RF_Free(req, sizeof(*req));
2542 
2543 	raidPtr->recon_in_progress = 0;
2544 	splx(s);
2545 
2546 	/* That's all... */
2547 	kthread_exit(0);	/* does not return */
2548 }
2549 
2550 void
2551 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2552 {
2553 	int retcode;
2554 	int s;
2555 
2556 	raidPtr->parity_rewrite_stripes_done = 0;
2557 	raidPtr->parity_rewrite_in_progress = 1;
2558 	s = splbio();
2559 	retcode = rf_RewriteParity(raidPtr);
2560 	splx(s);
2561 	if (retcode) {
2562 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2563 	} else {
2564 		/* set the clean bit!  If we shutdown correctly,
2565 		   the clean bit on each component label will get
2566 		   set */
2567 		raidPtr->parity_good = RF_RAID_CLEAN;
2568 	}
2569 	raidPtr->parity_rewrite_in_progress = 0;
2570 
2571 	/* Anyone waiting for us to stop?  If so, inform them... */
2572 	if (raidPtr->waitShutdown) {
2573 		wakeup(&raidPtr->parity_rewrite_in_progress);
2574 	}
2575 
2576 	/* That's all... */
2577 	kthread_exit(0);	/* does not return */
2578 }
2579 
2580 
2581 void
2582 rf_CopybackThread(RF_Raid_t *raidPtr)
2583 {
2584 	int s;
2585 
2586 	raidPtr->copyback_in_progress = 1;
2587 	s = splbio();
2588 	rf_CopybackReconstructedData(raidPtr);
2589 	splx(s);
2590 	raidPtr->copyback_in_progress = 0;
2591 
2592 	/* That's all... */
2593 	kthread_exit(0);	/* does not return */
2594 }
2595 
2596 
2597 void
2598 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2599 {
2600 	int s;
2601 	RF_Raid_t *raidPtr;
2602 
2603 	s = splbio();
2604 	raidPtr = req->raidPtr;
2605 	raidPtr->recon_in_progress = 1;
2606 	rf_ReconstructInPlace(raidPtr, req->col);
2607 	RF_Free(req, sizeof(*req));
2608 	raidPtr->recon_in_progress = 0;
2609 	splx(s);
2610 
2611 	/* That's all... */
2612 	kthread_exit(0);	/* does not return */
2613 }
2614 
2615 static RF_AutoConfig_t *
2616 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2617     const char *cname, RF_SectorCount_t size)
2618 {
2619 	int good_one = 0;
2620 	RF_ComponentLabel_t *clabel;
2621 	RF_AutoConfig_t *ac;
2622 
2623 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2624 	if (clabel == NULL) {
2625 oomem:
2626 		    while(ac_list) {
2627 			    ac = ac_list;
2628 			    if (ac->clabel)
2629 				    free(ac->clabel, M_RAIDFRAME);
2630 			    ac_list = ac_list->next;
2631 			    free(ac, M_RAIDFRAME);
2632 		    }
2633 		    printf("RAID auto config: out of memory!\n");
2634 		    return NULL; /* XXX probably should panic? */
2635 	}
2636 
2637 	if (!raidread_component_label(dev, vp, clabel)) {
2638 		    /* Got the label.  Does it look reasonable? */
2639 		    if (rf_reasonable_label(clabel) &&
2640 			(clabel->partitionSize <= size)) {
2641 #if DEBUG
2642 			    printf("Component on: %s: %llu\n",
2643 				cname, (unsigned long long)size);
2644 			    rf_print_component_label(clabel);
2645 #endif
2646 			    /* if it's reasonable, add it, else ignore it. */
2647 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2648 				M_NOWAIT);
2649 			    if (ac == NULL) {
2650 				    free(clabel, M_RAIDFRAME);
2651 				    goto oomem;
2652 			    }
2653 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
2654 			    ac->dev = dev;
2655 			    ac->vp = vp;
2656 			    ac->clabel = clabel;
2657 			    ac->next = ac_list;
2658 			    ac_list = ac;
2659 			    good_one = 1;
2660 		    }
2661 	}
2662 	if (!good_one) {
2663 		/* cleanup */
2664 		free(clabel, M_RAIDFRAME);
2665 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2666 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2667 		vput(vp);
2668 	}
2669 	return ac_list;
2670 }
2671 
2672 RF_AutoConfig_t *
2673 rf_find_raid_components()
2674 {
2675 	struct vnode *vp;
2676 	struct disklabel label;
2677 	struct device *dv;
2678 	dev_t dev;
2679 	int bmajor, bminor, wedge;
2680 	int error;
2681 	int i;
2682 	RF_AutoConfig_t *ac_list;
2683 
2684 
2685 	/* initialize the AutoConfig list */
2686 	ac_list = NULL;
2687 
2688 	/* we begin by trolling through *all* the devices on the system */
2689 
2690 	for (dv = alldevs.tqh_first; dv != NULL;
2691 	     dv = dv->dv_list.tqe_next) {
2692 
2693 		/* we are only interested in disks... */
2694 		if (device_class(dv) != DV_DISK)
2695 			continue;
2696 
2697 		/* we don't care about floppies... */
2698 		if (device_is_a(dv, "fd")) {
2699 			continue;
2700 		}
2701 
2702 		/* we don't care about CD's... */
2703 		if (device_is_a(dv, "cd")) {
2704 			continue;
2705 		}
2706 
2707 		/* hdfd is the Atari/Hades floppy driver */
2708 		if (device_is_a(dv, "hdfd")) {
2709 			continue;
2710 		}
2711 
2712 		/* fdisa is the Atari/Milan floppy driver */
2713 		if (device_is_a(dv, "fdisa")) {
2714 			continue;
2715 		}
2716 
2717 		/* need to find the device_name_to_block_device_major stuff */
2718 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2719 
2720 		/* get a vnode for the raw partition of this disk */
2721 
2722 		wedge = device_is_a(dv, "dk");
2723 		bminor = minor(device_unit(dv));
2724 		dev = wedge ? makedev(bmajor, bminor) :
2725 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
2726 		if (bdevvp(dev, &vp))
2727 			panic("RAID can't alloc vnode");
2728 
2729 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2730 
2731 		if (error) {
2732 			/* "Who cares."  Continue looking
2733 			   for something that exists*/
2734 			vput(vp);
2735 			continue;
2736 		}
2737 
2738 		if (wedge) {
2739 			struct dkwedge_info dkw;
2740 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2741 			    NOCRED, 0);
2742 			if (error) {
2743 				printf("RAIDframe: can't get wedge info for "
2744 				    "dev %s (%d)\n", dv->dv_xname, error);
2745 out:
2746 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2747 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2748 				vput(vp);
2749 				continue;
2750 			}
2751 
2752 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
2753 				goto out;
2754 
2755 			ac_list = rf_get_component(ac_list, dev, vp,
2756 			    dv->dv_xname, dkw.dkw_size);
2757 			continue;
2758 		}
2759 
2760 		/* Ok, the disk exists.  Go get the disklabel. */
2761 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2762 		if (error) {
2763 			/*
2764 			 * XXX can't happen - open() would
2765 			 * have errored out (or faked up one)
2766 			 */
2767 			if (error != ENOTTY)
2768 				printf("RAIDframe: can't get label for dev "
2769 				    "%s (%d)\n", dv->dv_xname, error);
2770 		}
2771 
2772 		/* don't need this any more.  We'll allocate it again
2773 		   a little later if we really do... */
2774 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2775 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2776 		vput(vp);
2777 
2778 		if (error)
2779 			continue;
2780 
2781 		for (i = 0; i < label.d_npartitions; i++) {
2782 			char cname[sizeof(ac_list->devname)];
2783 
2784 			/* We only support partitions marked as RAID */
2785 			if (label.d_partitions[i].p_fstype != FS_RAID)
2786 				continue;
2787 
2788 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2789 			if (bdevvp(dev, &vp))
2790 				panic("RAID can't alloc vnode");
2791 
2792 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2793 			if (error) {
2794 				/* Whatever... */
2795 				vput(vp);
2796 				continue;
2797 			}
2798 			snprintf(cname, sizeof(cname), "%s%c",
2799 			    dv->dv_xname, 'a' + i);
2800 			ac_list = rf_get_component(ac_list, dev, vp, cname,
2801 				label.d_partitions[i].p_size);
2802 		}
2803 	}
2804 	return ac_list;
2805 }
2806 
2807 
2808 static int
2809 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2810 {
2811 
2812 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2813 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2814 	    ((clabel->clean == RF_RAID_CLEAN) ||
2815 	     (clabel->clean == RF_RAID_DIRTY)) &&
2816 	    clabel->row >=0 &&
2817 	    clabel->column >= 0 &&
2818 	    clabel->num_rows > 0 &&
2819 	    clabel->num_columns > 0 &&
2820 	    clabel->row < clabel->num_rows &&
2821 	    clabel->column < clabel->num_columns &&
2822 	    clabel->blockSize > 0 &&
2823 	    clabel->numBlocks > 0) {
2824 		/* label looks reasonable enough... */
2825 		return(1);
2826 	}
2827 	return(0);
2828 }
2829 
2830 
2831 #if DEBUG
2832 void
2833 rf_print_component_label(RF_ComponentLabel_t *clabel)
2834 {
2835 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2836 	       clabel->row, clabel->column,
2837 	       clabel->num_rows, clabel->num_columns);
2838 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
2839 	       clabel->version, clabel->serial_number,
2840 	       clabel->mod_counter);
2841 	printf("   Clean: %s Status: %d\n",
2842 	       clabel->clean ? "Yes" : "No", clabel->status );
2843 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2844 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2845 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
2846 	       (char) clabel->parityConfig, clabel->blockSize,
2847 	       clabel->numBlocks);
2848 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2849 	printf("   Contains root partition: %s\n",
2850 	       clabel->root_partition ? "Yes" : "No" );
2851 	printf("   Last configured as: raid%d\n", clabel->last_unit );
2852 #if 0
2853 	   printf("   Config order: %d\n", clabel->config_order);
2854 #endif
2855 
2856 }
2857 #endif
2858 
2859 RF_ConfigSet_t *
2860 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2861 {
2862 	RF_AutoConfig_t *ac;
2863 	RF_ConfigSet_t *config_sets;
2864 	RF_ConfigSet_t *cset;
2865 	RF_AutoConfig_t *ac_next;
2866 
2867 
2868 	config_sets = NULL;
2869 
2870 	/* Go through the AutoConfig list, and figure out which components
2871 	   belong to what sets.  */
2872 	ac = ac_list;
2873 	while(ac!=NULL) {
2874 		/* we're going to putz with ac->next, so save it here
2875 		   for use at the end of the loop */
2876 		ac_next = ac->next;
2877 
2878 		if (config_sets == NULL) {
2879 			/* will need at least this one... */
2880 			config_sets = (RF_ConfigSet_t *)
2881 				malloc(sizeof(RF_ConfigSet_t),
2882 				       M_RAIDFRAME, M_NOWAIT);
2883 			if (config_sets == NULL) {
2884 				panic("rf_create_auto_sets: No memory!");
2885 			}
2886 			/* this one is easy :) */
2887 			config_sets->ac = ac;
2888 			config_sets->next = NULL;
2889 			config_sets->rootable = 0;
2890 			ac->next = NULL;
2891 		} else {
2892 			/* which set does this component fit into? */
2893 			cset = config_sets;
2894 			while(cset!=NULL) {
2895 				if (rf_does_it_fit(cset, ac)) {
2896 					/* looks like it matches... */
2897 					ac->next = cset->ac;
2898 					cset->ac = ac;
2899 					break;
2900 				}
2901 				cset = cset->next;
2902 			}
2903 			if (cset==NULL) {
2904 				/* didn't find a match above... new set..*/
2905 				cset = (RF_ConfigSet_t *)
2906 					malloc(sizeof(RF_ConfigSet_t),
2907 					       M_RAIDFRAME, M_NOWAIT);
2908 				if (cset == NULL) {
2909 					panic("rf_create_auto_sets: No memory!");
2910 				}
2911 				cset->ac = ac;
2912 				ac->next = NULL;
2913 				cset->next = config_sets;
2914 				cset->rootable = 0;
2915 				config_sets = cset;
2916 			}
2917 		}
2918 		ac = ac_next;
2919 	}
2920 
2921 
2922 	return(config_sets);
2923 }
2924 
2925 static int
2926 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2927 {
2928 	RF_ComponentLabel_t *clabel1, *clabel2;
2929 
2930 	/* If this one matches the *first* one in the set, that's good
2931 	   enough, since the other members of the set would have been
2932 	   through here too... */
2933 	/* note that we are not checking partitionSize here..
2934 
2935 	   Note that we are also not checking the mod_counters here.
2936 	   If everything else matches execpt the mod_counter, that's
2937 	   good enough for this test.  We will deal with the mod_counters
2938 	   a little later in the autoconfiguration process.
2939 
2940 	    (clabel1->mod_counter == clabel2->mod_counter) &&
2941 
2942 	   The reason we don't check for this is that failed disks
2943 	   will have lower modification counts.  If those disks are
2944 	   not added to the set they used to belong to, then they will
2945 	   form their own set, which may result in 2 different sets,
2946 	   for example, competing to be configured at raid0, and
2947 	   perhaps competing to be the root filesystem set.  If the
2948 	   wrong ones get configured, or both attempt to become /,
2949 	   weird behaviour and or serious lossage will occur.  Thus we
2950 	   need to bring them into the fold here, and kick them out at
2951 	   a later point.
2952 
2953 	*/
2954 
2955 	clabel1 = cset->ac->clabel;
2956 	clabel2 = ac->clabel;
2957 	if ((clabel1->version == clabel2->version) &&
2958 	    (clabel1->serial_number == clabel2->serial_number) &&
2959 	    (clabel1->num_rows == clabel2->num_rows) &&
2960 	    (clabel1->num_columns == clabel2->num_columns) &&
2961 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
2962 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2963 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2964 	    (clabel1->parityConfig == clabel2->parityConfig) &&
2965 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2966 	    (clabel1->blockSize == clabel2->blockSize) &&
2967 	    (clabel1->numBlocks == clabel2->numBlocks) &&
2968 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
2969 	    (clabel1->root_partition == clabel2->root_partition) &&
2970 	    (clabel1->last_unit == clabel2->last_unit) &&
2971 	    (clabel1->config_order == clabel2->config_order)) {
2972 		/* if it get's here, it almost *has* to be a match */
2973 	} else {
2974 		/* it's not consistent with somebody in the set..
2975 		   punt */
2976 		return(0);
2977 	}
2978 	/* all was fine.. it must fit... */
2979 	return(1);
2980 }
2981 
2982 int
2983 rf_have_enough_components(RF_ConfigSet_t *cset)
2984 {
2985 	RF_AutoConfig_t *ac;
2986 	RF_AutoConfig_t *auto_config;
2987 	RF_ComponentLabel_t *clabel;
2988 	int c;
2989 	int num_cols;
2990 	int num_missing;
2991 	int mod_counter;
2992 	int mod_counter_found;
2993 	int even_pair_failed;
2994 	char parity_type;
2995 
2996 
2997 	/* check to see that we have enough 'live' components
2998 	   of this set.  If so, we can configure it if necessary */
2999 
3000 	num_cols = cset->ac->clabel->num_columns;
3001 	parity_type = cset->ac->clabel->parityConfig;
3002 
3003 	/* XXX Check for duplicate components!?!?!? */
3004 
3005 	/* Determine what the mod_counter is supposed to be for this set. */
3006 
3007 	mod_counter_found = 0;
3008 	mod_counter = 0;
3009 	ac = cset->ac;
3010 	while(ac!=NULL) {
3011 		if (mod_counter_found==0) {
3012 			mod_counter = ac->clabel->mod_counter;
3013 			mod_counter_found = 1;
3014 		} else {
3015 			if (ac->clabel->mod_counter > mod_counter) {
3016 				mod_counter = ac->clabel->mod_counter;
3017 			}
3018 		}
3019 		ac = ac->next;
3020 	}
3021 
3022 	num_missing = 0;
3023 	auto_config = cset->ac;
3024 
3025 	even_pair_failed = 0;
3026 	for(c=0; c<num_cols; c++) {
3027 		ac = auto_config;
3028 		while(ac!=NULL) {
3029 			if ((ac->clabel->column == c) &&
3030 			    (ac->clabel->mod_counter == mod_counter)) {
3031 				/* it's this one... */
3032 #if DEBUG
3033 				printf("Found: %s at %d\n",
3034 				       ac->devname,c);
3035 #endif
3036 				break;
3037 			}
3038 			ac=ac->next;
3039 		}
3040 		if (ac==NULL) {
3041 				/* Didn't find one here! */
3042 				/* special case for RAID 1, especially
3043 				   where there are more than 2
3044 				   components (where RAIDframe treats
3045 				   things a little differently :( ) */
3046 			if (parity_type == '1') {
3047 				if (c%2 == 0) { /* even component */
3048 					even_pair_failed = 1;
3049 				} else { /* odd component.  If
3050 					    we're failed, and
3051 					    so is the even
3052 					    component, it's
3053 					    "Good Night, Charlie" */
3054 					if (even_pair_failed == 1) {
3055 						return(0);
3056 					}
3057 				}
3058 			} else {
3059 				/* normal accounting */
3060 				num_missing++;
3061 			}
3062 		}
3063 		if ((parity_type == '1') && (c%2 == 1)) {
3064 				/* Just did an even component, and we didn't
3065 				   bail.. reset the even_pair_failed flag,
3066 				   and go on to the next component.... */
3067 			even_pair_failed = 0;
3068 		}
3069 	}
3070 
3071 	clabel = cset->ac->clabel;
3072 
3073 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3074 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3075 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
3076 		/* XXX this needs to be made *much* more general */
3077 		/* Too many failures */
3078 		return(0);
3079 	}
3080 	/* otherwise, all is well, and we've got enough to take a kick
3081 	   at autoconfiguring this set */
3082 	return(1);
3083 }
3084 
3085 void
3086 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3087 			RF_Raid_t *raidPtr __unused)
3088 {
3089 	RF_ComponentLabel_t *clabel;
3090 	int i;
3091 
3092 	clabel = ac->clabel;
3093 
3094 	/* 1. Fill in the common stuff */
3095 	config->numRow = clabel->num_rows = 1;
3096 	config->numCol = clabel->num_columns;
3097 	config->numSpare = 0; /* XXX should this be set here? */
3098 	config->sectPerSU = clabel->sectPerSU;
3099 	config->SUsPerPU = clabel->SUsPerPU;
3100 	config->SUsPerRU = clabel->SUsPerRU;
3101 	config->parityConfig = clabel->parityConfig;
3102 	/* XXX... */
3103 	strcpy(config->diskQueueType,"fifo");
3104 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3105 	config->layoutSpecificSize = 0; /* XXX ?? */
3106 
3107 	while(ac!=NULL) {
3108 		/* row/col values will be in range due to the checks
3109 		   in reasonable_label() */
3110 		strcpy(config->devnames[0][ac->clabel->column],
3111 		       ac->devname);
3112 		ac = ac->next;
3113 	}
3114 
3115 	for(i=0;i<RF_MAXDBGV;i++) {
3116 		config->debugVars[i][0] = 0;
3117 	}
3118 }
3119 
3120 int
3121 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3122 {
3123 	RF_ComponentLabel_t clabel;
3124 	struct vnode *vp;
3125 	dev_t dev;
3126 	int column;
3127 	int sparecol;
3128 
3129 	raidPtr->autoconfigure = new_value;
3130 
3131 	for(column=0; column<raidPtr->numCol; column++) {
3132 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3133 			dev = raidPtr->Disks[column].dev;
3134 			vp = raidPtr->raid_cinfo[column].ci_vp;
3135 			raidread_component_label(dev, vp, &clabel);
3136 			clabel.autoconfigure = new_value;
3137 			raidwrite_component_label(dev, vp, &clabel);
3138 		}
3139 	}
3140 	for(column = 0; column < raidPtr->numSpare ; column++) {
3141 		sparecol = raidPtr->numCol + column;
3142 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3143 			dev = raidPtr->Disks[sparecol].dev;
3144 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3145 			raidread_component_label(dev, vp, &clabel);
3146 			clabel.autoconfigure = new_value;
3147 			raidwrite_component_label(dev, vp, &clabel);
3148 		}
3149 	}
3150 	return(new_value);
3151 }
3152 
3153 int
3154 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3155 {
3156 	RF_ComponentLabel_t clabel;
3157 	struct vnode *vp;
3158 	dev_t dev;
3159 	int column;
3160 	int sparecol;
3161 
3162 	raidPtr->root_partition = new_value;
3163 	for(column=0; column<raidPtr->numCol; column++) {
3164 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3165 			dev = raidPtr->Disks[column].dev;
3166 			vp = raidPtr->raid_cinfo[column].ci_vp;
3167 			raidread_component_label(dev, vp, &clabel);
3168 			clabel.root_partition = new_value;
3169 			raidwrite_component_label(dev, vp, &clabel);
3170 		}
3171 	}
3172 	for(column = 0; column < raidPtr->numSpare ; column++) {
3173 		sparecol = raidPtr->numCol + column;
3174 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3175 			dev = raidPtr->Disks[sparecol].dev;
3176 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3177 			raidread_component_label(dev, vp, &clabel);
3178 			clabel.root_partition = new_value;
3179 			raidwrite_component_label(dev, vp, &clabel);
3180 		}
3181 	}
3182 	return(new_value);
3183 }
3184 
3185 void
3186 rf_release_all_vps(RF_ConfigSet_t *cset)
3187 {
3188 	RF_AutoConfig_t *ac;
3189 
3190 	ac = cset->ac;
3191 	while(ac!=NULL) {
3192 		/* Close the vp, and give it back */
3193 		if (ac->vp) {
3194 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3195 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3196 			vput(ac->vp);
3197 			ac->vp = NULL;
3198 		}
3199 		ac = ac->next;
3200 	}
3201 }
3202 
3203 
3204 void
3205 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3206 {
3207 	RF_AutoConfig_t *ac;
3208 	RF_AutoConfig_t *next_ac;
3209 
3210 	ac = cset->ac;
3211 	while(ac!=NULL) {
3212 		next_ac = ac->next;
3213 		/* nuke the label */
3214 		free(ac->clabel, M_RAIDFRAME);
3215 		/* cleanup the config structure */
3216 		free(ac, M_RAIDFRAME);
3217 		/* "next.." */
3218 		ac = next_ac;
3219 	}
3220 	/* and, finally, nuke the config set */
3221 	free(cset, M_RAIDFRAME);
3222 }
3223 
3224 
3225 void
3226 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3227 {
3228 	/* current version number */
3229 	clabel->version = RF_COMPONENT_LABEL_VERSION;
3230 	clabel->serial_number = raidPtr->serial_number;
3231 	clabel->mod_counter = raidPtr->mod_counter;
3232 	clabel->num_rows = 1;
3233 	clabel->num_columns = raidPtr->numCol;
3234 	clabel->clean = RF_RAID_DIRTY; /* not clean */
3235 	clabel->status = rf_ds_optimal; /* "It's good!" */
3236 
3237 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3238 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3239 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3240 
3241 	clabel->blockSize = raidPtr->bytesPerSector;
3242 	clabel->numBlocks = raidPtr->sectorsPerDisk;
3243 
3244 	/* XXX not portable */
3245 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3246 	clabel->maxOutstanding = raidPtr->maxOutstanding;
3247 	clabel->autoconfigure = raidPtr->autoconfigure;
3248 	clabel->root_partition = raidPtr->root_partition;
3249 	clabel->last_unit = raidPtr->raidid;
3250 	clabel->config_order = raidPtr->config_order;
3251 }
3252 
3253 int
3254 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3255 {
3256 	RF_Raid_t *raidPtr;
3257 	RF_Config_t *config;
3258 	int raidID;
3259 	int retcode;
3260 
3261 #if DEBUG
3262 	printf("RAID autoconfigure\n");
3263 #endif
3264 
3265 	retcode = 0;
3266 	*unit = -1;
3267 
3268 	/* 1. Create a config structure */
3269 
3270 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3271 				       M_RAIDFRAME,
3272 				       M_NOWAIT);
3273 	if (config==NULL) {
3274 		printf("Out of mem!?!?\n");
3275 				/* XXX do something more intelligent here. */
3276 		return(1);
3277 	}
3278 
3279 	memset(config, 0, sizeof(RF_Config_t));
3280 
3281 	/*
3282 	   2. Figure out what RAID ID this one is supposed to live at
3283 	   See if we can get the same RAID dev that it was configured
3284 	   on last time..
3285 	*/
3286 
3287 	raidID = cset->ac->clabel->last_unit;
3288 	if ((raidID < 0) || (raidID >= numraid)) {
3289 		/* let's not wander off into lala land. */
3290 		raidID = numraid - 1;
3291 	}
3292 	if (raidPtrs[raidID]->valid != 0) {
3293 
3294 		/*
3295 		   Nope... Go looking for an alternative...
3296 		   Start high so we don't immediately use raid0 if that's
3297 		   not taken.
3298 		*/
3299 
3300 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
3301 			if (raidPtrs[raidID]->valid == 0) {
3302 				/* can use this one! */
3303 				break;
3304 			}
3305 		}
3306 	}
3307 
3308 	if (raidID < 0) {
3309 		/* punt... */
3310 		printf("Unable to auto configure this set!\n");
3311 		printf("(Out of RAID devs!)\n");
3312 		free(config, M_RAIDFRAME);
3313 		return(1);
3314 	}
3315 
3316 #if DEBUG
3317 	printf("Configuring raid%d:\n",raidID);
3318 #endif
3319 
3320 	raidPtr = raidPtrs[raidID];
3321 
3322 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
3323 	raidPtr->raidid = raidID;
3324 	raidPtr->openings = RAIDOUTSTANDING;
3325 
3326 	/* 3. Build the configuration structure */
3327 	rf_create_configuration(cset->ac, config, raidPtr);
3328 
3329 	/* 4. Do the configuration */
3330 	retcode = rf_Configure(raidPtr, config, cset->ac);
3331 
3332 	if (retcode == 0) {
3333 
3334 		raidinit(raidPtrs[raidID]);
3335 
3336 		rf_markalldirty(raidPtrs[raidID]);
3337 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3338 		if (cset->ac->clabel->root_partition==1) {
3339 			/* everything configured just fine.  Make a note
3340 			   that this set is eligible to be root. */
3341 			cset->rootable = 1;
3342 			/* XXX do this here? */
3343 			raidPtrs[raidID]->root_partition = 1;
3344 		}
3345 	}
3346 
3347 	/* 5. Cleanup */
3348 	free(config, M_RAIDFRAME);
3349 
3350 	*unit = raidID;
3351 	return(retcode);
3352 }
3353 
3354 void
3355 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3356 {
3357 	struct buf *bp;
3358 
3359 	bp = (struct buf *)desc->bp;
3360 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3361 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3362 }
3363 
3364 void
3365 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3366 	     size_t xmin, size_t xmax)
3367 {
3368 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
3369 	pool_sethiwat(p, xmax);
3370 	pool_prime(p, xmin);
3371 	pool_setlowat(p, xmin);
3372 }
3373 
3374 /*
3375  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3376  * if there is IO pending and if that IO could possibly be done for a
3377  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
3378  * otherwise.
3379  *
3380  */
3381 
3382 int
3383 rf_buf_queue_check(int raidid)
3384 {
3385 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3386 	    raidPtrs[raidid]->openings > 0) {
3387 		/* there is work to do */
3388 		return 0;
3389 	}
3390 	/* default is nothing to do */
3391 	return 1;
3392 }
3393 
3394 int
3395 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3396 {
3397 	struct partinfo dpart;
3398 	struct dkwedge_info dkw;
3399 	int error;
3400 
3401 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
3402 	if (error == 0) {
3403 		diskPtr->blockSize = dpart.disklab->d_secsize;
3404 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3405 		diskPtr->partitionSize = dpart.part->p_size;
3406 		return 0;
3407 	}
3408 
3409 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
3410 	if (error == 0) {
3411 		diskPtr->blockSize = 512;	/* XXX */
3412 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3413 		diskPtr->partitionSize = dkw.dkw_size;
3414 		return 0;
3415 	}
3416 	return error;
3417 }
3418 
3419 static int
3420 raid_match(struct device *self __unused, struct cfdata *cfdata __unused,
3421     void *aux __unused)
3422 {
3423 	return 1;
3424 }
3425 
3426 static void
3427 raid_attach(struct device *parent __unused, struct device *self __unused,
3428     void *aux __unused)
3429 {
3430 
3431 }
3432 
3433 
3434 static int
3435 raid_detach(struct device *self, int flags __unused)
3436 {
3437 	struct raid_softc *rs = (struct raid_softc *)self;
3438 
3439 	if (rs->sc_flags & RAIDF_INITED)
3440 		return EBUSY;
3441 
3442 	return 0;
3443 }
3444 
3445 
3446