xref: /netbsd-src/sys/dev/raidframe/rf_netbsdkintf.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /*	$NetBSD: rf_netbsdkintf.c,v 1.246 2008/04/28 20:23:56 martin Exp $	*/
2 /*-
3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Greg Oster; Jason R. Thorpe.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * Copyright (c) 1990, 1993
33  *      The Regents of the University of California.  All rights reserved.
34  *
35  * This code is derived from software contributed to Berkeley by
36  * the Systems Programming Group of the University of Utah Computer
37  * Science Department.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. Neither the name of the University nor the names of its contributors
48  *    may be used to endorse or promote products derived from this software
49  *    without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61  * SUCH DAMAGE.
62  *
63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
64  *
65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
66  */
67 
68 /*
69  * Copyright (c) 1988 University of Utah.
70  *
71  * This code is derived from software contributed to Berkeley by
72  * the Systems Programming Group of the University of Utah Computer
73  * Science Department.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *      This product includes software developed by the University of
86  *      California, Berkeley and its contributors.
87  * 4. Neither the name of the University nor the names of its contributors
88  *    may be used to endorse or promote products derived from this software
89  *    without specific prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
104  *
105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
106  */
107 
108 /*
109  * Copyright (c) 1995 Carnegie-Mellon University.
110  * All rights reserved.
111  *
112  * Authors: Mark Holland, Jim Zelenka
113  *
114  * Permission to use, copy, modify and distribute this software and
115  * its documentation is hereby granted, provided that both the copyright
116  * notice and this permission notice appear in all copies of the
117  * software, derivative works or modified versions, and any portions
118  * thereof, and that both notices appear in supporting documentation.
119  *
120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123  *
124  * Carnegie Mellon requests users of this software to return to
125  *
126  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
127  *  School of Computer Science
128  *  Carnegie Mellon University
129  *  Pittsburgh PA 15213-3890
130  *
131  * any improvements or extensions that they make and grant Carnegie the
132  * rights to redistribute these changes.
133  */
134 
135 /***********************************************************
136  *
137  * rf_kintf.c -- the kernel interface routines for RAIDframe
138  *
139  ***********************************************************/
140 
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.246 2008/04/28 20:23:56 martin Exp $");
143 
144 #include <sys/param.h>
145 #include <sys/errno.h>
146 #include <sys/pool.h>
147 #include <sys/proc.h>
148 #include <sys/queue.h>
149 #include <sys/disk.h>
150 #include <sys/device.h>
151 #include <sys/stat.h>
152 #include <sys/ioctl.h>
153 #include <sys/fcntl.h>
154 #include <sys/systm.h>
155 #include <sys/vnode.h>
156 #include <sys/disklabel.h>
157 #include <sys/conf.h>
158 #include <sys/buf.h>
159 #include <sys/bufq.h>
160 #include <sys/user.h>
161 #include <sys/reboot.h>
162 #include <sys/kauth.h>
163 
164 #include <prop/proplib.h>
165 
166 #include <dev/raidframe/raidframevar.h>
167 #include <dev/raidframe/raidframeio.h>
168 #include "raid.h"
169 #include "opt_raid_autoconfig.h"
170 #include "rf_raid.h"
171 #include "rf_copyback.h"
172 #include "rf_dag.h"
173 #include "rf_dagflags.h"
174 #include "rf_desc.h"
175 #include "rf_diskqueue.h"
176 #include "rf_etimer.h"
177 #include "rf_general.h"
178 #include "rf_kintf.h"
179 #include "rf_options.h"
180 #include "rf_driver.h"
181 #include "rf_parityscan.h"
182 #include "rf_threadstuff.h"
183 
184 #ifdef DEBUG
185 int     rf_kdebug_level = 0;
186 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
187 #else				/* DEBUG */
188 #define db1_printf(a) { }
189 #endif				/* DEBUG */
190 
191 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
192 
193 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
194 
195 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
196 						 * spare table */
197 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
198 						 * installation process */
199 
200 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
201 
202 /* prototypes */
203 static void KernelWakeupFunc(struct buf *);
204 static void InitBP(struct buf *, struct vnode *, unsigned,
205     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
206     void *, int, struct proc *);
207 static void raidinit(RF_Raid_t *);
208 
209 void raidattach(int);
210 static int raid_match(struct device *, struct cfdata *, void *);
211 static void raid_attach(struct device *, struct device *, void *);
212 static int raid_detach(struct device *, int);
213 
214 dev_type_open(raidopen);
215 dev_type_close(raidclose);
216 dev_type_read(raidread);
217 dev_type_write(raidwrite);
218 dev_type_ioctl(raidioctl);
219 dev_type_strategy(raidstrategy);
220 dev_type_dump(raiddump);
221 dev_type_size(raidsize);
222 
223 const struct bdevsw raid_bdevsw = {
224 	raidopen, raidclose, raidstrategy, raidioctl,
225 	raiddump, raidsize, D_DISK
226 };
227 
228 const struct cdevsw raid_cdevsw = {
229 	raidopen, raidclose, raidread, raidwrite, raidioctl,
230 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
231 };
232 
233 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
234 
235 /* XXX Not sure if the following should be replacing the raidPtrs above,
236    or if it should be used in conjunction with that...
237 */
238 
239 struct raid_softc {
240 	struct device *sc_dev;
241 	int     sc_flags;	/* flags */
242 	int     sc_cflags;	/* configuration flags */
243 	uint64_t sc_size;	/* size of the raid device */
244 	char    sc_xname[20];	/* XXX external name */
245 	struct disk sc_dkdev;	/* generic disk device info */
246 	struct bufq_state *buf_queue;	/* used for the device queue */
247 };
248 /* sc_flags */
249 #define RAIDF_INITED	0x01	/* unit has been initialized */
250 #define RAIDF_WLABEL	0x02	/* label area is writable */
251 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
252 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
253 #define RAIDF_LOCKED	0x80	/* unit is locked */
254 
255 #define	raidunit(x)	DISKUNIT(x)
256 int numraid = 0;
257 
258 extern struct cfdriver raid_cd;
259 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc),
260     raid_match, raid_attach, raid_detach, NULL);
261 
262 /*
263  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
264  * Be aware that large numbers can allow the driver to consume a lot of
265  * kernel memory, especially on writes, and in degraded mode reads.
266  *
267  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
268  * a single 64K write will typically require 64K for the old data,
269  * 64K for the old parity, and 64K for the new parity, for a total
270  * of 192K (if the parity buffer is not re-used immediately).
271  * Even it if is used immediately, that's still 128K, which when multiplied
272  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
273  *
274  * Now in degraded mode, for example, a 64K read on the above setup may
275  * require data reconstruction, which will require *all* of the 4 remaining
276  * disks to participate -- 4 * 32K/disk == 128K again.
277  */
278 
279 #ifndef RAIDOUTSTANDING
280 #define RAIDOUTSTANDING   6
281 #endif
282 
283 #define RAIDLABELDEV(dev)	\
284 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
285 
286 /* declared here, and made public, for the benefit of KVM stuff.. */
287 struct raid_softc *raid_softc;
288 
289 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
290 				     struct disklabel *);
291 static void raidgetdisklabel(dev_t);
292 static void raidmakedisklabel(struct raid_softc *);
293 
294 static int raidlock(struct raid_softc *);
295 static void raidunlock(struct raid_softc *);
296 
297 static void rf_markalldirty(RF_Raid_t *);
298 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
299 
300 void rf_ReconThread(struct rf_recon_req *);
301 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
302 void rf_CopybackThread(RF_Raid_t *raidPtr);
303 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
304 int rf_autoconfig(struct device *self);
305 void rf_buildroothack(RF_ConfigSet_t *);
306 
307 RF_AutoConfig_t *rf_find_raid_components(void);
308 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
309 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
310 static int rf_reasonable_label(RF_ComponentLabel_t *);
311 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
312 int rf_set_autoconfig(RF_Raid_t *, int);
313 int rf_set_rootpartition(RF_Raid_t *, int);
314 void rf_release_all_vps(RF_ConfigSet_t *);
315 void rf_cleanup_config_set(RF_ConfigSet_t *);
316 int rf_have_enough_components(RF_ConfigSet_t *);
317 int rf_auto_config_set(RF_ConfigSet_t *, int *);
318 
319 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
320 				  allow autoconfig to take place.
321 				  Note that this is overridden by having
322 				  RAID_AUTOCONFIG as an option in the
323 				  kernel config file.  */
324 
325 struct RF_Pools_s rf_pools;
326 
327 void
328 raidattach(int num)
329 {
330 	int raidID;
331 	int i, rc;
332 
333 #ifdef DEBUG
334 	printf("raidattach: Asked for %d units\n", num);
335 #endif
336 
337 	if (num <= 0) {
338 #ifdef DIAGNOSTIC
339 		panic("raidattach: count <= 0");
340 #endif
341 		return;
342 	}
343 	/* This is where all the initialization stuff gets done. */
344 
345 	numraid = num;
346 
347 	/* Make some space for requested number of units... */
348 
349 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
350 	if (raidPtrs == NULL) {
351 		panic("raidPtrs is NULL!!");
352 	}
353 
354 	rf_mutex_init(&rf_sparet_wait_mutex);
355 
356 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
357 
358 	for (i = 0; i < num; i++)
359 		raidPtrs[i] = NULL;
360 	rc = rf_BootRaidframe();
361 	if (rc == 0)
362 		aprint_normal("Kernelized RAIDframe activated\n");
363 	else
364 		panic("Serious error booting RAID!!");
365 
366 	/* put together some datastructures like the CCD device does.. This
367 	 * lets us lock the device and what-not when it gets opened. */
368 
369 	raid_softc = (struct raid_softc *)
370 		malloc(num * sizeof(struct raid_softc),
371 		       M_RAIDFRAME, M_NOWAIT);
372 	if (raid_softc == NULL) {
373 		aprint_error("WARNING: no memory for RAIDframe driver\n");
374 		return;
375 	}
376 
377 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
378 
379 	for (raidID = 0; raidID < num; raidID++) {
380 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
381 
382 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
383 			  (RF_Raid_t *));
384 		if (raidPtrs[raidID] == NULL) {
385 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
386 			numraid = raidID;
387 			return;
388 		}
389 	}
390 
391 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
392 		aprint_error("raidattach: config_cfattach_attach failed?\n");
393 	}
394 
395 #ifdef RAID_AUTOCONFIG
396 	raidautoconfig = 1;
397 #endif
398 
399 	/*
400 	 * Register a finalizer which will be used to auto-config RAID
401 	 * sets once all real hardware devices have been found.
402 	 */
403 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
404 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
405 }
406 
407 int
408 rf_autoconfig(struct device *self)
409 {
410 	RF_AutoConfig_t *ac_list;
411 	RF_ConfigSet_t *config_sets;
412 
413 	if (raidautoconfig == 0)
414 		return (0);
415 
416 	/* XXX This code can only be run once. */
417 	raidautoconfig = 0;
418 
419 	/* 1. locate all RAID components on the system */
420 #ifdef DEBUG
421 	printf("Searching for RAID components...\n");
422 #endif
423 	ac_list = rf_find_raid_components();
424 
425 	/* 2. Sort them into their respective sets. */
426 	config_sets = rf_create_auto_sets(ac_list);
427 
428 	/*
429 	 * 3. Evaluate each set andconfigure the valid ones.
430 	 * This gets done in rf_buildroothack().
431 	 */
432 	rf_buildroothack(config_sets);
433 
434 	return 1;
435 }
436 
437 void
438 rf_buildroothack(RF_ConfigSet_t *config_sets)
439 {
440 	RF_ConfigSet_t *cset;
441 	RF_ConfigSet_t *next_cset;
442 	int retcode;
443 	int raidID;
444 	int rootID;
445 	int col;
446 	int num_root;
447 	char *devname;
448 
449 	rootID = 0;
450 	num_root = 0;
451 	cset = config_sets;
452 	while(cset != NULL ) {
453 		next_cset = cset->next;
454 		if (rf_have_enough_components(cset) &&
455 		    cset->ac->clabel->autoconfigure==1) {
456 			retcode = rf_auto_config_set(cset,&raidID);
457 			if (!retcode) {
458 #ifdef DEBUG
459 				printf("raid%d: configured ok\n", raidID);
460 #endif
461 				if (cset->rootable) {
462 					rootID = raidID;
463 					num_root++;
464 				}
465 			} else {
466 				/* The autoconfig didn't work :( */
467 #ifdef DEBUG
468 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
469 #endif
470 				rf_release_all_vps(cset);
471 			}
472 		} else {
473 			/* we're not autoconfiguring this set...
474 			   release the associated resources */
475 			rf_release_all_vps(cset);
476 		}
477 		/* cleanup */
478 		rf_cleanup_config_set(cset);
479 		cset = next_cset;
480 	}
481 
482 	/* if the user has specified what the root device should be
483 	   then we don't touch booted_device or boothowto... */
484 
485 	if (rootspec != NULL)
486 		return;
487 
488 	/* we found something bootable... */
489 
490 	if (num_root == 1) {
491 		booted_device = raid_softc[rootID].sc_dev;
492 	} else if (num_root > 1) {
493 
494 		/*
495 		 * Maybe the MD code can help. If it cannot, then
496 		 * setroot() will discover that we have no
497 		 * booted_device and will ask the user if nothing was
498 		 * hardwired in the kernel config file
499 		 */
500 
501 		if (booted_device == NULL)
502 			cpu_rootconf();
503 		if (booted_device == NULL)
504 			return;
505 
506 		num_root = 0;
507 		for (raidID = 0; raidID < numraid; raidID++) {
508 			if (raidPtrs[raidID]->valid == 0)
509 				continue;
510 
511 			if (raidPtrs[raidID]->root_partition == 0)
512 				continue;
513 
514 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
515 				devname = raidPtrs[raidID]->Disks[col].devname;
516 				devname += sizeof("/dev/") - 1;
517 				if (strncmp(devname, device_xname(booted_device),
518 					    strlen(device_xname(booted_device))) != 0)
519 					continue;
520 #ifdef DEBUG
521 				printf("raid%d includes boot device %s\n",
522 				       raidID, devname);
523 #endif
524 				num_root++;
525 				rootID = raidID;
526 			}
527 		}
528 
529 		if (num_root == 1) {
530 			booted_device = raid_softc[rootID].sc_dev;
531 		} else {
532 			/* we can't guess.. require the user to answer... */
533 			boothowto |= RB_ASKNAME;
534 		}
535 	}
536 }
537 
538 
539 int
540 raidsize(dev_t dev)
541 {
542 	struct raid_softc *rs;
543 	struct disklabel *lp;
544 	int     part, unit, omask, size;
545 
546 	unit = raidunit(dev);
547 	if (unit >= numraid)
548 		return (-1);
549 	rs = &raid_softc[unit];
550 
551 	if ((rs->sc_flags & RAIDF_INITED) == 0)
552 		return (-1);
553 
554 	part = DISKPART(dev);
555 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
556 	lp = rs->sc_dkdev.dk_label;
557 
558 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
559 		return (-1);
560 
561 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
562 		size = -1;
563 	else
564 		size = lp->d_partitions[part].p_size *
565 		    (lp->d_secsize / DEV_BSIZE);
566 
567 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
568 		return (-1);
569 
570 	return (size);
571 
572 }
573 
574 int
575 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
576 {
577 	int     unit = raidunit(dev);
578 	struct raid_softc *rs;
579 	const struct bdevsw *bdev;
580 	struct disklabel *lp;
581 	RF_Raid_t *raidPtr;
582 	daddr_t offset;
583 	int     part, c, sparecol, j, scol, dumpto;
584 	int     error = 0;
585 
586 	if (unit >= numraid)
587 		return (ENXIO);
588 
589 	rs = &raid_softc[unit];
590 	raidPtr = raidPtrs[unit];
591 
592 	if ((rs->sc_flags & RAIDF_INITED) == 0)
593 		return ENXIO;
594 
595 	/* we only support dumping to RAID 1 sets */
596 	if (raidPtr->Layout.numDataCol != 1 ||
597 	    raidPtr->Layout.numParityCol != 1)
598 		return EINVAL;
599 
600 
601 	if ((error = raidlock(rs)) != 0)
602 		return error;
603 
604 	if (size % DEV_BSIZE != 0) {
605 		error = EINVAL;
606 		goto out;
607 	}
608 
609 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
610 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
611 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
612 		    size / DEV_BSIZE, rs->sc_size);
613 		error = EINVAL;
614 		goto out;
615 	}
616 
617 	part = DISKPART(dev);
618 	lp = rs->sc_dkdev.dk_label;
619 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
620 
621 	/* figure out what device is alive.. */
622 
623 	/*
624 	   Look for a component to dump to.  The preference for the
625 	   component to dump to is as follows:
626 	   1) the master
627 	   2) a used_spare of the master
628 	   3) the slave
629 	   4) a used_spare of the slave
630 	*/
631 
632 	dumpto = -1;
633 	for (c = 0; c < raidPtr->numCol; c++) {
634 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
635 			/* this might be the one */
636 			dumpto = c;
637 			break;
638 		}
639 	}
640 
641 	/*
642 	   At this point we have possibly selected a live master or a
643 	   live slave.  We now check to see if there is a spared
644 	   master (or a spared slave), if we didn't find a live master
645 	   or a live slave.
646 	*/
647 
648 	for (c = 0; c < raidPtr->numSpare; c++) {
649 		sparecol = raidPtr->numCol + c;
650 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
651 			/* How about this one? */
652 			scol = -1;
653 			for(j=0;j<raidPtr->numCol;j++) {
654 				if (raidPtr->Disks[j].spareCol == sparecol) {
655 					scol = j;
656 					break;
657 				}
658 			}
659 			if (scol == 0) {
660 				/*
661 				   We must have found a spared master!
662 				   We'll take that over anything else
663 				   found so far.  (We couldn't have
664 				   found a real master before, since
665 				   this is a used spare, and it's
666 				   saying that it's replacing the
667 				   master.)  On reboot (with
668 				   autoconfiguration turned on)
669 				   sparecol will become the 1st
670 				   component (component0) of this set.
671 				*/
672 				dumpto = sparecol;
673 				break;
674 			} else if (scol != -1) {
675 				/*
676 				   Must be a spared slave.  We'll dump
677 				   to that if we havn't found anything
678 				   else so far.
679 				*/
680 				if (dumpto == -1)
681 					dumpto = sparecol;
682 			}
683 		}
684 	}
685 
686 	if (dumpto == -1) {
687 		/* we couldn't find any live components to dump to!?!?
688 		 */
689 		error = EINVAL;
690 		goto out;
691 	}
692 
693 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
694 
695 	/*
696 	   Note that blkno is relative to this particular partition.
697 	   By adding the offset of this partition in the RAID
698 	   set, and also adding RF_PROTECTED_SECTORS, we get a
699 	   value that is relative to the partition used for the
700 	   underlying component.
701 	*/
702 
703 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
704 				blkno + offset, va, size);
705 
706 out:
707 	raidunlock(rs);
708 
709 	return error;
710 }
711 /* ARGSUSED */
712 int
713 raidopen(dev_t dev, int flags, int fmt,
714     struct lwp *l)
715 {
716 	int     unit = raidunit(dev);
717 	struct raid_softc *rs;
718 	struct disklabel *lp;
719 	int     part, pmask;
720 	int     error = 0;
721 
722 	if (unit >= numraid)
723 		return (ENXIO);
724 	rs = &raid_softc[unit];
725 
726 	if ((error = raidlock(rs)) != 0)
727 		return (error);
728 	lp = rs->sc_dkdev.dk_label;
729 
730 	part = DISKPART(dev);
731 
732 	/*
733 	 * If there are wedges, and this is not RAW_PART, then we
734 	 * need to fail.
735 	 */
736 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
737 		error = EBUSY;
738 		goto bad;
739 	}
740 	pmask = (1 << part);
741 
742 	if ((rs->sc_flags & RAIDF_INITED) &&
743 	    (rs->sc_dkdev.dk_openmask == 0))
744 		raidgetdisklabel(dev);
745 
746 	/* make sure that this partition exists */
747 
748 	if (part != RAW_PART) {
749 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
750 		    ((part >= lp->d_npartitions) ||
751 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
752 			error = ENXIO;
753 			goto bad;
754 		}
755 	}
756 	/* Prevent this unit from being unconfigured while open. */
757 	switch (fmt) {
758 	case S_IFCHR:
759 		rs->sc_dkdev.dk_copenmask |= pmask;
760 		break;
761 
762 	case S_IFBLK:
763 		rs->sc_dkdev.dk_bopenmask |= pmask;
764 		break;
765 	}
766 
767 	if ((rs->sc_dkdev.dk_openmask == 0) &&
768 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
769 		/* First one... mark things as dirty... Note that we *MUST*
770 		 have done a configure before this.  I DO NOT WANT TO BE
771 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
772 		 THAT THEY BELONG TOGETHER!!!!! */
773 		/* XXX should check to see if we're only open for reading
774 		   here... If so, we needn't do this, but then need some
775 		   other way of keeping track of what's happened.. */
776 
777 		rf_markalldirty( raidPtrs[unit] );
778 	}
779 
780 
781 	rs->sc_dkdev.dk_openmask =
782 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
783 
784 bad:
785 	raidunlock(rs);
786 
787 	return (error);
788 
789 
790 }
791 /* ARGSUSED */
792 int
793 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
794 {
795 	int     unit = raidunit(dev);
796 	struct cfdata *cf;
797 	struct raid_softc *rs;
798 	int     error = 0;
799 	int     part;
800 
801 	if (unit >= numraid)
802 		return (ENXIO);
803 	rs = &raid_softc[unit];
804 
805 	if ((error = raidlock(rs)) != 0)
806 		return (error);
807 
808 	part = DISKPART(dev);
809 
810 	/* ...that much closer to allowing unconfiguration... */
811 	switch (fmt) {
812 	case S_IFCHR:
813 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
814 		break;
815 
816 	case S_IFBLK:
817 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
818 		break;
819 	}
820 	rs->sc_dkdev.dk_openmask =
821 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
822 
823 	if ((rs->sc_dkdev.dk_openmask == 0) &&
824 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
825 		/* Last one... device is not unconfigured yet.
826 		   Device shutdown has taken care of setting the
827 		   clean bits if RAIDF_INITED is not set
828 		   mark things as clean... */
829 
830 		rf_update_component_labels(raidPtrs[unit],
831 						 RF_FINAL_COMPONENT_UPDATE);
832 		if (doing_shutdown) {
833 			/* last one, and we're going down, so
834 			   lights out for this RAID set too. */
835 			error = rf_Shutdown(raidPtrs[unit]);
836 
837 			/* It's no longer initialized... */
838 			rs->sc_flags &= ~RAIDF_INITED;
839 
840 			/* detach the device */
841 
842 			cf = device_cfdata(rs->sc_dev);
843 			error = config_detach(rs->sc_dev, DETACH_QUIET);
844 			free(cf, M_RAIDFRAME);
845 
846 			/* Detach the disk. */
847 			disk_detach(&rs->sc_dkdev);
848 			disk_destroy(&rs->sc_dkdev);
849 		}
850 	}
851 
852 	raidunlock(rs);
853 	return (0);
854 
855 }
856 
857 void
858 raidstrategy(struct buf *bp)
859 {
860 	int s;
861 
862 	unsigned int raidID = raidunit(bp->b_dev);
863 	RF_Raid_t *raidPtr;
864 	struct raid_softc *rs = &raid_softc[raidID];
865 	int     wlabel;
866 
867 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
868 		bp->b_error = ENXIO;
869 		goto done;
870 	}
871 	if (raidID >= numraid || !raidPtrs[raidID]) {
872 		bp->b_error = ENODEV;
873 		goto done;
874 	}
875 	raidPtr = raidPtrs[raidID];
876 	if (!raidPtr->valid) {
877 		bp->b_error = ENODEV;
878 		goto done;
879 	}
880 	if (bp->b_bcount == 0) {
881 		db1_printf(("b_bcount is zero..\n"));
882 		goto done;
883 	}
884 
885 	/*
886 	 * Do bounds checking and adjust transfer.  If there's an
887 	 * error, the bounds check will flag that for us.
888 	 */
889 
890 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
891 	if (DISKPART(bp->b_dev) == RAW_PART) {
892 		uint64_t size; /* device size in DEV_BSIZE unit */
893 
894 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
895 			size = raidPtr->totalSectors <<
896 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
897 		} else {
898 			size = raidPtr->totalSectors >>
899 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
900 		}
901 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
902 			goto done;
903 		}
904 	} else {
905 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
906 			db1_printf(("Bounds check failed!!:%d %d\n",
907 				(int) bp->b_blkno, (int) wlabel));
908 			goto done;
909 		}
910 	}
911 	s = splbio();
912 
913 	bp->b_resid = 0;
914 
915 	/* stuff it onto our queue */
916 	BUFQ_PUT(rs->buf_queue, bp);
917 
918 	/* scheduled the IO to happen at the next convenient time */
919 	wakeup(&(raidPtrs[raidID]->iodone));
920 
921 	splx(s);
922 	return;
923 
924 done:
925 	bp->b_resid = bp->b_bcount;
926 	biodone(bp);
927 }
928 /* ARGSUSED */
929 int
930 raidread(dev_t dev, struct uio *uio, int flags)
931 {
932 	int     unit = raidunit(dev);
933 	struct raid_softc *rs;
934 
935 	if (unit >= numraid)
936 		return (ENXIO);
937 	rs = &raid_softc[unit];
938 
939 	if ((rs->sc_flags & RAIDF_INITED) == 0)
940 		return (ENXIO);
941 
942 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
943 
944 }
945 /* ARGSUSED */
946 int
947 raidwrite(dev_t dev, struct uio *uio, int flags)
948 {
949 	int     unit = raidunit(dev);
950 	struct raid_softc *rs;
951 
952 	if (unit >= numraid)
953 		return (ENXIO);
954 	rs = &raid_softc[unit];
955 
956 	if ((rs->sc_flags & RAIDF_INITED) == 0)
957 		return (ENXIO);
958 
959 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
960 
961 }
962 
963 int
964 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
965 {
966 	int     unit = raidunit(dev);
967 	int     error = 0;
968 	int     part, pmask;
969 	struct cfdata *cf;
970 	struct raid_softc *rs;
971 	RF_Config_t *k_cfg, *u_cfg;
972 	RF_Raid_t *raidPtr;
973 	RF_RaidDisk_t *diskPtr;
974 	RF_AccTotals_t *totals;
975 	RF_DeviceConfig_t *d_cfg, **ucfgp;
976 	u_char *specific_buf;
977 	int retcode = 0;
978 	int column;
979 	int raidid;
980 	struct rf_recon_req *rrcopy, *rr;
981 	RF_ComponentLabel_t *clabel;
982 	RF_ComponentLabel_t *ci_label;
983 	RF_ComponentLabel_t **clabel_ptr;
984 	RF_SingleComponent_t *sparePtr,*componentPtr;
985 	RF_SingleComponent_t component;
986 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
987 	int i, j, d;
988 #ifdef __HAVE_OLD_DISKLABEL
989 	struct disklabel newlabel;
990 #endif
991 	struct dkwedge_info *dkw;
992 
993 	if (unit >= numraid)
994 		return (ENXIO);
995 	rs = &raid_softc[unit];
996 	raidPtr = raidPtrs[unit];
997 
998 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
999 		(int) DISKPART(dev), (int) unit, (int) cmd));
1000 
1001 	/* Must be open for writes for these commands... */
1002 	switch (cmd) {
1003 #ifdef DIOCGSECTORSIZE
1004 	case DIOCGSECTORSIZE:
1005 		*(u_int *)data = raidPtr->bytesPerSector;
1006 		return 0;
1007 	case DIOCGMEDIASIZE:
1008 		*(off_t *)data =
1009 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1010 		return 0;
1011 #endif
1012 	case DIOCSDINFO:
1013 	case DIOCWDINFO:
1014 #ifdef __HAVE_OLD_DISKLABEL
1015 	case ODIOCWDINFO:
1016 	case ODIOCSDINFO:
1017 #endif
1018 	case DIOCWLABEL:
1019 	case DIOCAWEDGE:
1020 	case DIOCDWEDGE:
1021 		if ((flag & FWRITE) == 0)
1022 			return (EBADF);
1023 	}
1024 
1025 	/* Must be initialized for these... */
1026 	switch (cmd) {
1027 	case DIOCGDINFO:
1028 	case DIOCSDINFO:
1029 	case DIOCWDINFO:
1030 #ifdef __HAVE_OLD_DISKLABEL
1031 	case ODIOCGDINFO:
1032 	case ODIOCWDINFO:
1033 	case ODIOCSDINFO:
1034 	case ODIOCGDEFLABEL:
1035 #endif
1036 	case DIOCGPART:
1037 	case DIOCWLABEL:
1038 	case DIOCGDEFLABEL:
1039 	case DIOCAWEDGE:
1040 	case DIOCDWEDGE:
1041 	case DIOCLWEDGES:
1042 	case RAIDFRAME_SHUTDOWN:
1043 	case RAIDFRAME_REWRITEPARITY:
1044 	case RAIDFRAME_GET_INFO:
1045 	case RAIDFRAME_RESET_ACCTOTALS:
1046 	case RAIDFRAME_GET_ACCTOTALS:
1047 	case RAIDFRAME_KEEP_ACCTOTALS:
1048 	case RAIDFRAME_GET_SIZE:
1049 	case RAIDFRAME_FAIL_DISK:
1050 	case RAIDFRAME_COPYBACK:
1051 	case RAIDFRAME_CHECK_RECON_STATUS:
1052 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1053 	case RAIDFRAME_GET_COMPONENT_LABEL:
1054 	case RAIDFRAME_SET_COMPONENT_LABEL:
1055 	case RAIDFRAME_ADD_HOT_SPARE:
1056 	case RAIDFRAME_REMOVE_HOT_SPARE:
1057 	case RAIDFRAME_INIT_LABELS:
1058 	case RAIDFRAME_REBUILD_IN_PLACE:
1059 	case RAIDFRAME_CHECK_PARITY:
1060 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1061 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1062 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1063 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1064 	case RAIDFRAME_SET_AUTOCONFIG:
1065 	case RAIDFRAME_SET_ROOT:
1066 	case RAIDFRAME_DELETE_COMPONENT:
1067 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1068 		if ((rs->sc_flags & RAIDF_INITED) == 0)
1069 			return (ENXIO);
1070 	}
1071 
1072 	switch (cmd) {
1073 
1074 		/* configure the system */
1075 	case RAIDFRAME_CONFIGURE:
1076 
1077 		if (raidPtr->valid) {
1078 			/* There is a valid RAID set running on this unit! */
1079 			printf("raid%d: Device already configured!\n",unit);
1080 			return(EINVAL);
1081 		}
1082 
1083 		/* copy-in the configuration information */
1084 		/* data points to a pointer to the configuration structure */
1085 
1086 		u_cfg = *((RF_Config_t **) data);
1087 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1088 		if (k_cfg == NULL) {
1089 			return (ENOMEM);
1090 		}
1091 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1092 		if (retcode) {
1093 			RF_Free(k_cfg, sizeof(RF_Config_t));
1094 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1095 				retcode));
1096 			return (retcode);
1097 		}
1098 		/* allocate a buffer for the layout-specific data, and copy it
1099 		 * in */
1100 		if (k_cfg->layoutSpecificSize) {
1101 			if (k_cfg->layoutSpecificSize > 10000) {
1102 				/* sanity check */
1103 				RF_Free(k_cfg, sizeof(RF_Config_t));
1104 				return (EINVAL);
1105 			}
1106 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1107 			    (u_char *));
1108 			if (specific_buf == NULL) {
1109 				RF_Free(k_cfg, sizeof(RF_Config_t));
1110 				return (ENOMEM);
1111 			}
1112 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1113 			    k_cfg->layoutSpecificSize);
1114 			if (retcode) {
1115 				RF_Free(k_cfg, sizeof(RF_Config_t));
1116 				RF_Free(specific_buf,
1117 					k_cfg->layoutSpecificSize);
1118 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1119 					retcode));
1120 				return (retcode);
1121 			}
1122 		} else
1123 			specific_buf = NULL;
1124 		k_cfg->layoutSpecific = specific_buf;
1125 
1126 		/* should do some kind of sanity check on the configuration.
1127 		 * Store the sum of all the bytes in the last byte? */
1128 
1129 		/* configure the system */
1130 
1131 		/*
1132 		 * Clear the entire RAID descriptor, just to make sure
1133 		 *  there is no stale data left in the case of a
1134 		 *  reconfiguration
1135 		 */
1136 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1137 		raidPtr->raidid = unit;
1138 
1139 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
1140 
1141 		if (retcode == 0) {
1142 
1143 			/* allow this many simultaneous IO's to
1144 			   this RAID device */
1145 			raidPtr->openings = RAIDOUTSTANDING;
1146 
1147 			raidinit(raidPtr);
1148 			rf_markalldirty(raidPtr);
1149 		}
1150 		/* free the buffers.  No return code here. */
1151 		if (k_cfg->layoutSpecificSize) {
1152 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1153 		}
1154 		RF_Free(k_cfg, sizeof(RF_Config_t));
1155 
1156 		return (retcode);
1157 
1158 		/* shutdown the system */
1159 	case RAIDFRAME_SHUTDOWN:
1160 
1161 		if ((error = raidlock(rs)) != 0)
1162 			return (error);
1163 
1164 		/*
1165 		 * If somebody has a partition mounted, we shouldn't
1166 		 * shutdown.
1167 		 */
1168 
1169 		part = DISKPART(dev);
1170 		pmask = (1 << part);
1171 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1172 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1173 			(rs->sc_dkdev.dk_copenmask & pmask))) {
1174 			raidunlock(rs);
1175 			return (EBUSY);
1176 		}
1177 
1178 		retcode = rf_Shutdown(raidPtr);
1179 
1180 		/* It's no longer initialized... */
1181 		rs->sc_flags &= ~RAIDF_INITED;
1182 
1183 		/* free the pseudo device attach bits */
1184 
1185 		cf = device_cfdata(rs->sc_dev);
1186 		/* XXX this causes us to not return any errors
1187 		   from the above call to rf_Shutdown() */
1188 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1189 		free(cf, M_RAIDFRAME);
1190 
1191 		/* Detach the disk. */
1192 		disk_detach(&rs->sc_dkdev);
1193 		disk_destroy(&rs->sc_dkdev);
1194 
1195 		raidunlock(rs);
1196 
1197 		return (retcode);
1198 	case RAIDFRAME_GET_COMPONENT_LABEL:
1199 		clabel_ptr = (RF_ComponentLabel_t **) data;
1200 		/* need to read the component label for the disk indicated
1201 		   by row,column in clabel */
1202 
1203 		/* For practice, let's get it directly fromdisk, rather
1204 		   than from the in-core copy */
1205 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1206 			   (RF_ComponentLabel_t *));
1207 		if (clabel == NULL)
1208 			return (ENOMEM);
1209 
1210 		retcode = copyin( *clabel_ptr, clabel,
1211 				  sizeof(RF_ComponentLabel_t));
1212 
1213 		if (retcode) {
1214 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1215 			return(retcode);
1216 		}
1217 
1218 		clabel->row = 0; /* Don't allow looking at anything else.*/
1219 
1220 		column = clabel->column;
1221 
1222 		if ((column < 0) || (column >= raidPtr->numCol +
1223 				     raidPtr->numSpare)) {
1224 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1225 			return(EINVAL);
1226 		}
1227 
1228 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
1229 				raidPtr->raid_cinfo[column].ci_vp,
1230 				clabel );
1231 
1232 		if (retcode == 0) {
1233 			retcode = copyout(clabel, *clabel_ptr,
1234 					  sizeof(RF_ComponentLabel_t));
1235 		}
1236 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1237 		return (retcode);
1238 
1239 	case RAIDFRAME_SET_COMPONENT_LABEL:
1240 		clabel = (RF_ComponentLabel_t *) data;
1241 
1242 		/* XXX check the label for valid stuff... */
1243 		/* Note that some things *should not* get modified --
1244 		   the user should be re-initing the labels instead of
1245 		   trying to patch things.
1246 		   */
1247 
1248 		raidid = raidPtr->raidid;
1249 #ifdef DEBUG
1250 		printf("raid%d: Got component label:\n", raidid);
1251 		printf("raid%d: Version: %d\n", raidid, clabel->version);
1252 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1253 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1254 		printf("raid%d: Column: %d\n", raidid, clabel->column);
1255 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1256 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1257 		printf("raid%d: Status: %d\n", raidid, clabel->status);
1258 #endif
1259 		clabel->row = 0;
1260 		column = clabel->column;
1261 
1262 		if ((column < 0) || (column >= raidPtr->numCol)) {
1263 			return(EINVAL);
1264 		}
1265 
1266 		/* XXX this isn't allowed to do anything for now :-) */
1267 
1268 		/* XXX and before it is, we need to fill in the rest
1269 		   of the fields!?!?!?! */
1270 #if 0
1271 		raidwrite_component_label(
1272 		     raidPtr->Disks[column].dev,
1273 			    raidPtr->raid_cinfo[column].ci_vp,
1274 			    clabel );
1275 #endif
1276 		return (0);
1277 
1278 	case RAIDFRAME_INIT_LABELS:
1279 		clabel = (RF_ComponentLabel_t *) data;
1280 		/*
1281 		   we only want the serial number from
1282 		   the above.  We get all the rest of the information
1283 		   from the config that was used to create this RAID
1284 		   set.
1285 		   */
1286 
1287 		raidPtr->serial_number = clabel->serial_number;
1288 
1289 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1290 			  (RF_ComponentLabel_t *));
1291 		if (ci_label == NULL)
1292 			return (ENOMEM);
1293 
1294 		raid_init_component_label(raidPtr, ci_label);
1295 		ci_label->serial_number = clabel->serial_number;
1296 		ci_label->row = 0; /* we dont' pretend to support more */
1297 
1298 		for(column=0;column<raidPtr->numCol;column++) {
1299 			diskPtr = &raidPtr->Disks[column];
1300 			if (!RF_DEAD_DISK(diskPtr->status)) {
1301 				ci_label->partitionSize = diskPtr->partitionSize;
1302 				ci_label->column = column;
1303 				raidwrite_component_label(
1304 							  raidPtr->Disks[column].dev,
1305 							  raidPtr->raid_cinfo[column].ci_vp,
1306 							  ci_label );
1307 			}
1308 		}
1309 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1310 
1311 		return (retcode);
1312 	case RAIDFRAME_SET_AUTOCONFIG:
1313 		d = rf_set_autoconfig(raidPtr, *(int *) data);
1314 		printf("raid%d: New autoconfig value is: %d\n",
1315 		       raidPtr->raidid, d);
1316 		*(int *) data = d;
1317 		return (retcode);
1318 
1319 	case RAIDFRAME_SET_ROOT:
1320 		d = rf_set_rootpartition(raidPtr, *(int *) data);
1321 		printf("raid%d: New rootpartition value is: %d\n",
1322 		       raidPtr->raidid, d);
1323 		*(int *) data = d;
1324 		return (retcode);
1325 
1326 		/* initialize all parity */
1327 	case RAIDFRAME_REWRITEPARITY:
1328 
1329 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1330 			/* Parity for RAID 0 is trivially correct */
1331 			raidPtr->parity_good = RF_RAID_CLEAN;
1332 			return(0);
1333 		}
1334 
1335 		if (raidPtr->parity_rewrite_in_progress == 1) {
1336 			/* Re-write is already in progress! */
1337 			return(EINVAL);
1338 		}
1339 
1340 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1341 					   rf_RewriteParityThread,
1342 					   raidPtr,"raid_parity");
1343 		return (retcode);
1344 
1345 
1346 	case RAIDFRAME_ADD_HOT_SPARE:
1347 		sparePtr = (RF_SingleComponent_t *) data;
1348 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1349 		retcode = rf_add_hot_spare(raidPtr, &component);
1350 		return(retcode);
1351 
1352 	case RAIDFRAME_REMOVE_HOT_SPARE:
1353 		return(retcode);
1354 
1355 	case RAIDFRAME_DELETE_COMPONENT:
1356 		componentPtr = (RF_SingleComponent_t *)data;
1357 		memcpy( &component, componentPtr,
1358 			sizeof(RF_SingleComponent_t));
1359 		retcode = rf_delete_component(raidPtr, &component);
1360 		return(retcode);
1361 
1362 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1363 		componentPtr = (RF_SingleComponent_t *)data;
1364 		memcpy( &component, componentPtr,
1365 			sizeof(RF_SingleComponent_t));
1366 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
1367 		return(retcode);
1368 
1369 	case RAIDFRAME_REBUILD_IN_PLACE:
1370 
1371 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1372 			/* Can't do this on a RAID 0!! */
1373 			return(EINVAL);
1374 		}
1375 
1376 		if (raidPtr->recon_in_progress == 1) {
1377 			/* a reconstruct is already in progress! */
1378 			return(EINVAL);
1379 		}
1380 
1381 		componentPtr = (RF_SingleComponent_t *) data;
1382 		memcpy( &component, componentPtr,
1383 			sizeof(RF_SingleComponent_t));
1384 		component.row = 0; /* we don't support any more */
1385 		column = component.column;
1386 
1387 		if ((column < 0) || (column >= raidPtr->numCol)) {
1388 			return(EINVAL);
1389 		}
1390 
1391 		RF_LOCK_MUTEX(raidPtr->mutex);
1392 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1393 		    (raidPtr->numFailures > 0)) {
1394 			/* XXX 0 above shouldn't be constant!!! */
1395 			/* some component other than this has failed.
1396 			   Let's not make things worse than they already
1397 			   are... */
1398 			printf("raid%d: Unable to reconstruct to disk at:\n",
1399 			       raidPtr->raidid);
1400 			printf("raid%d:     Col: %d   Too many failures.\n",
1401 			       raidPtr->raidid, column);
1402 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1403 			return (EINVAL);
1404 		}
1405 		if (raidPtr->Disks[column].status ==
1406 		    rf_ds_reconstructing) {
1407 			printf("raid%d: Unable to reconstruct to disk at:\n",
1408 			       raidPtr->raidid);
1409 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
1410 
1411 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1412 			return (EINVAL);
1413 		}
1414 		if (raidPtr->Disks[column].status == rf_ds_spared) {
1415 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1416 			return (EINVAL);
1417 		}
1418 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1419 
1420 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1421 		if (rrcopy == NULL)
1422 			return(ENOMEM);
1423 
1424 		rrcopy->raidPtr = (void *) raidPtr;
1425 		rrcopy->col = column;
1426 
1427 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1428 					   rf_ReconstructInPlaceThread,
1429 					   rrcopy,"raid_reconip");
1430 		return(retcode);
1431 
1432 	case RAIDFRAME_GET_INFO:
1433 		if (!raidPtr->valid)
1434 			return (ENODEV);
1435 		ucfgp = (RF_DeviceConfig_t **) data;
1436 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1437 			  (RF_DeviceConfig_t *));
1438 		if (d_cfg == NULL)
1439 			return (ENOMEM);
1440 		d_cfg->rows = 1; /* there is only 1 row now */
1441 		d_cfg->cols = raidPtr->numCol;
1442 		d_cfg->ndevs = raidPtr->numCol;
1443 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
1444 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1445 			return (ENOMEM);
1446 		}
1447 		d_cfg->nspares = raidPtr->numSpare;
1448 		if (d_cfg->nspares >= RF_MAX_DISKS) {
1449 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1450 			return (ENOMEM);
1451 		}
1452 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1453 		d = 0;
1454 		for (j = 0; j < d_cfg->cols; j++) {
1455 			d_cfg->devs[d] = raidPtr->Disks[j];
1456 			d++;
1457 		}
1458 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1459 			d_cfg->spares[i] = raidPtr->Disks[j];
1460 		}
1461 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1462 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1463 
1464 		return (retcode);
1465 
1466 	case RAIDFRAME_CHECK_PARITY:
1467 		*(int *) data = raidPtr->parity_good;
1468 		return (0);
1469 
1470 	case RAIDFRAME_RESET_ACCTOTALS:
1471 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1472 		return (0);
1473 
1474 	case RAIDFRAME_GET_ACCTOTALS:
1475 		totals = (RF_AccTotals_t *) data;
1476 		*totals = raidPtr->acc_totals;
1477 		return (0);
1478 
1479 	case RAIDFRAME_KEEP_ACCTOTALS:
1480 		raidPtr->keep_acc_totals = *(int *)data;
1481 		return (0);
1482 
1483 	case RAIDFRAME_GET_SIZE:
1484 		*(int *) data = raidPtr->totalSectors;
1485 		return (0);
1486 
1487 		/* fail a disk & optionally start reconstruction */
1488 	case RAIDFRAME_FAIL_DISK:
1489 
1490 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1491 			/* Can't do this on a RAID 0!! */
1492 			return(EINVAL);
1493 		}
1494 
1495 		rr = (struct rf_recon_req *) data;
1496 		rr->row = 0;
1497 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
1498 			return (EINVAL);
1499 
1500 
1501 		RF_LOCK_MUTEX(raidPtr->mutex);
1502 		if (raidPtr->status == rf_rs_reconstructing) {
1503 			/* you can't fail a disk while we're reconstructing! */
1504 			/* XXX wrong for RAID6 */
1505 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1506 			return (EINVAL);
1507 		}
1508 		if ((raidPtr->Disks[rr->col].status ==
1509 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1510 			/* some other component has failed.  Let's not make
1511 			   things worse. XXX wrong for RAID6 */
1512 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1513 			return (EINVAL);
1514 		}
1515 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1516 			/* Can't fail a spared disk! */
1517 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1518 			return (EINVAL);
1519 		}
1520 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1521 
1522 		/* make a copy of the recon request so that we don't rely on
1523 		 * the user's buffer */
1524 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1525 		if (rrcopy == NULL)
1526 			return(ENOMEM);
1527 		memcpy(rrcopy, rr, sizeof(*rr));
1528 		rrcopy->raidPtr = (void *) raidPtr;
1529 
1530 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1531 					   rf_ReconThread,
1532 					   rrcopy,"raid_recon");
1533 		return (0);
1534 
1535 		/* invoke a copyback operation after recon on whatever disk
1536 		 * needs it, if any */
1537 	case RAIDFRAME_COPYBACK:
1538 
1539 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1540 			/* This makes no sense on a RAID 0!! */
1541 			return(EINVAL);
1542 		}
1543 
1544 		if (raidPtr->copyback_in_progress == 1) {
1545 			/* Copyback is already in progress! */
1546 			return(EINVAL);
1547 		}
1548 
1549 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1550 					   rf_CopybackThread,
1551 					   raidPtr,"raid_copyback");
1552 		return (retcode);
1553 
1554 		/* return the percentage completion of reconstruction */
1555 	case RAIDFRAME_CHECK_RECON_STATUS:
1556 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1557 			/* This makes no sense on a RAID 0, so tell the
1558 			   user it's done. */
1559 			*(int *) data = 100;
1560 			return(0);
1561 		}
1562 		if (raidPtr->status != rf_rs_reconstructing)
1563 			*(int *) data = 100;
1564 		else {
1565 			if (raidPtr->reconControl->numRUsTotal > 0) {
1566 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1567 			} else {
1568 				*(int *) data = 0;
1569 			}
1570 		}
1571 		return (0);
1572 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1573 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1574 		if (raidPtr->status != rf_rs_reconstructing) {
1575 			progressInfo.remaining = 0;
1576 			progressInfo.completed = 100;
1577 			progressInfo.total = 100;
1578 		} else {
1579 			progressInfo.total =
1580 				raidPtr->reconControl->numRUsTotal;
1581 			progressInfo.completed =
1582 				raidPtr->reconControl->numRUsComplete;
1583 			progressInfo.remaining = progressInfo.total -
1584 				progressInfo.completed;
1585 		}
1586 		retcode = copyout(&progressInfo, *progressInfoPtr,
1587 				  sizeof(RF_ProgressInfo_t));
1588 		return (retcode);
1589 
1590 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1591 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1592 			/* This makes no sense on a RAID 0, so tell the
1593 			   user it's done. */
1594 			*(int *) data = 100;
1595 			return(0);
1596 		}
1597 		if (raidPtr->parity_rewrite_in_progress == 1) {
1598 			*(int *) data = 100 *
1599 				raidPtr->parity_rewrite_stripes_done /
1600 				raidPtr->Layout.numStripe;
1601 		} else {
1602 			*(int *) data = 100;
1603 		}
1604 		return (0);
1605 
1606 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1607 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1608 		if (raidPtr->parity_rewrite_in_progress == 1) {
1609 			progressInfo.total = raidPtr->Layout.numStripe;
1610 			progressInfo.completed =
1611 				raidPtr->parity_rewrite_stripes_done;
1612 			progressInfo.remaining = progressInfo.total -
1613 				progressInfo.completed;
1614 		} else {
1615 			progressInfo.remaining = 0;
1616 			progressInfo.completed = 100;
1617 			progressInfo.total = 100;
1618 		}
1619 		retcode = copyout(&progressInfo, *progressInfoPtr,
1620 				  sizeof(RF_ProgressInfo_t));
1621 		return (retcode);
1622 
1623 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1624 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1625 			/* This makes no sense on a RAID 0 */
1626 			*(int *) data = 100;
1627 			return(0);
1628 		}
1629 		if (raidPtr->copyback_in_progress == 1) {
1630 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
1631 				raidPtr->Layout.numStripe;
1632 		} else {
1633 			*(int *) data = 100;
1634 		}
1635 		return (0);
1636 
1637 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1638 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1639 		if (raidPtr->copyback_in_progress == 1) {
1640 			progressInfo.total = raidPtr->Layout.numStripe;
1641 			progressInfo.completed =
1642 				raidPtr->copyback_stripes_done;
1643 			progressInfo.remaining = progressInfo.total -
1644 				progressInfo.completed;
1645 		} else {
1646 			progressInfo.remaining = 0;
1647 			progressInfo.completed = 100;
1648 			progressInfo.total = 100;
1649 		}
1650 		retcode = copyout(&progressInfo, *progressInfoPtr,
1651 				  sizeof(RF_ProgressInfo_t));
1652 		return (retcode);
1653 
1654 		/* the sparetable daemon calls this to wait for the kernel to
1655 		 * need a spare table. this ioctl does not return until a
1656 		 * spare table is needed. XXX -- calling mpsleep here in the
1657 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1658 		 * -- I should either compute the spare table in the kernel,
1659 		 * or have a different -- XXX XXX -- interface (a different
1660 		 * character device) for delivering the table     -- XXX */
1661 #if 0
1662 	case RAIDFRAME_SPARET_WAIT:
1663 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1664 		while (!rf_sparet_wait_queue)
1665 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1666 		waitreq = rf_sparet_wait_queue;
1667 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1668 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1669 
1670 		/* structure assignment */
1671 		*((RF_SparetWait_t *) data) = *waitreq;
1672 
1673 		RF_Free(waitreq, sizeof(*waitreq));
1674 		return (0);
1675 
1676 		/* wakes up a process waiting on SPARET_WAIT and puts an error
1677 		 * code in it that will cause the dameon to exit */
1678 	case RAIDFRAME_ABORT_SPARET_WAIT:
1679 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1680 		waitreq->fcol = -1;
1681 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1682 		waitreq->next = rf_sparet_wait_queue;
1683 		rf_sparet_wait_queue = waitreq;
1684 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1685 		wakeup(&rf_sparet_wait_queue);
1686 		return (0);
1687 
1688 		/* used by the spare table daemon to deliver a spare table
1689 		 * into the kernel */
1690 	case RAIDFRAME_SEND_SPARET:
1691 
1692 		/* install the spare table */
1693 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1694 
1695 		/* respond to the requestor.  the return status of the spare
1696 		 * table installation is passed in the "fcol" field */
1697 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1698 		waitreq->fcol = retcode;
1699 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1700 		waitreq->next = rf_sparet_resp_queue;
1701 		rf_sparet_resp_queue = waitreq;
1702 		wakeup(&rf_sparet_resp_queue);
1703 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1704 
1705 		return (retcode);
1706 #endif
1707 
1708 	default:
1709 		break; /* fall through to the os-specific code below */
1710 
1711 	}
1712 
1713 	if (!raidPtr->valid)
1714 		return (EINVAL);
1715 
1716 	/*
1717 	 * Add support for "regular" device ioctls here.
1718 	 */
1719 
1720 	switch (cmd) {
1721 	case DIOCGDINFO:
1722 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1723 		break;
1724 #ifdef __HAVE_OLD_DISKLABEL
1725 	case ODIOCGDINFO:
1726 		newlabel = *(rs->sc_dkdev.dk_label);
1727 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1728 			return ENOTTY;
1729 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1730 		break;
1731 #endif
1732 
1733 	case DIOCGPART:
1734 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1735 		((struct partinfo *) data)->part =
1736 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1737 		break;
1738 
1739 	case DIOCWDINFO:
1740 	case DIOCSDINFO:
1741 #ifdef __HAVE_OLD_DISKLABEL
1742 	case ODIOCWDINFO:
1743 	case ODIOCSDINFO:
1744 #endif
1745 	{
1746 		struct disklabel *lp;
1747 #ifdef __HAVE_OLD_DISKLABEL
1748 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1749 			memset(&newlabel, 0, sizeof newlabel);
1750 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
1751 			lp = &newlabel;
1752 		} else
1753 #endif
1754 		lp = (struct disklabel *)data;
1755 
1756 		if ((error = raidlock(rs)) != 0)
1757 			return (error);
1758 
1759 		rs->sc_flags |= RAIDF_LABELLING;
1760 
1761 		error = setdisklabel(rs->sc_dkdev.dk_label,
1762 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
1763 		if (error == 0) {
1764 			if (cmd == DIOCWDINFO
1765 #ifdef __HAVE_OLD_DISKLABEL
1766 			    || cmd == ODIOCWDINFO
1767 #endif
1768 			   )
1769 				error = writedisklabel(RAIDLABELDEV(dev),
1770 				    raidstrategy, rs->sc_dkdev.dk_label,
1771 				    rs->sc_dkdev.dk_cpulabel);
1772 		}
1773 		rs->sc_flags &= ~RAIDF_LABELLING;
1774 
1775 		raidunlock(rs);
1776 
1777 		if (error)
1778 			return (error);
1779 		break;
1780 	}
1781 
1782 	case DIOCWLABEL:
1783 		if (*(int *) data != 0)
1784 			rs->sc_flags |= RAIDF_WLABEL;
1785 		else
1786 			rs->sc_flags &= ~RAIDF_WLABEL;
1787 		break;
1788 
1789 	case DIOCGDEFLABEL:
1790 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1791 		break;
1792 
1793 #ifdef __HAVE_OLD_DISKLABEL
1794 	case ODIOCGDEFLABEL:
1795 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
1796 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1797 			return ENOTTY;
1798 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1799 		break;
1800 #endif
1801 
1802 	case DIOCAWEDGE:
1803 	case DIOCDWEDGE:
1804 	    	dkw = (void *)data;
1805 
1806 		/* If the ioctl happens here, the parent is us. */
1807 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
1808 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1809 
1810 	case DIOCLWEDGES:
1811 		return dkwedge_list(&rs->sc_dkdev,
1812 		    (struct dkwedge_list *)data, l);
1813 
1814 	default:
1815 		retcode = ENOTTY;
1816 	}
1817 	return (retcode);
1818 
1819 }
1820 
1821 
1822 /* raidinit -- complete the rest of the initialization for the
1823    RAIDframe device.  */
1824 
1825 
1826 static void
1827 raidinit(RF_Raid_t *raidPtr)
1828 {
1829 	struct cfdata *cf;
1830 	struct raid_softc *rs;
1831 	int     unit;
1832 
1833 	unit = raidPtr->raidid;
1834 
1835 	rs = &raid_softc[unit];
1836 
1837 	/* XXX should check return code first... */
1838 	rs->sc_flags |= RAIDF_INITED;
1839 
1840 	/* XXX doesn't check bounds. */
1841 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1842 
1843 	/* attach the pseudo device */
1844 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1845 	cf->cf_name = raid_cd.cd_name;
1846 	cf->cf_atname = raid_cd.cd_name;
1847 	cf->cf_unit = unit;
1848 	cf->cf_fstate = FSTATE_STAR;
1849 
1850 	rs->sc_dev = config_attach_pseudo(cf);
1851 
1852 	if (rs->sc_dev==NULL) {
1853 		printf("raid%d: config_attach_pseudo failed\n",
1854 		       raidPtr->raidid);
1855 	}
1856 
1857 	/* disk_attach actually creates space for the CPU disklabel, among
1858 	 * other things, so it's critical to call this *BEFORE* we try putzing
1859 	 * with disklabels. */
1860 
1861 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1862 	disk_attach(&rs->sc_dkdev);
1863 
1864 	/* XXX There may be a weird interaction here between this, and
1865 	 * protectedSectors, as used in RAIDframe.  */
1866 
1867 	rs->sc_size = raidPtr->totalSectors;
1868 
1869 	dkwedge_discover(&rs->sc_dkdev);
1870 
1871 	rf_set_properties(rs, raidPtr);
1872 
1873 }
1874 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1875 /* wake up the daemon & tell it to get us a spare table
1876  * XXX
1877  * the entries in the queues should be tagged with the raidPtr
1878  * so that in the extremely rare case that two recons happen at once,
1879  * we know for which device were requesting a spare table
1880  * XXX
1881  *
1882  * XXX This code is not currently used. GO
1883  */
1884 int
1885 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1886 {
1887 	int     retcode;
1888 
1889 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1890 	req->next = rf_sparet_wait_queue;
1891 	rf_sparet_wait_queue = req;
1892 	wakeup(&rf_sparet_wait_queue);
1893 
1894 	/* mpsleep unlocks the mutex */
1895 	while (!rf_sparet_resp_queue) {
1896 		tsleep(&rf_sparet_resp_queue, PRIBIO,
1897 		    "raidframe getsparetable", 0);
1898 	}
1899 	req = rf_sparet_resp_queue;
1900 	rf_sparet_resp_queue = req->next;
1901 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1902 
1903 	retcode = req->fcol;
1904 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
1905 					 * alloc'd */
1906 	return (retcode);
1907 }
1908 #endif
1909 
1910 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1911  * bp & passes it down.
1912  * any calls originating in the kernel must use non-blocking I/O
1913  * do some extra sanity checking to return "appropriate" error values for
1914  * certain conditions (to make some standard utilities work)
1915  *
1916  * Formerly known as: rf_DoAccessKernel
1917  */
1918 void
1919 raidstart(RF_Raid_t *raidPtr)
1920 {
1921 	RF_SectorCount_t num_blocks, pb, sum;
1922 	RF_RaidAddr_t raid_addr;
1923 	struct partition *pp;
1924 	daddr_t blocknum;
1925 	int     unit;
1926 	struct raid_softc *rs;
1927 	int     do_async;
1928 	struct buf *bp;
1929 	int rc;
1930 
1931 	unit = raidPtr->raidid;
1932 	rs = &raid_softc[unit];
1933 
1934 	/* quick check to see if anything has died recently */
1935 	RF_LOCK_MUTEX(raidPtr->mutex);
1936 	if (raidPtr->numNewFailures > 0) {
1937 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1938 		rf_update_component_labels(raidPtr,
1939 					   RF_NORMAL_COMPONENT_UPDATE);
1940 		RF_LOCK_MUTEX(raidPtr->mutex);
1941 		raidPtr->numNewFailures--;
1942 	}
1943 
1944 	/* Check to see if we're at the limit... */
1945 	while (raidPtr->openings > 0) {
1946 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1947 
1948 		/* get the next item, if any, from the queue */
1949 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1950 			/* nothing more to do */
1951 			return;
1952 		}
1953 
1954 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
1955 		 * partition.. Need to make it absolute to the underlying
1956 		 * device.. */
1957 
1958 		blocknum = bp->b_blkno;
1959 		if (DISKPART(bp->b_dev) != RAW_PART) {
1960 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1961 			blocknum += pp->p_offset;
1962 		}
1963 
1964 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1965 			    (int) blocknum));
1966 
1967 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1968 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1969 
1970 		/* *THIS* is where we adjust what block we're going to...
1971 		 * but DO NOT TOUCH bp->b_blkno!!! */
1972 		raid_addr = blocknum;
1973 
1974 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1975 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1976 		sum = raid_addr + num_blocks + pb;
1977 		if (1 || rf_debugKernelAccess) {
1978 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1979 				    (int) raid_addr, (int) sum, (int) num_blocks,
1980 				    (int) pb, (int) bp->b_resid));
1981 		}
1982 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1983 		    || (sum < num_blocks) || (sum < pb)) {
1984 			bp->b_error = ENOSPC;
1985 			bp->b_resid = bp->b_bcount;
1986 			biodone(bp);
1987 			RF_LOCK_MUTEX(raidPtr->mutex);
1988 			continue;
1989 		}
1990 		/*
1991 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1992 		 */
1993 
1994 		if (bp->b_bcount & raidPtr->sectorMask) {
1995 			bp->b_error = EINVAL;
1996 			bp->b_resid = bp->b_bcount;
1997 			biodone(bp);
1998 			RF_LOCK_MUTEX(raidPtr->mutex);
1999 			continue;
2000 
2001 		}
2002 		db1_printf(("Calling DoAccess..\n"));
2003 
2004 
2005 		RF_LOCK_MUTEX(raidPtr->mutex);
2006 		raidPtr->openings--;
2007 		RF_UNLOCK_MUTEX(raidPtr->mutex);
2008 
2009 		/*
2010 		 * Everything is async.
2011 		 */
2012 		do_async = 1;
2013 
2014 		disk_busy(&rs->sc_dkdev);
2015 
2016 		/* XXX we're still at splbio() here... do we *really*
2017 		   need to be? */
2018 
2019 		/* don't ever condition on bp->b_flags & B_WRITE.
2020 		 * always condition on B_READ instead */
2021 
2022 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2023 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2024 				 do_async, raid_addr, num_blocks,
2025 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2026 
2027 		if (rc) {
2028 			bp->b_error = rc;
2029 			bp->b_resid = bp->b_bcount;
2030 			biodone(bp);
2031 			/* continue loop */
2032 		}
2033 
2034 		RF_LOCK_MUTEX(raidPtr->mutex);
2035 	}
2036 	RF_UNLOCK_MUTEX(raidPtr->mutex);
2037 }
2038 
2039 
2040 
2041 
2042 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
2043 
2044 int
2045 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2046 {
2047 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2048 	struct buf *bp;
2049 
2050 	req->queue = queue;
2051 
2052 #if DIAGNOSTIC
2053 	if (queue->raidPtr->raidid >= numraid) {
2054 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
2055 		    numraid);
2056 		panic("Invalid Unit number in rf_DispatchKernelIO");
2057 	}
2058 #endif
2059 
2060 	bp = req->bp;
2061 
2062 	switch (req->type) {
2063 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
2064 		/* XXX need to do something extra here.. */
2065 		/* I'm leaving this in, as I've never actually seen it used,
2066 		 * and I'd like folks to report it... GO */
2067 		printf(("WAKEUP CALLED\n"));
2068 		queue->numOutstanding++;
2069 
2070 		bp->b_flags = 0;
2071 		bp->b_private = req;
2072 
2073 		KernelWakeupFunc(bp);
2074 		break;
2075 
2076 	case RF_IO_TYPE_READ:
2077 	case RF_IO_TYPE_WRITE:
2078 #if RF_ACC_TRACE > 0
2079 		if (req->tracerec) {
2080 			RF_ETIMER_START(req->tracerec->timer);
2081 		}
2082 #endif
2083 		InitBP(bp, queue->rf_cinfo->ci_vp,
2084 		    op, queue->rf_cinfo->ci_dev,
2085 		    req->sectorOffset, req->numSector,
2086 		    req->buf, KernelWakeupFunc, (void *) req,
2087 		    queue->raidPtr->logBytesPerSector, req->b_proc);
2088 
2089 		if (rf_debugKernelAccess) {
2090 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
2091 				(long) bp->b_blkno));
2092 		}
2093 		queue->numOutstanding++;
2094 		queue->last_deq_sector = req->sectorOffset;
2095 		/* acc wouldn't have been let in if there were any pending
2096 		 * reqs at any other priority */
2097 		queue->curPriority = req->priority;
2098 
2099 		db1_printf(("Going for %c to unit %d col %d\n",
2100 			    req->type, queue->raidPtr->raidid,
2101 			    queue->col));
2102 		db1_printf(("sector %d count %d (%d bytes) %d\n",
2103 			(int) req->sectorOffset, (int) req->numSector,
2104 			(int) (req->numSector <<
2105 			    queue->raidPtr->logBytesPerSector),
2106 			(int) queue->raidPtr->logBytesPerSector));
2107 		VOP_STRATEGY(bp->b_vp, bp);
2108 
2109 		break;
2110 
2111 	default:
2112 		panic("bad req->type in rf_DispatchKernelIO");
2113 	}
2114 	db1_printf(("Exiting from DispatchKernelIO\n"));
2115 
2116 	return (0);
2117 }
2118 /* this is the callback function associated with a I/O invoked from
2119    kernel code.
2120  */
2121 static void
2122 KernelWakeupFunc(struct buf *bp)
2123 {
2124 	RF_DiskQueueData_t *req = NULL;
2125 	RF_DiskQueue_t *queue;
2126 	int s;
2127 
2128 	s = splbio();
2129 	db1_printf(("recovering the request queue:\n"));
2130 	req = bp->b_private;
2131 
2132 	queue = (RF_DiskQueue_t *) req->queue;
2133 
2134 #if RF_ACC_TRACE > 0
2135 	if (req->tracerec) {
2136 		RF_ETIMER_STOP(req->tracerec->timer);
2137 		RF_ETIMER_EVAL(req->tracerec->timer);
2138 		RF_LOCK_MUTEX(rf_tracing_mutex);
2139 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2140 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2141 		req->tracerec->num_phys_ios++;
2142 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
2143 	}
2144 #endif
2145 
2146 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
2147 	 * ballistic, and mark the component as hosed... */
2148 
2149 	if (bp->b_error != 0) {
2150 		/* Mark the disk as dead */
2151 		/* but only mark it once... */
2152 		/* and only if it wouldn't leave this RAID set
2153 		   completely broken */
2154 		if (((queue->raidPtr->Disks[queue->col].status ==
2155 		      rf_ds_optimal) ||
2156 		     (queue->raidPtr->Disks[queue->col].status ==
2157 		      rf_ds_used_spare)) &&
2158 		     (queue->raidPtr->numFailures <
2159 		      queue->raidPtr->Layout.map->faultsTolerated)) {
2160 			printf("raid%d: IO Error.  Marking %s as failed.\n",
2161 			       queue->raidPtr->raidid,
2162 			       queue->raidPtr->Disks[queue->col].devname);
2163 			queue->raidPtr->Disks[queue->col].status =
2164 			    rf_ds_failed;
2165 			queue->raidPtr->status = rf_rs_degraded;
2166 			queue->raidPtr->numFailures++;
2167 			queue->raidPtr->numNewFailures++;
2168 		} else {	/* Disk is already dead... */
2169 			/* printf("Disk already marked as dead!\n"); */
2170 		}
2171 
2172 	}
2173 
2174 	/* Fill in the error value */
2175 
2176 	req->error = bp->b_error;
2177 
2178 	simple_lock(&queue->raidPtr->iodone_lock);
2179 
2180 	/* Drop this one on the "finished" queue... */
2181 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2182 
2183 	/* Let the raidio thread know there is work to be done. */
2184 	wakeup(&(queue->raidPtr->iodone));
2185 
2186 	simple_unlock(&queue->raidPtr->iodone_lock);
2187 
2188 	splx(s);
2189 }
2190 
2191 
2192 
2193 /*
2194  * initialize a buf structure for doing an I/O in the kernel.
2195  */
2196 static void
2197 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2198        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2199        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2200        struct proc *b_proc)
2201 {
2202 	/* bp->b_flags       = B_PHYS | rw_flag; */
2203 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
2204 	bp->b_oflags = 0;
2205 	bp->b_cflags = 0;
2206 	bp->b_bcount = numSect << logBytesPerSector;
2207 	bp->b_bufsize = bp->b_bcount;
2208 	bp->b_error = 0;
2209 	bp->b_dev = dev;
2210 	bp->b_data = bf;
2211 	bp->b_blkno = startSect;
2212 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
2213 	if (bp->b_bcount == 0) {
2214 		panic("bp->b_bcount is zero in InitBP!!");
2215 	}
2216 	bp->b_proc = b_proc;
2217 	bp->b_iodone = cbFunc;
2218 	bp->b_private = cbArg;
2219 	bp->b_vp = b_vp;
2220 	bp->b_objlock = &b_vp->v_interlock;
2221 	if ((bp->b_flags & B_READ) == 0) {
2222 		mutex_enter(&b_vp->v_interlock);
2223 		b_vp->v_numoutput++;
2224 		mutex_exit(&b_vp->v_interlock);
2225 	}
2226 
2227 }
2228 
2229 static void
2230 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2231 		    struct disklabel *lp)
2232 {
2233 	memset(lp, 0, sizeof(*lp));
2234 
2235 	/* fabricate a label... */
2236 	lp->d_secperunit = raidPtr->totalSectors;
2237 	lp->d_secsize = raidPtr->bytesPerSector;
2238 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2239 	lp->d_ntracks = 4 * raidPtr->numCol;
2240 	lp->d_ncylinders = raidPtr->totalSectors /
2241 		(lp->d_nsectors * lp->d_ntracks);
2242 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2243 
2244 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2245 	lp->d_type = DTYPE_RAID;
2246 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2247 	lp->d_rpm = 3600;
2248 	lp->d_interleave = 1;
2249 	lp->d_flags = 0;
2250 
2251 	lp->d_partitions[RAW_PART].p_offset = 0;
2252 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2253 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2254 	lp->d_npartitions = RAW_PART + 1;
2255 
2256 	lp->d_magic = DISKMAGIC;
2257 	lp->d_magic2 = DISKMAGIC;
2258 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2259 
2260 }
2261 /*
2262  * Read the disklabel from the raid device.  If one is not present, fake one
2263  * up.
2264  */
2265 static void
2266 raidgetdisklabel(dev_t dev)
2267 {
2268 	int     unit = raidunit(dev);
2269 	struct raid_softc *rs = &raid_softc[unit];
2270 	const char   *errstring;
2271 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2272 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2273 	RF_Raid_t *raidPtr;
2274 
2275 	db1_printf(("Getting the disklabel...\n"));
2276 
2277 	memset(clp, 0, sizeof(*clp));
2278 
2279 	raidPtr = raidPtrs[unit];
2280 
2281 	raidgetdefaultlabel(raidPtr, rs, lp);
2282 
2283 	/*
2284 	 * Call the generic disklabel extraction routine.
2285 	 */
2286 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2287 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2288 	if (errstring)
2289 		raidmakedisklabel(rs);
2290 	else {
2291 		int     i;
2292 		struct partition *pp;
2293 
2294 		/*
2295 		 * Sanity check whether the found disklabel is valid.
2296 		 *
2297 		 * This is necessary since total size of the raid device
2298 		 * may vary when an interleave is changed even though exactly
2299 		 * same components are used, and old disklabel may used
2300 		 * if that is found.
2301 		 */
2302 		if (lp->d_secperunit != rs->sc_size)
2303 			printf("raid%d: WARNING: %s: "
2304 			    "total sector size in disklabel (%d) != "
2305 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
2306 			    lp->d_secperunit, (long) rs->sc_size);
2307 		for (i = 0; i < lp->d_npartitions; i++) {
2308 			pp = &lp->d_partitions[i];
2309 			if (pp->p_offset + pp->p_size > rs->sc_size)
2310 				printf("raid%d: WARNING: %s: end of partition `%c' "
2311 				       "exceeds the size of raid (%ld)\n",
2312 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2313 		}
2314 	}
2315 
2316 }
2317 /*
2318  * Take care of things one might want to take care of in the event
2319  * that a disklabel isn't present.
2320  */
2321 static void
2322 raidmakedisklabel(struct raid_softc *rs)
2323 {
2324 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2325 	db1_printf(("Making a label..\n"));
2326 
2327 	/*
2328 	 * For historical reasons, if there's no disklabel present
2329 	 * the raw partition must be marked FS_BSDFFS.
2330 	 */
2331 
2332 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2333 
2334 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2335 
2336 	lp->d_checksum = dkcksum(lp);
2337 }
2338 /*
2339  * Wait interruptibly for an exclusive lock.
2340  *
2341  * XXX
2342  * Several drivers do this; it should be abstracted and made MP-safe.
2343  * (Hmm... where have we seen this warning before :->  GO )
2344  */
2345 static int
2346 raidlock(struct raid_softc *rs)
2347 {
2348 	int     error;
2349 
2350 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2351 		rs->sc_flags |= RAIDF_WANTED;
2352 		if ((error =
2353 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2354 			return (error);
2355 	}
2356 	rs->sc_flags |= RAIDF_LOCKED;
2357 	return (0);
2358 }
2359 /*
2360  * Unlock and wake up any waiters.
2361  */
2362 static void
2363 raidunlock(struct raid_softc *rs)
2364 {
2365 
2366 	rs->sc_flags &= ~RAIDF_LOCKED;
2367 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2368 		rs->sc_flags &= ~RAIDF_WANTED;
2369 		wakeup(rs);
2370 	}
2371 }
2372 
2373 
2374 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
2375 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
2376 
2377 int
2378 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2379 {
2380 	RF_ComponentLabel_t clabel;
2381 	raidread_component_label(dev, b_vp, &clabel);
2382 	clabel.mod_counter = mod_counter;
2383 	clabel.clean = RF_RAID_CLEAN;
2384 	raidwrite_component_label(dev, b_vp, &clabel);
2385 	return(0);
2386 }
2387 
2388 
2389 int
2390 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2391 {
2392 	RF_ComponentLabel_t clabel;
2393 	raidread_component_label(dev, b_vp, &clabel);
2394 	clabel.mod_counter = mod_counter;
2395 	clabel.clean = RF_RAID_DIRTY;
2396 	raidwrite_component_label(dev, b_vp, &clabel);
2397 	return(0);
2398 }
2399 
2400 /* ARGSUSED */
2401 int
2402 raidread_component_label(dev_t dev, struct vnode *b_vp,
2403 			 RF_ComponentLabel_t *clabel)
2404 {
2405 	struct buf *bp;
2406 	const struct bdevsw *bdev;
2407 	int error;
2408 
2409 	/* XXX should probably ensure that we don't try to do this if
2410 	   someone has changed rf_protected_sectors. */
2411 
2412 	if (b_vp == NULL) {
2413 		/* For whatever reason, this component is not valid.
2414 		   Don't try to read a component label from it. */
2415 		return(EINVAL);
2416 	}
2417 
2418 	/* get a block of the appropriate size... */
2419 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2420 	bp->b_dev = dev;
2421 
2422 	/* get our ducks in a row for the read */
2423 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2424 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2425 	bp->b_flags |= B_READ;
2426  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2427 
2428 	bdev = bdevsw_lookup(bp->b_dev);
2429 	if (bdev == NULL)
2430 		return (ENXIO);
2431 	(*bdev->d_strategy)(bp);
2432 
2433 	error = biowait(bp);
2434 
2435 	if (!error) {
2436 		memcpy(clabel, bp->b_data,
2437 		       sizeof(RF_ComponentLabel_t));
2438 	}
2439 
2440 	brelse(bp, 0);
2441 	return(error);
2442 }
2443 /* ARGSUSED */
2444 int
2445 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2446 			  RF_ComponentLabel_t *clabel)
2447 {
2448 	struct buf *bp;
2449 	const struct bdevsw *bdev;
2450 	int error;
2451 
2452 	/* get a block of the appropriate size... */
2453 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2454 	bp->b_dev = dev;
2455 
2456 	/* get our ducks in a row for the write */
2457 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2458 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2459 	bp->b_flags |= B_WRITE;
2460  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2461 
2462 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2463 
2464 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2465 
2466 	bdev = bdevsw_lookup(bp->b_dev);
2467 	if (bdev == NULL)
2468 		return (ENXIO);
2469 	(*bdev->d_strategy)(bp);
2470 	error = biowait(bp);
2471 	brelse(bp, 0);
2472 	if (error) {
2473 #if 1
2474 		printf("Failed to write RAID component info!\n");
2475 #endif
2476 	}
2477 
2478 	return(error);
2479 }
2480 
2481 void
2482 rf_markalldirty(RF_Raid_t *raidPtr)
2483 {
2484 	RF_ComponentLabel_t clabel;
2485 	int sparecol;
2486 	int c;
2487 	int j;
2488 	int scol = -1;
2489 
2490 	raidPtr->mod_counter++;
2491 	for (c = 0; c < raidPtr->numCol; c++) {
2492 		/* we don't want to touch (at all) a disk that has
2493 		   failed */
2494 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2495 			raidread_component_label(
2496 						 raidPtr->Disks[c].dev,
2497 						 raidPtr->raid_cinfo[c].ci_vp,
2498 						 &clabel);
2499 			if (clabel.status == rf_ds_spared) {
2500 				/* XXX do something special...
2501 				   but whatever you do, don't
2502 				   try to access it!! */
2503 			} else {
2504 				raidmarkdirty(
2505 					      raidPtr->Disks[c].dev,
2506 					      raidPtr->raid_cinfo[c].ci_vp,
2507 					      raidPtr->mod_counter);
2508 			}
2509 		}
2510 	}
2511 
2512 	for( c = 0; c < raidPtr->numSpare ; c++) {
2513 		sparecol = raidPtr->numCol + c;
2514 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2515 			/*
2516 
2517 			   we claim this disk is "optimal" if it's
2518 			   rf_ds_used_spare, as that means it should be
2519 			   directly substitutable for the disk it replaced.
2520 			   We note that too...
2521 
2522 			 */
2523 
2524 			for(j=0;j<raidPtr->numCol;j++) {
2525 				if (raidPtr->Disks[j].spareCol == sparecol) {
2526 					scol = j;
2527 					break;
2528 				}
2529 			}
2530 
2531 			raidread_component_label(
2532 				 raidPtr->Disks[sparecol].dev,
2533 				 raidPtr->raid_cinfo[sparecol].ci_vp,
2534 				 &clabel);
2535 			/* make sure status is noted */
2536 
2537 			raid_init_component_label(raidPtr, &clabel);
2538 
2539 			clabel.row = 0;
2540 			clabel.column = scol;
2541 			/* Note: we *don't* change status from rf_ds_used_spare
2542 			   to rf_ds_optimal */
2543 			/* clabel.status = rf_ds_optimal; */
2544 
2545 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
2546 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2547 				      raidPtr->mod_counter);
2548 		}
2549 	}
2550 }
2551 
2552 
2553 void
2554 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2555 {
2556 	RF_ComponentLabel_t clabel;
2557 	int sparecol;
2558 	int c;
2559 	int j;
2560 	int scol;
2561 
2562 	scol = -1;
2563 
2564 	/* XXX should do extra checks to make sure things really are clean,
2565 	   rather than blindly setting the clean bit... */
2566 
2567 	raidPtr->mod_counter++;
2568 
2569 	for (c = 0; c < raidPtr->numCol; c++) {
2570 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
2571 			raidread_component_label(
2572 						 raidPtr->Disks[c].dev,
2573 						 raidPtr->raid_cinfo[c].ci_vp,
2574 						 &clabel);
2575 			/* make sure status is noted */
2576 			clabel.status = rf_ds_optimal;
2577 
2578 			/* bump the counter */
2579 			clabel.mod_counter = raidPtr->mod_counter;
2580 
2581 			/* note what unit we are configured as */
2582 			clabel.last_unit = raidPtr->raidid;
2583 
2584 			raidwrite_component_label(
2585 						  raidPtr->Disks[c].dev,
2586 						  raidPtr->raid_cinfo[c].ci_vp,
2587 						  &clabel);
2588 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2589 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2590 					raidmarkclean(
2591 						      raidPtr->Disks[c].dev,
2592 						      raidPtr->raid_cinfo[c].ci_vp,
2593 						      raidPtr->mod_counter);
2594 				}
2595 			}
2596 		}
2597 		/* else we don't touch it.. */
2598 	}
2599 
2600 	for( c = 0; c < raidPtr->numSpare ; c++) {
2601 		sparecol = raidPtr->numCol + c;
2602 		/* Need to ensure that the reconstruct actually completed! */
2603 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2604 			/*
2605 
2606 			   we claim this disk is "optimal" if it's
2607 			   rf_ds_used_spare, as that means it should be
2608 			   directly substitutable for the disk it replaced.
2609 			   We note that too...
2610 
2611 			 */
2612 
2613 			for(j=0;j<raidPtr->numCol;j++) {
2614 				if (raidPtr->Disks[j].spareCol == sparecol) {
2615 					scol = j;
2616 					break;
2617 				}
2618 			}
2619 
2620 			/* XXX shouldn't *really* need this... */
2621 			raidread_component_label(
2622 				      raidPtr->Disks[sparecol].dev,
2623 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2624 				      &clabel);
2625 			/* make sure status is noted */
2626 
2627 			raid_init_component_label(raidPtr, &clabel);
2628 
2629 			clabel.mod_counter = raidPtr->mod_counter;
2630 			clabel.column = scol;
2631 			clabel.status = rf_ds_optimal;
2632 			clabel.last_unit = raidPtr->raidid;
2633 
2634 			raidwrite_component_label(
2635 				      raidPtr->Disks[sparecol].dev,
2636 				      raidPtr->raid_cinfo[sparecol].ci_vp,
2637 				      &clabel);
2638 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2639 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2640 					raidmarkclean( raidPtr->Disks[sparecol].dev,
2641 						       raidPtr->raid_cinfo[sparecol].ci_vp,
2642 						       raidPtr->mod_counter);
2643 				}
2644 			}
2645 		}
2646 	}
2647 }
2648 
2649 void
2650 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2651 {
2652 
2653 	if (vp != NULL) {
2654 		if (auto_configured == 1) {
2655 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2656 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2657 			vput(vp);
2658 
2659 		} else {
2660 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2661 		}
2662 	}
2663 }
2664 
2665 
2666 void
2667 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2668 {
2669 	int r,c;
2670 	struct vnode *vp;
2671 	int acd;
2672 
2673 
2674 	/* We take this opportunity to close the vnodes like we should.. */
2675 
2676 	for (c = 0; c < raidPtr->numCol; c++) {
2677 		vp = raidPtr->raid_cinfo[c].ci_vp;
2678 		acd = raidPtr->Disks[c].auto_configured;
2679 		rf_close_component(raidPtr, vp, acd);
2680 		raidPtr->raid_cinfo[c].ci_vp = NULL;
2681 		raidPtr->Disks[c].auto_configured = 0;
2682 	}
2683 
2684 	for (r = 0; r < raidPtr->numSpare; r++) {
2685 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2686 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2687 		rf_close_component(raidPtr, vp, acd);
2688 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2689 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2690 	}
2691 }
2692 
2693 
2694 void
2695 rf_ReconThread(struct rf_recon_req *req)
2696 {
2697 	int     s;
2698 	RF_Raid_t *raidPtr;
2699 
2700 	s = splbio();
2701 	raidPtr = (RF_Raid_t *) req->raidPtr;
2702 	raidPtr->recon_in_progress = 1;
2703 
2704 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2705 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2706 
2707 	RF_Free(req, sizeof(*req));
2708 
2709 	raidPtr->recon_in_progress = 0;
2710 	splx(s);
2711 
2712 	/* That's all... */
2713 	kthread_exit(0);	/* does not return */
2714 }
2715 
2716 void
2717 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2718 {
2719 	int retcode;
2720 	int s;
2721 
2722 	raidPtr->parity_rewrite_stripes_done = 0;
2723 	raidPtr->parity_rewrite_in_progress = 1;
2724 	s = splbio();
2725 	retcode = rf_RewriteParity(raidPtr);
2726 	splx(s);
2727 	if (retcode) {
2728 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2729 	} else {
2730 		/* set the clean bit!  If we shutdown correctly,
2731 		   the clean bit on each component label will get
2732 		   set */
2733 		raidPtr->parity_good = RF_RAID_CLEAN;
2734 	}
2735 	raidPtr->parity_rewrite_in_progress = 0;
2736 
2737 	/* Anyone waiting for us to stop?  If so, inform them... */
2738 	if (raidPtr->waitShutdown) {
2739 		wakeup(&raidPtr->parity_rewrite_in_progress);
2740 	}
2741 
2742 	/* That's all... */
2743 	kthread_exit(0);	/* does not return */
2744 }
2745 
2746 
2747 void
2748 rf_CopybackThread(RF_Raid_t *raidPtr)
2749 {
2750 	int s;
2751 
2752 	raidPtr->copyback_in_progress = 1;
2753 	s = splbio();
2754 	rf_CopybackReconstructedData(raidPtr);
2755 	splx(s);
2756 	raidPtr->copyback_in_progress = 0;
2757 
2758 	/* That's all... */
2759 	kthread_exit(0);	/* does not return */
2760 }
2761 
2762 
2763 void
2764 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2765 {
2766 	int s;
2767 	RF_Raid_t *raidPtr;
2768 
2769 	s = splbio();
2770 	raidPtr = req->raidPtr;
2771 	raidPtr->recon_in_progress = 1;
2772 	rf_ReconstructInPlace(raidPtr, req->col);
2773 	RF_Free(req, sizeof(*req));
2774 	raidPtr->recon_in_progress = 0;
2775 	splx(s);
2776 
2777 	/* That's all... */
2778 	kthread_exit(0);	/* does not return */
2779 }
2780 
2781 static RF_AutoConfig_t *
2782 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2783     const char *cname, RF_SectorCount_t size)
2784 {
2785 	int good_one = 0;
2786 	RF_ComponentLabel_t *clabel;
2787 	RF_AutoConfig_t *ac;
2788 
2789 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2790 	if (clabel == NULL) {
2791 oomem:
2792 		    while(ac_list) {
2793 			    ac = ac_list;
2794 			    if (ac->clabel)
2795 				    free(ac->clabel, M_RAIDFRAME);
2796 			    ac_list = ac_list->next;
2797 			    free(ac, M_RAIDFRAME);
2798 		    }
2799 		    printf("RAID auto config: out of memory!\n");
2800 		    return NULL; /* XXX probably should panic? */
2801 	}
2802 
2803 	if (!raidread_component_label(dev, vp, clabel)) {
2804 		    /* Got the label.  Does it look reasonable? */
2805 		    if (rf_reasonable_label(clabel) &&
2806 			(clabel->partitionSize <= size)) {
2807 #ifdef DEBUG
2808 			    printf("Component on: %s: %llu\n",
2809 				cname, (unsigned long long)size);
2810 			    rf_print_component_label(clabel);
2811 #endif
2812 			    /* if it's reasonable, add it, else ignore it. */
2813 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2814 				M_NOWAIT);
2815 			    if (ac == NULL) {
2816 				    free(clabel, M_RAIDFRAME);
2817 				    goto oomem;
2818 			    }
2819 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
2820 			    ac->dev = dev;
2821 			    ac->vp = vp;
2822 			    ac->clabel = clabel;
2823 			    ac->next = ac_list;
2824 			    ac_list = ac;
2825 			    good_one = 1;
2826 		    }
2827 	}
2828 	if (!good_one) {
2829 		/* cleanup */
2830 		free(clabel, M_RAIDFRAME);
2831 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2832 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2833 		vput(vp);
2834 	}
2835 	return ac_list;
2836 }
2837 
2838 RF_AutoConfig_t *
2839 rf_find_raid_components()
2840 {
2841 	struct vnode *vp;
2842 	struct disklabel label;
2843 	struct device *dv;
2844 	dev_t dev;
2845 	int bmajor, bminor, wedge;
2846 	int error;
2847 	int i;
2848 	RF_AutoConfig_t *ac_list;
2849 
2850 
2851 	/* initialize the AutoConfig list */
2852 	ac_list = NULL;
2853 
2854 	/* we begin by trolling through *all* the devices on the system */
2855 
2856 	for (dv = alldevs.tqh_first; dv != NULL;
2857 	     dv = dv->dv_list.tqe_next) {
2858 
2859 		/* we are only interested in disks... */
2860 		if (device_class(dv) != DV_DISK)
2861 			continue;
2862 
2863 		/* we don't care about floppies... */
2864 		if (device_is_a(dv, "fd")) {
2865 			continue;
2866 		}
2867 
2868 		/* we don't care about CD's... */
2869 		if (device_is_a(dv, "cd")) {
2870 			continue;
2871 		}
2872 
2873 		/* hdfd is the Atari/Hades floppy driver */
2874 		if (device_is_a(dv, "hdfd")) {
2875 			continue;
2876 		}
2877 
2878 		/* fdisa is the Atari/Milan floppy driver */
2879 		if (device_is_a(dv, "fdisa")) {
2880 			continue;
2881 		}
2882 
2883 		/* need to find the device_name_to_block_device_major stuff */
2884 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2885 
2886 		/* get a vnode for the raw partition of this disk */
2887 
2888 		wedge = device_is_a(dv, "dk");
2889 		bminor = minor(device_unit(dv));
2890 		dev = wedge ? makedev(bmajor, bminor) :
2891 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
2892 		if (bdevvp(dev, &vp))
2893 			panic("RAID can't alloc vnode");
2894 
2895 		error = VOP_OPEN(vp, FREAD, NOCRED);
2896 
2897 		if (error) {
2898 			/* "Who cares."  Continue looking
2899 			   for something that exists*/
2900 			vput(vp);
2901 			continue;
2902 		}
2903 
2904 		if (wedge) {
2905 			struct dkwedge_info dkw;
2906 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2907 			    NOCRED);
2908 			if (error) {
2909 				printf("RAIDframe: can't get wedge info for "
2910 				    "dev %s (%d)\n", device_xname(dv), error);
2911 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2912 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2913 				vput(vp);
2914 				continue;
2915 			}
2916 
2917 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2918 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2919 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2920 				vput(vp);
2921 				continue;
2922 			}
2923 
2924 			ac_list = rf_get_component(ac_list, dev, vp,
2925 			    device_xname(dv), dkw.dkw_size);
2926 			continue;
2927 		}
2928 
2929 		/* Ok, the disk exists.  Go get the disklabel. */
2930 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2931 		if (error) {
2932 			/*
2933 			 * XXX can't happen - open() would
2934 			 * have errored out (or faked up one)
2935 			 */
2936 			if (error != ENOTTY)
2937 				printf("RAIDframe: can't get label for dev "
2938 				    "%s (%d)\n", device_xname(dv), error);
2939 		}
2940 
2941 		/* don't need this any more.  We'll allocate it again
2942 		   a little later if we really do... */
2943 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2944 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2945 		vput(vp);
2946 
2947 		if (error)
2948 			continue;
2949 
2950 		for (i = 0; i < label.d_npartitions; i++) {
2951 			char cname[sizeof(ac_list->devname)];
2952 
2953 			/* We only support partitions marked as RAID */
2954 			if (label.d_partitions[i].p_fstype != FS_RAID)
2955 				continue;
2956 
2957 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2958 			if (bdevvp(dev, &vp))
2959 				panic("RAID can't alloc vnode");
2960 
2961 			error = VOP_OPEN(vp, FREAD, NOCRED);
2962 			if (error) {
2963 				/* Whatever... */
2964 				vput(vp);
2965 				continue;
2966 			}
2967 			snprintf(cname, sizeof(cname), "%s%c",
2968 			    device_xname(dv), 'a' + i);
2969 			ac_list = rf_get_component(ac_list, dev, vp, cname,
2970 				label.d_partitions[i].p_size);
2971 		}
2972 	}
2973 	return ac_list;
2974 }
2975 
2976 
2977 static int
2978 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2979 {
2980 
2981 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2982 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2983 	    ((clabel->clean == RF_RAID_CLEAN) ||
2984 	     (clabel->clean == RF_RAID_DIRTY)) &&
2985 	    clabel->row >=0 &&
2986 	    clabel->column >= 0 &&
2987 	    clabel->num_rows > 0 &&
2988 	    clabel->num_columns > 0 &&
2989 	    clabel->row < clabel->num_rows &&
2990 	    clabel->column < clabel->num_columns &&
2991 	    clabel->blockSize > 0 &&
2992 	    clabel->numBlocks > 0) {
2993 		/* label looks reasonable enough... */
2994 		return(1);
2995 	}
2996 	return(0);
2997 }
2998 
2999 
3000 #ifdef DEBUG
3001 void
3002 rf_print_component_label(RF_ComponentLabel_t *clabel)
3003 {
3004 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3005 	       clabel->row, clabel->column,
3006 	       clabel->num_rows, clabel->num_columns);
3007 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
3008 	       clabel->version, clabel->serial_number,
3009 	       clabel->mod_counter);
3010 	printf("   Clean: %s Status: %d\n",
3011 	       clabel->clean ? "Yes" : "No", clabel->status );
3012 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3013 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3014 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
3015 	       (char) clabel->parityConfig, clabel->blockSize,
3016 	       clabel->numBlocks);
3017 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3018 	printf("   Contains root partition: %s\n",
3019 	       clabel->root_partition ? "Yes" : "No" );
3020 	printf("   Last configured as: raid%d\n", clabel->last_unit );
3021 #if 0
3022 	   printf("   Config order: %d\n", clabel->config_order);
3023 #endif
3024 
3025 }
3026 #endif
3027 
3028 RF_ConfigSet_t *
3029 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3030 {
3031 	RF_AutoConfig_t *ac;
3032 	RF_ConfigSet_t *config_sets;
3033 	RF_ConfigSet_t *cset;
3034 	RF_AutoConfig_t *ac_next;
3035 
3036 
3037 	config_sets = NULL;
3038 
3039 	/* Go through the AutoConfig list, and figure out which components
3040 	   belong to what sets.  */
3041 	ac = ac_list;
3042 	while(ac!=NULL) {
3043 		/* we're going to putz with ac->next, so save it here
3044 		   for use at the end of the loop */
3045 		ac_next = ac->next;
3046 
3047 		if (config_sets == NULL) {
3048 			/* will need at least this one... */
3049 			config_sets = (RF_ConfigSet_t *)
3050 				malloc(sizeof(RF_ConfigSet_t),
3051 				       M_RAIDFRAME, M_NOWAIT);
3052 			if (config_sets == NULL) {
3053 				panic("rf_create_auto_sets: No memory!");
3054 			}
3055 			/* this one is easy :) */
3056 			config_sets->ac = ac;
3057 			config_sets->next = NULL;
3058 			config_sets->rootable = 0;
3059 			ac->next = NULL;
3060 		} else {
3061 			/* which set does this component fit into? */
3062 			cset = config_sets;
3063 			while(cset!=NULL) {
3064 				if (rf_does_it_fit(cset, ac)) {
3065 					/* looks like it matches... */
3066 					ac->next = cset->ac;
3067 					cset->ac = ac;
3068 					break;
3069 				}
3070 				cset = cset->next;
3071 			}
3072 			if (cset==NULL) {
3073 				/* didn't find a match above... new set..*/
3074 				cset = (RF_ConfigSet_t *)
3075 					malloc(sizeof(RF_ConfigSet_t),
3076 					       M_RAIDFRAME, M_NOWAIT);
3077 				if (cset == NULL) {
3078 					panic("rf_create_auto_sets: No memory!");
3079 				}
3080 				cset->ac = ac;
3081 				ac->next = NULL;
3082 				cset->next = config_sets;
3083 				cset->rootable = 0;
3084 				config_sets = cset;
3085 			}
3086 		}
3087 		ac = ac_next;
3088 	}
3089 
3090 
3091 	return(config_sets);
3092 }
3093 
3094 static int
3095 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3096 {
3097 	RF_ComponentLabel_t *clabel1, *clabel2;
3098 
3099 	/* If this one matches the *first* one in the set, that's good
3100 	   enough, since the other members of the set would have been
3101 	   through here too... */
3102 	/* note that we are not checking partitionSize here..
3103 
3104 	   Note that we are also not checking the mod_counters here.
3105 	   If everything else matches execpt the mod_counter, that's
3106 	   good enough for this test.  We will deal with the mod_counters
3107 	   a little later in the autoconfiguration process.
3108 
3109 	    (clabel1->mod_counter == clabel2->mod_counter) &&
3110 
3111 	   The reason we don't check for this is that failed disks
3112 	   will have lower modification counts.  If those disks are
3113 	   not added to the set they used to belong to, then they will
3114 	   form their own set, which may result in 2 different sets,
3115 	   for example, competing to be configured at raid0, and
3116 	   perhaps competing to be the root filesystem set.  If the
3117 	   wrong ones get configured, or both attempt to become /,
3118 	   weird behaviour and or serious lossage will occur.  Thus we
3119 	   need to bring them into the fold here, and kick them out at
3120 	   a later point.
3121 
3122 	*/
3123 
3124 	clabel1 = cset->ac->clabel;
3125 	clabel2 = ac->clabel;
3126 	if ((clabel1->version == clabel2->version) &&
3127 	    (clabel1->serial_number == clabel2->serial_number) &&
3128 	    (clabel1->num_rows == clabel2->num_rows) &&
3129 	    (clabel1->num_columns == clabel2->num_columns) &&
3130 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
3131 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3132 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3133 	    (clabel1->parityConfig == clabel2->parityConfig) &&
3134 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3135 	    (clabel1->blockSize == clabel2->blockSize) &&
3136 	    (clabel1->numBlocks == clabel2->numBlocks) &&
3137 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
3138 	    (clabel1->root_partition == clabel2->root_partition) &&
3139 	    (clabel1->last_unit == clabel2->last_unit) &&
3140 	    (clabel1->config_order == clabel2->config_order)) {
3141 		/* if it get's here, it almost *has* to be a match */
3142 	} else {
3143 		/* it's not consistent with somebody in the set..
3144 		   punt */
3145 		return(0);
3146 	}
3147 	/* all was fine.. it must fit... */
3148 	return(1);
3149 }
3150 
3151 int
3152 rf_have_enough_components(RF_ConfigSet_t *cset)
3153 {
3154 	RF_AutoConfig_t *ac;
3155 	RF_AutoConfig_t *auto_config;
3156 	RF_ComponentLabel_t *clabel;
3157 	int c;
3158 	int num_cols;
3159 	int num_missing;
3160 	int mod_counter;
3161 	int mod_counter_found;
3162 	int even_pair_failed;
3163 	char parity_type;
3164 
3165 
3166 	/* check to see that we have enough 'live' components
3167 	   of this set.  If so, we can configure it if necessary */
3168 
3169 	num_cols = cset->ac->clabel->num_columns;
3170 	parity_type = cset->ac->clabel->parityConfig;
3171 
3172 	/* XXX Check for duplicate components!?!?!? */
3173 
3174 	/* Determine what the mod_counter is supposed to be for this set. */
3175 
3176 	mod_counter_found = 0;
3177 	mod_counter = 0;
3178 	ac = cset->ac;
3179 	while(ac!=NULL) {
3180 		if (mod_counter_found==0) {
3181 			mod_counter = ac->clabel->mod_counter;
3182 			mod_counter_found = 1;
3183 		} else {
3184 			if (ac->clabel->mod_counter > mod_counter) {
3185 				mod_counter = ac->clabel->mod_counter;
3186 			}
3187 		}
3188 		ac = ac->next;
3189 	}
3190 
3191 	num_missing = 0;
3192 	auto_config = cset->ac;
3193 
3194 	even_pair_failed = 0;
3195 	for(c=0; c<num_cols; c++) {
3196 		ac = auto_config;
3197 		while(ac!=NULL) {
3198 			if ((ac->clabel->column == c) &&
3199 			    (ac->clabel->mod_counter == mod_counter)) {
3200 				/* it's this one... */
3201 #ifdef DEBUG
3202 				printf("Found: %s at %d\n",
3203 				       ac->devname,c);
3204 #endif
3205 				break;
3206 			}
3207 			ac=ac->next;
3208 		}
3209 		if (ac==NULL) {
3210 				/* Didn't find one here! */
3211 				/* special case for RAID 1, especially
3212 				   where there are more than 2
3213 				   components (where RAIDframe treats
3214 				   things a little differently :( ) */
3215 			if (parity_type == '1') {
3216 				if (c%2 == 0) { /* even component */
3217 					even_pair_failed = 1;
3218 				} else { /* odd component.  If
3219 					    we're failed, and
3220 					    so is the even
3221 					    component, it's
3222 					    "Good Night, Charlie" */
3223 					if (even_pair_failed == 1) {
3224 						return(0);
3225 					}
3226 				}
3227 			} else {
3228 				/* normal accounting */
3229 				num_missing++;
3230 			}
3231 		}
3232 		if ((parity_type == '1') && (c%2 == 1)) {
3233 				/* Just did an even component, and we didn't
3234 				   bail.. reset the even_pair_failed flag,
3235 				   and go on to the next component.... */
3236 			even_pair_failed = 0;
3237 		}
3238 	}
3239 
3240 	clabel = cset->ac->clabel;
3241 
3242 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3243 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3244 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
3245 		/* XXX this needs to be made *much* more general */
3246 		/* Too many failures */
3247 		return(0);
3248 	}
3249 	/* otherwise, all is well, and we've got enough to take a kick
3250 	   at autoconfiguring this set */
3251 	return(1);
3252 }
3253 
3254 void
3255 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3256 			RF_Raid_t *raidPtr)
3257 {
3258 	RF_ComponentLabel_t *clabel;
3259 	int i;
3260 
3261 	clabel = ac->clabel;
3262 
3263 	/* 1. Fill in the common stuff */
3264 	config->numRow = clabel->num_rows = 1;
3265 	config->numCol = clabel->num_columns;
3266 	config->numSpare = 0; /* XXX should this be set here? */
3267 	config->sectPerSU = clabel->sectPerSU;
3268 	config->SUsPerPU = clabel->SUsPerPU;
3269 	config->SUsPerRU = clabel->SUsPerRU;
3270 	config->parityConfig = clabel->parityConfig;
3271 	/* XXX... */
3272 	strcpy(config->diskQueueType,"fifo");
3273 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3274 	config->layoutSpecificSize = 0; /* XXX ?? */
3275 
3276 	while(ac!=NULL) {
3277 		/* row/col values will be in range due to the checks
3278 		   in reasonable_label() */
3279 		strcpy(config->devnames[0][ac->clabel->column],
3280 		       ac->devname);
3281 		ac = ac->next;
3282 	}
3283 
3284 	for(i=0;i<RF_MAXDBGV;i++) {
3285 		config->debugVars[i][0] = 0;
3286 	}
3287 }
3288 
3289 int
3290 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3291 {
3292 	RF_ComponentLabel_t clabel;
3293 	struct vnode *vp;
3294 	dev_t dev;
3295 	int column;
3296 	int sparecol;
3297 
3298 	raidPtr->autoconfigure = new_value;
3299 
3300 	for(column=0; column<raidPtr->numCol; column++) {
3301 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3302 			dev = raidPtr->Disks[column].dev;
3303 			vp = raidPtr->raid_cinfo[column].ci_vp;
3304 			raidread_component_label(dev, vp, &clabel);
3305 			clabel.autoconfigure = new_value;
3306 			raidwrite_component_label(dev, vp, &clabel);
3307 		}
3308 	}
3309 	for(column = 0; column < raidPtr->numSpare ; column++) {
3310 		sparecol = raidPtr->numCol + column;
3311 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3312 			dev = raidPtr->Disks[sparecol].dev;
3313 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3314 			raidread_component_label(dev, vp, &clabel);
3315 			clabel.autoconfigure = new_value;
3316 			raidwrite_component_label(dev, vp, &clabel);
3317 		}
3318 	}
3319 	return(new_value);
3320 }
3321 
3322 int
3323 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3324 {
3325 	RF_ComponentLabel_t clabel;
3326 	struct vnode *vp;
3327 	dev_t dev;
3328 	int column;
3329 	int sparecol;
3330 
3331 	raidPtr->root_partition = new_value;
3332 	for(column=0; column<raidPtr->numCol; column++) {
3333 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3334 			dev = raidPtr->Disks[column].dev;
3335 			vp = raidPtr->raid_cinfo[column].ci_vp;
3336 			raidread_component_label(dev, vp, &clabel);
3337 			clabel.root_partition = new_value;
3338 			raidwrite_component_label(dev, vp, &clabel);
3339 		}
3340 	}
3341 	for(column = 0; column < raidPtr->numSpare ; column++) {
3342 		sparecol = raidPtr->numCol + column;
3343 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3344 			dev = raidPtr->Disks[sparecol].dev;
3345 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3346 			raidread_component_label(dev, vp, &clabel);
3347 			clabel.root_partition = new_value;
3348 			raidwrite_component_label(dev, vp, &clabel);
3349 		}
3350 	}
3351 	return(new_value);
3352 }
3353 
3354 void
3355 rf_release_all_vps(RF_ConfigSet_t *cset)
3356 {
3357 	RF_AutoConfig_t *ac;
3358 
3359 	ac = cset->ac;
3360 	while(ac!=NULL) {
3361 		/* Close the vp, and give it back */
3362 		if (ac->vp) {
3363 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3364 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
3365 			vput(ac->vp);
3366 			ac->vp = NULL;
3367 		}
3368 		ac = ac->next;
3369 	}
3370 }
3371 
3372 
3373 void
3374 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3375 {
3376 	RF_AutoConfig_t *ac;
3377 	RF_AutoConfig_t *next_ac;
3378 
3379 	ac = cset->ac;
3380 	while(ac!=NULL) {
3381 		next_ac = ac->next;
3382 		/* nuke the label */
3383 		free(ac->clabel, M_RAIDFRAME);
3384 		/* cleanup the config structure */
3385 		free(ac, M_RAIDFRAME);
3386 		/* "next.." */
3387 		ac = next_ac;
3388 	}
3389 	/* and, finally, nuke the config set */
3390 	free(cset, M_RAIDFRAME);
3391 }
3392 
3393 
3394 void
3395 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3396 {
3397 	/* current version number */
3398 	clabel->version = RF_COMPONENT_LABEL_VERSION;
3399 	clabel->serial_number = raidPtr->serial_number;
3400 	clabel->mod_counter = raidPtr->mod_counter;
3401 	clabel->num_rows = 1;
3402 	clabel->num_columns = raidPtr->numCol;
3403 	clabel->clean = RF_RAID_DIRTY; /* not clean */
3404 	clabel->status = rf_ds_optimal; /* "It's good!" */
3405 
3406 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3407 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3408 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3409 
3410 	clabel->blockSize = raidPtr->bytesPerSector;
3411 	clabel->numBlocks = raidPtr->sectorsPerDisk;
3412 
3413 	/* XXX not portable */
3414 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3415 	clabel->maxOutstanding = raidPtr->maxOutstanding;
3416 	clabel->autoconfigure = raidPtr->autoconfigure;
3417 	clabel->root_partition = raidPtr->root_partition;
3418 	clabel->last_unit = raidPtr->raidid;
3419 	clabel->config_order = raidPtr->config_order;
3420 }
3421 
3422 int
3423 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3424 {
3425 	RF_Raid_t *raidPtr;
3426 	RF_Config_t *config;
3427 	int raidID;
3428 	int retcode;
3429 
3430 #ifdef DEBUG
3431 	printf("RAID autoconfigure\n");
3432 #endif
3433 
3434 	retcode = 0;
3435 	*unit = -1;
3436 
3437 	/* 1. Create a config structure */
3438 
3439 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3440 				       M_RAIDFRAME,
3441 				       M_NOWAIT);
3442 	if (config==NULL) {
3443 		printf("Out of mem!?!?\n");
3444 				/* XXX do something more intelligent here. */
3445 		return(1);
3446 	}
3447 
3448 	memset(config, 0, sizeof(RF_Config_t));
3449 
3450 	/*
3451 	   2. Figure out what RAID ID this one is supposed to live at
3452 	   See if we can get the same RAID dev that it was configured
3453 	   on last time..
3454 	*/
3455 
3456 	raidID = cset->ac->clabel->last_unit;
3457 	if ((raidID < 0) || (raidID >= numraid)) {
3458 		/* let's not wander off into lala land. */
3459 		raidID = numraid - 1;
3460 	}
3461 	if (raidPtrs[raidID]->valid != 0) {
3462 
3463 		/*
3464 		   Nope... Go looking for an alternative...
3465 		   Start high so we don't immediately use raid0 if that's
3466 		   not taken.
3467 		*/
3468 
3469 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
3470 			if (raidPtrs[raidID]->valid == 0) {
3471 				/* can use this one! */
3472 				break;
3473 			}
3474 		}
3475 	}
3476 
3477 	if (raidID < 0) {
3478 		/* punt... */
3479 		printf("Unable to auto configure this set!\n");
3480 		printf("(Out of RAID devs!)\n");
3481 		free(config, M_RAIDFRAME);
3482 		return(1);
3483 	}
3484 
3485 #ifdef DEBUG
3486 	printf("Configuring raid%d:\n",raidID);
3487 #endif
3488 
3489 	raidPtr = raidPtrs[raidID];
3490 
3491 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
3492 	raidPtr->raidid = raidID;
3493 	raidPtr->openings = RAIDOUTSTANDING;
3494 
3495 	/* 3. Build the configuration structure */
3496 	rf_create_configuration(cset->ac, config, raidPtr);
3497 
3498 	/* 4. Do the configuration */
3499 	retcode = rf_Configure(raidPtr, config, cset->ac);
3500 
3501 	if (retcode == 0) {
3502 
3503 		raidinit(raidPtrs[raidID]);
3504 
3505 		rf_markalldirty(raidPtrs[raidID]);
3506 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3507 		if (cset->ac->clabel->root_partition==1) {
3508 			/* everything configured just fine.  Make a note
3509 			   that this set is eligible to be root. */
3510 			cset->rootable = 1;
3511 			/* XXX do this here? */
3512 			raidPtrs[raidID]->root_partition = 1;
3513 		}
3514 	}
3515 
3516 	/* 5. Cleanup */
3517 	free(config, M_RAIDFRAME);
3518 
3519 	*unit = raidID;
3520 	return(retcode);
3521 }
3522 
3523 void
3524 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3525 {
3526 	struct buf *bp;
3527 
3528 	bp = (struct buf *)desc->bp;
3529 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3530 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3531 }
3532 
3533 void
3534 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3535 	     size_t xmin, size_t xmax)
3536 {
3537 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3538 	pool_sethiwat(p, xmax);
3539 	pool_prime(p, xmin);
3540 	pool_setlowat(p, xmin);
3541 }
3542 
3543 /*
3544  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3545  * if there is IO pending and if that IO could possibly be done for a
3546  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
3547  * otherwise.
3548  *
3549  */
3550 
3551 int
3552 rf_buf_queue_check(int raidid)
3553 {
3554 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3555 	    raidPtrs[raidid]->openings > 0) {
3556 		/* there is work to do */
3557 		return 0;
3558 	}
3559 	/* default is nothing to do */
3560 	return 1;
3561 }
3562 
3563 int
3564 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3565 {
3566 	struct partinfo dpart;
3567 	struct dkwedge_info dkw;
3568 	int error;
3569 
3570 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3571 	if (error == 0) {
3572 		diskPtr->blockSize = dpart.disklab->d_secsize;
3573 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3574 		diskPtr->partitionSize = dpart.part->p_size;
3575 		return 0;
3576 	}
3577 
3578 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3579 	if (error == 0) {
3580 		diskPtr->blockSize = 512;	/* XXX */
3581 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3582 		diskPtr->partitionSize = dkw.dkw_size;
3583 		return 0;
3584 	}
3585 	return error;
3586 }
3587 
3588 static int
3589 raid_match(struct device *self, struct cfdata *cfdata,
3590     void *aux)
3591 {
3592 	return 1;
3593 }
3594 
3595 static void
3596 raid_attach(struct device *parent, struct device *self,
3597     void *aux)
3598 {
3599 
3600 }
3601 
3602 
3603 static int
3604 raid_detach(struct device *self, int flags)
3605 {
3606 	struct raid_softc *rs = (struct raid_softc *)self;
3607 
3608 	if (rs->sc_flags & RAIDF_INITED)
3609 		return EBUSY;
3610 
3611 	return 0;
3612 }
3613 
3614 static void
3615 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3616 {
3617 	prop_dictionary_t disk_info, odisk_info, geom;
3618 	disk_info = prop_dictionary_create();
3619 	geom = prop_dictionary_create();
3620 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
3621 				   raidPtr->totalSectors);
3622 	prop_dictionary_set_uint32(geom, "sector-size",
3623 				   raidPtr->bytesPerSector);
3624 
3625 	prop_dictionary_set_uint16(geom, "sectors-per-track",
3626 				   raidPtr->Layout.dataSectorsPerStripe);
3627 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3628 				   4 * raidPtr->numCol);
3629 
3630 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3631 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3632 	   (4 * raidPtr->numCol)));
3633 
3634 	prop_dictionary_set(disk_info, "geometry", geom);
3635 	prop_object_release(geom);
3636 	prop_dictionary_set(device_properties(rs->sc_dev),
3637 			    "disk-info", disk_info);
3638 	odisk_info = rs->sc_dkdev.dk_info;
3639 	rs->sc_dkdev.dk_info = disk_info;
3640 	if (odisk_info)
3641 		prop_object_release(odisk_info);
3642 }
3643