1 /* $NetBSD: rf_netbsdkintf.c,v 1.186 2005/02/27 00:27:45 perry Exp $ */ 2 /*- 3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Greg Oster; Jason R. Thorpe. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the NetBSD 20 * Foundation, Inc. and its contributors. 21 * 4. Neither the name of The NetBSD Foundation nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1990, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * This code is derived from software contributed to Berkeley by 43 * the Systems Programming Group of the University of Utah Computer 44 * Science Department. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 71 * 72 * @(#)cd.c 8.2 (Berkeley) 11/16/93 73 */ 74 75 /* 76 * Copyright (c) 1988 University of Utah. 77 * 78 * This code is derived from software contributed to Berkeley by 79 * the Systems Programming Group of the University of Utah Computer 80 * Science Department. 81 * 82 * Redistribution and use in source and binary forms, with or without 83 * modification, are permitted provided that the following conditions 84 * are met: 85 * 1. Redistributions of source code must retain the above copyright 86 * notice, this list of conditions and the following disclaimer. 87 * 2. Redistributions in binary form must reproduce the above copyright 88 * notice, this list of conditions and the following disclaimer in the 89 * documentation and/or other materials provided with the distribution. 90 * 3. All advertising materials mentioning features or use of this software 91 * must display the following acknowledgement: 92 * This product includes software developed by the University of 93 * California, Berkeley and its contributors. 94 * 4. Neither the name of the University nor the names of its contributors 95 * may be used to endorse or promote products derived from this software 96 * without specific prior written permission. 97 * 98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 108 * SUCH DAMAGE. 109 * 110 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 111 * 112 * @(#)cd.c 8.2 (Berkeley) 11/16/93 113 */ 114 115 /* 116 * Copyright (c) 1995 Carnegie-Mellon University. 117 * All rights reserved. 118 * 119 * Authors: Mark Holland, Jim Zelenka 120 * 121 * Permission to use, copy, modify and distribute this software and 122 * its documentation is hereby granted, provided that both the copyright 123 * notice and this permission notice appear in all copies of the 124 * software, derivative works or modified versions, and any portions 125 * thereof, and that both notices appear in supporting documentation. 126 * 127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 130 * 131 * Carnegie Mellon requests users of this software to return to 132 * 133 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 134 * School of Computer Science 135 * Carnegie Mellon University 136 * Pittsburgh PA 15213-3890 137 * 138 * any improvements or extensions that they make and grant Carnegie the 139 * rights to redistribute these changes. 140 */ 141 142 /*********************************************************** 143 * 144 * rf_kintf.c -- the kernel interface routines for RAIDframe 145 * 146 ***********************************************************/ 147 148 #include <sys/cdefs.h> 149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.186 2005/02/27 00:27:45 perry Exp $"); 150 151 #include <sys/param.h> 152 #include <sys/errno.h> 153 #include <sys/pool.h> 154 #include <sys/proc.h> 155 #include <sys/queue.h> 156 #include <sys/disk.h> 157 #include <sys/device.h> 158 #include <sys/stat.h> 159 #include <sys/ioctl.h> 160 #include <sys/fcntl.h> 161 #include <sys/systm.h> 162 #include <sys/namei.h> 163 #include <sys/vnode.h> 164 #include <sys/disklabel.h> 165 #include <sys/conf.h> 166 #include <sys/lock.h> 167 #include <sys/buf.h> 168 #include <sys/bufq.h> 169 #include <sys/user.h> 170 #include <sys/reboot.h> 171 172 #include <dev/raidframe/raidframevar.h> 173 #include <dev/raidframe/raidframeio.h> 174 #include "raid.h" 175 #include "opt_raid_autoconfig.h" 176 #include "rf_raid.h" 177 #include "rf_copyback.h" 178 #include "rf_dag.h" 179 #include "rf_dagflags.h" 180 #include "rf_desc.h" 181 #include "rf_diskqueue.h" 182 #include "rf_etimer.h" 183 #include "rf_general.h" 184 #include "rf_kintf.h" 185 #include "rf_options.h" 186 #include "rf_driver.h" 187 #include "rf_parityscan.h" 188 #include "rf_threadstuff.h" 189 190 #ifdef DEBUG 191 int rf_kdebug_level = 0; 192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a 193 #else /* DEBUG */ 194 #define db1_printf(a) { } 195 #endif /* DEBUG */ 196 197 static RF_Raid_t **raidPtrs; /* global raid device descriptors */ 198 199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex) 200 201 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a 202 * spare table */ 203 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from 204 * installation process */ 205 206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures"); 207 208 /* prototypes */ 209 static void KernelWakeupFunc(struct buf * bp); 210 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag, 211 dev_t dev, RF_SectorNum_t startSect, 212 RF_SectorCount_t numSect, caddr_t buf, 213 void (*cbFunc) (struct buf *), void *cbArg, 214 int logBytesPerSector, struct proc * b_proc); 215 static void raidinit(RF_Raid_t *); 216 217 void raidattach(int); 218 219 dev_type_open(raidopen); 220 dev_type_close(raidclose); 221 dev_type_read(raidread); 222 dev_type_write(raidwrite); 223 dev_type_ioctl(raidioctl); 224 dev_type_strategy(raidstrategy); 225 dev_type_dump(raiddump); 226 dev_type_size(raidsize); 227 228 const struct bdevsw raid_bdevsw = { 229 raidopen, raidclose, raidstrategy, raidioctl, 230 raiddump, raidsize, D_DISK 231 }; 232 233 const struct cdevsw raid_cdevsw = { 234 raidopen, raidclose, raidread, raidwrite, raidioctl, 235 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 236 }; 237 238 /* 239 * Pilfered from ccd.c 240 */ 241 242 struct raidbuf { 243 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */ 244 struct buf *rf_obp; /* ptr. to original I/O buf */ 245 RF_DiskQueueData_t *req;/* the request that this was part of.. */ 246 }; 247 248 /* XXX Not sure if the following should be replacing the raidPtrs above, 249 or if it should be used in conjunction with that... 250 */ 251 252 struct raid_softc { 253 int sc_flags; /* flags */ 254 int sc_cflags; /* configuration flags */ 255 size_t sc_size; /* size of the raid device */ 256 char sc_xname[20]; /* XXX external name */ 257 struct disk sc_dkdev; /* generic disk device info */ 258 struct bufq_state buf_queue; /* used for the device queue */ 259 }; 260 /* sc_flags */ 261 #define RAIDF_INITED 0x01 /* unit has been initialized */ 262 #define RAIDF_WLABEL 0x02 /* label area is writable */ 263 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */ 264 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */ 265 #define RAIDF_LOCKED 0x80 /* unit is locked */ 266 267 #define raidunit(x) DISKUNIT(x) 268 int numraid = 0; 269 270 /* 271 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. 272 * Be aware that large numbers can allow the driver to consume a lot of 273 * kernel memory, especially on writes, and in degraded mode reads. 274 * 275 * For example: with a stripe width of 64 blocks (32k) and 5 disks, 276 * a single 64K write will typically require 64K for the old data, 277 * 64K for the old parity, and 64K for the new parity, for a total 278 * of 192K (if the parity buffer is not re-used immediately). 279 * Even it if is used immediately, that's still 128K, which when multiplied 280 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. 281 * 282 * Now in degraded mode, for example, a 64K read on the above setup may 283 * require data reconstruction, which will require *all* of the 4 remaining 284 * disks to participate -- 4 * 32K/disk == 128K again. 285 */ 286 287 #ifndef RAIDOUTSTANDING 288 #define RAIDOUTSTANDING 6 289 #endif 290 291 #define RAIDLABELDEV(dev) \ 292 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART)) 293 294 /* declared here, and made public, for the benefit of KVM stuff.. */ 295 struct raid_softc *raid_softc; 296 297 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, 298 struct disklabel *); 299 static void raidgetdisklabel(dev_t); 300 static void raidmakedisklabel(struct raid_softc *); 301 302 static int raidlock(struct raid_softc *); 303 static void raidunlock(struct raid_softc *); 304 305 static void rf_markalldirty(RF_Raid_t *); 306 307 struct device *raidrootdev; 308 309 void rf_ReconThread(struct rf_recon_req *); 310 void rf_RewriteParityThread(RF_Raid_t *raidPtr); 311 void rf_CopybackThread(RF_Raid_t *raidPtr); 312 void rf_ReconstructInPlaceThread(struct rf_recon_req *); 313 int rf_autoconfig(struct device *self); 314 void rf_buildroothack(RF_ConfigSet_t *); 315 316 RF_AutoConfig_t *rf_find_raid_components(void); 317 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); 318 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); 319 static int rf_reasonable_label(RF_ComponentLabel_t *); 320 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); 321 int rf_set_autoconfig(RF_Raid_t *, int); 322 int rf_set_rootpartition(RF_Raid_t *, int); 323 void rf_release_all_vps(RF_ConfigSet_t *); 324 void rf_cleanup_config_set(RF_ConfigSet_t *); 325 int rf_have_enough_components(RF_ConfigSet_t *); 326 int rf_auto_config_set(RF_ConfigSet_t *, int *); 327 328 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not 329 allow autoconfig to take place. 330 Note that this is overridden by having 331 RAID_AUTOCONFIG as an option in the 332 kernel config file. */ 333 334 struct RF_Pools_s rf_pools; 335 336 void 337 raidattach(int num) 338 { 339 int raidID; 340 int i, rc; 341 342 #ifdef DEBUG 343 printf("raidattach: Asked for %d units\n", num); 344 #endif 345 346 if (num <= 0) { 347 #ifdef DIAGNOSTIC 348 panic("raidattach: count <= 0"); 349 #endif 350 return; 351 } 352 /* This is where all the initialization stuff gets done. */ 353 354 numraid = num; 355 356 /* Make some space for requested number of units... */ 357 358 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **)); 359 if (raidPtrs == NULL) { 360 panic("raidPtrs is NULL!!"); 361 } 362 363 /* Initialize the component buffer pool. */ 364 rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf), 365 "raidpl", num * RAIDOUTSTANDING, 366 2 * num * RAIDOUTSTANDING); 367 368 rf_mutex_init(&rf_sparet_wait_mutex); 369 370 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; 371 372 for (i = 0; i < num; i++) 373 raidPtrs[i] = NULL; 374 rc = rf_BootRaidframe(); 375 if (rc == 0) 376 printf("Kernelized RAIDframe activated\n"); 377 else 378 panic("Serious error booting RAID!!"); 379 380 /* put together some datastructures like the CCD device does.. This 381 * lets us lock the device and what-not when it gets opened. */ 382 383 raid_softc = (struct raid_softc *) 384 malloc(num * sizeof(struct raid_softc), 385 M_RAIDFRAME, M_NOWAIT); 386 if (raid_softc == NULL) { 387 printf("WARNING: no memory for RAIDframe driver\n"); 388 return; 389 } 390 391 memset(raid_softc, 0, num * sizeof(struct raid_softc)); 392 393 raidrootdev = (struct device *)malloc(num * sizeof(struct device), 394 M_RAIDFRAME, M_NOWAIT); 395 if (raidrootdev == NULL) { 396 panic("No memory for RAIDframe driver!!?!?!"); 397 } 398 399 for (raidID = 0; raidID < num; raidID++) { 400 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS); 401 402 raidrootdev[raidID].dv_class = DV_DISK; 403 raidrootdev[raidID].dv_cfdata = NULL; 404 raidrootdev[raidID].dv_unit = raidID; 405 raidrootdev[raidID].dv_parent = NULL; 406 raidrootdev[raidID].dv_flags = 0; 407 snprintf(raidrootdev[raidID].dv_xname, 408 sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID); 409 410 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t), 411 (RF_Raid_t *)); 412 if (raidPtrs[raidID] == NULL) { 413 printf("WARNING: raidPtrs[%d] is NULL\n", raidID); 414 numraid = raidID; 415 return; 416 } 417 } 418 419 #ifdef RAID_AUTOCONFIG 420 raidautoconfig = 1; 421 #endif 422 423 /* 424 * Register a finalizer which will be used to auto-config RAID 425 * sets once all real hardware devices have been found. 426 */ 427 if (config_finalize_register(NULL, rf_autoconfig) != 0) 428 printf("WARNING: unable to register RAIDframe finalizer\n"); 429 } 430 431 int 432 rf_autoconfig(struct device *self) 433 { 434 RF_AutoConfig_t *ac_list; 435 RF_ConfigSet_t *config_sets; 436 437 if (raidautoconfig == 0) 438 return (0); 439 440 /* XXX This code can only be run once. */ 441 raidautoconfig = 0; 442 443 /* 1. locate all RAID components on the system */ 444 #ifdef DEBUG 445 printf("Searching for RAID components...\n"); 446 #endif 447 ac_list = rf_find_raid_components(); 448 449 /* 2. Sort them into their respective sets. */ 450 config_sets = rf_create_auto_sets(ac_list); 451 452 /* 453 * 3. Evaluate each set andconfigure the valid ones. 454 * This gets done in rf_buildroothack(). 455 */ 456 rf_buildroothack(config_sets); 457 458 return (1); 459 } 460 461 void 462 rf_buildroothack(RF_ConfigSet_t *config_sets) 463 { 464 RF_ConfigSet_t *cset; 465 RF_ConfigSet_t *next_cset; 466 int retcode; 467 int raidID; 468 int rootID; 469 int num_root; 470 471 rootID = 0; 472 num_root = 0; 473 cset = config_sets; 474 while(cset != NULL ) { 475 next_cset = cset->next; 476 if (rf_have_enough_components(cset) && 477 cset->ac->clabel->autoconfigure==1) { 478 retcode = rf_auto_config_set(cset,&raidID); 479 if (!retcode) { 480 if (cset->rootable) { 481 rootID = raidID; 482 num_root++; 483 } 484 } else { 485 /* The autoconfig didn't work :( */ 486 #if DEBUG 487 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID); 488 #endif 489 rf_release_all_vps(cset); 490 } 491 } else { 492 /* we're not autoconfiguring this set... 493 release the associated resources */ 494 rf_release_all_vps(cset); 495 } 496 /* cleanup */ 497 rf_cleanup_config_set(cset); 498 cset = next_cset; 499 } 500 501 /* we found something bootable... */ 502 503 if (num_root == 1) { 504 booted_device = &raidrootdev[rootID]; 505 } else if (num_root > 1) { 506 /* we can't guess.. require the user to answer... */ 507 boothowto |= RB_ASKNAME; 508 } 509 } 510 511 512 int 513 raidsize(dev_t dev) 514 { 515 struct raid_softc *rs; 516 struct disklabel *lp; 517 int part, unit, omask, size; 518 519 unit = raidunit(dev); 520 if (unit >= numraid) 521 return (-1); 522 rs = &raid_softc[unit]; 523 524 if ((rs->sc_flags & RAIDF_INITED) == 0) 525 return (-1); 526 527 part = DISKPART(dev); 528 omask = rs->sc_dkdev.dk_openmask & (1 << part); 529 lp = rs->sc_dkdev.dk_label; 530 531 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc)) 532 return (-1); 533 534 if (lp->d_partitions[part].p_fstype != FS_SWAP) 535 size = -1; 536 else 537 size = lp->d_partitions[part].p_size * 538 (lp->d_secsize / DEV_BSIZE); 539 540 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc)) 541 return (-1); 542 543 return (size); 544 545 } 546 547 int 548 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size) 549 { 550 /* Not implemented. */ 551 return ENXIO; 552 } 553 /* ARGSUSED */ 554 int 555 raidopen(dev_t dev, int flags, int fmt, struct proc *p) 556 { 557 int unit = raidunit(dev); 558 struct raid_softc *rs; 559 struct disklabel *lp; 560 int part, pmask; 561 int error = 0; 562 563 if (unit >= numraid) 564 return (ENXIO); 565 rs = &raid_softc[unit]; 566 567 if ((error = raidlock(rs)) != 0) 568 return (error); 569 lp = rs->sc_dkdev.dk_label; 570 571 part = DISKPART(dev); 572 pmask = (1 << part); 573 574 if ((rs->sc_flags & RAIDF_INITED) && 575 (rs->sc_dkdev.dk_openmask == 0)) 576 raidgetdisklabel(dev); 577 578 /* make sure that this partition exists */ 579 580 if (part != RAW_PART) { 581 if (((rs->sc_flags & RAIDF_INITED) == 0) || 582 ((part >= lp->d_npartitions) || 583 (lp->d_partitions[part].p_fstype == FS_UNUSED))) { 584 error = ENXIO; 585 raidunlock(rs); 586 return (error); 587 } 588 } 589 /* Prevent this unit from being unconfigured while open. */ 590 switch (fmt) { 591 case S_IFCHR: 592 rs->sc_dkdev.dk_copenmask |= pmask; 593 break; 594 595 case S_IFBLK: 596 rs->sc_dkdev.dk_bopenmask |= pmask; 597 break; 598 } 599 600 if ((rs->sc_dkdev.dk_openmask == 0) && 601 ((rs->sc_flags & RAIDF_INITED) != 0)) { 602 /* First one... mark things as dirty... Note that we *MUST* 603 have done a configure before this. I DO NOT WANT TO BE 604 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED 605 THAT THEY BELONG TOGETHER!!!!! */ 606 /* XXX should check to see if we're only open for reading 607 here... If so, we needn't do this, but then need some 608 other way of keeping track of what's happened.. */ 609 610 rf_markalldirty( raidPtrs[unit] ); 611 } 612 613 614 rs->sc_dkdev.dk_openmask = 615 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 616 617 raidunlock(rs); 618 619 return (error); 620 621 622 } 623 /* ARGSUSED */ 624 int 625 raidclose(dev_t dev, int flags, int fmt, struct proc *p) 626 { 627 int unit = raidunit(dev); 628 struct raid_softc *rs; 629 int error = 0; 630 int part; 631 632 if (unit >= numraid) 633 return (ENXIO); 634 rs = &raid_softc[unit]; 635 636 if ((error = raidlock(rs)) != 0) 637 return (error); 638 639 part = DISKPART(dev); 640 641 /* ...that much closer to allowing unconfiguration... */ 642 switch (fmt) { 643 case S_IFCHR: 644 rs->sc_dkdev.dk_copenmask &= ~(1 << part); 645 break; 646 647 case S_IFBLK: 648 rs->sc_dkdev.dk_bopenmask &= ~(1 << part); 649 break; 650 } 651 rs->sc_dkdev.dk_openmask = 652 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 653 654 if ((rs->sc_dkdev.dk_openmask == 0) && 655 ((rs->sc_flags & RAIDF_INITED) != 0)) { 656 /* Last one... device is not unconfigured yet. 657 Device shutdown has taken care of setting the 658 clean bits if RAIDF_INITED is not set 659 mark things as clean... */ 660 661 rf_update_component_labels(raidPtrs[unit], 662 RF_FINAL_COMPONENT_UPDATE); 663 if (doing_shutdown) { 664 /* last one, and we're going down, so 665 lights out for this RAID set too. */ 666 error = rf_Shutdown(raidPtrs[unit]); 667 668 /* It's no longer initialized... */ 669 rs->sc_flags &= ~RAIDF_INITED; 670 671 /* Detach the disk. */ 672 disk_detach(&rs->sc_dkdev); 673 } 674 } 675 676 raidunlock(rs); 677 return (0); 678 679 } 680 681 void 682 raidstrategy(struct buf *bp) 683 { 684 int s; 685 686 unsigned int raidID = raidunit(bp->b_dev); 687 RF_Raid_t *raidPtr; 688 struct raid_softc *rs = &raid_softc[raidID]; 689 int wlabel; 690 691 if ((rs->sc_flags & RAIDF_INITED) ==0) { 692 bp->b_error = ENXIO; 693 bp->b_flags |= B_ERROR; 694 bp->b_resid = bp->b_bcount; 695 biodone(bp); 696 return; 697 } 698 if (raidID >= numraid || !raidPtrs[raidID]) { 699 bp->b_error = ENODEV; 700 bp->b_flags |= B_ERROR; 701 bp->b_resid = bp->b_bcount; 702 biodone(bp); 703 return; 704 } 705 raidPtr = raidPtrs[raidID]; 706 if (!raidPtr->valid) { 707 bp->b_error = ENODEV; 708 bp->b_flags |= B_ERROR; 709 bp->b_resid = bp->b_bcount; 710 biodone(bp); 711 return; 712 } 713 if (bp->b_bcount == 0) { 714 db1_printf(("b_bcount is zero..\n")); 715 biodone(bp); 716 return; 717 } 718 719 /* 720 * Do bounds checking and adjust transfer. If there's an 721 * error, the bounds check will flag that for us. 722 */ 723 724 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING); 725 if (DISKPART(bp->b_dev) != RAW_PART) 726 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) { 727 db1_printf(("Bounds check failed!!:%d %d\n", 728 (int) bp->b_blkno, (int) wlabel)); 729 biodone(bp); 730 return; 731 } 732 s = splbio(); 733 734 bp->b_resid = 0; 735 736 /* stuff it onto our queue */ 737 BUFQ_PUT(&rs->buf_queue, bp); 738 739 raidstart(raidPtrs[raidID]); 740 741 splx(s); 742 } 743 /* ARGSUSED */ 744 int 745 raidread(dev_t dev, struct uio *uio, int flags) 746 { 747 int unit = raidunit(dev); 748 struct raid_softc *rs; 749 750 if (unit >= numraid) 751 return (ENXIO); 752 rs = &raid_softc[unit]; 753 754 if ((rs->sc_flags & RAIDF_INITED) == 0) 755 return (ENXIO); 756 757 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio)); 758 759 } 760 /* ARGSUSED */ 761 int 762 raidwrite(dev_t dev, struct uio *uio, int flags) 763 { 764 int unit = raidunit(dev); 765 struct raid_softc *rs; 766 767 if (unit >= numraid) 768 return (ENXIO); 769 rs = &raid_softc[unit]; 770 771 if ((rs->sc_flags & RAIDF_INITED) == 0) 772 return (ENXIO); 773 774 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio)); 775 776 } 777 778 int 779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) 780 { 781 int unit = raidunit(dev); 782 int error = 0; 783 int part, pmask; 784 struct raid_softc *rs; 785 RF_Config_t *k_cfg, *u_cfg; 786 RF_Raid_t *raidPtr; 787 RF_RaidDisk_t *diskPtr; 788 RF_AccTotals_t *totals; 789 RF_DeviceConfig_t *d_cfg, **ucfgp; 790 u_char *specific_buf; 791 int retcode = 0; 792 int column; 793 int raidid; 794 struct rf_recon_req *rrcopy, *rr; 795 RF_ComponentLabel_t *clabel; 796 RF_ComponentLabel_t ci_label; 797 RF_ComponentLabel_t **clabel_ptr; 798 RF_SingleComponent_t *sparePtr,*componentPtr; 799 RF_SingleComponent_t hot_spare; 800 RF_SingleComponent_t component; 801 RF_ProgressInfo_t progressInfo, **progressInfoPtr; 802 int i, j, d; 803 #ifdef __HAVE_OLD_DISKLABEL 804 struct disklabel newlabel; 805 #endif 806 807 if (unit >= numraid) 808 return (ENXIO); 809 rs = &raid_softc[unit]; 810 raidPtr = raidPtrs[unit]; 811 812 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev, 813 (int) DISKPART(dev), (int) unit, (int) cmd)); 814 815 /* Must be open for writes for these commands... */ 816 switch (cmd) { 817 case DIOCSDINFO: 818 case DIOCWDINFO: 819 #ifdef __HAVE_OLD_DISKLABEL 820 case ODIOCWDINFO: 821 case ODIOCSDINFO: 822 #endif 823 case DIOCWLABEL: 824 if ((flag & FWRITE) == 0) 825 return (EBADF); 826 } 827 828 /* Must be initialized for these... */ 829 switch (cmd) { 830 case DIOCGDINFO: 831 case DIOCSDINFO: 832 case DIOCWDINFO: 833 #ifdef __HAVE_OLD_DISKLABEL 834 case ODIOCGDINFO: 835 case ODIOCWDINFO: 836 case ODIOCSDINFO: 837 case ODIOCGDEFLABEL: 838 #endif 839 case DIOCGPART: 840 case DIOCWLABEL: 841 case DIOCGDEFLABEL: 842 case RAIDFRAME_SHUTDOWN: 843 case RAIDFRAME_REWRITEPARITY: 844 case RAIDFRAME_GET_INFO: 845 case RAIDFRAME_RESET_ACCTOTALS: 846 case RAIDFRAME_GET_ACCTOTALS: 847 case RAIDFRAME_KEEP_ACCTOTALS: 848 case RAIDFRAME_GET_SIZE: 849 case RAIDFRAME_FAIL_DISK: 850 case RAIDFRAME_COPYBACK: 851 case RAIDFRAME_CHECK_RECON_STATUS: 852 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 853 case RAIDFRAME_GET_COMPONENT_LABEL: 854 case RAIDFRAME_SET_COMPONENT_LABEL: 855 case RAIDFRAME_ADD_HOT_SPARE: 856 case RAIDFRAME_REMOVE_HOT_SPARE: 857 case RAIDFRAME_INIT_LABELS: 858 case RAIDFRAME_REBUILD_IN_PLACE: 859 case RAIDFRAME_CHECK_PARITY: 860 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 861 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 862 case RAIDFRAME_CHECK_COPYBACK_STATUS: 863 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 864 case RAIDFRAME_SET_AUTOCONFIG: 865 case RAIDFRAME_SET_ROOT: 866 case RAIDFRAME_DELETE_COMPONENT: 867 case RAIDFRAME_INCORPORATE_HOT_SPARE: 868 if ((rs->sc_flags & RAIDF_INITED) == 0) 869 return (ENXIO); 870 } 871 872 switch (cmd) { 873 874 /* configure the system */ 875 case RAIDFRAME_CONFIGURE: 876 877 if (raidPtr->valid) { 878 /* There is a valid RAID set running on this unit! */ 879 printf("raid%d: Device already configured!\n",unit); 880 return(EINVAL); 881 } 882 883 /* copy-in the configuration information */ 884 /* data points to a pointer to the configuration structure */ 885 886 u_cfg = *((RF_Config_t **) data); 887 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *)); 888 if (k_cfg == NULL) { 889 return (ENOMEM); 890 } 891 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t)); 892 if (retcode) { 893 RF_Free(k_cfg, sizeof(RF_Config_t)); 894 db1_printf(("rf_ioctl: retcode=%d copyin.1\n", 895 retcode)); 896 return (retcode); 897 } 898 /* allocate a buffer for the layout-specific data, and copy it 899 * in */ 900 if (k_cfg->layoutSpecificSize) { 901 if (k_cfg->layoutSpecificSize > 10000) { 902 /* sanity check */ 903 RF_Free(k_cfg, sizeof(RF_Config_t)); 904 return (EINVAL); 905 } 906 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize, 907 (u_char *)); 908 if (specific_buf == NULL) { 909 RF_Free(k_cfg, sizeof(RF_Config_t)); 910 return (ENOMEM); 911 } 912 retcode = copyin(k_cfg->layoutSpecific, specific_buf, 913 k_cfg->layoutSpecificSize); 914 if (retcode) { 915 RF_Free(k_cfg, sizeof(RF_Config_t)); 916 RF_Free(specific_buf, 917 k_cfg->layoutSpecificSize); 918 db1_printf(("rf_ioctl: retcode=%d copyin.2\n", 919 retcode)); 920 return (retcode); 921 } 922 } else 923 specific_buf = NULL; 924 k_cfg->layoutSpecific = specific_buf; 925 926 /* should do some kind of sanity check on the configuration. 927 * Store the sum of all the bytes in the last byte? */ 928 929 /* configure the system */ 930 931 /* 932 * Clear the entire RAID descriptor, just to make sure 933 * there is no stale data left in the case of a 934 * reconfiguration 935 */ 936 memset((char *) raidPtr, 0, sizeof(RF_Raid_t)); 937 raidPtr->raidid = unit; 938 939 retcode = rf_Configure(raidPtr, k_cfg, NULL); 940 941 if (retcode == 0) { 942 943 /* allow this many simultaneous IO's to 944 this RAID device */ 945 raidPtr->openings = RAIDOUTSTANDING; 946 947 raidinit(raidPtr); 948 rf_markalldirty(raidPtr); 949 } 950 /* free the buffers. No return code here. */ 951 if (k_cfg->layoutSpecificSize) { 952 RF_Free(specific_buf, k_cfg->layoutSpecificSize); 953 } 954 RF_Free(k_cfg, sizeof(RF_Config_t)); 955 956 return (retcode); 957 958 /* shutdown the system */ 959 case RAIDFRAME_SHUTDOWN: 960 961 if ((error = raidlock(rs)) != 0) 962 return (error); 963 964 /* 965 * If somebody has a partition mounted, we shouldn't 966 * shutdown. 967 */ 968 969 part = DISKPART(dev); 970 pmask = (1 << part); 971 if ((rs->sc_dkdev.dk_openmask & ~pmask) || 972 ((rs->sc_dkdev.dk_bopenmask & pmask) && 973 (rs->sc_dkdev.dk_copenmask & pmask))) { 974 raidunlock(rs); 975 return (EBUSY); 976 } 977 978 retcode = rf_Shutdown(raidPtr); 979 980 /* It's no longer initialized... */ 981 rs->sc_flags &= ~RAIDF_INITED; 982 983 /* Detach the disk. */ 984 disk_detach(&rs->sc_dkdev); 985 986 raidunlock(rs); 987 988 return (retcode); 989 case RAIDFRAME_GET_COMPONENT_LABEL: 990 clabel_ptr = (RF_ComponentLabel_t **) data; 991 /* need to read the component label for the disk indicated 992 by row,column in clabel */ 993 994 /* For practice, let's get it directly fromdisk, rather 995 than from the in-core copy */ 996 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ), 997 (RF_ComponentLabel_t *)); 998 if (clabel == NULL) 999 return (ENOMEM); 1000 1001 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t)); 1002 1003 retcode = copyin( *clabel_ptr, clabel, 1004 sizeof(RF_ComponentLabel_t)); 1005 1006 if (retcode) { 1007 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1008 return(retcode); 1009 } 1010 1011 clabel->row = 0; /* Don't allow looking at anything else.*/ 1012 1013 column = clabel->column; 1014 1015 if ((column < 0) || (column >= raidPtr->numCol + 1016 raidPtr->numSpare)) { 1017 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1018 return(EINVAL); 1019 } 1020 1021 raidread_component_label(raidPtr->Disks[column].dev, 1022 raidPtr->raid_cinfo[column].ci_vp, 1023 clabel ); 1024 1025 retcode = copyout(clabel, *clabel_ptr, 1026 sizeof(RF_ComponentLabel_t)); 1027 RF_Free(clabel, sizeof(RF_ComponentLabel_t)); 1028 return (retcode); 1029 1030 case RAIDFRAME_SET_COMPONENT_LABEL: 1031 clabel = (RF_ComponentLabel_t *) data; 1032 1033 /* XXX check the label for valid stuff... */ 1034 /* Note that some things *should not* get modified -- 1035 the user should be re-initing the labels instead of 1036 trying to patch things. 1037 */ 1038 1039 raidid = raidPtr->raidid; 1040 #if DEBUG 1041 printf("raid%d: Got component label:\n", raidid); 1042 printf("raid%d: Version: %d\n", raidid, clabel->version); 1043 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number); 1044 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter); 1045 printf("raid%d: Column: %d\n", raidid, clabel->column); 1046 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns); 1047 printf("raid%d: Clean: %d\n", raidid, clabel->clean); 1048 printf("raid%d: Status: %d\n", raidid, clabel->status); 1049 #endif 1050 clabel->row = 0; 1051 column = clabel->column; 1052 1053 if ((column < 0) || (column >= raidPtr->numCol)) { 1054 return(EINVAL); 1055 } 1056 1057 /* XXX this isn't allowed to do anything for now :-) */ 1058 1059 /* XXX and before it is, we need to fill in the rest 1060 of the fields!?!?!?! */ 1061 #if 0 1062 raidwrite_component_label( 1063 raidPtr->Disks[column].dev, 1064 raidPtr->raid_cinfo[column].ci_vp, 1065 clabel ); 1066 #endif 1067 return (0); 1068 1069 case RAIDFRAME_INIT_LABELS: 1070 clabel = (RF_ComponentLabel_t *) data; 1071 /* 1072 we only want the serial number from 1073 the above. We get all the rest of the information 1074 from the config that was used to create this RAID 1075 set. 1076 */ 1077 1078 raidPtr->serial_number = clabel->serial_number; 1079 1080 raid_init_component_label(raidPtr, &ci_label); 1081 ci_label.serial_number = clabel->serial_number; 1082 ci_label.row = 0; /* we dont' pretend to support more */ 1083 1084 for(column=0;column<raidPtr->numCol;column++) { 1085 diskPtr = &raidPtr->Disks[column]; 1086 if (!RF_DEAD_DISK(diskPtr->status)) { 1087 ci_label.partitionSize = diskPtr->partitionSize; 1088 ci_label.column = column; 1089 raidwrite_component_label( 1090 raidPtr->Disks[column].dev, 1091 raidPtr->raid_cinfo[column].ci_vp, 1092 &ci_label ); 1093 } 1094 } 1095 1096 return (retcode); 1097 case RAIDFRAME_SET_AUTOCONFIG: 1098 d = rf_set_autoconfig(raidPtr, *(int *) data); 1099 printf("raid%d: New autoconfig value is: %d\n", 1100 raidPtr->raidid, d); 1101 *(int *) data = d; 1102 return (retcode); 1103 1104 case RAIDFRAME_SET_ROOT: 1105 d = rf_set_rootpartition(raidPtr, *(int *) data); 1106 printf("raid%d: New rootpartition value is: %d\n", 1107 raidPtr->raidid, d); 1108 *(int *) data = d; 1109 return (retcode); 1110 1111 /* initialize all parity */ 1112 case RAIDFRAME_REWRITEPARITY: 1113 1114 if (raidPtr->Layout.map->faultsTolerated == 0) { 1115 /* Parity for RAID 0 is trivially correct */ 1116 raidPtr->parity_good = RF_RAID_CLEAN; 1117 return(0); 1118 } 1119 1120 if (raidPtr->parity_rewrite_in_progress == 1) { 1121 /* Re-write is already in progress! */ 1122 return(EINVAL); 1123 } 1124 1125 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, 1126 rf_RewriteParityThread, 1127 raidPtr,"raid_parity"); 1128 return (retcode); 1129 1130 1131 case RAIDFRAME_ADD_HOT_SPARE: 1132 sparePtr = (RF_SingleComponent_t *) data; 1133 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t)); 1134 retcode = rf_add_hot_spare(raidPtr, &hot_spare); 1135 return(retcode); 1136 1137 case RAIDFRAME_REMOVE_HOT_SPARE: 1138 return(retcode); 1139 1140 case RAIDFRAME_DELETE_COMPONENT: 1141 componentPtr = (RF_SingleComponent_t *)data; 1142 memcpy( &component, componentPtr, 1143 sizeof(RF_SingleComponent_t)); 1144 retcode = rf_delete_component(raidPtr, &component); 1145 return(retcode); 1146 1147 case RAIDFRAME_INCORPORATE_HOT_SPARE: 1148 componentPtr = (RF_SingleComponent_t *)data; 1149 memcpy( &component, componentPtr, 1150 sizeof(RF_SingleComponent_t)); 1151 retcode = rf_incorporate_hot_spare(raidPtr, &component); 1152 return(retcode); 1153 1154 case RAIDFRAME_REBUILD_IN_PLACE: 1155 1156 if (raidPtr->Layout.map->faultsTolerated == 0) { 1157 /* Can't do this on a RAID 0!! */ 1158 return(EINVAL); 1159 } 1160 1161 if (raidPtr->recon_in_progress == 1) { 1162 /* a reconstruct is already in progress! */ 1163 return(EINVAL); 1164 } 1165 1166 componentPtr = (RF_SingleComponent_t *) data; 1167 memcpy( &component, componentPtr, 1168 sizeof(RF_SingleComponent_t)); 1169 component.row = 0; /* we don't support any more */ 1170 column = component.column; 1171 1172 if ((column < 0) || (column >= raidPtr->numCol)) { 1173 return(EINVAL); 1174 } 1175 1176 RF_LOCK_MUTEX(raidPtr->mutex); 1177 if ((raidPtr->Disks[column].status == rf_ds_optimal) && 1178 (raidPtr->numFailures > 0)) { 1179 /* XXX 0 above shouldn't be constant!!! */ 1180 /* some component other than this has failed. 1181 Let's not make things worse than they already 1182 are... */ 1183 printf("raid%d: Unable to reconstruct to disk at:\n", 1184 raidPtr->raidid); 1185 printf("raid%d: Col: %d Too many failures.\n", 1186 raidPtr->raidid, column); 1187 RF_UNLOCK_MUTEX(raidPtr->mutex); 1188 return (EINVAL); 1189 } 1190 if (raidPtr->Disks[column].status == 1191 rf_ds_reconstructing) { 1192 printf("raid%d: Unable to reconstruct to disk at:\n", 1193 raidPtr->raidid); 1194 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column); 1195 1196 RF_UNLOCK_MUTEX(raidPtr->mutex); 1197 return (EINVAL); 1198 } 1199 if (raidPtr->Disks[column].status == rf_ds_spared) { 1200 RF_UNLOCK_MUTEX(raidPtr->mutex); 1201 return (EINVAL); 1202 } 1203 RF_UNLOCK_MUTEX(raidPtr->mutex); 1204 1205 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1206 if (rrcopy == NULL) 1207 return(ENOMEM); 1208 1209 rrcopy->raidPtr = (void *) raidPtr; 1210 rrcopy->col = column; 1211 1212 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1213 rf_ReconstructInPlaceThread, 1214 rrcopy,"raid_reconip"); 1215 return(retcode); 1216 1217 case RAIDFRAME_GET_INFO: 1218 if (!raidPtr->valid) 1219 return (ENODEV); 1220 ucfgp = (RF_DeviceConfig_t **) data; 1221 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t), 1222 (RF_DeviceConfig_t *)); 1223 if (d_cfg == NULL) 1224 return (ENOMEM); 1225 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t)); 1226 d_cfg->rows = 1; /* there is only 1 row now */ 1227 d_cfg->cols = raidPtr->numCol; 1228 d_cfg->ndevs = raidPtr->numCol; 1229 if (d_cfg->ndevs >= RF_MAX_DISKS) { 1230 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1231 return (ENOMEM); 1232 } 1233 d_cfg->nspares = raidPtr->numSpare; 1234 if (d_cfg->nspares >= RF_MAX_DISKS) { 1235 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1236 return (ENOMEM); 1237 } 1238 d_cfg->maxqdepth = raidPtr->maxQueueDepth; 1239 d = 0; 1240 for (j = 0; j < d_cfg->cols; j++) { 1241 d_cfg->devs[d] = raidPtr->Disks[j]; 1242 d++; 1243 } 1244 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) { 1245 d_cfg->spares[i] = raidPtr->Disks[j]; 1246 } 1247 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t)); 1248 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1249 1250 return (retcode); 1251 1252 case RAIDFRAME_CHECK_PARITY: 1253 *(int *) data = raidPtr->parity_good; 1254 return (0); 1255 1256 case RAIDFRAME_RESET_ACCTOTALS: 1257 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals)); 1258 return (0); 1259 1260 case RAIDFRAME_GET_ACCTOTALS: 1261 totals = (RF_AccTotals_t *) data; 1262 *totals = raidPtr->acc_totals; 1263 return (0); 1264 1265 case RAIDFRAME_KEEP_ACCTOTALS: 1266 raidPtr->keep_acc_totals = *(int *)data; 1267 return (0); 1268 1269 case RAIDFRAME_GET_SIZE: 1270 *(int *) data = raidPtr->totalSectors; 1271 return (0); 1272 1273 /* fail a disk & optionally start reconstruction */ 1274 case RAIDFRAME_FAIL_DISK: 1275 1276 if (raidPtr->Layout.map->faultsTolerated == 0) { 1277 /* Can't do this on a RAID 0!! */ 1278 return(EINVAL); 1279 } 1280 1281 rr = (struct rf_recon_req *) data; 1282 rr->row = 0; 1283 if (rr->col < 0 || rr->col >= raidPtr->numCol) 1284 return (EINVAL); 1285 1286 1287 RF_LOCK_MUTEX(raidPtr->mutex); 1288 if (raidPtr->status == rf_rs_reconstructing) { 1289 /* you can't fail a disk while we're reconstructing! */ 1290 /* XXX wrong for RAID6 */ 1291 RF_UNLOCK_MUTEX(raidPtr->mutex); 1292 return (EINVAL); 1293 } 1294 if ((raidPtr->Disks[rr->col].status == 1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) { 1296 /* some other component has failed. Let's not make 1297 things worse. XXX wrong for RAID6 */ 1298 RF_UNLOCK_MUTEX(raidPtr->mutex); 1299 return (EINVAL); 1300 } 1301 if (raidPtr->Disks[rr->col].status == rf_ds_spared) { 1302 /* Can't fail a spared disk! */ 1303 RF_UNLOCK_MUTEX(raidPtr->mutex); 1304 return (EINVAL); 1305 } 1306 RF_UNLOCK_MUTEX(raidPtr->mutex); 1307 1308 /* make a copy of the recon request so that we don't rely on 1309 * the user's buffer */ 1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1311 if (rrcopy == NULL) 1312 return(ENOMEM); 1313 memcpy(rrcopy, rr, sizeof(*rr)); 1314 rrcopy->raidPtr = (void *) raidPtr; 1315 1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1317 rf_ReconThread, 1318 rrcopy,"raid_recon"); 1319 return (0); 1320 1321 /* invoke a copyback operation after recon on whatever disk 1322 * needs it, if any */ 1323 case RAIDFRAME_COPYBACK: 1324 1325 if (raidPtr->Layout.map->faultsTolerated == 0) { 1326 /* This makes no sense on a RAID 0!! */ 1327 return(EINVAL); 1328 } 1329 1330 if (raidPtr->copyback_in_progress == 1) { 1331 /* Copyback is already in progress! */ 1332 return(EINVAL); 1333 } 1334 1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread, 1336 rf_CopybackThread, 1337 raidPtr,"raid_copyback"); 1338 return (retcode); 1339 1340 /* return the percentage completion of reconstruction */ 1341 case RAIDFRAME_CHECK_RECON_STATUS: 1342 if (raidPtr->Layout.map->faultsTolerated == 0) { 1343 /* This makes no sense on a RAID 0, so tell the 1344 user it's done. */ 1345 *(int *) data = 100; 1346 return(0); 1347 } 1348 if (raidPtr->status != rf_rs_reconstructing) 1349 *(int *) data = 100; 1350 else { 1351 if (raidPtr->reconControl->numRUsTotal > 0) { 1352 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 1353 } else { 1354 *(int *) data = 0; 1355 } 1356 } 1357 return (0); 1358 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 1359 progressInfoPtr = (RF_ProgressInfo_t **) data; 1360 if (raidPtr->status != rf_rs_reconstructing) { 1361 progressInfo.remaining = 0; 1362 progressInfo.completed = 100; 1363 progressInfo.total = 100; 1364 } else { 1365 progressInfo.total = 1366 raidPtr->reconControl->numRUsTotal; 1367 progressInfo.completed = 1368 raidPtr->reconControl->numRUsComplete; 1369 progressInfo.remaining = progressInfo.total - 1370 progressInfo.completed; 1371 } 1372 retcode = copyout(&progressInfo, *progressInfoPtr, 1373 sizeof(RF_ProgressInfo_t)); 1374 return (retcode); 1375 1376 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 1377 if (raidPtr->Layout.map->faultsTolerated == 0) { 1378 /* This makes no sense on a RAID 0, so tell the 1379 user it's done. */ 1380 *(int *) data = 100; 1381 return(0); 1382 } 1383 if (raidPtr->parity_rewrite_in_progress == 1) { 1384 *(int *) data = 100 * 1385 raidPtr->parity_rewrite_stripes_done / 1386 raidPtr->Layout.numStripe; 1387 } else { 1388 *(int *) data = 100; 1389 } 1390 return (0); 1391 1392 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 1393 progressInfoPtr = (RF_ProgressInfo_t **) data; 1394 if (raidPtr->parity_rewrite_in_progress == 1) { 1395 progressInfo.total = raidPtr->Layout.numStripe; 1396 progressInfo.completed = 1397 raidPtr->parity_rewrite_stripes_done; 1398 progressInfo.remaining = progressInfo.total - 1399 progressInfo.completed; 1400 } else { 1401 progressInfo.remaining = 0; 1402 progressInfo.completed = 100; 1403 progressInfo.total = 100; 1404 } 1405 retcode = copyout(&progressInfo, *progressInfoPtr, 1406 sizeof(RF_ProgressInfo_t)); 1407 return (retcode); 1408 1409 case RAIDFRAME_CHECK_COPYBACK_STATUS: 1410 if (raidPtr->Layout.map->faultsTolerated == 0) { 1411 /* This makes no sense on a RAID 0 */ 1412 *(int *) data = 100; 1413 return(0); 1414 } 1415 if (raidPtr->copyback_in_progress == 1) { 1416 *(int *) data = 100 * raidPtr->copyback_stripes_done / 1417 raidPtr->Layout.numStripe; 1418 } else { 1419 *(int *) data = 100; 1420 } 1421 return (0); 1422 1423 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 1424 progressInfoPtr = (RF_ProgressInfo_t **) data; 1425 if (raidPtr->copyback_in_progress == 1) { 1426 progressInfo.total = raidPtr->Layout.numStripe; 1427 progressInfo.completed = 1428 raidPtr->copyback_stripes_done; 1429 progressInfo.remaining = progressInfo.total - 1430 progressInfo.completed; 1431 } else { 1432 progressInfo.remaining = 0; 1433 progressInfo.completed = 100; 1434 progressInfo.total = 100; 1435 } 1436 retcode = copyout(&progressInfo, *progressInfoPtr, 1437 sizeof(RF_ProgressInfo_t)); 1438 return (retcode); 1439 1440 /* the sparetable daemon calls this to wait for the kernel to 1441 * need a spare table. this ioctl does not return until a 1442 * spare table is needed. XXX -- calling mpsleep here in the 1443 * ioctl code is almost certainly wrong and evil. -- XXX XXX 1444 * -- I should either compute the spare table in the kernel, 1445 * or have a different -- XXX XXX -- interface (a different 1446 * character device) for delivering the table -- XXX */ 1447 #if 0 1448 case RAIDFRAME_SPARET_WAIT: 1449 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1450 while (!rf_sparet_wait_queue) 1451 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE); 1452 waitreq = rf_sparet_wait_queue; 1453 rf_sparet_wait_queue = rf_sparet_wait_queue->next; 1454 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1455 1456 /* structure assignment */ 1457 *((RF_SparetWait_t *) data) = *waitreq; 1458 1459 RF_Free(waitreq, sizeof(*waitreq)); 1460 return (0); 1461 1462 /* wakes up a process waiting on SPARET_WAIT and puts an error 1463 * code in it that will cause the dameon to exit */ 1464 case RAIDFRAME_ABORT_SPARET_WAIT: 1465 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1466 waitreq->fcol = -1; 1467 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1468 waitreq->next = rf_sparet_wait_queue; 1469 rf_sparet_wait_queue = waitreq; 1470 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1471 wakeup(&rf_sparet_wait_queue); 1472 return (0); 1473 1474 /* used by the spare table daemon to deliver a spare table 1475 * into the kernel */ 1476 case RAIDFRAME_SEND_SPARET: 1477 1478 /* install the spare table */ 1479 retcode = rf_SetSpareTable(raidPtr, *(void **) data); 1480 1481 /* respond to the requestor. the return status of the spare 1482 * table installation is passed in the "fcol" field */ 1483 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1484 waitreq->fcol = retcode; 1485 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1486 waitreq->next = rf_sparet_resp_queue; 1487 rf_sparet_resp_queue = waitreq; 1488 wakeup(&rf_sparet_resp_queue); 1489 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1490 1491 return (retcode); 1492 #endif 1493 1494 default: 1495 break; /* fall through to the os-specific code below */ 1496 1497 } 1498 1499 if (!raidPtr->valid) 1500 return (EINVAL); 1501 1502 /* 1503 * Add support for "regular" device ioctls here. 1504 */ 1505 1506 switch (cmd) { 1507 case DIOCGDINFO: 1508 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label); 1509 break; 1510 #ifdef __HAVE_OLD_DISKLABEL 1511 case ODIOCGDINFO: 1512 newlabel = *(rs->sc_dkdev.dk_label); 1513 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1514 return ENOTTY; 1515 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1516 break; 1517 #endif 1518 1519 case DIOCGPART: 1520 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label; 1521 ((struct partinfo *) data)->part = 1522 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)]; 1523 break; 1524 1525 case DIOCWDINFO: 1526 case DIOCSDINFO: 1527 #ifdef __HAVE_OLD_DISKLABEL 1528 case ODIOCWDINFO: 1529 case ODIOCSDINFO: 1530 #endif 1531 { 1532 struct disklabel *lp; 1533 #ifdef __HAVE_OLD_DISKLABEL 1534 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) { 1535 memset(&newlabel, 0, sizeof newlabel); 1536 memcpy(&newlabel, data, sizeof (struct olddisklabel)); 1537 lp = &newlabel; 1538 } else 1539 #endif 1540 lp = (struct disklabel *)data; 1541 1542 if ((error = raidlock(rs)) != 0) 1543 return (error); 1544 1545 rs->sc_flags |= RAIDF_LABELLING; 1546 1547 error = setdisklabel(rs->sc_dkdev.dk_label, 1548 lp, 0, rs->sc_dkdev.dk_cpulabel); 1549 if (error == 0) { 1550 if (cmd == DIOCWDINFO 1551 #ifdef __HAVE_OLD_DISKLABEL 1552 || cmd == ODIOCWDINFO 1553 #endif 1554 ) 1555 error = writedisklabel(RAIDLABELDEV(dev), 1556 raidstrategy, rs->sc_dkdev.dk_label, 1557 rs->sc_dkdev.dk_cpulabel); 1558 } 1559 rs->sc_flags &= ~RAIDF_LABELLING; 1560 1561 raidunlock(rs); 1562 1563 if (error) 1564 return (error); 1565 break; 1566 } 1567 1568 case DIOCWLABEL: 1569 if (*(int *) data != 0) 1570 rs->sc_flags |= RAIDF_WLABEL; 1571 else 1572 rs->sc_flags &= ~RAIDF_WLABEL; 1573 break; 1574 1575 case DIOCGDEFLABEL: 1576 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data); 1577 break; 1578 1579 #ifdef __HAVE_OLD_DISKLABEL 1580 case ODIOCGDEFLABEL: 1581 raidgetdefaultlabel(raidPtr, rs, &newlabel); 1582 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1583 return ENOTTY; 1584 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1585 break; 1586 #endif 1587 1588 default: 1589 retcode = ENOTTY; 1590 } 1591 return (retcode); 1592 1593 } 1594 1595 1596 /* raidinit -- complete the rest of the initialization for the 1597 RAIDframe device. */ 1598 1599 1600 static void 1601 raidinit(RF_Raid_t *raidPtr) 1602 { 1603 struct raid_softc *rs; 1604 int unit; 1605 1606 unit = raidPtr->raidid; 1607 1608 rs = &raid_softc[unit]; 1609 1610 /* XXX should check return code first... */ 1611 rs->sc_flags |= RAIDF_INITED; 1612 1613 /* XXX doesn't check bounds. */ 1614 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit); 1615 1616 rs->sc_dkdev.dk_name = rs->sc_xname; 1617 1618 /* disk_attach actually creates space for the CPU disklabel, among 1619 * other things, so it's critical to call this *BEFORE* we try putzing 1620 * with disklabels. */ 1621 1622 disk_attach(&rs->sc_dkdev); 1623 1624 /* XXX There may be a weird interaction here between this, and 1625 * protectedSectors, as used in RAIDframe. */ 1626 1627 rs->sc_size = raidPtr->totalSectors; 1628 } 1629 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 1630 /* wake up the daemon & tell it to get us a spare table 1631 * XXX 1632 * the entries in the queues should be tagged with the raidPtr 1633 * so that in the extremely rare case that two recons happen at once, 1634 * we know for which device were requesting a spare table 1635 * XXX 1636 * 1637 * XXX This code is not currently used. GO 1638 */ 1639 int 1640 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req) 1641 { 1642 int retcode; 1643 1644 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1645 req->next = rf_sparet_wait_queue; 1646 rf_sparet_wait_queue = req; 1647 wakeup(&rf_sparet_wait_queue); 1648 1649 /* mpsleep unlocks the mutex */ 1650 while (!rf_sparet_resp_queue) { 1651 tsleep(&rf_sparet_resp_queue, PRIBIO, 1652 "raidframe getsparetable", 0); 1653 } 1654 req = rf_sparet_resp_queue; 1655 rf_sparet_resp_queue = req->next; 1656 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1657 1658 retcode = req->fcol; 1659 RF_Free(req, sizeof(*req)); /* this is not the same req as we 1660 * alloc'd */ 1661 return (retcode); 1662 } 1663 #endif 1664 1665 /* a wrapper around rf_DoAccess that extracts appropriate info from the 1666 * bp & passes it down. 1667 * any calls originating in the kernel must use non-blocking I/O 1668 * do some extra sanity checking to return "appropriate" error values for 1669 * certain conditions (to make some standard utilities work) 1670 * 1671 * Formerly known as: rf_DoAccessKernel 1672 */ 1673 void 1674 raidstart(RF_Raid_t *raidPtr) 1675 { 1676 RF_SectorCount_t num_blocks, pb, sum; 1677 RF_RaidAddr_t raid_addr; 1678 struct partition *pp; 1679 daddr_t blocknum; 1680 int unit; 1681 struct raid_softc *rs; 1682 int do_async; 1683 struct buf *bp; 1684 int rc; 1685 1686 unit = raidPtr->raidid; 1687 rs = &raid_softc[unit]; 1688 1689 /* quick check to see if anything has died recently */ 1690 RF_LOCK_MUTEX(raidPtr->mutex); 1691 if (raidPtr->numNewFailures > 0) { 1692 RF_UNLOCK_MUTEX(raidPtr->mutex); 1693 rf_update_component_labels(raidPtr, 1694 RF_NORMAL_COMPONENT_UPDATE); 1695 RF_LOCK_MUTEX(raidPtr->mutex); 1696 raidPtr->numNewFailures--; 1697 } 1698 1699 /* Check to see if we're at the limit... */ 1700 while (raidPtr->openings > 0) { 1701 RF_UNLOCK_MUTEX(raidPtr->mutex); 1702 1703 /* get the next item, if any, from the queue */ 1704 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) { 1705 /* nothing more to do */ 1706 return; 1707 } 1708 1709 /* Ok, for the bp we have here, bp->b_blkno is relative to the 1710 * partition.. Need to make it absolute to the underlying 1711 * device.. */ 1712 1713 blocknum = bp->b_blkno; 1714 if (DISKPART(bp->b_dev) != RAW_PART) { 1715 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)]; 1716 blocknum += pp->p_offset; 1717 } 1718 1719 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, 1720 (int) blocknum)); 1721 1722 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount)); 1723 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid)); 1724 1725 /* *THIS* is where we adjust what block we're going to... 1726 * but DO NOT TOUCH bp->b_blkno!!! */ 1727 raid_addr = blocknum; 1728 1729 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector; 1730 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0; 1731 sum = raid_addr + num_blocks + pb; 1732 if (1 || rf_debugKernelAccess) { 1733 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n", 1734 (int) raid_addr, (int) sum, (int) num_blocks, 1735 (int) pb, (int) bp->b_resid)); 1736 } 1737 if ((sum > raidPtr->totalSectors) || (sum < raid_addr) 1738 || (sum < num_blocks) || (sum < pb)) { 1739 bp->b_error = ENOSPC; 1740 bp->b_flags |= B_ERROR; 1741 bp->b_resid = bp->b_bcount; 1742 biodone(bp); 1743 RF_LOCK_MUTEX(raidPtr->mutex); 1744 continue; 1745 } 1746 /* 1747 * XXX rf_DoAccess() should do this, not just DoAccessKernel() 1748 */ 1749 1750 if (bp->b_bcount & raidPtr->sectorMask) { 1751 bp->b_error = EINVAL; 1752 bp->b_flags |= B_ERROR; 1753 bp->b_resid = bp->b_bcount; 1754 biodone(bp); 1755 RF_LOCK_MUTEX(raidPtr->mutex); 1756 continue; 1757 1758 } 1759 db1_printf(("Calling DoAccess..\n")); 1760 1761 1762 RF_LOCK_MUTEX(raidPtr->mutex); 1763 raidPtr->openings--; 1764 RF_UNLOCK_MUTEX(raidPtr->mutex); 1765 1766 /* 1767 * Everything is async. 1768 */ 1769 do_async = 1; 1770 1771 disk_busy(&rs->sc_dkdev); 1772 1773 /* XXX we're still at splbio() here... do we *really* 1774 need to be? */ 1775 1776 /* don't ever condition on bp->b_flags & B_WRITE. 1777 * always condition on B_READ instead */ 1778 1779 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ? 1780 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, 1781 do_async, raid_addr, num_blocks, 1782 bp->b_data, bp, RF_DAG_NONBLOCKING_IO); 1783 1784 if (rc) { 1785 bp->b_error = rc; 1786 bp->b_flags |= B_ERROR; 1787 bp->b_resid = bp->b_bcount; 1788 biodone(bp); 1789 /* continue loop */ 1790 } 1791 1792 RF_LOCK_MUTEX(raidPtr->mutex); 1793 } 1794 RF_UNLOCK_MUTEX(raidPtr->mutex); 1795 } 1796 1797 1798 1799 1800 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */ 1801 1802 int 1803 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req) 1804 { 1805 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE; 1806 struct buf *bp; 1807 struct raidbuf *raidbp = NULL; 1808 1809 req->queue = queue; 1810 1811 #if DIAGNOSTIC 1812 if (queue->raidPtr->raidid >= numraid) { 1813 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid, 1814 numraid); 1815 panic("Invalid Unit number in rf_DispatchKernelIO"); 1816 } 1817 #endif 1818 1819 bp = req->bp; 1820 #if 1 1821 /* XXX when there is a physical disk failure, someone is passing us a 1822 * buffer that contains old stuff!! Attempt to deal with this problem 1823 * without taking a performance hit... (not sure where the real bug 1824 * is. It's buried in RAIDframe somewhere) :-( GO ) */ 1825 1826 if (bp->b_flags & B_ERROR) { 1827 bp->b_flags &= ~B_ERROR; 1828 } 1829 if (bp->b_error != 0) { 1830 bp->b_error = 0; 1831 } 1832 #endif 1833 raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT); 1834 if (raidbp == NULL) { 1835 bp->b_flags |= B_ERROR; 1836 bp->b_error = ENOMEM; 1837 return (ENOMEM); 1838 } 1839 BUF_INIT(&raidbp->rf_buf); 1840 1841 /* 1842 * context for raidiodone 1843 */ 1844 raidbp->rf_obp = bp; 1845 raidbp->req = req; 1846 1847 BIO_COPYPRIO(&raidbp->rf_buf, bp); 1848 1849 switch (req->type) { 1850 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */ 1851 /* XXX need to do something extra here.. */ 1852 /* I'm leaving this in, as I've never actually seen it used, 1853 * and I'd like folks to report it... GO */ 1854 printf(("WAKEUP CALLED\n")); 1855 queue->numOutstanding++; 1856 1857 /* XXX need to glue the original buffer into this?? */ 1858 1859 KernelWakeupFunc(&raidbp->rf_buf); 1860 break; 1861 1862 case RF_IO_TYPE_READ: 1863 case RF_IO_TYPE_WRITE: 1864 #if RF_ACC_TRACE > 0 1865 if (req->tracerec) { 1866 RF_ETIMER_START(req->tracerec->timer); 1867 } 1868 #endif 1869 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp, 1870 op | bp->b_flags, queue->rf_cinfo->ci_dev, 1871 req->sectorOffset, req->numSector, 1872 req->buf, KernelWakeupFunc, (void *) req, 1873 queue->raidPtr->logBytesPerSector, req->b_proc); 1874 1875 if (rf_debugKernelAccess) { 1876 db1_printf(("dispatch: bp->b_blkno = %ld\n", 1877 (long) bp->b_blkno)); 1878 } 1879 queue->numOutstanding++; 1880 queue->last_deq_sector = req->sectorOffset; 1881 /* acc wouldn't have been let in if there were any pending 1882 * reqs at any other priority */ 1883 queue->curPriority = req->priority; 1884 1885 db1_printf(("Going for %c to unit %d col %d\n", 1886 req->type, queue->raidPtr->raidid, 1887 queue->col)); 1888 db1_printf(("sector %d count %d (%d bytes) %d\n", 1889 (int) req->sectorOffset, (int) req->numSector, 1890 (int) (req->numSector << 1891 queue->raidPtr->logBytesPerSector), 1892 (int) queue->raidPtr->logBytesPerSector)); 1893 if ((raidbp->rf_buf.b_flags & B_READ) == 0) { 1894 raidbp->rf_buf.b_vp->v_numoutput++; 1895 } 1896 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf); 1897 1898 break; 1899 1900 default: 1901 panic("bad req->type in rf_DispatchKernelIO"); 1902 } 1903 db1_printf(("Exiting from DispatchKernelIO\n")); 1904 1905 return (0); 1906 } 1907 /* this is the callback function associated with a I/O invoked from 1908 kernel code. 1909 */ 1910 static void 1911 KernelWakeupFunc(struct buf *vbp) 1912 { 1913 RF_DiskQueueData_t *req = NULL; 1914 RF_DiskQueue_t *queue; 1915 struct raidbuf *raidbp = (struct raidbuf *) vbp; 1916 struct buf *bp; 1917 int s; 1918 1919 s = splbio(); 1920 db1_printf(("recovering the request queue:\n")); 1921 req = raidbp->req; 1922 1923 bp = raidbp->rf_obp; 1924 1925 queue = (RF_DiskQueue_t *) req->queue; 1926 1927 if (raidbp->rf_buf.b_flags & B_ERROR) { 1928 bp->b_flags |= B_ERROR; 1929 bp->b_error = raidbp->rf_buf.b_error ? 1930 raidbp->rf_buf.b_error : EIO; 1931 } 1932 1933 /* XXX methinks this could be wrong... */ 1934 #if 1 1935 bp->b_resid = raidbp->rf_buf.b_resid; 1936 #endif 1937 #if RF_ACC_TRACE > 0 1938 if (req->tracerec) { 1939 RF_ETIMER_STOP(req->tracerec->timer); 1940 RF_ETIMER_EVAL(req->tracerec->timer); 1941 RF_LOCK_MUTEX(rf_tracing_mutex); 1942 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); 1943 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); 1944 req->tracerec->num_phys_ios++; 1945 RF_UNLOCK_MUTEX(rf_tracing_mutex); 1946 } 1947 #endif 1948 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */ 1949 1950 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go 1951 * ballistic, and mark the component as hosed... */ 1952 1953 if (bp->b_flags & B_ERROR) { 1954 /* Mark the disk as dead */ 1955 /* but only mark it once... */ 1956 /* and only if it wouldn't leave this RAID set 1957 completely broken */ 1958 if ((queue->raidPtr->Disks[queue->col].status == 1959 rf_ds_optimal) && (queue->raidPtr->numFailures < 1960 queue->raidPtr->Layout.map->faultsTolerated)) { 1961 printf("raid%d: IO Error. Marking %s as failed.\n", 1962 queue->raidPtr->raidid, 1963 queue->raidPtr->Disks[queue->col].devname); 1964 queue->raidPtr->Disks[queue->col].status = 1965 rf_ds_failed; 1966 queue->raidPtr->status = rf_rs_degraded; 1967 queue->raidPtr->numFailures++; 1968 queue->raidPtr->numNewFailures++; 1969 } else { /* Disk is already dead... */ 1970 /* printf("Disk already marked as dead!\n"); */ 1971 } 1972 1973 } 1974 1975 pool_put(&rf_pools.cbuf, raidbp); 1976 1977 /* Fill in the error value */ 1978 1979 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0; 1980 1981 simple_lock(&queue->raidPtr->iodone_lock); 1982 1983 /* Drop this one on the "finished" queue... */ 1984 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries); 1985 1986 /* Let the raidio thread know there is work to be done. */ 1987 wakeup(&(queue->raidPtr->iodone)); 1988 1989 simple_unlock(&queue->raidPtr->iodone_lock); 1990 1991 splx(s); 1992 } 1993 1994 1995 1996 /* 1997 * initialize a buf structure for doing an I/O in the kernel. 1998 */ 1999 static void 2000 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev, 2001 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf, 2002 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector, 2003 struct proc *b_proc) 2004 { 2005 /* bp->b_flags = B_PHYS | rw_flag; */ 2006 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */ 2007 bp->b_bcount = numSect << logBytesPerSector; 2008 bp->b_bufsize = bp->b_bcount; 2009 bp->b_error = 0; 2010 bp->b_dev = dev; 2011 bp->b_data = buf; 2012 bp->b_blkno = startSect; 2013 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */ 2014 if (bp->b_bcount == 0) { 2015 panic("bp->b_bcount is zero in InitBP!!"); 2016 } 2017 bp->b_proc = b_proc; 2018 bp->b_iodone = cbFunc; 2019 bp->b_vp = b_vp; 2020 2021 } 2022 2023 static void 2024 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs, 2025 struct disklabel *lp) 2026 { 2027 memset(lp, 0, sizeof(*lp)); 2028 2029 /* fabricate a label... */ 2030 lp->d_secperunit = raidPtr->totalSectors; 2031 lp->d_secsize = raidPtr->bytesPerSector; 2032 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe; 2033 lp->d_ntracks = 4 * raidPtr->numCol; 2034 lp->d_ncylinders = raidPtr->totalSectors / 2035 (lp->d_nsectors * lp->d_ntracks); 2036 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; 2037 2038 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename)); 2039 lp->d_type = DTYPE_RAID; 2040 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); 2041 lp->d_rpm = 3600; 2042 lp->d_interleave = 1; 2043 lp->d_flags = 0; 2044 2045 lp->d_partitions[RAW_PART].p_offset = 0; 2046 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors; 2047 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; 2048 lp->d_npartitions = RAW_PART + 1; 2049 2050 lp->d_magic = DISKMAGIC; 2051 lp->d_magic2 = DISKMAGIC; 2052 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label); 2053 2054 } 2055 /* 2056 * Read the disklabel from the raid device. If one is not present, fake one 2057 * up. 2058 */ 2059 static void 2060 raidgetdisklabel(dev_t dev) 2061 { 2062 int unit = raidunit(dev); 2063 struct raid_softc *rs = &raid_softc[unit]; 2064 const char *errstring; 2065 struct disklabel *lp = rs->sc_dkdev.dk_label; 2066 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel; 2067 RF_Raid_t *raidPtr; 2068 2069 db1_printf(("Getting the disklabel...\n")); 2070 2071 memset(clp, 0, sizeof(*clp)); 2072 2073 raidPtr = raidPtrs[unit]; 2074 2075 raidgetdefaultlabel(raidPtr, rs, lp); 2076 2077 /* 2078 * Call the generic disklabel extraction routine. 2079 */ 2080 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy, 2081 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel); 2082 if (errstring) 2083 raidmakedisklabel(rs); 2084 else { 2085 int i; 2086 struct partition *pp; 2087 2088 /* 2089 * Sanity check whether the found disklabel is valid. 2090 * 2091 * This is necessary since total size of the raid device 2092 * may vary when an interleave is changed even though exactly 2093 * same componets are used, and old disklabel may used 2094 * if that is found. 2095 */ 2096 if (lp->d_secperunit != rs->sc_size) 2097 printf("raid%d: WARNING: %s: " 2098 "total sector size in disklabel (%d) != " 2099 "the size of raid (%ld)\n", unit, rs->sc_xname, 2100 lp->d_secperunit, (long) rs->sc_size); 2101 for (i = 0; i < lp->d_npartitions; i++) { 2102 pp = &lp->d_partitions[i]; 2103 if (pp->p_offset + pp->p_size > rs->sc_size) 2104 printf("raid%d: WARNING: %s: end of partition `%c' " 2105 "exceeds the size of raid (%ld)\n", 2106 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size); 2107 } 2108 } 2109 2110 } 2111 /* 2112 * Take care of things one might want to take care of in the event 2113 * that a disklabel isn't present. 2114 */ 2115 static void 2116 raidmakedisklabel(struct raid_softc *rs) 2117 { 2118 struct disklabel *lp = rs->sc_dkdev.dk_label; 2119 db1_printf(("Making a label..\n")); 2120 2121 /* 2122 * For historical reasons, if there's no disklabel present 2123 * the raw partition must be marked FS_BSDFFS. 2124 */ 2125 2126 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS; 2127 2128 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname)); 2129 2130 lp->d_checksum = dkcksum(lp); 2131 } 2132 /* 2133 * Lookup the provided name in the filesystem. If the file exists, 2134 * is a valid block device, and isn't being used by anyone else, 2135 * set *vpp to the file's vnode. 2136 * You'll find the original of this in ccd.c 2137 */ 2138 int 2139 raidlookup(char *path, struct proc *p, struct vnode **vpp) 2140 { 2141 struct nameidata nd; 2142 struct vnode *vp; 2143 struct vattr va; 2144 int error; 2145 2146 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p); 2147 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) { 2148 return (error); 2149 } 2150 vp = nd.ni_vp; 2151 if (vp->v_usecount > 1) { 2152 VOP_UNLOCK(vp, 0); 2153 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2154 return (EBUSY); 2155 } 2156 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) { 2157 VOP_UNLOCK(vp, 0); 2158 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2159 return (error); 2160 } 2161 /* XXX: eventually we should handle VREG, too. */ 2162 if (va.va_type != VBLK) { 2163 VOP_UNLOCK(vp, 0); 2164 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2165 return (ENOTBLK); 2166 } 2167 VOP_UNLOCK(vp, 0); 2168 *vpp = vp; 2169 return (0); 2170 } 2171 /* 2172 * Wait interruptibly for an exclusive lock. 2173 * 2174 * XXX 2175 * Several drivers do this; it should be abstracted and made MP-safe. 2176 * (Hmm... where have we seen this warning before :-> GO ) 2177 */ 2178 static int 2179 raidlock(struct raid_softc *rs) 2180 { 2181 int error; 2182 2183 while ((rs->sc_flags & RAIDF_LOCKED) != 0) { 2184 rs->sc_flags |= RAIDF_WANTED; 2185 if ((error = 2186 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0) 2187 return (error); 2188 } 2189 rs->sc_flags |= RAIDF_LOCKED; 2190 return (0); 2191 } 2192 /* 2193 * Unlock and wake up any waiters. 2194 */ 2195 static void 2196 raidunlock(struct raid_softc *rs) 2197 { 2198 2199 rs->sc_flags &= ~RAIDF_LOCKED; 2200 if ((rs->sc_flags & RAIDF_WANTED) != 0) { 2201 rs->sc_flags &= ~RAIDF_WANTED; 2202 wakeup(rs); 2203 } 2204 } 2205 2206 2207 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ 2208 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ 2209 2210 int 2211 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter) 2212 { 2213 RF_ComponentLabel_t clabel; 2214 raidread_component_label(dev, b_vp, &clabel); 2215 clabel.mod_counter = mod_counter; 2216 clabel.clean = RF_RAID_CLEAN; 2217 raidwrite_component_label(dev, b_vp, &clabel); 2218 return(0); 2219 } 2220 2221 2222 int 2223 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter) 2224 { 2225 RF_ComponentLabel_t clabel; 2226 raidread_component_label(dev, b_vp, &clabel); 2227 clabel.mod_counter = mod_counter; 2228 clabel.clean = RF_RAID_DIRTY; 2229 raidwrite_component_label(dev, b_vp, &clabel); 2230 return(0); 2231 } 2232 2233 /* ARGSUSED */ 2234 int 2235 raidread_component_label(dev_t dev, struct vnode *b_vp, 2236 RF_ComponentLabel_t *clabel) 2237 { 2238 struct buf *bp; 2239 const struct bdevsw *bdev; 2240 int error; 2241 2242 /* XXX should probably ensure that we don't try to do this if 2243 someone has changed rf_protected_sectors. */ 2244 2245 if (b_vp == NULL) { 2246 /* For whatever reason, this component is not valid. 2247 Don't try to read a component label from it. */ 2248 return(EINVAL); 2249 } 2250 2251 /* get a block of the appropriate size... */ 2252 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2253 bp->b_dev = dev; 2254 2255 /* get our ducks in a row for the read */ 2256 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2257 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2258 bp->b_flags |= B_READ; 2259 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2260 2261 bdev = bdevsw_lookup(bp->b_dev); 2262 if (bdev == NULL) 2263 return (ENXIO); 2264 (*bdev->d_strategy)(bp); 2265 2266 error = biowait(bp); 2267 2268 if (!error) { 2269 memcpy(clabel, bp->b_data, 2270 sizeof(RF_ComponentLabel_t)); 2271 } 2272 2273 brelse(bp); 2274 return(error); 2275 } 2276 /* ARGSUSED */ 2277 int 2278 raidwrite_component_label(dev_t dev, struct vnode *b_vp, 2279 RF_ComponentLabel_t *clabel) 2280 { 2281 struct buf *bp; 2282 const struct bdevsw *bdev; 2283 int error; 2284 2285 /* get a block of the appropriate size... */ 2286 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2287 bp->b_dev = dev; 2288 2289 /* get our ducks in a row for the write */ 2290 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2291 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2292 bp->b_flags |= B_WRITE; 2293 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2294 2295 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE ); 2296 2297 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t)); 2298 2299 bdev = bdevsw_lookup(bp->b_dev); 2300 if (bdev == NULL) 2301 return (ENXIO); 2302 (*bdev->d_strategy)(bp); 2303 error = biowait(bp); 2304 brelse(bp); 2305 if (error) { 2306 #if 1 2307 printf("Failed to write RAID component info!\n"); 2308 #endif 2309 } 2310 2311 return(error); 2312 } 2313 2314 void 2315 rf_markalldirty(RF_Raid_t *raidPtr) 2316 { 2317 RF_ComponentLabel_t clabel; 2318 int sparecol; 2319 int c; 2320 int j; 2321 int scol = -1; 2322 2323 raidPtr->mod_counter++; 2324 for (c = 0; c < raidPtr->numCol; c++) { 2325 /* we don't want to touch (at all) a disk that has 2326 failed */ 2327 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) { 2328 raidread_component_label( 2329 raidPtr->Disks[c].dev, 2330 raidPtr->raid_cinfo[c].ci_vp, 2331 &clabel); 2332 if (clabel.status == rf_ds_spared) { 2333 /* XXX do something special... 2334 but whatever you do, don't 2335 try to access it!! */ 2336 } else { 2337 raidmarkdirty( 2338 raidPtr->Disks[c].dev, 2339 raidPtr->raid_cinfo[c].ci_vp, 2340 raidPtr->mod_counter); 2341 } 2342 } 2343 } 2344 2345 for( c = 0; c < raidPtr->numSpare ; c++) { 2346 sparecol = raidPtr->numCol + c; 2347 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2348 /* 2349 2350 we claim this disk is "optimal" if it's 2351 rf_ds_used_spare, as that means it should be 2352 directly substitutable for the disk it replaced. 2353 We note that too... 2354 2355 */ 2356 2357 for(j=0;j<raidPtr->numCol;j++) { 2358 if (raidPtr->Disks[j].spareCol == sparecol) { 2359 scol = j; 2360 break; 2361 } 2362 } 2363 2364 raidread_component_label( 2365 raidPtr->Disks[sparecol].dev, 2366 raidPtr->raid_cinfo[sparecol].ci_vp, 2367 &clabel); 2368 /* make sure status is noted */ 2369 2370 raid_init_component_label(raidPtr, &clabel); 2371 2372 clabel.row = 0; 2373 clabel.column = scol; 2374 /* Note: we *don't* change status from rf_ds_used_spare 2375 to rf_ds_optimal */ 2376 /* clabel.status = rf_ds_optimal; */ 2377 2378 raidmarkdirty(raidPtr->Disks[sparecol].dev, 2379 raidPtr->raid_cinfo[sparecol].ci_vp, 2380 raidPtr->mod_counter); 2381 } 2382 } 2383 } 2384 2385 2386 void 2387 rf_update_component_labels(RF_Raid_t *raidPtr, int final) 2388 { 2389 RF_ComponentLabel_t clabel; 2390 int sparecol; 2391 int c; 2392 int j; 2393 int scol; 2394 2395 scol = -1; 2396 2397 /* XXX should do extra checks to make sure things really are clean, 2398 rather than blindly setting the clean bit... */ 2399 2400 raidPtr->mod_counter++; 2401 2402 for (c = 0; c < raidPtr->numCol; c++) { 2403 if (raidPtr->Disks[c].status == rf_ds_optimal) { 2404 raidread_component_label( 2405 raidPtr->Disks[c].dev, 2406 raidPtr->raid_cinfo[c].ci_vp, 2407 &clabel); 2408 /* make sure status is noted */ 2409 clabel.status = rf_ds_optimal; 2410 /* bump the counter */ 2411 clabel.mod_counter = raidPtr->mod_counter; 2412 2413 raidwrite_component_label( 2414 raidPtr->Disks[c].dev, 2415 raidPtr->raid_cinfo[c].ci_vp, 2416 &clabel); 2417 if (final == RF_FINAL_COMPONENT_UPDATE) { 2418 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2419 raidmarkclean( 2420 raidPtr->Disks[c].dev, 2421 raidPtr->raid_cinfo[c].ci_vp, 2422 raidPtr->mod_counter); 2423 } 2424 } 2425 } 2426 /* else we don't touch it.. */ 2427 } 2428 2429 for( c = 0; c < raidPtr->numSpare ; c++) { 2430 sparecol = raidPtr->numCol + c; 2431 /* Need to ensure that the reconstruct actually completed! */ 2432 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2433 /* 2434 2435 we claim this disk is "optimal" if it's 2436 rf_ds_used_spare, as that means it should be 2437 directly substitutable for the disk it replaced. 2438 We note that too... 2439 2440 */ 2441 2442 for(j=0;j<raidPtr->numCol;j++) { 2443 if (raidPtr->Disks[j].spareCol == sparecol) { 2444 scol = j; 2445 break; 2446 } 2447 } 2448 2449 /* XXX shouldn't *really* need this... */ 2450 raidread_component_label( 2451 raidPtr->Disks[sparecol].dev, 2452 raidPtr->raid_cinfo[sparecol].ci_vp, 2453 &clabel); 2454 /* make sure status is noted */ 2455 2456 raid_init_component_label(raidPtr, &clabel); 2457 2458 clabel.mod_counter = raidPtr->mod_counter; 2459 clabel.column = scol; 2460 clabel.status = rf_ds_optimal; 2461 2462 raidwrite_component_label( 2463 raidPtr->Disks[sparecol].dev, 2464 raidPtr->raid_cinfo[sparecol].ci_vp, 2465 &clabel); 2466 if (final == RF_FINAL_COMPONENT_UPDATE) { 2467 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2468 raidmarkclean( raidPtr->Disks[sparecol].dev, 2469 raidPtr->raid_cinfo[sparecol].ci_vp, 2470 raidPtr->mod_counter); 2471 } 2472 } 2473 } 2474 } 2475 } 2476 2477 void 2478 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured) 2479 { 2480 struct proc *p; 2481 2482 p = raidPtr->engine_thread; 2483 2484 if (vp != NULL) { 2485 if (auto_configured == 1) { 2486 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2487 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2488 vput(vp); 2489 2490 } else { 2491 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p); 2492 } 2493 } 2494 } 2495 2496 2497 void 2498 rf_UnconfigureVnodes(RF_Raid_t *raidPtr) 2499 { 2500 int r,c; 2501 struct vnode *vp; 2502 int acd; 2503 2504 2505 /* We take this opportunity to close the vnodes like we should.. */ 2506 2507 for (c = 0; c < raidPtr->numCol; c++) { 2508 vp = raidPtr->raid_cinfo[c].ci_vp; 2509 acd = raidPtr->Disks[c].auto_configured; 2510 rf_close_component(raidPtr, vp, acd); 2511 raidPtr->raid_cinfo[c].ci_vp = NULL; 2512 raidPtr->Disks[c].auto_configured = 0; 2513 } 2514 2515 for (r = 0; r < raidPtr->numSpare; r++) { 2516 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp; 2517 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured; 2518 rf_close_component(raidPtr, vp, acd); 2519 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL; 2520 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0; 2521 } 2522 } 2523 2524 2525 void 2526 rf_ReconThread(struct rf_recon_req *req) 2527 { 2528 int s; 2529 RF_Raid_t *raidPtr; 2530 2531 s = splbio(); 2532 raidPtr = (RF_Raid_t *) req->raidPtr; 2533 raidPtr->recon_in_progress = 1; 2534 2535 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col, 2536 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); 2537 2538 RF_Free(req, sizeof(*req)); 2539 2540 raidPtr->recon_in_progress = 0; 2541 splx(s); 2542 2543 /* That's all... */ 2544 kthread_exit(0); /* does not return */ 2545 } 2546 2547 void 2548 rf_RewriteParityThread(RF_Raid_t *raidPtr) 2549 { 2550 int retcode; 2551 int s; 2552 2553 raidPtr->parity_rewrite_stripes_done = 0; 2554 raidPtr->parity_rewrite_in_progress = 1; 2555 s = splbio(); 2556 retcode = rf_RewriteParity(raidPtr); 2557 splx(s); 2558 if (retcode) { 2559 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid); 2560 } else { 2561 /* set the clean bit! If we shutdown correctly, 2562 the clean bit on each component label will get 2563 set */ 2564 raidPtr->parity_good = RF_RAID_CLEAN; 2565 } 2566 raidPtr->parity_rewrite_in_progress = 0; 2567 2568 /* Anyone waiting for us to stop? If so, inform them... */ 2569 if (raidPtr->waitShutdown) { 2570 wakeup(&raidPtr->parity_rewrite_in_progress); 2571 } 2572 2573 /* That's all... */ 2574 kthread_exit(0); /* does not return */ 2575 } 2576 2577 2578 void 2579 rf_CopybackThread(RF_Raid_t *raidPtr) 2580 { 2581 int s; 2582 2583 raidPtr->copyback_in_progress = 1; 2584 s = splbio(); 2585 rf_CopybackReconstructedData(raidPtr); 2586 splx(s); 2587 raidPtr->copyback_in_progress = 0; 2588 2589 /* That's all... */ 2590 kthread_exit(0); /* does not return */ 2591 } 2592 2593 2594 void 2595 rf_ReconstructInPlaceThread(struct rf_recon_req *req) 2596 { 2597 int s; 2598 RF_Raid_t *raidPtr; 2599 2600 s = splbio(); 2601 raidPtr = req->raidPtr; 2602 raidPtr->recon_in_progress = 1; 2603 rf_ReconstructInPlace(raidPtr, req->col); 2604 RF_Free(req, sizeof(*req)); 2605 raidPtr->recon_in_progress = 0; 2606 splx(s); 2607 2608 /* That's all... */ 2609 kthread_exit(0); /* does not return */ 2610 } 2611 2612 RF_AutoConfig_t * 2613 rf_find_raid_components() 2614 { 2615 struct vnode *vp; 2616 struct disklabel label; 2617 struct device *dv; 2618 dev_t dev; 2619 int bmajor; 2620 int error; 2621 int i; 2622 int good_one; 2623 RF_ComponentLabel_t *clabel; 2624 RF_AutoConfig_t *ac_list; 2625 RF_AutoConfig_t *ac; 2626 2627 2628 /* initialize the AutoConfig list */ 2629 ac_list = NULL; 2630 2631 /* we begin by trolling through *all* the devices on the system */ 2632 2633 for (dv = alldevs.tqh_first; dv != NULL; 2634 dv = dv->dv_list.tqe_next) { 2635 2636 /* we are only interested in disks... */ 2637 if (dv->dv_class != DV_DISK) 2638 continue; 2639 2640 /* we don't care about floppies... */ 2641 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) { 2642 continue; 2643 } 2644 2645 /* we don't care about CD's... */ 2646 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) { 2647 continue; 2648 } 2649 2650 /* hdfd is the Atari/Hades floppy driver */ 2651 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) { 2652 continue; 2653 } 2654 /* fdisa is the Atari/Milan floppy driver */ 2655 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) { 2656 continue; 2657 } 2658 2659 /* need to find the device_name_to_block_device_major stuff */ 2660 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0); 2661 2662 /* get a vnode for the raw partition of this disk */ 2663 2664 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART); 2665 if (bdevvp(dev, &vp)) 2666 panic("RAID can't alloc vnode"); 2667 2668 error = VOP_OPEN(vp, FREAD, NOCRED, 0); 2669 2670 if (error) { 2671 /* "Who cares." Continue looking 2672 for something that exists*/ 2673 vput(vp); 2674 continue; 2675 } 2676 2677 /* Ok, the disk exists. Go get the disklabel. */ 2678 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0); 2679 if (error) { 2680 /* 2681 * XXX can't happen - open() would 2682 * have errored out (or faked up one) 2683 */ 2684 if (error != ENOTTY) 2685 printf("RAIDframe: can't get label for dev " 2686 "%s (%d)\n", dv->dv_xname, error); 2687 } 2688 2689 /* don't need this any more. We'll allocate it again 2690 a little later if we really do... */ 2691 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2692 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2693 vput(vp); 2694 2695 if (error) 2696 continue; 2697 2698 for (i=0; i < label.d_npartitions; i++) { 2699 /* We only support partitions marked as RAID */ 2700 if (label.d_partitions[i].p_fstype != FS_RAID) 2701 continue; 2702 2703 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i); 2704 if (bdevvp(dev, &vp)) 2705 panic("RAID can't alloc vnode"); 2706 2707 error = VOP_OPEN(vp, FREAD, NOCRED, 0); 2708 if (error) { 2709 /* Whatever... */ 2710 vput(vp); 2711 continue; 2712 } 2713 2714 good_one = 0; 2715 2716 clabel = (RF_ComponentLabel_t *) 2717 malloc(sizeof(RF_ComponentLabel_t), 2718 M_RAIDFRAME, M_NOWAIT); 2719 if (clabel == NULL) { 2720 /* XXX CLEANUP HERE */ 2721 printf("RAID auto config: out of memory!\n"); 2722 return(NULL); /* XXX probably should panic? */ 2723 } 2724 2725 if (!raidread_component_label(dev, vp, clabel)) { 2726 /* Got the label. Does it look reasonable? */ 2727 if (rf_reasonable_label(clabel) && 2728 (clabel->partitionSize <= 2729 label.d_partitions[i].p_size)) { 2730 #if DEBUG 2731 printf("Component on: %s%c: %d\n", 2732 dv->dv_xname, 'a'+i, 2733 label.d_partitions[i].p_size); 2734 rf_print_component_label(clabel); 2735 #endif 2736 /* if it's reasonable, add it, 2737 else ignore it. */ 2738 ac = (RF_AutoConfig_t *) 2739 malloc(sizeof(RF_AutoConfig_t), 2740 M_RAIDFRAME, 2741 M_NOWAIT); 2742 if (ac == NULL) { 2743 /* XXX should panic?? */ 2744 return(NULL); 2745 } 2746 2747 snprintf(ac->devname, 2748 sizeof(ac->devname), "%s%c", 2749 dv->dv_xname, 'a'+i); 2750 ac->dev = dev; 2751 ac->vp = vp; 2752 ac->clabel = clabel; 2753 ac->next = ac_list; 2754 ac_list = ac; 2755 good_one = 1; 2756 } 2757 } 2758 if (!good_one) { 2759 /* cleanup */ 2760 free(clabel, M_RAIDFRAME); 2761 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2762 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0); 2763 vput(vp); 2764 } 2765 } 2766 } 2767 return(ac_list); 2768 } 2769 2770 static int 2771 rf_reasonable_label(RF_ComponentLabel_t *clabel) 2772 { 2773 2774 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) || 2775 (clabel->version==RF_COMPONENT_LABEL_VERSION)) && 2776 ((clabel->clean == RF_RAID_CLEAN) || 2777 (clabel->clean == RF_RAID_DIRTY)) && 2778 clabel->row >=0 && 2779 clabel->column >= 0 && 2780 clabel->num_rows > 0 && 2781 clabel->num_columns > 0 && 2782 clabel->row < clabel->num_rows && 2783 clabel->column < clabel->num_columns && 2784 clabel->blockSize > 0 && 2785 clabel->numBlocks > 0) { 2786 /* label looks reasonable enough... */ 2787 return(1); 2788 } 2789 return(0); 2790 } 2791 2792 2793 #if DEBUG 2794 void 2795 rf_print_component_label(RF_ComponentLabel_t *clabel) 2796 { 2797 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", 2798 clabel->row, clabel->column, 2799 clabel->num_rows, clabel->num_columns); 2800 printf(" Version: %d Serial Number: %d Mod Counter: %d\n", 2801 clabel->version, clabel->serial_number, 2802 clabel->mod_counter); 2803 printf(" Clean: %s Status: %d\n", 2804 clabel->clean ? "Yes" : "No", clabel->status ); 2805 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", 2806 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); 2807 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n", 2808 (char) clabel->parityConfig, clabel->blockSize, 2809 clabel->numBlocks); 2810 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" ); 2811 printf(" Contains root partition: %s\n", 2812 clabel->root_partition ? "Yes" : "No" ); 2813 printf(" Last configured as: raid%d\n", clabel->last_unit ); 2814 #if 0 2815 printf(" Config order: %d\n", clabel->config_order); 2816 #endif 2817 2818 } 2819 #endif 2820 2821 RF_ConfigSet_t * 2822 rf_create_auto_sets(RF_AutoConfig_t *ac_list) 2823 { 2824 RF_AutoConfig_t *ac; 2825 RF_ConfigSet_t *config_sets; 2826 RF_ConfigSet_t *cset; 2827 RF_AutoConfig_t *ac_next; 2828 2829 2830 config_sets = NULL; 2831 2832 /* Go through the AutoConfig list, and figure out which components 2833 belong to what sets. */ 2834 ac = ac_list; 2835 while(ac!=NULL) { 2836 /* we're going to putz with ac->next, so save it here 2837 for use at the end of the loop */ 2838 ac_next = ac->next; 2839 2840 if (config_sets == NULL) { 2841 /* will need at least this one... */ 2842 config_sets = (RF_ConfigSet_t *) 2843 malloc(sizeof(RF_ConfigSet_t), 2844 M_RAIDFRAME, M_NOWAIT); 2845 if (config_sets == NULL) { 2846 panic("rf_create_auto_sets: No memory!"); 2847 } 2848 /* this one is easy :) */ 2849 config_sets->ac = ac; 2850 config_sets->next = NULL; 2851 config_sets->rootable = 0; 2852 ac->next = NULL; 2853 } else { 2854 /* which set does this component fit into? */ 2855 cset = config_sets; 2856 while(cset!=NULL) { 2857 if (rf_does_it_fit(cset, ac)) { 2858 /* looks like it matches... */ 2859 ac->next = cset->ac; 2860 cset->ac = ac; 2861 break; 2862 } 2863 cset = cset->next; 2864 } 2865 if (cset==NULL) { 2866 /* didn't find a match above... new set..*/ 2867 cset = (RF_ConfigSet_t *) 2868 malloc(sizeof(RF_ConfigSet_t), 2869 M_RAIDFRAME, M_NOWAIT); 2870 if (cset == NULL) { 2871 panic("rf_create_auto_sets: No memory!"); 2872 } 2873 cset->ac = ac; 2874 ac->next = NULL; 2875 cset->next = config_sets; 2876 cset->rootable = 0; 2877 config_sets = cset; 2878 } 2879 } 2880 ac = ac_next; 2881 } 2882 2883 2884 return(config_sets); 2885 } 2886 2887 static int 2888 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac) 2889 { 2890 RF_ComponentLabel_t *clabel1, *clabel2; 2891 2892 /* If this one matches the *first* one in the set, that's good 2893 enough, since the other members of the set would have been 2894 through here too... */ 2895 /* note that we are not checking partitionSize here.. 2896 2897 Note that we are also not checking the mod_counters here. 2898 If everything else matches execpt the mod_counter, that's 2899 good enough for this test. We will deal with the mod_counters 2900 a little later in the autoconfiguration process. 2901 2902 (clabel1->mod_counter == clabel2->mod_counter) && 2903 2904 The reason we don't check for this is that failed disks 2905 will have lower modification counts. If those disks are 2906 not added to the set they used to belong to, then they will 2907 form their own set, which may result in 2 different sets, 2908 for example, competing to be configured at raid0, and 2909 perhaps competing to be the root filesystem set. If the 2910 wrong ones get configured, or both attempt to become /, 2911 weird behaviour and or serious lossage will occur. Thus we 2912 need to bring them into the fold here, and kick them out at 2913 a later point. 2914 2915 */ 2916 2917 clabel1 = cset->ac->clabel; 2918 clabel2 = ac->clabel; 2919 if ((clabel1->version == clabel2->version) && 2920 (clabel1->serial_number == clabel2->serial_number) && 2921 (clabel1->num_rows == clabel2->num_rows) && 2922 (clabel1->num_columns == clabel2->num_columns) && 2923 (clabel1->sectPerSU == clabel2->sectPerSU) && 2924 (clabel1->SUsPerPU == clabel2->SUsPerPU) && 2925 (clabel1->SUsPerRU == clabel2->SUsPerRU) && 2926 (clabel1->parityConfig == clabel2->parityConfig) && 2927 (clabel1->maxOutstanding == clabel2->maxOutstanding) && 2928 (clabel1->blockSize == clabel2->blockSize) && 2929 (clabel1->numBlocks == clabel2->numBlocks) && 2930 (clabel1->autoconfigure == clabel2->autoconfigure) && 2931 (clabel1->root_partition == clabel2->root_partition) && 2932 (clabel1->last_unit == clabel2->last_unit) && 2933 (clabel1->config_order == clabel2->config_order)) { 2934 /* if it get's here, it almost *has* to be a match */ 2935 } else { 2936 /* it's not consistent with somebody in the set.. 2937 punt */ 2938 return(0); 2939 } 2940 /* all was fine.. it must fit... */ 2941 return(1); 2942 } 2943 2944 int 2945 rf_have_enough_components(RF_ConfigSet_t *cset) 2946 { 2947 RF_AutoConfig_t *ac; 2948 RF_AutoConfig_t *auto_config; 2949 RF_ComponentLabel_t *clabel; 2950 int c; 2951 int num_cols; 2952 int num_missing; 2953 int mod_counter; 2954 int mod_counter_found; 2955 int even_pair_failed; 2956 char parity_type; 2957 2958 2959 /* check to see that we have enough 'live' components 2960 of this set. If so, we can configure it if necessary */ 2961 2962 num_cols = cset->ac->clabel->num_columns; 2963 parity_type = cset->ac->clabel->parityConfig; 2964 2965 /* XXX Check for duplicate components!?!?!? */ 2966 2967 /* Determine what the mod_counter is supposed to be for this set. */ 2968 2969 mod_counter_found = 0; 2970 mod_counter = 0; 2971 ac = cset->ac; 2972 while(ac!=NULL) { 2973 if (mod_counter_found==0) { 2974 mod_counter = ac->clabel->mod_counter; 2975 mod_counter_found = 1; 2976 } else { 2977 if (ac->clabel->mod_counter > mod_counter) { 2978 mod_counter = ac->clabel->mod_counter; 2979 } 2980 } 2981 ac = ac->next; 2982 } 2983 2984 num_missing = 0; 2985 auto_config = cset->ac; 2986 2987 even_pair_failed = 0; 2988 for(c=0; c<num_cols; c++) { 2989 ac = auto_config; 2990 while(ac!=NULL) { 2991 if ((ac->clabel->column == c) && 2992 (ac->clabel->mod_counter == mod_counter)) { 2993 /* it's this one... */ 2994 #if DEBUG 2995 printf("Found: %s at %d\n", 2996 ac->devname,c); 2997 #endif 2998 break; 2999 } 3000 ac=ac->next; 3001 } 3002 if (ac==NULL) { 3003 /* Didn't find one here! */ 3004 /* special case for RAID 1, especially 3005 where there are more than 2 3006 components (where RAIDframe treats 3007 things a little differently :( ) */ 3008 if (parity_type == '1') { 3009 if (c%2 == 0) { /* even component */ 3010 even_pair_failed = 1; 3011 } else { /* odd component. If 3012 we're failed, and 3013 so is the even 3014 component, it's 3015 "Good Night, Charlie" */ 3016 if (even_pair_failed == 1) { 3017 return(0); 3018 } 3019 } 3020 } else { 3021 /* normal accounting */ 3022 num_missing++; 3023 } 3024 } 3025 if ((parity_type == '1') && (c%2 == 1)) { 3026 /* Just did an even component, and we didn't 3027 bail.. reset the even_pair_failed flag, 3028 and go on to the next component.... */ 3029 even_pair_failed = 0; 3030 } 3031 } 3032 3033 clabel = cset->ac->clabel; 3034 3035 if (((clabel->parityConfig == '0') && (num_missing > 0)) || 3036 ((clabel->parityConfig == '4') && (num_missing > 1)) || 3037 ((clabel->parityConfig == '5') && (num_missing > 1))) { 3038 /* XXX this needs to be made *much* more general */ 3039 /* Too many failures */ 3040 return(0); 3041 } 3042 /* otherwise, all is well, and we've got enough to take a kick 3043 at autoconfiguring this set */ 3044 return(1); 3045 } 3046 3047 void 3048 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config, 3049 RF_Raid_t *raidPtr) 3050 { 3051 RF_ComponentLabel_t *clabel; 3052 int i; 3053 3054 clabel = ac->clabel; 3055 3056 /* 1. Fill in the common stuff */ 3057 config->numRow = clabel->num_rows = 1; 3058 config->numCol = clabel->num_columns; 3059 config->numSpare = 0; /* XXX should this be set here? */ 3060 config->sectPerSU = clabel->sectPerSU; 3061 config->SUsPerPU = clabel->SUsPerPU; 3062 config->SUsPerRU = clabel->SUsPerRU; 3063 config->parityConfig = clabel->parityConfig; 3064 /* XXX... */ 3065 strcpy(config->diskQueueType,"fifo"); 3066 config->maxOutstandingDiskReqs = clabel->maxOutstanding; 3067 config->layoutSpecificSize = 0; /* XXX ?? */ 3068 3069 while(ac!=NULL) { 3070 /* row/col values will be in range due to the checks 3071 in reasonable_label() */ 3072 strcpy(config->devnames[0][ac->clabel->column], 3073 ac->devname); 3074 ac = ac->next; 3075 } 3076 3077 for(i=0;i<RF_MAXDBGV;i++) { 3078 config->debugVars[i][0] = 0; 3079 } 3080 } 3081 3082 int 3083 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value) 3084 { 3085 RF_ComponentLabel_t clabel; 3086 struct vnode *vp; 3087 dev_t dev; 3088 int column; 3089 int sparecol; 3090 3091 raidPtr->autoconfigure = new_value; 3092 3093 for(column=0; column<raidPtr->numCol; column++) { 3094 if (raidPtr->Disks[column].status == rf_ds_optimal) { 3095 dev = raidPtr->Disks[column].dev; 3096 vp = raidPtr->raid_cinfo[column].ci_vp; 3097 raidread_component_label(dev, vp, &clabel); 3098 clabel.autoconfigure = new_value; 3099 raidwrite_component_label(dev, vp, &clabel); 3100 } 3101 } 3102 for(column = 0; column < raidPtr->numSpare ; column++) { 3103 sparecol = raidPtr->numCol + column; 3104 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3105 dev = raidPtr->Disks[sparecol].dev; 3106 vp = raidPtr->raid_cinfo[sparecol].ci_vp; 3107 raidread_component_label(dev, vp, &clabel); 3108 clabel.autoconfigure = new_value; 3109 raidwrite_component_label(dev, vp, &clabel); 3110 } 3111 } 3112 return(new_value); 3113 } 3114 3115 int 3116 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value) 3117 { 3118 RF_ComponentLabel_t clabel; 3119 struct vnode *vp; 3120 dev_t dev; 3121 int column; 3122 int sparecol; 3123 3124 raidPtr->root_partition = new_value; 3125 for(column=0; column<raidPtr->numCol; column++) { 3126 if (raidPtr->Disks[column].status == rf_ds_optimal) { 3127 dev = raidPtr->Disks[column].dev; 3128 vp = raidPtr->raid_cinfo[column].ci_vp; 3129 raidread_component_label(dev, vp, &clabel); 3130 clabel.root_partition = new_value; 3131 raidwrite_component_label(dev, vp, &clabel); 3132 } 3133 } 3134 for(column = 0; column < raidPtr->numSpare ; column++) { 3135 sparecol = raidPtr->numCol + column; 3136 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3137 dev = raidPtr->Disks[sparecol].dev; 3138 vp = raidPtr->raid_cinfo[sparecol].ci_vp; 3139 raidread_component_label(dev, vp, &clabel); 3140 clabel.root_partition = new_value; 3141 raidwrite_component_label(dev, vp, &clabel); 3142 } 3143 } 3144 return(new_value); 3145 } 3146 3147 void 3148 rf_release_all_vps(RF_ConfigSet_t *cset) 3149 { 3150 RF_AutoConfig_t *ac; 3151 3152 ac = cset->ac; 3153 while(ac!=NULL) { 3154 /* Close the vp, and give it back */ 3155 if (ac->vp) { 3156 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY); 3157 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0); 3158 vput(ac->vp); 3159 ac->vp = NULL; 3160 } 3161 ac = ac->next; 3162 } 3163 } 3164 3165 3166 void 3167 rf_cleanup_config_set(RF_ConfigSet_t *cset) 3168 { 3169 RF_AutoConfig_t *ac; 3170 RF_AutoConfig_t *next_ac; 3171 3172 ac = cset->ac; 3173 while(ac!=NULL) { 3174 next_ac = ac->next; 3175 /* nuke the label */ 3176 free(ac->clabel, M_RAIDFRAME); 3177 /* cleanup the config structure */ 3178 free(ac, M_RAIDFRAME); 3179 /* "next.." */ 3180 ac = next_ac; 3181 } 3182 /* and, finally, nuke the config set */ 3183 free(cset, M_RAIDFRAME); 3184 } 3185 3186 3187 void 3188 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) 3189 { 3190 /* current version number */ 3191 clabel->version = RF_COMPONENT_LABEL_VERSION; 3192 clabel->serial_number = raidPtr->serial_number; 3193 clabel->mod_counter = raidPtr->mod_counter; 3194 clabel->num_rows = 1; 3195 clabel->num_columns = raidPtr->numCol; 3196 clabel->clean = RF_RAID_DIRTY; /* not clean */ 3197 clabel->status = rf_ds_optimal; /* "It's good!" */ 3198 3199 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; 3200 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; 3201 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; 3202 3203 clabel->blockSize = raidPtr->bytesPerSector; 3204 clabel->numBlocks = raidPtr->sectorsPerDisk; 3205 3206 /* XXX not portable */ 3207 clabel->parityConfig = raidPtr->Layout.map->parityConfig; 3208 clabel->maxOutstanding = raidPtr->maxOutstanding; 3209 clabel->autoconfigure = raidPtr->autoconfigure; 3210 clabel->root_partition = raidPtr->root_partition; 3211 clabel->last_unit = raidPtr->raidid; 3212 clabel->config_order = raidPtr->config_order; 3213 } 3214 3215 int 3216 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit) 3217 { 3218 RF_Raid_t *raidPtr; 3219 RF_Config_t *config; 3220 int raidID; 3221 int retcode; 3222 3223 #if DEBUG 3224 printf("RAID autoconfigure\n"); 3225 #endif 3226 3227 retcode = 0; 3228 *unit = -1; 3229 3230 /* 1. Create a config structure */ 3231 3232 config = (RF_Config_t *)malloc(sizeof(RF_Config_t), 3233 M_RAIDFRAME, 3234 M_NOWAIT); 3235 if (config==NULL) { 3236 printf("Out of mem!?!?\n"); 3237 /* XXX do something more intelligent here. */ 3238 return(1); 3239 } 3240 3241 memset(config, 0, sizeof(RF_Config_t)); 3242 3243 /* 3244 2. Figure out what RAID ID this one is supposed to live at 3245 See if we can get the same RAID dev that it was configured 3246 on last time.. 3247 */ 3248 3249 raidID = cset->ac->clabel->last_unit; 3250 if ((raidID < 0) || (raidID >= numraid)) { 3251 /* let's not wander off into lala land. */ 3252 raidID = numraid - 1; 3253 } 3254 if (raidPtrs[raidID]->valid != 0) { 3255 3256 /* 3257 Nope... Go looking for an alternative... 3258 Start high so we don't immediately use raid0 if that's 3259 not taken. 3260 */ 3261 3262 for(raidID = numraid - 1; raidID >= 0; raidID--) { 3263 if (raidPtrs[raidID]->valid == 0) { 3264 /* can use this one! */ 3265 break; 3266 } 3267 } 3268 } 3269 3270 if (raidID < 0) { 3271 /* punt... */ 3272 printf("Unable to auto configure this set!\n"); 3273 printf("(Out of RAID devs!)\n"); 3274 return(1); 3275 } 3276 3277 #if DEBUG 3278 printf("Configuring raid%d:\n",raidID); 3279 #endif 3280 3281 raidPtr = raidPtrs[raidID]; 3282 3283 /* XXX all this stuff should be done SOMEWHERE ELSE! */ 3284 raidPtr->raidid = raidID; 3285 raidPtr->openings = RAIDOUTSTANDING; 3286 3287 /* 3. Build the configuration structure */ 3288 rf_create_configuration(cset->ac, config, raidPtr); 3289 3290 /* 4. Do the configuration */ 3291 retcode = rf_Configure(raidPtr, config, cset->ac); 3292 3293 if (retcode == 0) { 3294 3295 raidinit(raidPtrs[raidID]); 3296 3297 rf_markalldirty(raidPtrs[raidID]); 3298 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */ 3299 if (cset->ac->clabel->root_partition==1) { 3300 /* everything configured just fine. Make a note 3301 that this set is eligible to be root. */ 3302 cset->rootable = 1; 3303 /* XXX do this here? */ 3304 raidPtrs[raidID]->root_partition = 1; 3305 } 3306 } 3307 3308 /* 5. Cleanup */ 3309 free(config, M_RAIDFRAME); 3310 3311 *unit = raidID; 3312 return(retcode); 3313 } 3314 3315 void 3316 rf_disk_unbusy(RF_RaidAccessDesc_t *desc) 3317 { 3318 struct buf *bp; 3319 3320 bp = (struct buf *)desc->bp; 3321 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev, 3322 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); 3323 } 3324 3325 void 3326 rf_pool_init(struct pool *p, size_t size, char *w_chan, 3327 size_t min, size_t max) 3328 { 3329 pool_init(p, size, 0, 0, 0, w_chan, NULL); 3330 pool_sethiwat(p, max); 3331 pool_prime(p, min); 3332 pool_setlowat(p, min); 3333 } 3334