xref: /netbsd-src/sys/dev/raidframe/rf_netbsdkintf.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: rf_netbsdkintf.c,v 1.92 2000/06/04 02:16:05 oster Exp $	*/
2 /*-
3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Greg Oster; Jason R. Thorpe.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *        This product includes software developed by the NetBSD
20  *        Foundation, Inc. and its contributors.
21  * 4. Neither the name of The NetBSD Foundation nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1988 University of Utah.
40  * Copyright (c) 1990, 1993
41  *      The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software contributed to Berkeley by
44  * the Systems Programming Group of the University of Utah Computer
45  * Science Department.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *      This product includes software developed by the University of
58  *      California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  *
75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
76  *
77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
78  */
79 
80 
81 
82 
83 /*
84  * Copyright (c) 1995 Carnegie-Mellon University.
85  * All rights reserved.
86  *
87  * Authors: Mark Holland, Jim Zelenka
88  *
89  * Permission to use, copy, modify and distribute this software and
90  * its documentation is hereby granted, provided that both the copyright
91  * notice and this permission notice appear in all copies of the
92  * software, derivative works or modified versions, and any portions
93  * thereof, and that both notices appear in supporting documentation.
94  *
95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98  *
99  * Carnegie Mellon requests users of this software to return to
100  *
101  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
102  *  School of Computer Science
103  *  Carnegie Mellon University
104  *  Pittsburgh PA 15213-3890
105  *
106  * any improvements or extensions that they make and grant Carnegie the
107  * rights to redistribute these changes.
108  */
109 
110 /***********************************************************
111  *
112  * rf_kintf.c -- the kernel interface routines for RAIDframe
113  *
114  ***********************************************************/
115 
116 #include <sys/errno.h>
117 #include <sys/param.h>
118 #include <sys/pool.h>
119 #include <sys/queue.h>
120 #include <sys/disk.h>
121 #include <sys/device.h>
122 #include <sys/stat.h>
123 #include <sys/ioctl.h>
124 #include <sys/fcntl.h>
125 #include <sys/systm.h>
126 #include <sys/namei.h>
127 #include <sys/vnode.h>
128 #include <sys/param.h>
129 #include <sys/types.h>
130 #include <machine/types.h>
131 #include <sys/disklabel.h>
132 #include <sys/conf.h>
133 #include <sys/lock.h>
134 #include <sys/buf.h>
135 #include <sys/user.h>
136 #include <sys/reboot.h>
137 
138 #include "raid.h"
139 #include "opt_raid_autoconfig.h"
140 #include "rf_raid.h"
141 #include "rf_raidframe.h"
142 #include "rf_copyback.h"
143 #include "rf_dag.h"
144 #include "rf_dagflags.h"
145 #include "rf_diskqueue.h"
146 #include "rf_acctrace.h"
147 #include "rf_etimer.h"
148 #include "rf_general.h"
149 #include "rf_debugMem.h"
150 #include "rf_kintf.h"
151 #include "rf_options.h"
152 #include "rf_driver.h"
153 #include "rf_parityscan.h"
154 #include "rf_debugprint.h"
155 #include "rf_threadstuff.h"
156 #include "rf_configure.h"
157 
158 int     rf_kdebug_level = 0;
159 
160 #ifdef DEBUG
161 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
162 #else				/* DEBUG */
163 #define db1_printf(a) { }
164 #endif				/* DEBUG */
165 
166 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
167 
168 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
169 
170 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
171 						 * spare table */
172 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
173 						 * installation process */
174 
175 /* prototypes */
176 static void KernelWakeupFunc(struct buf * bp);
177 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
178 		   dev_t dev, RF_SectorNum_t startSect,
179 		   RF_SectorCount_t numSect, caddr_t buf,
180 		   void (*cbFunc) (struct buf *), void *cbArg,
181 		   int logBytesPerSector, struct proc * b_proc);
182 static void raidinit __P((RF_Raid_t *));
183 
184 void raidattach __P((int));
185 int raidsize __P((dev_t));
186 int raidopen __P((dev_t, int, int, struct proc *));
187 int raidclose __P((dev_t, int, int, struct proc *));
188 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
189 int raidwrite __P((dev_t, struct uio *, int));
190 int raidread __P((dev_t, struct uio *, int));
191 void raidstrategy __P((struct buf *));
192 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
193 
194 /*
195  * Pilfered from ccd.c
196  */
197 
198 struct raidbuf {
199 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
200 	struct buf *rf_obp;	/* ptr. to original I/O buf */
201 	int     rf_flags;	/* misc. flags */
202 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
203 };
204 
205 
206 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
207 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
208 
209 /* XXX Not sure if the following should be replacing the raidPtrs above,
210    or if it should be used in conjunction with that...
211 */
212 
213 struct raid_softc {
214 	int     sc_flags;	/* flags */
215 	int     sc_cflags;	/* configuration flags */
216 	size_t  sc_size;        /* size of the raid device */
217 	char    sc_xname[20];	/* XXX external name */
218 	struct disk sc_dkdev;	/* generic disk device info */
219 	struct pool sc_cbufpool;	/* component buffer pool */
220 	struct buf_queue buf_queue;	/* used for the device queue */
221 };
222 /* sc_flags */
223 #define RAIDF_INITED	0x01	/* unit has been initialized */
224 #define RAIDF_WLABEL	0x02	/* label area is writable */
225 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
226 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
227 #define RAIDF_LOCKED	0x80	/* unit is locked */
228 
229 #define	raidunit(x)	DISKUNIT(x)
230 int numraid = 0;
231 
232 /*
233  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
234  * Be aware that large numbers can allow the driver to consume a lot of
235  * kernel memory, especially on writes, and in degraded mode reads.
236  *
237  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
238  * a single 64K write will typically require 64K for the old data,
239  * 64K for the old parity, and 64K for the new parity, for a total
240  * of 192K (if the parity buffer is not re-used immediately).
241  * Even it if is used immedately, that's still 128K, which when multiplied
242  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
243  *
244  * Now in degraded mode, for example, a 64K read on the above setup may
245  * require data reconstruction, which will require *all* of the 4 remaining
246  * disks to participate -- 4 * 32K/disk == 128K again.
247  */
248 
249 #ifndef RAIDOUTSTANDING
250 #define RAIDOUTSTANDING   6
251 #endif
252 
253 #define RAIDLABELDEV(dev)	\
254 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
255 
256 /* declared here, and made public, for the benefit of KVM stuff.. */
257 struct raid_softc *raid_softc;
258 
259 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
260 				     struct disklabel *));
261 static void raidgetdisklabel __P((dev_t));
262 static void raidmakedisklabel __P((struct raid_softc *));
263 
264 static int raidlock __P((struct raid_softc *));
265 static void raidunlock __P((struct raid_softc *));
266 
267 static void rf_markalldirty __P((RF_Raid_t *));
268 void rf_mountroot_hook __P((struct device *));
269 
270 struct device *raidrootdev;
271 
272 void rf_ReconThread __P((struct rf_recon_req *));
273 /* XXX what I want is: */
274 /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
275 void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
276 void rf_CopybackThread __P((RF_Raid_t *raidPtr));
277 void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
278 void rf_buildroothack __P((void *));
279 
280 RF_AutoConfig_t *rf_find_raid_components __P((void));
281 RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
282 static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
283 static int rf_reasonable_label __P((RF_ComponentLabel_t *));
284 void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
285 				  RF_Raid_t *));
286 int rf_set_autoconfig __P((RF_Raid_t *, int));
287 int rf_set_rootpartition __P((RF_Raid_t *, int));
288 void rf_release_all_vps __P((RF_ConfigSet_t *));
289 void rf_cleanup_config_set __P((RF_ConfigSet_t *));
290 int rf_have_enough_components __P((RF_ConfigSet_t *));
291 int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
292 
293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
294 				  allow autoconfig to take place.
295 			          Note that this is overridden by having
296 			          RAID_AUTOCONFIG as an option in the
297 			          kernel config file.  */
298 
299 void
300 raidattach(num)
301 	int     num;
302 {
303 	int raidID;
304 	int i, rc;
305 	RF_AutoConfig_t *ac_list; /* autoconfig list */
306 	RF_ConfigSet_t *config_sets;
307 
308 #ifdef DEBUG
309 	printf("raidattach: Asked for %d units\n", num);
310 #endif
311 
312 	if (num <= 0) {
313 #ifdef DIAGNOSTIC
314 		panic("raidattach: count <= 0");
315 #endif
316 		return;
317 	}
318 	/* This is where all the initialization stuff gets done. */
319 
320 	numraid = num;
321 
322 	/* Make some space for requested number of units... */
323 
324 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
325 	if (raidPtrs == NULL) {
326 		panic("raidPtrs is NULL!!\n");
327 	}
328 
329 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
330 	if (rc) {
331 		RF_PANIC();
332 	}
333 
334 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
335 
336 	for (i = 0; i < num; i++)
337 		raidPtrs[i] = NULL;
338 	rc = rf_BootRaidframe();
339 	if (rc == 0)
340 		printf("Kernelized RAIDframe activated\n");
341 	else
342 		panic("Serious error booting RAID!!\n");
343 
344 	/* put together some datastructures like the CCD device does.. This
345 	 * lets us lock the device and what-not when it gets opened. */
346 
347 	raid_softc = (struct raid_softc *)
348 		malloc(num * sizeof(struct raid_softc),
349 		       M_RAIDFRAME, M_NOWAIT);
350 	if (raid_softc == NULL) {
351 		printf("WARNING: no memory for RAIDframe driver\n");
352 		return;
353 	}
354 
355 	bzero(raid_softc, num * sizeof(struct raid_softc));
356 
357 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
358 					      M_RAIDFRAME, M_NOWAIT);
359 	if (raidrootdev == NULL) {
360 		panic("No memory for RAIDframe driver!!?!?!\n");
361 	}
362 
363 	for (raidID = 0; raidID < num; raidID++) {
364 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
365 
366 		raidrootdev[raidID].dv_class  = DV_DISK;
367 		raidrootdev[raidID].dv_cfdata = NULL;
368 		raidrootdev[raidID].dv_unit   = raidID;
369 		raidrootdev[raidID].dv_parent = NULL;
370 		raidrootdev[raidID].dv_flags  = 0;
371 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
372 
373 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
374 			  (RF_Raid_t *));
375 		if (raidPtrs[raidID] == NULL) {
376 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
377 			numraid = raidID;
378 			return;
379 		}
380 	}
381 
382 #if RAID_AUTOCONFIG
383 	raidautoconfig = 1;
384 #endif
385 
386 if (raidautoconfig) {
387 	/* 1. locate all RAID components on the system */
388 
389 #if DEBUG
390 	printf("Searching for raid components...\n");
391 #endif
392 	ac_list = rf_find_raid_components();
393 
394 	/* 2. sort them into their respective sets */
395 
396 	config_sets = rf_create_auto_sets(ac_list);
397 
398 	/* 3. evaluate each set and configure the valid ones
399 	   This gets done in rf_buildroothack() */
400 
401 	/* schedule the creation of the thread to do the
402 	   "/ on RAID" stuff */
403 
404 	kthread_create(rf_buildroothack,config_sets);
405 
406 #if 0
407 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
408 #endif
409 }
410 
411 }
412 
413 void
414 rf_buildroothack(arg)
415 	void *arg;
416 {
417 	RF_ConfigSet_t *config_sets = arg;
418 	RF_ConfigSet_t *cset;
419 	RF_ConfigSet_t *next_cset;
420 	int retcode;
421 	int raidID;
422 	int rootID;
423 	int num_root;
424 
425 	num_root = 0;
426 	cset = config_sets;
427 	while(cset != NULL ) {
428 		next_cset = cset->next;
429 		if (rf_have_enough_components(cset) &&
430 		    cset->ac->clabel->autoconfigure==1) {
431 			retcode = rf_auto_config_set(cset,&raidID);
432 			if (!retcode) {
433 				if (cset->rootable) {
434 					rootID = raidID;
435 					num_root++;
436 				}
437 			} else {
438 				/* The autoconfig didn't work :( */
439 #if DEBUG
440 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
441 #endif
442 				rf_release_all_vps(cset);
443 			}
444 		} else {
445 			/* we're not autoconfiguring this set...
446 			   release the associated resources */
447 			rf_release_all_vps(cset);
448 		}
449 		/* cleanup */
450 		rf_cleanup_config_set(cset);
451 		cset = next_cset;
452 	}
453 	if (boothowto & RB_ASKNAME) {
454 		/* We don't auto-config... */
455 	} else {
456 		/* They didn't ask, and we found something bootable... */
457 
458 		if (num_root == 1) {
459 			booted_device = &raidrootdev[rootID];
460 		} else if (num_root > 1) {
461 			/* we can't guess.. require the user to answer... */
462 			boothowto |= RB_ASKNAME;
463 		}
464 	}
465 }
466 
467 
468 int
469 raidsize(dev)
470 	dev_t   dev;
471 {
472 	struct raid_softc *rs;
473 	struct disklabel *lp;
474 	int     part, unit, omask, size;
475 
476 	unit = raidunit(dev);
477 	if (unit >= numraid)
478 		return (-1);
479 	rs = &raid_softc[unit];
480 
481 	if ((rs->sc_flags & RAIDF_INITED) == 0)
482 		return (-1);
483 
484 	part = DISKPART(dev);
485 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
486 	lp = rs->sc_dkdev.dk_label;
487 
488 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
489 		return (-1);
490 
491 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
492 		size = -1;
493 	else
494 		size = lp->d_partitions[part].p_size *
495 		    (lp->d_secsize / DEV_BSIZE);
496 
497 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
498 		return (-1);
499 
500 	return (size);
501 
502 }
503 
504 int
505 raiddump(dev, blkno, va, size)
506 	dev_t   dev;
507 	daddr_t blkno;
508 	caddr_t va;
509 	size_t  size;
510 {
511 	/* Not implemented. */
512 	return ENXIO;
513 }
514 /* ARGSUSED */
515 int
516 raidopen(dev, flags, fmt, p)
517 	dev_t   dev;
518 	int     flags, fmt;
519 	struct proc *p;
520 {
521 	int     unit = raidunit(dev);
522 	struct raid_softc *rs;
523 	struct disklabel *lp;
524 	int     part, pmask;
525 	int     error = 0;
526 
527 	if (unit >= numraid)
528 		return (ENXIO);
529 	rs = &raid_softc[unit];
530 
531 	if ((error = raidlock(rs)) != 0)
532 		return (error);
533 	lp = rs->sc_dkdev.dk_label;
534 
535 	part = DISKPART(dev);
536 	pmask = (1 << part);
537 
538 	db1_printf(("Opening raid device number: %d partition: %d\n",
539 		unit, part));
540 
541 
542 	if ((rs->sc_flags & RAIDF_INITED) &&
543 	    (rs->sc_dkdev.dk_openmask == 0))
544 		raidgetdisklabel(dev);
545 
546 	/* make sure that this partition exists */
547 
548 	if (part != RAW_PART) {
549 		db1_printf(("Not a raw partition..\n"));
550 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
551 		    ((part >= lp->d_npartitions) ||
552 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
553 			error = ENXIO;
554 			raidunlock(rs);
555 			db1_printf(("Bailing out...\n"));
556 			return (error);
557 		}
558 	}
559 	/* Prevent this unit from being unconfigured while open. */
560 	switch (fmt) {
561 	case S_IFCHR:
562 		rs->sc_dkdev.dk_copenmask |= pmask;
563 		break;
564 
565 	case S_IFBLK:
566 		rs->sc_dkdev.dk_bopenmask |= pmask;
567 		break;
568 	}
569 
570 	if ((rs->sc_dkdev.dk_openmask == 0) &&
571 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
572 		/* First one... mark things as dirty... Note that we *MUST*
573 		 have done a configure before this.  I DO NOT WANT TO BE
574 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
575 		 THAT THEY BELONG TOGETHER!!!!! */
576 		/* XXX should check to see if we're only open for reading
577 		   here... If so, we needn't do this, but then need some
578 		   other way of keeping track of what's happened.. */
579 
580 		rf_markalldirty( raidPtrs[unit] );
581 	}
582 
583 
584 	rs->sc_dkdev.dk_openmask =
585 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
586 
587 	raidunlock(rs);
588 
589 	return (error);
590 
591 
592 }
593 /* ARGSUSED */
594 int
595 raidclose(dev, flags, fmt, p)
596 	dev_t   dev;
597 	int     flags, fmt;
598 	struct proc *p;
599 {
600 	int     unit = raidunit(dev);
601 	struct raid_softc *rs;
602 	int     error = 0;
603 	int     part;
604 
605 	if (unit >= numraid)
606 		return (ENXIO);
607 	rs = &raid_softc[unit];
608 
609 	if ((error = raidlock(rs)) != 0)
610 		return (error);
611 
612 	part = DISKPART(dev);
613 
614 	/* ...that much closer to allowing unconfiguration... */
615 	switch (fmt) {
616 	case S_IFCHR:
617 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
618 		break;
619 
620 	case S_IFBLK:
621 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
622 		break;
623 	}
624 	rs->sc_dkdev.dk_openmask =
625 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
626 
627 	if ((rs->sc_dkdev.dk_openmask == 0) &&
628 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
629 		/* Last one... device is not unconfigured yet.
630 		   Device shutdown has taken care of setting the
631 		   clean bits if RAIDF_INITED is not set
632 		   mark things as clean... */
633 #if 0
634 		printf("Last one on raid%d.  Updating status.\n",unit);
635 #endif
636 		rf_update_component_labels(raidPtrs[unit],
637 						 RF_FINAL_COMPONENT_UPDATE);
638 	}
639 
640 	raidunlock(rs);
641 	return (0);
642 
643 }
644 
645 void
646 raidstrategy(bp)
647 	struct buf *bp;
648 {
649 	int s;
650 
651 	unsigned int raidID = raidunit(bp->b_dev);
652 	RF_Raid_t *raidPtr;
653 	struct raid_softc *rs = &raid_softc[raidID];
654 	struct disklabel *lp;
655 	int     wlabel;
656 
657 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
658 		bp->b_error = ENXIO;
659 		bp->b_flags = B_ERROR;
660 		bp->b_resid = bp->b_bcount;
661 		biodone(bp);
662 		return;
663 	}
664 	if (raidID >= numraid || !raidPtrs[raidID]) {
665 		bp->b_error = ENODEV;
666 		bp->b_flags |= B_ERROR;
667 		bp->b_resid = bp->b_bcount;
668 		biodone(bp);
669 		return;
670 	}
671 	raidPtr = raidPtrs[raidID];
672 	if (!raidPtr->valid) {
673 		bp->b_error = ENODEV;
674 		bp->b_flags |= B_ERROR;
675 		bp->b_resid = bp->b_bcount;
676 		biodone(bp);
677 		return;
678 	}
679 	if (bp->b_bcount == 0) {
680 		db1_printf(("b_bcount is zero..\n"));
681 		biodone(bp);
682 		return;
683 	}
684 	lp = rs->sc_dkdev.dk_label;
685 
686 	/*
687 	 * Do bounds checking and adjust transfer.  If there's an
688 	 * error, the bounds check will flag that for us.
689 	 */
690 
691 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
692 	if (DISKPART(bp->b_dev) != RAW_PART)
693 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
694 			db1_printf(("Bounds check failed!!:%d %d\n",
695 				(int) bp->b_blkno, (int) wlabel));
696 			biodone(bp);
697 			return;
698 		}
699 	s = splbio();
700 
701 	bp->b_resid = 0;
702 
703 	/* stuff it onto our queue */
704 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
705 
706 	raidstart(raidPtrs[raidID]);
707 
708 	splx(s);
709 }
710 /* ARGSUSED */
711 int
712 raidread(dev, uio, flags)
713 	dev_t   dev;
714 	struct uio *uio;
715 	int     flags;
716 {
717 	int     unit = raidunit(dev);
718 	struct raid_softc *rs;
719 	int     part;
720 
721 	if (unit >= numraid)
722 		return (ENXIO);
723 	rs = &raid_softc[unit];
724 
725 	if ((rs->sc_flags & RAIDF_INITED) == 0)
726 		return (ENXIO);
727 	part = DISKPART(dev);
728 
729 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
730 
731 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
732 
733 }
734 /* ARGSUSED */
735 int
736 raidwrite(dev, uio, flags)
737 	dev_t   dev;
738 	struct uio *uio;
739 	int     flags;
740 {
741 	int     unit = raidunit(dev);
742 	struct raid_softc *rs;
743 
744 	if (unit >= numraid)
745 		return (ENXIO);
746 	rs = &raid_softc[unit];
747 
748 	if ((rs->sc_flags & RAIDF_INITED) == 0)
749 		return (ENXIO);
750 	db1_printf(("raidwrite\n"));
751 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
752 
753 }
754 
755 int
756 raidioctl(dev, cmd, data, flag, p)
757 	dev_t   dev;
758 	u_long  cmd;
759 	caddr_t data;
760 	int     flag;
761 	struct proc *p;
762 {
763 	int     unit = raidunit(dev);
764 	int     error = 0;
765 	int     part, pmask;
766 	struct raid_softc *rs;
767 	RF_Config_t *k_cfg, *u_cfg;
768 	RF_Raid_t *raidPtr;
769 	RF_RaidDisk_t *diskPtr;
770 	RF_AccTotals_t *totals;
771 	RF_DeviceConfig_t *d_cfg, **ucfgp;
772 	u_char *specific_buf;
773 	int retcode = 0;
774 	int row;
775 	int column;
776 	struct rf_recon_req *rrcopy, *rr;
777 	RF_ComponentLabel_t *clabel;
778 	RF_ComponentLabel_t ci_label;
779 	RF_ComponentLabel_t **clabel_ptr;
780 	RF_SingleComponent_t *sparePtr,*componentPtr;
781 	RF_SingleComponent_t hot_spare;
782 	RF_SingleComponent_t component;
783 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
784 	int i, j, d;
785 
786 	if (unit >= numraid)
787 		return (ENXIO);
788 	rs = &raid_softc[unit];
789 	raidPtr = raidPtrs[unit];
790 
791 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
792 		(int) DISKPART(dev), (int) unit, (int) cmd));
793 
794 	/* Must be open for writes for these commands... */
795 	switch (cmd) {
796 	case DIOCSDINFO:
797 	case DIOCWDINFO:
798 	case DIOCWLABEL:
799 		if ((flag & FWRITE) == 0)
800 			return (EBADF);
801 	}
802 
803 	/* Must be initialized for these... */
804 	switch (cmd) {
805 	case DIOCGDINFO:
806 	case DIOCSDINFO:
807 	case DIOCWDINFO:
808 	case DIOCGPART:
809 	case DIOCWLABEL:
810 	case DIOCGDEFLABEL:
811 	case RAIDFRAME_SHUTDOWN:
812 	case RAIDFRAME_REWRITEPARITY:
813 	case RAIDFRAME_GET_INFO:
814 	case RAIDFRAME_RESET_ACCTOTALS:
815 	case RAIDFRAME_GET_ACCTOTALS:
816 	case RAIDFRAME_KEEP_ACCTOTALS:
817 	case RAIDFRAME_GET_SIZE:
818 	case RAIDFRAME_FAIL_DISK:
819 	case RAIDFRAME_COPYBACK:
820 	case RAIDFRAME_CHECK_RECON_STATUS:
821 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
822 	case RAIDFRAME_GET_COMPONENT_LABEL:
823 	case RAIDFRAME_SET_COMPONENT_LABEL:
824 	case RAIDFRAME_ADD_HOT_SPARE:
825 	case RAIDFRAME_REMOVE_HOT_SPARE:
826 	case RAIDFRAME_INIT_LABELS:
827 	case RAIDFRAME_REBUILD_IN_PLACE:
828 	case RAIDFRAME_CHECK_PARITY:
829 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
830 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
831 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
832 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
833 	case RAIDFRAME_SET_AUTOCONFIG:
834 	case RAIDFRAME_SET_ROOT:
835 	case RAIDFRAME_DELETE_COMPONENT:
836 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
837 		if ((rs->sc_flags & RAIDF_INITED) == 0)
838 			return (ENXIO);
839 	}
840 
841 	switch (cmd) {
842 
843 		/* configure the system */
844 	case RAIDFRAME_CONFIGURE:
845 
846 		if (raidPtr->valid) {
847 			/* There is a valid RAID set running on this unit! */
848 			printf("raid%d: Device already configured!\n",unit);
849 			return(EINVAL);
850 		}
851 
852 		/* copy-in the configuration information */
853 		/* data points to a pointer to the configuration structure */
854 
855 		u_cfg = *((RF_Config_t **) data);
856 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
857 		if (k_cfg == NULL) {
858 			return (ENOMEM);
859 		}
860 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
861 		    sizeof(RF_Config_t));
862 		if (retcode) {
863 			RF_Free(k_cfg, sizeof(RF_Config_t));
864 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
865 				retcode));
866 			return (retcode);
867 		}
868 		/* allocate a buffer for the layout-specific data, and copy it
869 		 * in */
870 		if (k_cfg->layoutSpecificSize) {
871 			if (k_cfg->layoutSpecificSize > 10000) {
872 				/* sanity check */
873 				RF_Free(k_cfg, sizeof(RF_Config_t));
874 				return (EINVAL);
875 			}
876 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
877 			    (u_char *));
878 			if (specific_buf == NULL) {
879 				RF_Free(k_cfg, sizeof(RF_Config_t));
880 				return (ENOMEM);
881 			}
882 			retcode = copyin(k_cfg->layoutSpecific,
883 			    (caddr_t) specific_buf,
884 			    k_cfg->layoutSpecificSize);
885 			if (retcode) {
886 				RF_Free(k_cfg, sizeof(RF_Config_t));
887 				RF_Free(specific_buf,
888 					k_cfg->layoutSpecificSize);
889 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
890 					retcode));
891 				return (retcode);
892 			}
893 		} else
894 			specific_buf = NULL;
895 		k_cfg->layoutSpecific = specific_buf;
896 
897 		/* should do some kind of sanity check on the configuration.
898 		 * Store the sum of all the bytes in the last byte? */
899 
900 		/* configure the system */
901 
902 		/*
903 		 * Clear the entire RAID descriptor, just to make sure
904 		 *  there is no stale data left in the case of a
905 		 *  reconfiguration
906 		 */
907 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
908 		raidPtr->raidid = unit;
909 
910 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
911 
912 		if (retcode == 0) {
913 
914 			/* allow this many simultaneous IO's to
915 			   this RAID device */
916 			raidPtr->openings = RAIDOUTSTANDING;
917 
918 			raidinit(raidPtr);
919 			rf_markalldirty(raidPtr);
920 		}
921 		/* free the buffers.  No return code here. */
922 		if (k_cfg->layoutSpecificSize) {
923 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
924 		}
925 		RF_Free(k_cfg, sizeof(RF_Config_t));
926 
927 		return (retcode);
928 
929 		/* shutdown the system */
930 	case RAIDFRAME_SHUTDOWN:
931 
932 		if ((error = raidlock(rs)) != 0)
933 			return (error);
934 
935 		/*
936 		 * If somebody has a partition mounted, we shouldn't
937 		 * shutdown.
938 		 */
939 
940 		part = DISKPART(dev);
941 		pmask = (1 << part);
942 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
943 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
944 			(rs->sc_dkdev.dk_copenmask & pmask))) {
945 			raidunlock(rs);
946 			return (EBUSY);
947 		}
948 
949 		retcode = rf_Shutdown(raidPtr);
950 
951 		pool_destroy(&rs->sc_cbufpool);
952 
953 		/* It's no longer initialized... */
954 		rs->sc_flags &= ~RAIDF_INITED;
955 
956 		/* Detach the disk. */
957 		disk_detach(&rs->sc_dkdev);
958 
959 		raidunlock(rs);
960 
961 		return (retcode);
962 	case RAIDFRAME_GET_COMPONENT_LABEL:
963 		clabel_ptr = (RF_ComponentLabel_t **) data;
964 		/* need to read the component label for the disk indicated
965 		   by row,column in clabel */
966 
967 		/* For practice, let's get it directly fromdisk, rather
968 		   than from the in-core copy */
969 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
970 			   (RF_ComponentLabel_t *));
971 		if (clabel == NULL)
972 			return (ENOMEM);
973 
974 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
975 
976 		retcode = copyin( *clabel_ptr, clabel,
977 				  sizeof(RF_ComponentLabel_t));
978 
979 		if (retcode) {
980 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
981 			return(retcode);
982 		}
983 
984 		row = clabel->row;
985 		column = clabel->column;
986 
987 		if ((row < 0) || (row >= raidPtr->numRow) ||
988 		    (column < 0) || (column >= raidPtr->numCol +
989 				     raidPtr->numSpare)) {
990 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
991 			return(EINVAL);
992 		}
993 
994 		raidread_component_label(raidPtr->Disks[row][column].dev,
995 				raidPtr->raid_cinfo[row][column].ci_vp,
996 				clabel );
997 
998 		retcode = copyout((caddr_t) clabel,
999 				  (caddr_t) *clabel_ptr,
1000 				  sizeof(RF_ComponentLabel_t));
1001 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1002 		return (retcode);
1003 
1004 	case RAIDFRAME_SET_COMPONENT_LABEL:
1005 		clabel = (RF_ComponentLabel_t *) data;
1006 
1007 		/* XXX check the label for valid stuff... */
1008 		/* Note that some things *should not* get modified --
1009 		   the user should be re-initing the labels instead of
1010 		   trying to patch things.
1011 		   */
1012 
1013 		printf("Got component label:\n");
1014 		printf("Version: %d\n",clabel->version);
1015 		printf("Serial Number: %d\n",clabel->serial_number);
1016 		printf("Mod counter: %d\n",clabel->mod_counter);
1017 		printf("Row: %d\n", clabel->row);
1018 		printf("Column: %d\n", clabel->column);
1019 		printf("Num Rows: %d\n", clabel->num_rows);
1020 		printf("Num Columns: %d\n", clabel->num_columns);
1021 		printf("Clean: %d\n", clabel->clean);
1022 		printf("Status: %d\n", clabel->status);
1023 
1024 		row = clabel->row;
1025 		column = clabel->column;
1026 
1027 		if ((row < 0) || (row >= raidPtr->numRow) ||
1028 		    (column < 0) || (column >= raidPtr->numCol)) {
1029 			return(EINVAL);
1030 		}
1031 
1032 		/* XXX this isn't allowed to do anything for now :-) */
1033 
1034 		/* XXX and before it is, we need to fill in the rest
1035 		   of the fields!?!?!?! */
1036 #if 0
1037 		raidwrite_component_label(
1038                             raidPtr->Disks[row][column].dev,
1039 			    raidPtr->raid_cinfo[row][column].ci_vp,
1040 			    clabel );
1041 #endif
1042 		return (0);
1043 
1044 	case RAIDFRAME_INIT_LABELS:
1045 		clabel = (RF_ComponentLabel_t *) data;
1046 		/*
1047 		   we only want the serial number from
1048 		   the above.  We get all the rest of the information
1049 		   from the config that was used to create this RAID
1050 		   set.
1051 		   */
1052 
1053 		raidPtr->serial_number = clabel->serial_number;
1054 
1055 		raid_init_component_label(raidPtr, &ci_label);
1056 		ci_label.serial_number = clabel->serial_number;
1057 
1058 		for(row=0;row<raidPtr->numRow;row++) {
1059 			ci_label.row = row;
1060 			for(column=0;column<raidPtr->numCol;column++) {
1061 				diskPtr = &raidPtr->Disks[row][column];
1062 				ci_label.partitionSize = diskPtr->partitionSize;
1063 				ci_label.column = column;
1064 				raidwrite_component_label(
1065 				  raidPtr->Disks[row][column].dev,
1066 				  raidPtr->raid_cinfo[row][column].ci_vp,
1067 				  &ci_label );
1068 			}
1069 		}
1070 
1071 		return (retcode);
1072 	case RAIDFRAME_SET_AUTOCONFIG:
1073 		d = rf_set_autoconfig(raidPtr, *(int *) data);
1074 		printf("New autoconfig value is: %d\n", d);
1075 		*(int *) data = d;
1076 		return (retcode);
1077 
1078 	case RAIDFRAME_SET_ROOT:
1079 		d = rf_set_rootpartition(raidPtr, *(int *) data);
1080 		printf("New rootpartition value is: %d\n", d);
1081 		*(int *) data = d;
1082 		return (retcode);
1083 
1084 		/* initialize all parity */
1085 	case RAIDFRAME_REWRITEPARITY:
1086 
1087 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1088 			/* Parity for RAID 0 is trivially correct */
1089 			raidPtr->parity_good = RF_RAID_CLEAN;
1090 			return(0);
1091 		}
1092 
1093 		if (raidPtr->parity_rewrite_in_progress == 1) {
1094 			/* Re-write is already in progress! */
1095 			return(EINVAL);
1096 		}
1097 
1098 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1099 					   rf_RewriteParityThread,
1100 					   raidPtr,"raid_parity");
1101 		return (retcode);
1102 
1103 
1104 	case RAIDFRAME_ADD_HOT_SPARE:
1105 		sparePtr = (RF_SingleComponent_t *) data;
1106 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1107 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1108 		return(retcode);
1109 
1110 	case RAIDFRAME_REMOVE_HOT_SPARE:
1111 		return(retcode);
1112 
1113 	case RAIDFRAME_DELETE_COMPONENT:
1114 		componentPtr = (RF_SingleComponent_t *)data;
1115 		memcpy( &component, componentPtr,
1116 			sizeof(RF_SingleComponent_t));
1117 		retcode = rf_delete_component(raidPtr, &component);
1118 		return(retcode);
1119 
1120 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1121 		componentPtr = (RF_SingleComponent_t *)data;
1122 		memcpy( &component, componentPtr,
1123 			sizeof(RF_SingleComponent_t));
1124 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
1125 		return(retcode);
1126 
1127 	case RAIDFRAME_REBUILD_IN_PLACE:
1128 
1129 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1130 			/* Can't do this on a RAID 0!! */
1131 			return(EINVAL);
1132 		}
1133 
1134 		if (raidPtr->recon_in_progress == 1) {
1135 			/* a reconstruct is already in progress! */
1136 			return(EINVAL);
1137 		}
1138 
1139 		componentPtr = (RF_SingleComponent_t *) data;
1140 		memcpy( &component, componentPtr,
1141 			sizeof(RF_SingleComponent_t));
1142 		row = component.row;
1143 		column = component.column;
1144 		printf("Rebuild: %d %d\n",row, column);
1145 		if ((row < 0) || (row >= raidPtr->numRow) ||
1146 		    (column < 0) || (column >= raidPtr->numCol)) {
1147 			return(EINVAL);
1148 		}
1149 
1150 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1151 		if (rrcopy == NULL)
1152 			return(ENOMEM);
1153 
1154 		rrcopy->raidPtr = (void *) raidPtr;
1155 		rrcopy->row = row;
1156 		rrcopy->col = column;
1157 
1158 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1159 					   rf_ReconstructInPlaceThread,
1160 					   rrcopy,"raid_reconip");
1161 		return(retcode);
1162 
1163 	case RAIDFRAME_GET_INFO:
1164 		if (!raidPtr->valid)
1165 			return (ENODEV);
1166 		ucfgp = (RF_DeviceConfig_t **) data;
1167 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1168 			  (RF_DeviceConfig_t *));
1169 		if (d_cfg == NULL)
1170 			return (ENOMEM);
1171 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
1172 		d_cfg->rows = raidPtr->numRow;
1173 		d_cfg->cols = raidPtr->numCol;
1174 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1175 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
1176 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1177 			return (ENOMEM);
1178 		}
1179 		d_cfg->nspares = raidPtr->numSpare;
1180 		if (d_cfg->nspares >= RF_MAX_DISKS) {
1181 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1182 			return (ENOMEM);
1183 		}
1184 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1185 		d = 0;
1186 		for (i = 0; i < d_cfg->rows; i++) {
1187 			for (j = 0; j < d_cfg->cols; j++) {
1188 				d_cfg->devs[d] = raidPtr->Disks[i][j];
1189 				d++;
1190 			}
1191 		}
1192 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1193 			d_cfg->spares[i] = raidPtr->Disks[0][j];
1194 		}
1195 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1196 				  sizeof(RF_DeviceConfig_t));
1197 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1198 
1199 		return (retcode);
1200 
1201 	case RAIDFRAME_CHECK_PARITY:
1202 		*(int *) data = raidPtr->parity_good;
1203 		return (0);
1204 
1205 	case RAIDFRAME_RESET_ACCTOTALS:
1206 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
1207 		return (0);
1208 
1209 	case RAIDFRAME_GET_ACCTOTALS:
1210 		totals = (RF_AccTotals_t *) data;
1211 		*totals = raidPtr->acc_totals;
1212 		return (0);
1213 
1214 	case RAIDFRAME_KEEP_ACCTOTALS:
1215 		raidPtr->keep_acc_totals = *(int *)data;
1216 		return (0);
1217 
1218 	case RAIDFRAME_GET_SIZE:
1219 		*(int *) data = raidPtr->totalSectors;
1220 		return (0);
1221 
1222 		/* fail a disk & optionally start reconstruction */
1223 	case RAIDFRAME_FAIL_DISK:
1224 
1225 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1226 			/* Can't do this on a RAID 0!! */
1227 			return(EINVAL);
1228 		}
1229 
1230 		rr = (struct rf_recon_req *) data;
1231 
1232 		if (rr->row < 0 || rr->row >= raidPtr->numRow
1233 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
1234 			return (EINVAL);
1235 
1236 		printf("raid%d: Failing the disk: row: %d col: %d\n",
1237 		       unit, rr->row, rr->col);
1238 
1239 		/* make a copy of the recon request so that we don't rely on
1240 		 * the user's buffer */
1241 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1242 		if (rrcopy == NULL)
1243 			return(ENOMEM);
1244 		bcopy(rr, rrcopy, sizeof(*rr));
1245 		rrcopy->raidPtr = (void *) raidPtr;
1246 
1247 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1248 					   rf_ReconThread,
1249 					   rrcopy,"raid_recon");
1250 		return (0);
1251 
1252 		/* invoke a copyback operation after recon on whatever disk
1253 		 * needs it, if any */
1254 	case RAIDFRAME_COPYBACK:
1255 
1256 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1257 			/* This makes no sense on a RAID 0!! */
1258 			return(EINVAL);
1259 		}
1260 
1261 		if (raidPtr->copyback_in_progress == 1) {
1262 			/* Copyback is already in progress! */
1263 			return(EINVAL);
1264 		}
1265 
1266 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1267 					   rf_CopybackThread,
1268 					   raidPtr,"raid_copyback");
1269 		return (retcode);
1270 
1271 		/* return the percentage completion of reconstruction */
1272 	case RAIDFRAME_CHECK_RECON_STATUS:
1273 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1274 			/* This makes no sense on a RAID 0, so tell the
1275 			   user it's done. */
1276 			*(int *) data = 100;
1277 			return(0);
1278 		}
1279 		row = 0; /* XXX we only consider a single row... */
1280 		if (raidPtr->status[row] != rf_rs_reconstructing)
1281 			*(int *) data = 100;
1282 		else
1283 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
1284 		return (0);
1285 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1286 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1287 		row = 0; /* XXX we only consider a single row... */
1288 		if (raidPtr->status[row] != rf_rs_reconstructing) {
1289 			progressInfo.remaining = 0;
1290 			progressInfo.completed = 100;
1291 			progressInfo.total = 100;
1292 		} else {
1293 			progressInfo.total =
1294 				raidPtr->reconControl[row]->numRUsTotal;
1295 			progressInfo.completed =
1296 				raidPtr->reconControl[row]->numRUsComplete;
1297 			progressInfo.remaining = progressInfo.total -
1298 				progressInfo.completed;
1299 		}
1300 		retcode = copyout((caddr_t) &progressInfo,
1301 				  (caddr_t) *progressInfoPtr,
1302 				  sizeof(RF_ProgressInfo_t));
1303 		return (retcode);
1304 
1305 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1306 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1307 			/* This makes no sense on a RAID 0, so tell the
1308 			   user it's done. */
1309 			*(int *) data = 100;
1310 			return(0);
1311 		}
1312 		if (raidPtr->parity_rewrite_in_progress == 1) {
1313 			*(int *) data = 100 *
1314 				raidPtr->parity_rewrite_stripes_done /
1315 				raidPtr->Layout.numStripe;
1316 		} else {
1317 			*(int *) data = 100;
1318 		}
1319 		return (0);
1320 
1321 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1322 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1323 		if (raidPtr->parity_rewrite_in_progress == 1) {
1324 			progressInfo.total = raidPtr->Layout.numStripe;
1325 			progressInfo.completed =
1326 				raidPtr->parity_rewrite_stripes_done;
1327 			progressInfo.remaining = progressInfo.total -
1328 				progressInfo.completed;
1329 		} else {
1330 			progressInfo.remaining = 0;
1331 			progressInfo.completed = 100;
1332 			progressInfo.total = 100;
1333 		}
1334 		retcode = copyout((caddr_t) &progressInfo,
1335 				  (caddr_t) *progressInfoPtr,
1336 				  sizeof(RF_ProgressInfo_t));
1337 		return (retcode);
1338 
1339 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1340 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1341 			/* This makes no sense on a RAID 0 */
1342 			*(int *) data = 100;
1343 			return(0);
1344 		}
1345 		if (raidPtr->copyback_in_progress == 1) {
1346 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
1347 				raidPtr->Layout.numStripe;
1348 		} else {
1349 			*(int *) data = 100;
1350 		}
1351 		return (0);
1352 
1353 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1354 		if (raidPtr->copyback_in_progress == 1) {
1355 			progressInfo.total = raidPtr->Layout.numStripe;
1356 			progressInfo.completed =
1357 				raidPtr->parity_rewrite_stripes_done;
1358 			progressInfo.remaining = progressInfo.total -
1359 				progressInfo.completed;
1360 		} else {
1361 			progressInfo.remaining = 0;
1362 			progressInfo.completed = 100;
1363 			progressInfo.total = 100;
1364 		}
1365 		retcode = copyout((caddr_t) &progressInfo,
1366 				  (caddr_t) *progressInfoPtr,
1367 				  sizeof(RF_ProgressInfo_t));
1368 		return (retcode);
1369 
1370 		/* the sparetable daemon calls this to wait for the kernel to
1371 		 * need a spare table. this ioctl does not return until a
1372 		 * spare table is needed. XXX -- calling mpsleep here in the
1373 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1374 		 * -- I should either compute the spare table in the kernel,
1375 		 * or have a different -- XXX XXX -- interface (a different
1376 		 * character device) for delivering the table     -- XXX */
1377 #if 0
1378 	case RAIDFRAME_SPARET_WAIT:
1379 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1380 		while (!rf_sparet_wait_queue)
1381 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1382 		waitreq = rf_sparet_wait_queue;
1383 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1384 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1385 
1386 		/* structure assignment */
1387 		*((RF_SparetWait_t *) data) = *waitreq;
1388 
1389 		RF_Free(waitreq, sizeof(*waitreq));
1390 		return (0);
1391 
1392 		/* wakes up a process waiting on SPARET_WAIT and puts an error
1393 		 * code in it that will cause the dameon to exit */
1394 	case RAIDFRAME_ABORT_SPARET_WAIT:
1395 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1396 		waitreq->fcol = -1;
1397 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1398 		waitreq->next = rf_sparet_wait_queue;
1399 		rf_sparet_wait_queue = waitreq;
1400 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1401 		wakeup(&rf_sparet_wait_queue);
1402 		return (0);
1403 
1404 		/* used by the spare table daemon to deliver a spare table
1405 		 * into the kernel */
1406 	case RAIDFRAME_SEND_SPARET:
1407 
1408 		/* install the spare table */
1409 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1410 
1411 		/* respond to the requestor.  the return status of the spare
1412 		 * table installation is passed in the "fcol" field */
1413 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1414 		waitreq->fcol = retcode;
1415 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1416 		waitreq->next = rf_sparet_resp_queue;
1417 		rf_sparet_resp_queue = waitreq;
1418 		wakeup(&rf_sparet_resp_queue);
1419 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1420 
1421 		return (retcode);
1422 #endif
1423 
1424 	default:
1425 		break; /* fall through to the os-specific code below */
1426 
1427 	}
1428 
1429 	if (!raidPtr->valid)
1430 		return (EINVAL);
1431 
1432 	/*
1433 	 * Add support for "regular" device ioctls here.
1434 	 */
1435 
1436 	switch (cmd) {
1437 	case DIOCGDINFO:
1438 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1439 		break;
1440 
1441 	case DIOCGPART:
1442 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1443 		((struct partinfo *) data)->part =
1444 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1445 		break;
1446 
1447 	case DIOCWDINFO:
1448 	case DIOCSDINFO:
1449 		if ((error = raidlock(rs)) != 0)
1450 			return (error);
1451 
1452 		rs->sc_flags |= RAIDF_LABELLING;
1453 
1454 		error = setdisklabel(rs->sc_dkdev.dk_label,
1455 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
1456 		if (error == 0) {
1457 			if (cmd == DIOCWDINFO)
1458 				error = writedisklabel(RAIDLABELDEV(dev),
1459 				    raidstrategy, rs->sc_dkdev.dk_label,
1460 				    rs->sc_dkdev.dk_cpulabel);
1461 		}
1462 		rs->sc_flags &= ~RAIDF_LABELLING;
1463 
1464 		raidunlock(rs);
1465 
1466 		if (error)
1467 			return (error);
1468 		break;
1469 
1470 	case DIOCWLABEL:
1471 		if (*(int *) data != 0)
1472 			rs->sc_flags |= RAIDF_WLABEL;
1473 		else
1474 			rs->sc_flags &= ~RAIDF_WLABEL;
1475 		break;
1476 
1477 	case DIOCGDEFLABEL:
1478 		raidgetdefaultlabel(raidPtr, rs,
1479 		    (struct disklabel *) data);
1480 		break;
1481 
1482 	default:
1483 		retcode = ENOTTY;
1484 	}
1485 	return (retcode);
1486 
1487 }
1488 
1489 
1490 /* raidinit -- complete the rest of the initialization for the
1491    RAIDframe device.  */
1492 
1493 
1494 static void
1495 raidinit(raidPtr)
1496 	RF_Raid_t *raidPtr;
1497 {
1498 	struct raid_softc *rs;
1499 	int     unit;
1500 
1501 	unit = raidPtr->raidid;
1502 
1503 	rs = &raid_softc[unit];
1504 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
1505 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
1506 
1507 
1508 	/* XXX should check return code first... */
1509 	rs->sc_flags |= RAIDF_INITED;
1510 
1511 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
1512 
1513 	rs->sc_dkdev.dk_name = rs->sc_xname;
1514 
1515 	/* disk_attach actually creates space for the CPU disklabel, among
1516 	 * other things, so it's critical to call this *BEFORE* we try putzing
1517 	 * with disklabels. */
1518 
1519 	disk_attach(&rs->sc_dkdev);
1520 
1521 	/* XXX There may be a weird interaction here between this, and
1522 	 * protectedSectors, as used in RAIDframe.  */
1523 
1524 	rs->sc_size = raidPtr->totalSectors;
1525 
1526 }
1527 
1528 /* wake up the daemon & tell it to get us a spare table
1529  * XXX
1530  * the entries in the queues should be tagged with the raidPtr
1531  * so that in the extremely rare case that two recons happen at once,
1532  * we know for which device were requesting a spare table
1533  * XXX
1534  *
1535  * XXX This code is not currently used. GO
1536  */
1537 int
1538 rf_GetSpareTableFromDaemon(req)
1539 	RF_SparetWait_t *req;
1540 {
1541 	int     retcode;
1542 
1543 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1544 	req->next = rf_sparet_wait_queue;
1545 	rf_sparet_wait_queue = req;
1546 	wakeup(&rf_sparet_wait_queue);
1547 
1548 	/* mpsleep unlocks the mutex */
1549 	while (!rf_sparet_resp_queue) {
1550 		tsleep(&rf_sparet_resp_queue, PRIBIO,
1551 		    "raidframe getsparetable", 0);
1552 	}
1553 	req = rf_sparet_resp_queue;
1554 	rf_sparet_resp_queue = req->next;
1555 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1556 
1557 	retcode = req->fcol;
1558 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
1559 					 * alloc'd */
1560 	return (retcode);
1561 }
1562 
1563 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1564  * bp & passes it down.
1565  * any calls originating in the kernel must use non-blocking I/O
1566  * do some extra sanity checking to return "appropriate" error values for
1567  * certain conditions (to make some standard utilities work)
1568  *
1569  * Formerly known as: rf_DoAccessKernel
1570  */
1571 void
1572 raidstart(raidPtr)
1573 	RF_Raid_t *raidPtr;
1574 {
1575 	RF_SectorCount_t num_blocks, pb, sum;
1576 	RF_RaidAddr_t raid_addr;
1577 	int     retcode;
1578 	struct partition *pp;
1579 	daddr_t blocknum;
1580 	int     unit;
1581 	struct raid_softc *rs;
1582 	int     do_async;
1583 	struct buf *bp;
1584 
1585 	unit = raidPtr->raidid;
1586 	rs = &raid_softc[unit];
1587 
1588 	/* quick check to see if anything has died recently */
1589 	RF_LOCK_MUTEX(raidPtr->mutex);
1590 	if (raidPtr->numNewFailures > 0) {
1591 		rf_update_component_labels(raidPtr,
1592 					   RF_NORMAL_COMPONENT_UPDATE);
1593 		raidPtr->numNewFailures--;
1594 	}
1595 	RF_UNLOCK_MUTEX(raidPtr->mutex);
1596 
1597 	/* Check to see if we're at the limit... */
1598 	RF_LOCK_MUTEX(raidPtr->mutex);
1599 	while (raidPtr->openings > 0) {
1600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1601 
1602 		/* get the next item, if any, from the queue */
1603 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
1604 			/* nothing more to do */
1605 			return;
1606 		}
1607 		BUFQ_REMOVE(&rs->buf_queue, bp);
1608 
1609 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
1610 		 * partition.. Need to make it absolute to the underlying
1611 		 * device.. */
1612 
1613 		blocknum = bp->b_blkno;
1614 		if (DISKPART(bp->b_dev) != RAW_PART) {
1615 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1616 			blocknum += pp->p_offset;
1617 		}
1618 
1619 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1620 			    (int) blocknum));
1621 
1622 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1623 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1624 
1625 		/* *THIS* is where we adjust what block we're going to...
1626 		 * but DO NOT TOUCH bp->b_blkno!!! */
1627 		raid_addr = blocknum;
1628 
1629 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1630 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1631 		sum = raid_addr + num_blocks + pb;
1632 		if (1 || rf_debugKernelAccess) {
1633 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1634 				    (int) raid_addr, (int) sum, (int) num_blocks,
1635 				    (int) pb, (int) bp->b_resid));
1636 		}
1637 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1638 		    || (sum < num_blocks) || (sum < pb)) {
1639 			bp->b_error = ENOSPC;
1640 			bp->b_flags |= B_ERROR;
1641 			bp->b_resid = bp->b_bcount;
1642 			biodone(bp);
1643 			RF_LOCK_MUTEX(raidPtr->mutex);
1644 			continue;
1645 		}
1646 		/*
1647 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1648 		 */
1649 
1650 		if (bp->b_bcount & raidPtr->sectorMask) {
1651 			bp->b_error = EINVAL;
1652 			bp->b_flags |= B_ERROR;
1653 			bp->b_resid = bp->b_bcount;
1654 			biodone(bp);
1655 			RF_LOCK_MUTEX(raidPtr->mutex);
1656 			continue;
1657 
1658 		}
1659 		db1_printf(("Calling DoAccess..\n"));
1660 
1661 
1662 		RF_LOCK_MUTEX(raidPtr->mutex);
1663 		raidPtr->openings--;
1664 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1665 
1666 		/*
1667 		 * Everything is async.
1668 		 */
1669 		do_async = 1;
1670 
1671 		/* don't ever condition on bp->b_flags & B_WRITE.
1672 		 * always condition on B_READ instead */
1673 
1674 		/* XXX we're still at splbio() here... do we *really*
1675 		   need to be? */
1676 
1677 
1678 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1679 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1680 				      do_async, raid_addr, num_blocks,
1681 				      bp->b_data, bp, NULL, NULL,
1682 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
1683 
1684 
1685 		RF_LOCK_MUTEX(raidPtr->mutex);
1686 	}
1687 	RF_UNLOCK_MUTEX(raidPtr->mutex);
1688 }
1689 
1690 
1691 
1692 
1693 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
1694 
1695 int
1696 rf_DispatchKernelIO(queue, req)
1697 	RF_DiskQueue_t *queue;
1698 	RF_DiskQueueData_t *req;
1699 {
1700 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1701 	struct buf *bp;
1702 	struct raidbuf *raidbp = NULL;
1703 	struct raid_softc *rs;
1704 	int     unit;
1705 	int s;
1706 
1707 	s=0;
1708 	/* s = splbio();*/ /* want to test this */
1709 	/* XXX along with the vnode, we also need the softc associated with
1710 	 * this device.. */
1711 
1712 	req->queue = queue;
1713 
1714 	unit = queue->raidPtr->raidid;
1715 
1716 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
1717 
1718 	if (unit >= numraid) {
1719 		printf("Invalid unit number: %d %d\n", unit, numraid);
1720 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
1721 	}
1722 	rs = &raid_softc[unit];
1723 
1724 	/* XXX is this the right place? */
1725 	disk_busy(&rs->sc_dkdev);
1726 
1727 	bp = req->bp;
1728 #if 1
1729 	/* XXX when there is a physical disk failure, someone is passing us a
1730 	 * buffer that contains old stuff!!  Attempt to deal with this problem
1731 	 * without taking a performance hit... (not sure where the real bug
1732 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
1733 
1734 	if (bp->b_flags & B_ERROR) {
1735 		bp->b_flags &= ~B_ERROR;
1736 	}
1737 	if (bp->b_error != 0) {
1738 		bp->b_error = 0;
1739 	}
1740 #endif
1741 	raidbp = RAIDGETBUF(rs);
1742 
1743 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
1744 
1745 	/*
1746 	 * context for raidiodone
1747 	 */
1748 	raidbp->rf_obp = bp;
1749 	raidbp->req = req;
1750 
1751 	LIST_INIT(&raidbp->rf_buf.b_dep);
1752 
1753 	switch (req->type) {
1754 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
1755 		/* XXX need to do something extra here.. */
1756 		/* I'm leaving this in, as I've never actually seen it used,
1757 		 * and I'd like folks to report it... GO */
1758 		printf(("WAKEUP CALLED\n"));
1759 		queue->numOutstanding++;
1760 
1761 		/* XXX need to glue the original buffer into this??  */
1762 
1763 		KernelWakeupFunc(&raidbp->rf_buf);
1764 		break;
1765 
1766 	case RF_IO_TYPE_READ:
1767 	case RF_IO_TYPE_WRITE:
1768 
1769 		if (req->tracerec) {
1770 			RF_ETIMER_START(req->tracerec->timer);
1771 		}
1772 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1773 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
1774 		    req->sectorOffset, req->numSector,
1775 		    req->buf, KernelWakeupFunc, (void *) req,
1776 		    queue->raidPtr->logBytesPerSector, req->b_proc);
1777 
1778 		if (rf_debugKernelAccess) {
1779 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
1780 				(long) bp->b_blkno));
1781 		}
1782 		queue->numOutstanding++;
1783 		queue->last_deq_sector = req->sectorOffset;
1784 		/* acc wouldn't have been let in if there were any pending
1785 		 * reqs at any other priority */
1786 		queue->curPriority = req->priority;
1787 
1788 		db1_printf(("Going for %c to unit %d row %d col %d\n",
1789 			req->type, unit, queue->row, queue->col));
1790 		db1_printf(("sector %d count %d (%d bytes) %d\n",
1791 			(int) req->sectorOffset, (int) req->numSector,
1792 			(int) (req->numSector <<
1793 			    queue->raidPtr->logBytesPerSector),
1794 			(int) queue->raidPtr->logBytesPerSector));
1795 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1796 			raidbp->rf_buf.b_vp->v_numoutput++;
1797 		}
1798 		VOP_STRATEGY(&raidbp->rf_buf);
1799 
1800 		break;
1801 
1802 	default:
1803 		panic("bad req->type in rf_DispatchKernelIO");
1804 	}
1805 	db1_printf(("Exiting from DispatchKernelIO\n"));
1806 	/* splx(s); */ /* want to test this */
1807 	return (0);
1808 }
1809 /* this is the callback function associated with a I/O invoked from
1810    kernel code.
1811  */
1812 static void
1813 KernelWakeupFunc(vbp)
1814 	struct buf *vbp;
1815 {
1816 	RF_DiskQueueData_t *req = NULL;
1817 	RF_DiskQueue_t *queue;
1818 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
1819 	struct buf *bp;
1820 	struct raid_softc *rs;
1821 	int     unit;
1822 	int s;
1823 
1824 	s = splbio();
1825 	db1_printf(("recovering the request queue:\n"));
1826 	req = raidbp->req;
1827 
1828 	bp = raidbp->rf_obp;
1829 
1830 	queue = (RF_DiskQueue_t *) req->queue;
1831 
1832 	if (raidbp->rf_buf.b_flags & B_ERROR) {
1833 		bp->b_flags |= B_ERROR;
1834 		bp->b_error = raidbp->rf_buf.b_error ?
1835 		    raidbp->rf_buf.b_error : EIO;
1836 	}
1837 
1838 	/* XXX methinks this could be wrong... */
1839 #if 1
1840 	bp->b_resid = raidbp->rf_buf.b_resid;
1841 #endif
1842 
1843 	if (req->tracerec) {
1844 		RF_ETIMER_STOP(req->tracerec->timer);
1845 		RF_ETIMER_EVAL(req->tracerec->timer);
1846 		RF_LOCK_MUTEX(rf_tracing_mutex);
1847 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1848 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1849 		req->tracerec->num_phys_ios++;
1850 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
1851 	}
1852 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
1853 
1854 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
1855 
1856 
1857 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1858 	 * ballistic, and mark the component as hosed... */
1859 
1860 	if (bp->b_flags & B_ERROR) {
1861 		/* Mark the disk as dead */
1862 		/* but only mark it once... */
1863 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1864 		    rf_ds_optimal) {
1865 			printf("raid%d: IO Error.  Marking %s as failed.\n",
1866 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
1867 			queue->raidPtr->Disks[queue->row][queue->col].status =
1868 			    rf_ds_failed;
1869 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
1870 			queue->raidPtr->numFailures++;
1871 			queue->raidPtr->numNewFailures++;
1872 		} else {	/* Disk is already dead... */
1873 			/* printf("Disk already marked as dead!\n"); */
1874 		}
1875 
1876 	}
1877 
1878 	rs = &raid_softc[unit];
1879 	RAIDPUTBUF(rs, raidbp);
1880 
1881 
1882 	if (bp->b_resid == 0) {
1883 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
1884 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
1885 	}
1886 
1887 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
1888 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
1889 
1890 	splx(s);
1891 }
1892 
1893 
1894 
1895 /*
1896  * initialize a buf structure for doing an I/O in the kernel.
1897  */
1898 static void
1899 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1900        logBytesPerSector, b_proc)
1901 	struct buf *bp;
1902 	struct vnode *b_vp;
1903 	unsigned rw_flag;
1904 	dev_t dev;
1905 	RF_SectorNum_t startSect;
1906 	RF_SectorCount_t numSect;
1907 	caddr_t buf;
1908 	void (*cbFunc) (struct buf *);
1909 	void *cbArg;
1910 	int logBytesPerSector;
1911 	struct proc *b_proc;
1912 {
1913 	/* bp->b_flags       = B_PHYS | rw_flag; */
1914 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
1915 	bp->b_bcount = numSect << logBytesPerSector;
1916 	bp->b_bufsize = bp->b_bcount;
1917 	bp->b_error = 0;
1918 	bp->b_dev = dev;
1919 	bp->b_data = buf;
1920 	bp->b_blkno = startSect;
1921 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
1922 	if (bp->b_bcount == 0) {
1923 		panic("bp->b_bcount is zero in InitBP!!\n");
1924 	}
1925 	bp->b_proc = b_proc;
1926 	bp->b_iodone = cbFunc;
1927 	bp->b_vp = b_vp;
1928 
1929 }
1930 
1931 static void
1932 raidgetdefaultlabel(raidPtr, rs, lp)
1933 	RF_Raid_t *raidPtr;
1934 	struct raid_softc *rs;
1935 	struct disklabel *lp;
1936 {
1937 	db1_printf(("Building a default label...\n"));
1938 	bzero(lp, sizeof(*lp));
1939 
1940 	/* fabricate a label... */
1941 	lp->d_secperunit = raidPtr->totalSectors;
1942 	lp->d_secsize = raidPtr->bytesPerSector;
1943 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
1944 	lp->d_ntracks = 1;
1945 	lp->d_ncylinders = raidPtr->totalSectors /
1946 		(lp->d_nsectors * lp->d_ntracks);
1947 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
1948 
1949 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
1950 	lp->d_type = DTYPE_RAID;
1951 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
1952 	lp->d_rpm = 3600;
1953 	lp->d_interleave = 1;
1954 	lp->d_flags = 0;
1955 
1956 	lp->d_partitions[RAW_PART].p_offset = 0;
1957 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
1958 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
1959 	lp->d_npartitions = RAW_PART + 1;
1960 
1961 	lp->d_magic = DISKMAGIC;
1962 	lp->d_magic2 = DISKMAGIC;
1963 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
1964 
1965 }
1966 /*
1967  * Read the disklabel from the raid device.  If one is not present, fake one
1968  * up.
1969  */
1970 static void
1971 raidgetdisklabel(dev)
1972 	dev_t   dev;
1973 {
1974 	int     unit = raidunit(dev);
1975 	struct raid_softc *rs = &raid_softc[unit];
1976 	char   *errstring;
1977 	struct disklabel *lp = rs->sc_dkdev.dk_label;
1978 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
1979 	RF_Raid_t *raidPtr;
1980 
1981 	db1_printf(("Getting the disklabel...\n"));
1982 
1983 	bzero(clp, sizeof(*clp));
1984 
1985 	raidPtr = raidPtrs[unit];
1986 
1987 	raidgetdefaultlabel(raidPtr, rs, lp);
1988 
1989 	/*
1990 	 * Call the generic disklabel extraction routine.
1991 	 */
1992 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
1993 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
1994 	if (errstring)
1995 		raidmakedisklabel(rs);
1996 	else {
1997 		int     i;
1998 		struct partition *pp;
1999 
2000 		/*
2001 		 * Sanity check whether the found disklabel is valid.
2002 		 *
2003 		 * This is necessary since total size of the raid device
2004 		 * may vary when an interleave is changed even though exactly
2005 		 * same componets are used, and old disklabel may used
2006 		 * if that is found.
2007 		 */
2008 		if (lp->d_secperunit != rs->sc_size)
2009 			printf("WARNING: %s: "
2010 			    "total sector size in disklabel (%d) != "
2011 			    "the size of raid (%ld)\n", rs->sc_xname,
2012 			    lp->d_secperunit, (long) rs->sc_size);
2013 		for (i = 0; i < lp->d_npartitions; i++) {
2014 			pp = &lp->d_partitions[i];
2015 			if (pp->p_offset + pp->p_size > rs->sc_size)
2016 				printf("WARNING: %s: end of partition `%c' "
2017 				    "exceeds the size of raid (%ld)\n",
2018 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
2019 		}
2020 	}
2021 
2022 }
2023 /*
2024  * Take care of things one might want to take care of in the event
2025  * that a disklabel isn't present.
2026  */
2027 static void
2028 raidmakedisklabel(rs)
2029 	struct raid_softc *rs;
2030 {
2031 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2032 	db1_printf(("Making a label..\n"));
2033 
2034 	/*
2035 	 * For historical reasons, if there's no disklabel present
2036 	 * the raw partition must be marked FS_BSDFFS.
2037 	 */
2038 
2039 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2040 
2041 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2042 
2043 	lp->d_checksum = dkcksum(lp);
2044 }
2045 /*
2046  * Lookup the provided name in the filesystem.  If the file exists,
2047  * is a valid block device, and isn't being used by anyone else,
2048  * set *vpp to the file's vnode.
2049  * You'll find the original of this in ccd.c
2050  */
2051 int
2052 raidlookup(path, p, vpp)
2053 	char   *path;
2054 	struct proc *p;
2055 	struct vnode **vpp;	/* result */
2056 {
2057 	struct nameidata nd;
2058 	struct vnode *vp;
2059 	struct vattr va;
2060 	int     error;
2061 
2062 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2063 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2064 #ifdef DEBUG
2065 		printf("RAIDframe: vn_open returned %d\n", error);
2066 #endif
2067 		return (error);
2068 	}
2069 	vp = nd.ni_vp;
2070 	if (vp->v_usecount > 1) {
2071 		VOP_UNLOCK(vp, 0);
2072 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2073 		return (EBUSY);
2074 	}
2075 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2076 		VOP_UNLOCK(vp, 0);
2077 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2078 		return (error);
2079 	}
2080 	/* XXX: eventually we should handle VREG, too. */
2081 	if (va.va_type != VBLK) {
2082 		VOP_UNLOCK(vp, 0);
2083 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2084 		return (ENOTBLK);
2085 	}
2086 	VOP_UNLOCK(vp, 0);
2087 	*vpp = vp;
2088 	return (0);
2089 }
2090 /*
2091  * Wait interruptibly for an exclusive lock.
2092  *
2093  * XXX
2094  * Several drivers do this; it should be abstracted and made MP-safe.
2095  * (Hmm... where have we seen this warning before :->  GO )
2096  */
2097 static int
2098 raidlock(rs)
2099 	struct raid_softc *rs;
2100 {
2101 	int     error;
2102 
2103 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2104 		rs->sc_flags |= RAIDF_WANTED;
2105 		if ((error =
2106 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2107 			return (error);
2108 	}
2109 	rs->sc_flags |= RAIDF_LOCKED;
2110 	return (0);
2111 }
2112 /*
2113  * Unlock and wake up any waiters.
2114  */
2115 static void
2116 raidunlock(rs)
2117 	struct raid_softc *rs;
2118 {
2119 
2120 	rs->sc_flags &= ~RAIDF_LOCKED;
2121 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2122 		rs->sc_flags &= ~RAIDF_WANTED;
2123 		wakeup(rs);
2124 	}
2125 }
2126 
2127 
2128 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
2129 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
2130 
2131 int
2132 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2133 {
2134 	RF_ComponentLabel_t clabel;
2135 	raidread_component_label(dev, b_vp, &clabel);
2136 	clabel.mod_counter = mod_counter;
2137 	clabel.clean = RF_RAID_CLEAN;
2138 	raidwrite_component_label(dev, b_vp, &clabel);
2139 	return(0);
2140 }
2141 
2142 
2143 int
2144 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2145 {
2146 	RF_ComponentLabel_t clabel;
2147 	raidread_component_label(dev, b_vp, &clabel);
2148 	clabel.mod_counter = mod_counter;
2149 	clabel.clean = RF_RAID_DIRTY;
2150 	raidwrite_component_label(dev, b_vp, &clabel);
2151 	return(0);
2152 }
2153 
2154 /* ARGSUSED */
2155 int
2156 raidread_component_label(dev, b_vp, clabel)
2157 	dev_t dev;
2158 	struct vnode *b_vp;
2159 	RF_ComponentLabel_t *clabel;
2160 {
2161 	struct buf *bp;
2162 	int error;
2163 
2164 	/* XXX should probably ensure that we don't try to do this if
2165 	   someone has changed rf_protected_sectors. */
2166 
2167 	/* get a block of the appropriate size... */
2168 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2169 	bp->b_dev = dev;
2170 
2171 	/* get our ducks in a row for the read */
2172 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2173 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2174 	bp->b_flags = B_BUSY | B_READ;
2175  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2176 
2177 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2178 
2179 	error = biowait(bp);
2180 
2181 	if (!error) {
2182 		memcpy(clabel, bp->b_data,
2183 		       sizeof(RF_ComponentLabel_t));
2184 #if 0
2185 		rf_print_component_label( clabel );
2186 #endif
2187         } else {
2188 #if 0
2189 		printf("Failed to read RAID component label!\n");
2190 #endif
2191 	}
2192 
2193         bp->b_flags = B_INVAL | B_AGE;
2194 	brelse(bp);
2195 	return(error);
2196 }
2197 /* ARGSUSED */
2198 int
2199 raidwrite_component_label(dev, b_vp, clabel)
2200 	dev_t dev;
2201 	struct vnode *b_vp;
2202 	RF_ComponentLabel_t *clabel;
2203 {
2204 	struct buf *bp;
2205 	int error;
2206 
2207 	/* get a block of the appropriate size... */
2208 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2209 	bp->b_dev = dev;
2210 
2211 	/* get our ducks in a row for the write */
2212 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2213 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2214 	bp->b_flags = B_BUSY | B_WRITE;
2215  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2216 
2217 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2218 
2219 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2220 
2221 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2222 	error = biowait(bp);
2223         bp->b_flags = B_INVAL | B_AGE;
2224 	brelse(bp);
2225 	if (error) {
2226 #if 1
2227 		printf("Failed to write RAID component info!\n");
2228 #endif
2229 	}
2230 
2231 	return(error);
2232 }
2233 
2234 void
2235 rf_markalldirty(raidPtr)
2236 	RF_Raid_t *raidPtr;
2237 {
2238 	RF_ComponentLabel_t clabel;
2239 	int r,c;
2240 
2241 	raidPtr->mod_counter++;
2242 	for (r = 0; r < raidPtr->numRow; r++) {
2243 		for (c = 0; c < raidPtr->numCol; c++) {
2244 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
2245 				raidread_component_label(
2246 					raidPtr->Disks[r][c].dev,
2247 					raidPtr->raid_cinfo[r][c].ci_vp,
2248 					&clabel);
2249 				if (clabel.status == rf_ds_spared) {
2250 					/* XXX do something special...
2251 					 but whatever you do, don't
2252 					 try to access it!! */
2253 				} else {
2254 #if 0
2255 				clabel.status =
2256 					raidPtr->Disks[r][c].status;
2257 				raidwrite_component_label(
2258 					raidPtr->Disks[r][c].dev,
2259 					raidPtr->raid_cinfo[r][c].ci_vp,
2260 					&clabel);
2261 #endif
2262 				raidmarkdirty(
2263 				       raidPtr->Disks[r][c].dev,
2264 				       raidPtr->raid_cinfo[r][c].ci_vp,
2265 				       raidPtr->mod_counter);
2266 				}
2267 			}
2268 		}
2269 	}
2270 	/* printf("Component labels marked dirty.\n"); */
2271 #if 0
2272 	for( c = 0; c < raidPtr->numSpare ; c++) {
2273 		sparecol = raidPtr->numCol + c;
2274 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
2275 			/*
2276 
2277 			   XXX this is where we get fancy and map this spare
2278 			   into it's correct spot in the array.
2279 
2280 			 */
2281 			/*
2282 
2283 			   we claim this disk is "optimal" if it's
2284 			   rf_ds_used_spare, as that means it should be
2285 			   directly substitutable for the disk it replaced.
2286 			   We note that too...
2287 
2288 			 */
2289 
2290 			for(i=0;i<raidPtr->numRow;i++) {
2291 				for(j=0;j<raidPtr->numCol;j++) {
2292 					if ((raidPtr->Disks[i][j].spareRow ==
2293 					     r) &&
2294 					    (raidPtr->Disks[i][j].spareCol ==
2295 					     sparecol)) {
2296 						srow = r;
2297 						scol = sparecol;
2298 						break;
2299 					}
2300 				}
2301 			}
2302 
2303 			raidread_component_label(
2304 				      raidPtr->Disks[r][sparecol].dev,
2305 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
2306 				      &clabel);
2307 			/* make sure status is noted */
2308 			clabel.version = RF_COMPONENT_LABEL_VERSION;
2309 			clabel.mod_counter = raidPtr->mod_counter;
2310 			clabel.serial_number = raidPtr->serial_number;
2311 			clabel.row = srow;
2312 			clabel.column = scol;
2313 			clabel.num_rows = raidPtr->numRow;
2314 			clabel.num_columns = raidPtr->numCol;
2315 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
2316 			clabel.status = rf_ds_optimal;
2317 			raidwrite_component_label(
2318 				      raidPtr->Disks[r][sparecol].dev,
2319 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
2320 				      &clabel);
2321 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
2322 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
2323 		}
2324 	}
2325 
2326 #endif
2327 }
2328 
2329 
2330 void
2331 rf_update_component_labels(raidPtr, final)
2332 	RF_Raid_t *raidPtr;
2333 	int final;
2334 {
2335 	RF_ComponentLabel_t clabel;
2336 	int sparecol;
2337 	int r,c;
2338 	int i,j;
2339 	int srow, scol;
2340 
2341 	srow = -1;
2342 	scol = -1;
2343 
2344 	/* XXX should do extra checks to make sure things really are clean,
2345 	   rather than blindly setting the clean bit... */
2346 
2347 	raidPtr->mod_counter++;
2348 
2349 	for (r = 0; r < raidPtr->numRow; r++) {
2350 		for (c = 0; c < raidPtr->numCol; c++) {
2351 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2352 				raidread_component_label(
2353 					raidPtr->Disks[r][c].dev,
2354 					raidPtr->raid_cinfo[r][c].ci_vp,
2355 					&clabel);
2356 				/* make sure status is noted */
2357 				clabel.status = rf_ds_optimal;
2358 				/* bump the counter */
2359 				clabel.mod_counter = raidPtr->mod_counter;
2360 
2361 				raidwrite_component_label(
2362 					raidPtr->Disks[r][c].dev,
2363 					raidPtr->raid_cinfo[r][c].ci_vp,
2364 					&clabel);
2365 				if (final == RF_FINAL_COMPONENT_UPDATE) {
2366 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
2367 						raidmarkclean(
2368 							      raidPtr->Disks[r][c].dev,
2369 							      raidPtr->raid_cinfo[r][c].ci_vp,
2370 							      raidPtr->mod_counter);
2371 					}
2372 				}
2373 			}
2374 			/* else we don't touch it.. */
2375 		}
2376 	}
2377 
2378 	for( c = 0; c < raidPtr->numSpare ; c++) {
2379 		sparecol = raidPtr->numCol + c;
2380 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2381 			/*
2382 
2383 			   we claim this disk is "optimal" if it's
2384 			   rf_ds_used_spare, as that means it should be
2385 			   directly substitutable for the disk it replaced.
2386 			   We note that too...
2387 
2388 			 */
2389 
2390 			for(i=0;i<raidPtr->numRow;i++) {
2391 				for(j=0;j<raidPtr->numCol;j++) {
2392 					if ((raidPtr->Disks[i][j].spareRow ==
2393 					     0) &&
2394 					    (raidPtr->Disks[i][j].spareCol ==
2395 					     sparecol)) {
2396 						srow = i;
2397 						scol = j;
2398 						break;
2399 					}
2400 				}
2401 			}
2402 
2403 			/* XXX shouldn't *really* need this... */
2404 			raidread_component_label(
2405 				      raidPtr->Disks[0][sparecol].dev,
2406 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
2407 				      &clabel);
2408 			/* make sure status is noted */
2409 
2410 			raid_init_component_label(raidPtr, &clabel);
2411 
2412 			clabel.mod_counter = raidPtr->mod_counter;
2413 			clabel.row = srow;
2414 			clabel.column = scol;
2415 			clabel.status = rf_ds_optimal;
2416 
2417 			raidwrite_component_label(
2418 				      raidPtr->Disks[0][sparecol].dev,
2419 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
2420 				      &clabel);
2421 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2422 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2423 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2424 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
2425 						       raidPtr->mod_counter);
2426 				}
2427 			}
2428 		}
2429 	}
2430 	/* 	printf("Component labels updated\n"); */
2431 }
2432 
2433 void
2434 rf_close_component(raidPtr, vp, auto_configured)
2435 	RF_Raid_t *raidPtr;
2436 	struct vnode *vp;
2437 	int auto_configured;
2438 {
2439 	struct proc *p;
2440 
2441 	p = raidPtr->engine_thread;
2442 
2443 	if (vp != NULL) {
2444 		if (auto_configured == 1) {
2445 			VOP_CLOSE(vp, FREAD, NOCRED, 0);
2446 			vput(vp);
2447 
2448 		} else {
2449 			VOP_UNLOCK(vp, 0);
2450 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2451 		}
2452 	} else {
2453 		printf("vnode was NULL\n");
2454 	}
2455 }
2456 
2457 
2458 void
2459 rf_UnconfigureVnodes(raidPtr)
2460 	RF_Raid_t *raidPtr;
2461 {
2462 	int r,c;
2463 	struct proc *p;
2464 	struct vnode *vp;
2465 	int acd;
2466 
2467 
2468 	/* We take this opportunity to close the vnodes like we should.. */
2469 
2470 	p = raidPtr->engine_thread;
2471 
2472 	for (r = 0; r < raidPtr->numRow; r++) {
2473 		for (c = 0; c < raidPtr->numCol; c++) {
2474 			printf("Closing vnode for row: %d col: %d\n", r, c);
2475 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
2476 			acd = raidPtr->Disks[r][c].auto_configured;
2477 			rf_close_component(raidPtr, vp, acd);
2478 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2479 			raidPtr->Disks[r][c].auto_configured = 0;
2480 		}
2481 	}
2482 	for (r = 0; r < raidPtr->numSpare; r++) {
2483 		printf("Closing vnode for spare: %d\n", r);
2484 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2485 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2486 		rf_close_component(raidPtr, vp, acd);
2487 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2488 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2489 	}
2490 }
2491 
2492 
2493 void
2494 rf_ReconThread(req)
2495 	struct rf_recon_req *req;
2496 {
2497 	int     s;
2498 	RF_Raid_t *raidPtr;
2499 
2500 	s = splbio();
2501 	raidPtr = (RF_Raid_t *) req->raidPtr;
2502 	raidPtr->recon_in_progress = 1;
2503 
2504 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2505 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2506 
2507 	/* XXX get rid of this! we don't need it at all.. */
2508 	RF_Free(req, sizeof(*req));
2509 
2510 	raidPtr->recon_in_progress = 0;
2511 	splx(s);
2512 
2513 	/* That's all... */
2514 	kthread_exit(0);        /* does not return */
2515 }
2516 
2517 void
2518 rf_RewriteParityThread(raidPtr)
2519 	RF_Raid_t *raidPtr;
2520 {
2521 	int retcode;
2522 	int s;
2523 
2524 	raidPtr->parity_rewrite_in_progress = 1;
2525 	s = splbio();
2526 	retcode = rf_RewriteParity(raidPtr);
2527 	splx(s);
2528 	if (retcode) {
2529 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2530 	} else {
2531 		/* set the clean bit!  If we shutdown correctly,
2532 		   the clean bit on each component label will get
2533 		   set */
2534 		raidPtr->parity_good = RF_RAID_CLEAN;
2535 	}
2536 	raidPtr->parity_rewrite_in_progress = 0;
2537 
2538 	/* Anyone waiting for us to stop?  If so, inform them... */
2539 	if (raidPtr->waitShutdown) {
2540 		wakeup(&raidPtr->parity_rewrite_in_progress);
2541 	}
2542 
2543 	/* That's all... */
2544 	kthread_exit(0);        /* does not return */
2545 }
2546 
2547 
2548 void
2549 rf_CopybackThread(raidPtr)
2550 	RF_Raid_t *raidPtr;
2551 {
2552 	int s;
2553 
2554 	raidPtr->copyback_in_progress = 1;
2555 	s = splbio();
2556 	rf_CopybackReconstructedData(raidPtr);
2557 	splx(s);
2558 	raidPtr->copyback_in_progress = 0;
2559 
2560 	/* That's all... */
2561 	kthread_exit(0);        /* does not return */
2562 }
2563 
2564 
2565 void
2566 rf_ReconstructInPlaceThread(req)
2567 	struct rf_recon_req *req;
2568 {
2569 	int retcode;
2570 	int s;
2571 	RF_Raid_t *raidPtr;
2572 
2573 	s = splbio();
2574 	raidPtr = req->raidPtr;
2575 	raidPtr->recon_in_progress = 1;
2576 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2577 	RF_Free(req, sizeof(*req));
2578 	raidPtr->recon_in_progress = 0;
2579 	splx(s);
2580 
2581 	/* That's all... */
2582 	kthread_exit(0);        /* does not return */
2583 }
2584 
2585 void
2586 rf_mountroot_hook(dev)
2587 	struct device *dev;
2588 {
2589 
2590 }
2591 
2592 
2593 RF_AutoConfig_t *
2594 rf_find_raid_components()
2595 {
2596 	struct devnametobdevmaj *dtobdm;
2597 	struct vnode *vp;
2598 	struct disklabel label;
2599 	struct device *dv;
2600 	char *cd_name;
2601 	dev_t dev;
2602 	int error;
2603 	int i;
2604 	int good_one;
2605 	RF_ComponentLabel_t *clabel;
2606 	RF_AutoConfig_t *ac_list;
2607 	RF_AutoConfig_t *ac;
2608 
2609 
2610 	/* initialize the AutoConfig list */
2611 	ac_list = NULL;
2612 
2613 if (raidautoconfig) {
2614 
2615 	/* we begin by trolling through *all* the devices on the system */
2616 
2617 	for (dv = alldevs.tqh_first; dv != NULL;
2618 	     dv = dv->dv_list.tqe_next) {
2619 
2620 		/* we are only interested in disks... */
2621 		if (dv->dv_class != DV_DISK)
2622 			continue;
2623 
2624 		/* we don't care about floppies... */
2625 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
2626 			continue;
2627 		}
2628 
2629 		/* need to find the device_name_to_block_device_major stuff */
2630 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
2631 		dtobdm = dev_name2blk;
2632 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
2633 			dtobdm++;
2634 		}
2635 
2636 		/* get a vnode for the raw partition of this disk */
2637 
2638 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
2639 		if (bdevvp(dev, &vp))
2640 			panic("RAID can't alloc vnode");
2641 
2642 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2643 
2644 		if (error) {
2645 			/* "Who cares."  Continue looking
2646 			   for something that exists*/
2647 			vput(vp);
2648 			continue;
2649 		}
2650 
2651 		/* Ok, the disk exists.  Go get the disklabel. */
2652 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2653 				  FREAD, NOCRED, 0);
2654 		if (error) {
2655 			/*
2656 			 * XXX can't happen - open() would
2657 			 * have errored out (or faked up one)
2658 			 */
2659 			printf("can't get label for dev %s%c (%d)!?!?\n",
2660 			       dv->dv_xname, 'a' + RAW_PART, error);
2661 		}
2662 
2663 		/* don't need this any more.  We'll allocate it again
2664 		   a little later if we really do... */
2665 		VOP_CLOSE(vp, FREAD, NOCRED, 0);
2666 		vput(vp);
2667 
2668 		for (i=0; i < label.d_npartitions; i++) {
2669 			/* We only support partitions marked as RAID */
2670 			if (label.d_partitions[i].p_fstype != FS_RAID)
2671 				continue;
2672 
2673 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
2674 			if (bdevvp(dev, &vp))
2675 				panic("RAID can't alloc vnode");
2676 
2677 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2678 			if (error) {
2679 				/* Whatever... */
2680 				vput(vp);
2681 				continue;
2682 			}
2683 
2684 			good_one = 0;
2685 
2686 			clabel = (RF_ComponentLabel_t *)
2687 				malloc(sizeof(RF_ComponentLabel_t),
2688 				       M_RAIDFRAME, M_NOWAIT);
2689 			if (clabel == NULL) {
2690 				/* XXX CLEANUP HERE */
2691 				printf("RAID auto config: out of memory!\n");
2692 				return(NULL); /* XXX probably should panic? */
2693 			}
2694 
2695 			if (!raidread_component_label(dev, vp, clabel)) {
2696 				/* Got the label.  Does it look reasonable? */
2697 				if (rf_reasonable_label(clabel) &&
2698 				    (clabel->partitionSize <=
2699 				     label.d_partitions[i].p_size)) {
2700 #if DEBUG
2701 					printf("Component on: %s%c: %d\n",
2702 					       dv->dv_xname, 'a'+i,
2703 					       label.d_partitions[i].p_size);
2704 					rf_print_component_label(clabel);
2705 #endif
2706 					/* if it's reasonable, add it,
2707 					   else ignore it. */
2708 					ac = (RF_AutoConfig_t *)
2709 						malloc(sizeof(RF_AutoConfig_t),
2710 						       M_RAIDFRAME,
2711 						       M_NOWAIT);
2712 					if (ac == NULL) {
2713 						/* XXX should panic?? */
2714 						return(NULL);
2715 					}
2716 
2717 					sprintf(ac->devname, "%s%c",
2718 						dv->dv_xname, 'a'+i);
2719 					ac->dev = dev;
2720 					ac->vp = vp;
2721 					ac->clabel = clabel;
2722 					ac->next = ac_list;
2723 					ac_list = ac;
2724 					good_one = 1;
2725 				}
2726 			}
2727 			if (!good_one) {
2728 				/* cleanup */
2729 				free(clabel, M_RAIDFRAME);
2730 				VOP_CLOSE(vp, FREAD, NOCRED, 0);
2731 				vput(vp);
2732 			}
2733 		}
2734 	}
2735 }
2736 return(ac_list);
2737 }
2738 
2739 static int
2740 rf_reasonable_label(clabel)
2741 	RF_ComponentLabel_t *clabel;
2742 {
2743 
2744 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2745 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2746 	    ((clabel->clean == RF_RAID_CLEAN) ||
2747 	     (clabel->clean == RF_RAID_DIRTY)) &&
2748 	    clabel->row >=0 &&
2749 	    clabel->column >= 0 &&
2750 	    clabel->num_rows > 0 &&
2751 	    clabel->num_columns > 0 &&
2752 	    clabel->row < clabel->num_rows &&
2753 	    clabel->column < clabel->num_columns &&
2754 	    clabel->blockSize > 0 &&
2755 	    clabel->numBlocks > 0) {
2756 		/* label looks reasonable enough... */
2757 		return(1);
2758 	}
2759 	return(0);
2760 }
2761 
2762 
2763 void
2764 rf_print_component_label(clabel)
2765 	RF_ComponentLabel_t *clabel;
2766 {
2767 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2768 	       clabel->row, clabel->column,
2769 	       clabel->num_rows, clabel->num_columns);
2770 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
2771 	       clabel->version, clabel->serial_number,
2772 	       clabel->mod_counter);
2773 	printf("   Clean: %s Status: %d\n",
2774 	       clabel->clean ? "Yes" : "No", clabel->status );
2775 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2776 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2777 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
2778 	       (char) clabel->parityConfig, clabel->blockSize,
2779 	       clabel->numBlocks);
2780 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2781 	printf("   Contains root partition: %s\n",
2782 	       clabel->root_partition ? "Yes" : "No" );
2783 	printf("   Last configured as: raid%d\n", clabel->last_unit );
2784 #if 0
2785 	   printf("   Config order: %d\n", clabel->config_order);
2786 #endif
2787 
2788 }
2789 
2790 RF_ConfigSet_t *
2791 rf_create_auto_sets(ac_list)
2792 	RF_AutoConfig_t *ac_list;
2793 {
2794 	RF_AutoConfig_t *ac;
2795 	RF_ConfigSet_t *config_sets;
2796 	RF_ConfigSet_t *cset;
2797 	RF_AutoConfig_t *ac_next;
2798 
2799 
2800 	config_sets = NULL;
2801 
2802 	/* Go through the AutoConfig list, and figure out which components
2803 	   belong to what sets.  */
2804 	ac = ac_list;
2805 	while(ac!=NULL) {
2806 		/* we're going to putz with ac->next, so save it here
2807 		   for use at the end of the loop */
2808 		ac_next = ac->next;
2809 
2810 		if (config_sets == NULL) {
2811 			/* will need at least this one... */
2812 			config_sets = (RF_ConfigSet_t *)
2813 				malloc(sizeof(RF_ConfigSet_t),
2814 				       M_RAIDFRAME, M_NOWAIT);
2815 			if (config_sets == NULL) {
2816 				panic("rf_create_auto_sets: No memory!\n");
2817 			}
2818 			/* this one is easy :) */
2819 			config_sets->ac = ac;
2820 			config_sets->next = NULL;
2821 			config_sets->rootable = 0;
2822 			ac->next = NULL;
2823 		} else {
2824 			/* which set does this component fit into? */
2825 			cset = config_sets;
2826 			while(cset!=NULL) {
2827 				if (rf_does_it_fit(cset, ac)) {
2828 					/* looks like it matches... */
2829 					ac->next = cset->ac;
2830 					cset->ac = ac;
2831 					break;
2832 				}
2833 				cset = cset->next;
2834 			}
2835 			if (cset==NULL) {
2836 				/* didn't find a match above... new set..*/
2837 				cset = (RF_ConfigSet_t *)
2838 					malloc(sizeof(RF_ConfigSet_t),
2839 					       M_RAIDFRAME, M_NOWAIT);
2840 				if (cset == NULL) {
2841 					panic("rf_create_auto_sets: No memory!\n");
2842 				}
2843 				cset->ac = ac;
2844 				ac->next = NULL;
2845 				cset->next = config_sets;
2846 				cset->rootable = 0;
2847 				config_sets = cset;
2848 			}
2849 		}
2850 		ac = ac_next;
2851 	}
2852 
2853 
2854 	return(config_sets);
2855 }
2856 
2857 static int
2858 rf_does_it_fit(cset, ac)
2859 	RF_ConfigSet_t *cset;
2860 	RF_AutoConfig_t *ac;
2861 {
2862 	RF_ComponentLabel_t *clabel1, *clabel2;
2863 
2864 	/* If this one matches the *first* one in the set, that's good
2865 	   enough, since the other members of the set would have been
2866 	   through here too... */
2867 	/* note that we are not checking partitionSize here..
2868 
2869 	   Note that we are also not checking the mod_counters here.
2870 	   If everything else matches execpt the mod_counter, that's
2871 	   good enough for this test.  We will deal with the mod_counters
2872 	   a little later in the autoconfiguration process.
2873 
2874 	    (clabel1->mod_counter == clabel2->mod_counter) &&
2875 
2876 	   The reason we don't check for this is that failed disks
2877 	   will have lower modification counts.  If those disks are
2878 	   not added to the set they used to belong to, then they will
2879 	   form their own set, which may result in 2 different sets,
2880 	   for example, competing to be configured at raid0, and
2881 	   perhaps competing to be the root filesystem set.  If the
2882 	   wrong ones get configured, or both attempt to become /,
2883 	   weird behaviour and or serious lossage will occur.  Thus we
2884 	   need to bring them into the fold here, and kick them out at
2885 	   a later point.
2886 
2887 	*/
2888 
2889 	clabel1 = cset->ac->clabel;
2890 	clabel2 = ac->clabel;
2891 	if ((clabel1->version == clabel2->version) &&
2892 	    (clabel1->serial_number == clabel2->serial_number) &&
2893 	    (clabel1->num_rows == clabel2->num_rows) &&
2894 	    (clabel1->num_columns == clabel2->num_columns) &&
2895 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
2896 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2897 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2898 	    (clabel1->parityConfig == clabel2->parityConfig) &&
2899 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2900 	    (clabel1->blockSize == clabel2->blockSize) &&
2901 	    (clabel1->numBlocks == clabel2->numBlocks) &&
2902 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
2903 	    (clabel1->root_partition == clabel2->root_partition) &&
2904 	    (clabel1->last_unit == clabel2->last_unit) &&
2905 	    (clabel1->config_order == clabel2->config_order)) {
2906 		/* if it get's here, it almost *has* to be a match */
2907 	} else {
2908 		/* it's not consistent with somebody in the set..
2909 		   punt */
2910 		return(0);
2911 	}
2912 	/* all was fine.. it must fit... */
2913 	return(1);
2914 }
2915 
2916 int
2917 rf_have_enough_components(cset)
2918 	RF_ConfigSet_t *cset;
2919 {
2920 	RF_AutoConfig_t *ac;
2921 	RF_AutoConfig_t *auto_config;
2922 	RF_ComponentLabel_t *clabel;
2923 	int r,c;
2924 	int num_rows;
2925 	int num_cols;
2926 	int num_missing;
2927 	int mod_counter;
2928 	int mod_counter_found;
2929 	int even_pair_failed;
2930 	char parity_type;
2931 
2932 
2933 	/* check to see that we have enough 'live' components
2934 	   of this set.  If so, we can configure it if necessary */
2935 
2936 	num_rows = cset->ac->clabel->num_rows;
2937 	num_cols = cset->ac->clabel->num_columns;
2938 	parity_type = cset->ac->clabel->parityConfig;
2939 
2940 	/* XXX Check for duplicate components!?!?!? */
2941 
2942 	/* Determine what the mod_counter is supposed to be for this set. */
2943 
2944 	mod_counter_found = 0;
2945 	ac = cset->ac;
2946 	while(ac!=NULL) {
2947 		if (mod_counter_found==0) {
2948 			mod_counter = ac->clabel->mod_counter;
2949 			mod_counter_found = 1;
2950 		} else {
2951 			if (ac->clabel->mod_counter > mod_counter) {
2952 				mod_counter = ac->clabel->mod_counter;
2953 			}
2954 		}
2955 		ac = ac->next;
2956 	}
2957 
2958 	num_missing = 0;
2959 	auto_config = cset->ac;
2960 
2961 	for(r=0; r<num_rows; r++) {
2962 		even_pair_failed = 0;
2963 		for(c=0; c<num_cols; c++) {
2964 			ac = auto_config;
2965 			while(ac!=NULL) {
2966 				if ((ac->clabel->row == r) &&
2967 				    (ac->clabel->column == c) &&
2968 				    (ac->clabel->mod_counter == mod_counter)) {
2969 					/* it's this one... */
2970 #if DEBUG
2971 					printf("Found: %s at %d,%d\n",
2972 					       ac->devname,r,c);
2973 #endif
2974 					break;
2975 				}
2976 				ac=ac->next;
2977 			}
2978 			if (ac==NULL) {
2979 				/* Didn't find one here! */
2980 				/* special case for RAID 1, especially
2981 				   where there are more than 2
2982 				   components (where RAIDframe treats
2983 				   things a little differently :( ) */
2984 				if (parity_type == '1') {
2985 					if (c%2 == 0) { /* even component */
2986 						even_pair_failed = 1;
2987 					} else { /* odd component.  If
2988                                                     we're failed, and
2989                                                     so is the even
2990                                                     component, it's
2991                                                     "Good Night, Charlie" */
2992 						if (even_pair_failed == 1) {
2993 							return(0);
2994 						}
2995 					}
2996 				} else {
2997 					/* normal accounting */
2998 					num_missing++;
2999 				}
3000 			}
3001 			if ((parity_type == '1') && (c%2 == 1)) {
3002 				/* Just did an even component, and we didn't
3003 				   bail.. reset the even_pair_failed flag,
3004 				   and go on to the next component.... */
3005 				even_pair_failed = 0;
3006 			}
3007 		}
3008 	}
3009 
3010 	clabel = cset->ac->clabel;
3011 
3012 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3013 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3014 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
3015 		/* XXX this needs to be made *much* more general */
3016 		/* Too many failures */
3017 		return(0);
3018 	}
3019 	/* otherwise, all is well, and we've got enough to take a kick
3020 	   at autoconfiguring this set */
3021 	return(1);
3022 }
3023 
3024 void
3025 rf_create_configuration(ac,config,raidPtr)
3026 	RF_AutoConfig_t *ac;
3027 	RF_Config_t *config;
3028 	RF_Raid_t *raidPtr;
3029 {
3030 	RF_ComponentLabel_t *clabel;
3031 	int i;
3032 
3033 	clabel = ac->clabel;
3034 
3035 	/* 1. Fill in the common stuff */
3036 	config->numRow = clabel->num_rows;
3037 	config->numCol = clabel->num_columns;
3038 	config->numSpare = 0; /* XXX should this be set here? */
3039 	config->sectPerSU = clabel->sectPerSU;
3040 	config->SUsPerPU = clabel->SUsPerPU;
3041 	config->SUsPerRU = clabel->SUsPerRU;
3042 	config->parityConfig = clabel->parityConfig;
3043 	/* XXX... */
3044 	strcpy(config->diskQueueType,"fifo");
3045 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3046 	config->layoutSpecificSize = 0; /* XXX ?? */
3047 
3048 	while(ac!=NULL) {
3049 		/* row/col values will be in range due to the checks
3050 		   in reasonable_label() */
3051 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3052 		       ac->devname);
3053 		ac = ac->next;
3054 	}
3055 
3056 	for(i=0;i<RF_MAXDBGV;i++) {
3057 		config->debugVars[i][0] = NULL;
3058 	}
3059 }
3060 
3061 int
3062 rf_set_autoconfig(raidPtr, new_value)
3063 	RF_Raid_t *raidPtr;
3064 	int new_value;
3065 {
3066 	RF_ComponentLabel_t clabel;
3067 	struct vnode *vp;
3068 	dev_t dev;
3069 	int row, column;
3070 
3071 	raidPtr->autoconfigure = new_value;
3072 	for(row=0; row<raidPtr->numRow; row++) {
3073 		for(column=0; column<raidPtr->numCol; column++) {
3074 			if (raidPtr->Disks[row][column].status ==
3075 			    rf_ds_optimal) {
3076 				dev = raidPtr->Disks[row][column].dev;
3077 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
3078 				raidread_component_label(dev, vp, &clabel);
3079 				clabel.autoconfigure = new_value;
3080 				raidwrite_component_label(dev, vp, &clabel);
3081 			}
3082 		}
3083 	}
3084 	return(new_value);
3085 }
3086 
3087 int
3088 rf_set_rootpartition(raidPtr, new_value)
3089 	RF_Raid_t *raidPtr;
3090 	int new_value;
3091 {
3092 	RF_ComponentLabel_t clabel;
3093 	struct vnode *vp;
3094 	dev_t dev;
3095 	int row, column;
3096 
3097 	raidPtr->root_partition = new_value;
3098 	for(row=0; row<raidPtr->numRow; row++) {
3099 		for(column=0; column<raidPtr->numCol; column++) {
3100 			if (raidPtr->Disks[row][column].status ==
3101 			    rf_ds_optimal) {
3102 				dev = raidPtr->Disks[row][column].dev;
3103 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
3104 				raidread_component_label(dev, vp, &clabel);
3105 				clabel.root_partition = new_value;
3106 				raidwrite_component_label(dev, vp, &clabel);
3107 			}
3108 		}
3109 	}
3110 	return(new_value);
3111 }
3112 
3113 void
3114 rf_release_all_vps(cset)
3115 	RF_ConfigSet_t *cset;
3116 {
3117 	RF_AutoConfig_t *ac;
3118 
3119 	ac = cset->ac;
3120 	while(ac!=NULL) {
3121 		/* Close the vp, and give it back */
3122 		if (ac->vp) {
3123 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3124 			vput(ac->vp);
3125 			ac->vp = NULL;
3126 		}
3127 		ac = ac->next;
3128 	}
3129 }
3130 
3131 
3132 void
3133 rf_cleanup_config_set(cset)
3134 	RF_ConfigSet_t *cset;
3135 {
3136 	RF_AutoConfig_t *ac;
3137 	RF_AutoConfig_t *next_ac;
3138 
3139 	ac = cset->ac;
3140 	while(ac!=NULL) {
3141 		next_ac = ac->next;
3142 		/* nuke the label */
3143 		free(ac->clabel, M_RAIDFRAME);
3144 		/* cleanup the config structure */
3145 		free(ac, M_RAIDFRAME);
3146 		/* "next.." */
3147 		ac = next_ac;
3148 	}
3149 	/* and, finally, nuke the config set */
3150 	free(cset, M_RAIDFRAME);
3151 }
3152 
3153 
3154 void
3155 raid_init_component_label(raidPtr, clabel)
3156 	RF_Raid_t *raidPtr;
3157 	RF_ComponentLabel_t *clabel;
3158 {
3159 	/* current version number */
3160 	clabel->version = RF_COMPONENT_LABEL_VERSION;
3161 	clabel->serial_number = raidPtr->serial_number;
3162 	clabel->mod_counter = raidPtr->mod_counter;
3163 	clabel->num_rows = raidPtr->numRow;
3164 	clabel->num_columns = raidPtr->numCol;
3165 	clabel->clean = RF_RAID_DIRTY; /* not clean */
3166 	clabel->status = rf_ds_optimal; /* "It's good!" */
3167 
3168 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3169 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3170 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3171 
3172 	clabel->blockSize = raidPtr->bytesPerSector;
3173 	clabel->numBlocks = raidPtr->sectorsPerDisk;
3174 
3175 	/* XXX not portable */
3176 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3177 	clabel->maxOutstanding = raidPtr->maxOutstanding;
3178 	clabel->autoconfigure = raidPtr->autoconfigure;
3179 	clabel->root_partition = raidPtr->root_partition;
3180 	clabel->last_unit = raidPtr->raidid;
3181 	clabel->config_order = raidPtr->config_order;
3182 }
3183 
3184 int
3185 rf_auto_config_set(cset,unit)
3186 	RF_ConfigSet_t *cset;
3187 	int *unit;
3188 {
3189 	RF_Raid_t *raidPtr;
3190 	RF_Config_t *config;
3191 	int raidID;
3192 	int retcode;
3193 
3194 	printf("RAID autoconfigure\n");
3195 
3196 	retcode = 0;
3197 	*unit = -1;
3198 
3199 	/* 1. Create a config structure */
3200 
3201 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3202 				       M_RAIDFRAME,
3203 				       M_NOWAIT);
3204 	if (config==NULL) {
3205 		printf("Out of mem!?!?\n");
3206 				/* XXX do something more intelligent here. */
3207 		return(1);
3208 	}
3209 
3210 	memset(config, 0, sizeof(RF_Config_t));
3211 
3212 	/* XXX raidID needs to be set correctly.. */
3213 
3214 	/*
3215 	   2. Figure out what RAID ID this one is supposed to live at
3216 	   See if we can get the same RAID dev that it was configured
3217 	   on last time..
3218 	*/
3219 
3220 	raidID = cset->ac->clabel->last_unit;
3221 	if ((raidID < 0) || (raidID >= numraid)) {
3222 		/* let's not wander off into lala land. */
3223 		raidID = numraid - 1;
3224 	}
3225 	if (raidPtrs[raidID]->valid != 0) {
3226 
3227 		/*
3228 		   Nope... Go looking for an alternative...
3229 		   Start high so we don't immediately use raid0 if that's
3230 		   not taken.
3231 		*/
3232 
3233 		for(raidID = numraid; raidID >= 0; raidID--) {
3234 			if (raidPtrs[raidID]->valid == 0) {
3235 				/* can use this one! */
3236 				break;
3237 			}
3238 		}
3239 	}
3240 
3241 	if (raidID < 0) {
3242 		/* punt... */
3243 		printf("Unable to auto configure this set!\n");
3244 		printf("(Out of RAID devs!)\n");
3245 		return(1);
3246 	}
3247 	printf("Configuring raid%d:\n",raidID);
3248 	raidPtr = raidPtrs[raidID];
3249 
3250 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
3251 	raidPtr->raidid = raidID;
3252 	raidPtr->openings = RAIDOUTSTANDING;
3253 
3254 	/* 3. Build the configuration structure */
3255 	rf_create_configuration(cset->ac, config, raidPtr);
3256 
3257 	/* 4. Do the configuration */
3258 	retcode = rf_Configure(raidPtr, config, cset->ac);
3259 
3260 	if (retcode == 0) {
3261 
3262 		raidinit(raidPtrs[raidID]);
3263 
3264 		rf_markalldirty(raidPtrs[raidID]);
3265 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3266 		if (cset->ac->clabel->root_partition==1) {
3267 			/* everything configured just fine.  Make a note
3268 			   that this set is eligible to be root. */
3269 			cset->rootable = 1;
3270 			/* XXX do this here? */
3271 			raidPtrs[raidID]->root_partition = 1;
3272 		}
3273 	}
3274 
3275 	/* 5. Cleanup */
3276 	free(config, M_RAIDFRAME);
3277 
3278 	*unit = raidID;
3279 	return(retcode);
3280 }
3281