1 /* $NetBSD: rf_netbsdkintf.c,v 1.251 2008/11/18 14:29:55 ad Exp $ */ 2 /*- 3 * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to The NetBSD Foundation 7 * by Greg Oster; Jason R. Thorpe. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * Copyright (c) 1990, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * This code is derived from software contributed to Berkeley by 36 * the Systems Programming Group of the University of Utah Computer 37 * Science Department. 38 * 39 * Redistribution and use in source and binary forms, with or without 40 * modification, are permitted provided that the following conditions 41 * are met: 42 * 1. Redistributions of source code must retain the above copyright 43 * notice, this list of conditions and the following disclaimer. 44 * 2. Redistributions in binary form must reproduce the above copyright 45 * notice, this list of conditions and the following disclaimer in the 46 * documentation and/or other materials provided with the distribution. 47 * 3. Neither the name of the University nor the names of its contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 61 * SUCH DAMAGE. 62 * 63 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 64 * 65 * @(#)cd.c 8.2 (Berkeley) 11/16/93 66 */ 67 68 /* 69 * Copyright (c) 1988 University of Utah. 70 * 71 * This code is derived from software contributed to Berkeley by 72 * the Systems Programming Group of the University of Utah Computer 73 * Science Department. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by the University of 86 * California, Berkeley and its contributors. 87 * 4. Neither the name of the University nor the names of its contributors 88 * may be used to endorse or promote products derived from this software 89 * without specific prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 92 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 94 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 95 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 96 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 97 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * from: Utah $Hdr: cd.c 1.6 90/11/28$ 104 * 105 * @(#)cd.c 8.2 (Berkeley) 11/16/93 106 */ 107 108 /* 109 * Copyright (c) 1995 Carnegie-Mellon University. 110 * All rights reserved. 111 * 112 * Authors: Mark Holland, Jim Zelenka 113 * 114 * Permission to use, copy, modify and distribute this software and 115 * its documentation is hereby granted, provided that both the copyright 116 * notice and this permission notice appear in all copies of the 117 * software, derivative works or modified versions, and any portions 118 * thereof, and that both notices appear in supporting documentation. 119 * 120 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 121 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 122 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 123 * 124 * Carnegie Mellon requests users of this software to return to 125 * 126 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 127 * School of Computer Science 128 * Carnegie Mellon University 129 * Pittsburgh PA 15213-3890 130 * 131 * any improvements or extensions that they make and grant Carnegie the 132 * rights to redistribute these changes. 133 */ 134 135 /*********************************************************** 136 * 137 * rf_kintf.c -- the kernel interface routines for RAIDframe 138 * 139 ***********************************************************/ 140 141 #include <sys/cdefs.h> 142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.251 2008/11/18 14:29:55 ad Exp $"); 143 144 #ifdef _KERNEL_OPT 145 #include "opt_raid_autoconfig.h" 146 #include "raid.h" 147 #endif 148 149 #include <sys/param.h> 150 #include <sys/errno.h> 151 #include <sys/pool.h> 152 #include <sys/proc.h> 153 #include <sys/queue.h> 154 #include <sys/disk.h> 155 #include <sys/device.h> 156 #include <sys/stat.h> 157 #include <sys/ioctl.h> 158 #include <sys/fcntl.h> 159 #include <sys/systm.h> 160 #include <sys/vnode.h> 161 #include <sys/disklabel.h> 162 #include <sys/conf.h> 163 #include <sys/buf.h> 164 #include <sys/bufq.h> 165 #include <sys/user.h> 166 #include <sys/reboot.h> 167 #include <sys/kauth.h> 168 169 #include <prop/proplib.h> 170 171 #include <dev/raidframe/raidframevar.h> 172 #include <dev/raidframe/raidframeio.h> 173 174 #include "rf_raid.h" 175 #include "rf_copyback.h" 176 #include "rf_dag.h" 177 #include "rf_dagflags.h" 178 #include "rf_desc.h" 179 #include "rf_diskqueue.h" 180 #include "rf_etimer.h" 181 #include "rf_general.h" 182 #include "rf_kintf.h" 183 #include "rf_options.h" 184 #include "rf_driver.h" 185 #include "rf_parityscan.h" 186 #include "rf_threadstuff.h" 187 188 #ifdef DEBUG 189 int rf_kdebug_level = 0; 190 #define db1_printf(a) if (rf_kdebug_level > 0) printf a 191 #else /* DEBUG */ 192 #define db1_printf(a) { } 193 #endif /* DEBUG */ 194 195 static RF_Raid_t **raidPtrs; /* global raid device descriptors */ 196 197 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex) 199 200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a 201 * spare table */ 202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from 203 * installation process */ 204 #endif 205 206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures"); 207 208 /* prototypes */ 209 static void KernelWakeupFunc(struct buf *); 210 static void InitBP(struct buf *, struct vnode *, unsigned, 211 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *), 212 void *, int, struct proc *); 213 static void raidinit(RF_Raid_t *); 214 215 void raidattach(int); 216 static int raid_match(struct device *, struct cfdata *, void *); 217 static void raid_attach(struct device *, struct device *, void *); 218 static int raid_detach(struct device *, int); 219 220 dev_type_open(raidopen); 221 dev_type_close(raidclose); 222 dev_type_read(raidread); 223 dev_type_write(raidwrite); 224 dev_type_ioctl(raidioctl); 225 dev_type_strategy(raidstrategy); 226 dev_type_dump(raiddump); 227 dev_type_size(raidsize); 228 229 const struct bdevsw raid_bdevsw = { 230 raidopen, raidclose, raidstrategy, raidioctl, 231 raiddump, raidsize, D_DISK 232 }; 233 234 const struct cdevsw raid_cdevsw = { 235 raidopen, raidclose, raidread, raidwrite, raidioctl, 236 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 237 }; 238 239 static struct dkdriver rf_dkdriver = { raidstrategy, minphys }; 240 241 /* XXX Not sure if the following should be replacing the raidPtrs above, 242 or if it should be used in conjunction with that... 243 */ 244 245 struct raid_softc { 246 struct device *sc_dev; 247 int sc_flags; /* flags */ 248 int sc_cflags; /* configuration flags */ 249 uint64_t sc_size; /* size of the raid device */ 250 char sc_xname[20]; /* XXX external name */ 251 struct disk sc_dkdev; /* generic disk device info */ 252 struct bufq_state *buf_queue; /* used for the device queue */ 253 }; 254 /* sc_flags */ 255 #define RAIDF_INITED 0x01 /* unit has been initialized */ 256 #define RAIDF_WLABEL 0x02 /* label area is writable */ 257 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */ 258 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */ 259 #define RAIDF_LOCKED 0x80 /* unit is locked */ 260 261 #define raidunit(x) DISKUNIT(x) 262 int numraid = 0; 263 264 extern struct cfdriver raid_cd; 265 CFATTACH_DECL_NEW(raid, sizeof(struct raid_softc), 266 raid_match, raid_attach, raid_detach, NULL); 267 268 /* 269 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. 270 * Be aware that large numbers can allow the driver to consume a lot of 271 * kernel memory, especially on writes, and in degraded mode reads. 272 * 273 * For example: with a stripe width of 64 blocks (32k) and 5 disks, 274 * a single 64K write will typically require 64K for the old data, 275 * 64K for the old parity, and 64K for the new parity, for a total 276 * of 192K (if the parity buffer is not re-used immediately). 277 * Even it if is used immediately, that's still 128K, which when multiplied 278 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. 279 * 280 * Now in degraded mode, for example, a 64K read on the above setup may 281 * require data reconstruction, which will require *all* of the 4 remaining 282 * disks to participate -- 4 * 32K/disk == 128K again. 283 */ 284 285 #ifndef RAIDOUTSTANDING 286 #define RAIDOUTSTANDING 6 287 #endif 288 289 #define RAIDLABELDEV(dev) \ 290 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART)) 291 292 /* declared here, and made public, for the benefit of KVM stuff.. */ 293 struct raid_softc *raid_softc; 294 295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *, 296 struct disklabel *); 297 static void raidgetdisklabel(dev_t); 298 static void raidmakedisklabel(struct raid_softc *); 299 300 static int raidlock(struct raid_softc *); 301 static void raidunlock(struct raid_softc *); 302 303 static void rf_markalldirty(RF_Raid_t *); 304 static void rf_set_properties(struct raid_softc *, RF_Raid_t *); 305 306 void rf_ReconThread(struct rf_recon_req *); 307 void rf_RewriteParityThread(RF_Raid_t *raidPtr); 308 void rf_CopybackThread(RF_Raid_t *raidPtr); 309 void rf_ReconstructInPlaceThread(struct rf_recon_req *); 310 int rf_autoconfig(struct device *self); 311 void rf_buildroothack(RF_ConfigSet_t *); 312 313 RF_AutoConfig_t *rf_find_raid_components(void); 314 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); 315 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); 316 static int rf_reasonable_label(RF_ComponentLabel_t *); 317 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); 318 int rf_set_autoconfig(RF_Raid_t *, int); 319 int rf_set_rootpartition(RF_Raid_t *, int); 320 void rf_release_all_vps(RF_ConfigSet_t *); 321 void rf_cleanup_config_set(RF_ConfigSet_t *); 322 int rf_have_enough_components(RF_ConfigSet_t *); 323 int rf_auto_config_set(RF_ConfigSet_t *, int *); 324 325 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not 326 allow autoconfig to take place. 327 Note that this is overridden by having 328 RAID_AUTOCONFIG as an option in the 329 kernel config file. */ 330 331 struct RF_Pools_s rf_pools; 332 333 void 334 raidattach(int num) 335 { 336 int raidID; 337 int i, rc; 338 339 #ifdef DEBUG 340 printf("raidattach: Asked for %d units\n", num); 341 #endif 342 343 if (num <= 0) { 344 #ifdef DIAGNOSTIC 345 panic("raidattach: count <= 0"); 346 #endif 347 return; 348 } 349 /* This is where all the initialization stuff gets done. */ 350 351 numraid = num; 352 353 /* Make some space for requested number of units... */ 354 355 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **)); 356 if (raidPtrs == NULL) { 357 panic("raidPtrs is NULL!!"); 358 } 359 360 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 361 rf_mutex_init(&rf_sparet_wait_mutex); 362 363 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; 364 #endif 365 366 for (i = 0; i < num; i++) 367 raidPtrs[i] = NULL; 368 rc = rf_BootRaidframe(); 369 if (rc == 0) 370 aprint_normal("Kernelized RAIDframe activated\n"); 371 else 372 panic("Serious error booting RAID!!"); 373 374 /* put together some datastructures like the CCD device does.. This 375 * lets us lock the device and what-not when it gets opened. */ 376 377 raid_softc = (struct raid_softc *) 378 malloc(num * sizeof(struct raid_softc), 379 M_RAIDFRAME, M_NOWAIT); 380 if (raid_softc == NULL) { 381 aprint_error("WARNING: no memory for RAIDframe driver\n"); 382 return; 383 } 384 385 memset(raid_softc, 0, num * sizeof(struct raid_softc)); 386 387 for (raidID = 0; raidID < num; raidID++) { 388 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0); 389 390 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t), 391 (RF_Raid_t *)); 392 if (raidPtrs[raidID] == NULL) { 393 aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID); 394 numraid = raidID; 395 return; 396 } 397 } 398 399 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) { 400 aprint_error("raidattach: config_cfattach_attach failed?\n"); 401 } 402 403 #ifdef RAID_AUTOCONFIG 404 raidautoconfig = 1; 405 #endif 406 407 /* 408 * Register a finalizer which will be used to auto-config RAID 409 * sets once all real hardware devices have been found. 410 */ 411 if (config_finalize_register(NULL, rf_autoconfig) != 0) 412 aprint_error("WARNING: unable to register RAIDframe finalizer\n"); 413 } 414 415 int 416 rf_autoconfig(struct device *self) 417 { 418 RF_AutoConfig_t *ac_list; 419 RF_ConfigSet_t *config_sets; 420 421 if (raidautoconfig == 0) 422 return (0); 423 424 /* XXX This code can only be run once. */ 425 raidautoconfig = 0; 426 427 /* 1. locate all RAID components on the system */ 428 #ifdef DEBUG 429 printf("Searching for RAID components...\n"); 430 #endif 431 ac_list = rf_find_raid_components(); 432 433 /* 2. Sort them into their respective sets. */ 434 config_sets = rf_create_auto_sets(ac_list); 435 436 /* 437 * 3. Evaluate each set andconfigure the valid ones. 438 * This gets done in rf_buildroothack(). 439 */ 440 rf_buildroothack(config_sets); 441 442 return 1; 443 } 444 445 void 446 rf_buildroothack(RF_ConfigSet_t *config_sets) 447 { 448 RF_ConfigSet_t *cset; 449 RF_ConfigSet_t *next_cset; 450 int retcode; 451 int raidID; 452 int rootID; 453 int col; 454 int num_root; 455 char *devname; 456 457 rootID = 0; 458 num_root = 0; 459 cset = config_sets; 460 while(cset != NULL ) { 461 next_cset = cset->next; 462 if (rf_have_enough_components(cset) && 463 cset->ac->clabel->autoconfigure==1) { 464 retcode = rf_auto_config_set(cset,&raidID); 465 if (!retcode) { 466 #ifdef DEBUG 467 printf("raid%d: configured ok\n", raidID); 468 #endif 469 if (cset->rootable) { 470 rootID = raidID; 471 num_root++; 472 } 473 } else { 474 /* The autoconfig didn't work :( */ 475 #ifdef DEBUG 476 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID); 477 #endif 478 rf_release_all_vps(cset); 479 } 480 } else { 481 /* we're not autoconfiguring this set... 482 release the associated resources */ 483 rf_release_all_vps(cset); 484 } 485 /* cleanup */ 486 rf_cleanup_config_set(cset); 487 cset = next_cset; 488 } 489 490 /* if the user has specified what the root device should be 491 then we don't touch booted_device or boothowto... */ 492 493 if (rootspec != NULL) 494 return; 495 496 /* we found something bootable... */ 497 498 if (num_root == 1) { 499 booted_device = raid_softc[rootID].sc_dev; 500 } else if (num_root > 1) { 501 502 /* 503 * Maybe the MD code can help. If it cannot, then 504 * setroot() will discover that we have no 505 * booted_device and will ask the user if nothing was 506 * hardwired in the kernel config file 507 */ 508 509 if (booted_device == NULL) 510 cpu_rootconf(); 511 if (booted_device == NULL) 512 return; 513 514 num_root = 0; 515 for (raidID = 0; raidID < numraid; raidID++) { 516 if (raidPtrs[raidID]->valid == 0) 517 continue; 518 519 if (raidPtrs[raidID]->root_partition == 0) 520 continue; 521 522 for (col = 0; col < raidPtrs[raidID]->numCol; col++) { 523 devname = raidPtrs[raidID]->Disks[col].devname; 524 devname += sizeof("/dev/") - 1; 525 if (strncmp(devname, device_xname(booted_device), 526 strlen(device_xname(booted_device))) != 0) 527 continue; 528 #ifdef DEBUG 529 printf("raid%d includes boot device %s\n", 530 raidID, devname); 531 #endif 532 num_root++; 533 rootID = raidID; 534 } 535 } 536 537 if (num_root == 1) { 538 booted_device = raid_softc[rootID].sc_dev; 539 } else { 540 /* we can't guess.. require the user to answer... */ 541 boothowto |= RB_ASKNAME; 542 } 543 } 544 } 545 546 547 int 548 raidsize(dev_t dev) 549 { 550 struct raid_softc *rs; 551 struct disklabel *lp; 552 int part, unit, omask, size; 553 554 unit = raidunit(dev); 555 if (unit >= numraid) 556 return (-1); 557 rs = &raid_softc[unit]; 558 559 if ((rs->sc_flags & RAIDF_INITED) == 0) 560 return (-1); 561 562 part = DISKPART(dev); 563 omask = rs->sc_dkdev.dk_openmask & (1 << part); 564 lp = rs->sc_dkdev.dk_label; 565 566 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp)) 567 return (-1); 568 569 if (lp->d_partitions[part].p_fstype != FS_SWAP) 570 size = -1; 571 else 572 size = lp->d_partitions[part].p_size * 573 (lp->d_secsize / DEV_BSIZE); 574 575 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp)) 576 return (-1); 577 578 return (size); 579 580 } 581 582 int 583 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size) 584 { 585 int unit = raidunit(dev); 586 struct raid_softc *rs; 587 const struct bdevsw *bdev; 588 struct disklabel *lp; 589 RF_Raid_t *raidPtr; 590 daddr_t offset; 591 int part, c, sparecol, j, scol, dumpto; 592 int error = 0; 593 594 if (unit >= numraid) 595 return (ENXIO); 596 597 rs = &raid_softc[unit]; 598 raidPtr = raidPtrs[unit]; 599 600 if ((rs->sc_flags & RAIDF_INITED) == 0) 601 return ENXIO; 602 603 /* we only support dumping to RAID 1 sets */ 604 if (raidPtr->Layout.numDataCol != 1 || 605 raidPtr->Layout.numParityCol != 1) 606 return EINVAL; 607 608 609 if ((error = raidlock(rs)) != 0) 610 return error; 611 612 if (size % DEV_BSIZE != 0) { 613 error = EINVAL; 614 goto out; 615 } 616 617 if (blkno + size / DEV_BSIZE > rs->sc_size) { 618 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > " 619 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno, 620 size / DEV_BSIZE, rs->sc_size); 621 error = EINVAL; 622 goto out; 623 } 624 625 part = DISKPART(dev); 626 lp = rs->sc_dkdev.dk_label; 627 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS; 628 629 /* figure out what device is alive.. */ 630 631 /* 632 Look for a component to dump to. The preference for the 633 component to dump to is as follows: 634 1) the master 635 2) a used_spare of the master 636 3) the slave 637 4) a used_spare of the slave 638 */ 639 640 dumpto = -1; 641 for (c = 0; c < raidPtr->numCol; c++) { 642 if (raidPtr->Disks[c].status == rf_ds_optimal) { 643 /* this might be the one */ 644 dumpto = c; 645 break; 646 } 647 } 648 649 /* 650 At this point we have possibly selected a live master or a 651 live slave. We now check to see if there is a spared 652 master (or a spared slave), if we didn't find a live master 653 or a live slave. 654 */ 655 656 for (c = 0; c < raidPtr->numSpare; c++) { 657 sparecol = raidPtr->numCol + c; 658 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 659 /* How about this one? */ 660 scol = -1; 661 for(j=0;j<raidPtr->numCol;j++) { 662 if (raidPtr->Disks[j].spareCol == sparecol) { 663 scol = j; 664 break; 665 } 666 } 667 if (scol == 0) { 668 /* 669 We must have found a spared master! 670 We'll take that over anything else 671 found so far. (We couldn't have 672 found a real master before, since 673 this is a used spare, and it's 674 saying that it's replacing the 675 master.) On reboot (with 676 autoconfiguration turned on) 677 sparecol will become the 1st 678 component (component0) of this set. 679 */ 680 dumpto = sparecol; 681 break; 682 } else if (scol != -1) { 683 /* 684 Must be a spared slave. We'll dump 685 to that if we havn't found anything 686 else so far. 687 */ 688 if (dumpto == -1) 689 dumpto = sparecol; 690 } 691 } 692 } 693 694 if (dumpto == -1) { 695 /* we couldn't find any live components to dump to!?!? 696 */ 697 error = EINVAL; 698 goto out; 699 } 700 701 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev); 702 703 /* 704 Note that blkno is relative to this particular partition. 705 By adding the offset of this partition in the RAID 706 set, and also adding RF_PROTECTED_SECTORS, we get a 707 value that is relative to the partition used for the 708 underlying component. 709 */ 710 711 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev, 712 blkno + offset, va, size); 713 714 out: 715 raidunlock(rs); 716 717 return error; 718 } 719 /* ARGSUSED */ 720 int 721 raidopen(dev_t dev, int flags, int fmt, 722 struct lwp *l) 723 { 724 int unit = raidunit(dev); 725 struct raid_softc *rs; 726 struct disklabel *lp; 727 int part, pmask; 728 int error = 0; 729 730 if (unit >= numraid) 731 return (ENXIO); 732 rs = &raid_softc[unit]; 733 734 if ((error = raidlock(rs)) != 0) 735 return (error); 736 lp = rs->sc_dkdev.dk_label; 737 738 part = DISKPART(dev); 739 740 /* 741 * If there are wedges, and this is not RAW_PART, then we 742 * need to fail. 743 */ 744 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) { 745 error = EBUSY; 746 goto bad; 747 } 748 pmask = (1 << part); 749 750 if ((rs->sc_flags & RAIDF_INITED) && 751 (rs->sc_dkdev.dk_openmask == 0)) 752 raidgetdisklabel(dev); 753 754 /* make sure that this partition exists */ 755 756 if (part != RAW_PART) { 757 if (((rs->sc_flags & RAIDF_INITED) == 0) || 758 ((part >= lp->d_npartitions) || 759 (lp->d_partitions[part].p_fstype == FS_UNUSED))) { 760 error = ENXIO; 761 goto bad; 762 } 763 } 764 /* Prevent this unit from being unconfigured while open. */ 765 switch (fmt) { 766 case S_IFCHR: 767 rs->sc_dkdev.dk_copenmask |= pmask; 768 break; 769 770 case S_IFBLK: 771 rs->sc_dkdev.dk_bopenmask |= pmask; 772 break; 773 } 774 775 if ((rs->sc_dkdev.dk_openmask == 0) && 776 ((rs->sc_flags & RAIDF_INITED) != 0)) { 777 /* First one... mark things as dirty... Note that we *MUST* 778 have done a configure before this. I DO NOT WANT TO BE 779 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED 780 THAT THEY BELONG TOGETHER!!!!! */ 781 /* XXX should check to see if we're only open for reading 782 here... If so, we needn't do this, but then need some 783 other way of keeping track of what's happened.. */ 784 785 rf_markalldirty( raidPtrs[unit] ); 786 } 787 788 789 rs->sc_dkdev.dk_openmask = 790 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 791 792 bad: 793 raidunlock(rs); 794 795 return (error); 796 797 798 } 799 /* ARGSUSED */ 800 int 801 raidclose(dev_t dev, int flags, int fmt, struct lwp *l) 802 { 803 int unit = raidunit(dev); 804 struct cfdata *cf; 805 struct raid_softc *rs; 806 int error = 0; 807 int part; 808 809 if (unit >= numraid) 810 return (ENXIO); 811 rs = &raid_softc[unit]; 812 813 if ((error = raidlock(rs)) != 0) 814 return (error); 815 816 part = DISKPART(dev); 817 818 /* ...that much closer to allowing unconfiguration... */ 819 switch (fmt) { 820 case S_IFCHR: 821 rs->sc_dkdev.dk_copenmask &= ~(1 << part); 822 break; 823 824 case S_IFBLK: 825 rs->sc_dkdev.dk_bopenmask &= ~(1 << part); 826 break; 827 } 828 rs->sc_dkdev.dk_openmask = 829 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask; 830 831 if ((rs->sc_dkdev.dk_openmask == 0) && 832 ((rs->sc_flags & RAIDF_INITED) != 0)) { 833 /* Last one... device is not unconfigured yet. 834 Device shutdown has taken care of setting the 835 clean bits if RAIDF_INITED is not set 836 mark things as clean... */ 837 838 rf_update_component_labels(raidPtrs[unit], 839 RF_FINAL_COMPONENT_UPDATE); 840 if (doing_shutdown) { 841 /* last one, and we're going down, so 842 lights out for this RAID set too. */ 843 error = rf_Shutdown(raidPtrs[unit]); 844 845 /* It's no longer initialized... */ 846 rs->sc_flags &= ~RAIDF_INITED; 847 848 /* detach the device */ 849 850 cf = device_cfdata(rs->sc_dev); 851 error = config_detach(rs->sc_dev, DETACH_QUIET); 852 free(cf, M_RAIDFRAME); 853 854 /* Detach the disk. */ 855 disk_detach(&rs->sc_dkdev); 856 disk_destroy(&rs->sc_dkdev); 857 } 858 } 859 860 raidunlock(rs); 861 return (0); 862 863 } 864 865 void 866 raidstrategy(struct buf *bp) 867 { 868 int s; 869 870 unsigned int raidID = raidunit(bp->b_dev); 871 RF_Raid_t *raidPtr; 872 struct raid_softc *rs = &raid_softc[raidID]; 873 int wlabel; 874 875 if ((rs->sc_flags & RAIDF_INITED) ==0) { 876 bp->b_error = ENXIO; 877 goto done; 878 } 879 if (raidID >= numraid || !raidPtrs[raidID]) { 880 bp->b_error = ENODEV; 881 goto done; 882 } 883 raidPtr = raidPtrs[raidID]; 884 if (!raidPtr->valid) { 885 bp->b_error = ENODEV; 886 goto done; 887 } 888 if (bp->b_bcount == 0) { 889 db1_printf(("b_bcount is zero..\n")); 890 goto done; 891 } 892 893 /* 894 * Do bounds checking and adjust transfer. If there's an 895 * error, the bounds check will flag that for us. 896 */ 897 898 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING); 899 if (DISKPART(bp->b_dev) == RAW_PART) { 900 uint64_t size; /* device size in DEV_BSIZE unit */ 901 902 if (raidPtr->logBytesPerSector > DEV_BSHIFT) { 903 size = raidPtr->totalSectors << 904 (raidPtr->logBytesPerSector - DEV_BSHIFT); 905 } else { 906 size = raidPtr->totalSectors >> 907 (DEV_BSHIFT - raidPtr->logBytesPerSector); 908 } 909 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) { 910 goto done; 911 } 912 } else { 913 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) { 914 db1_printf(("Bounds check failed!!:%d %d\n", 915 (int) bp->b_blkno, (int) wlabel)); 916 goto done; 917 } 918 } 919 s = splbio(); 920 921 bp->b_resid = 0; 922 923 /* stuff it onto our queue */ 924 BUFQ_PUT(rs->buf_queue, bp); 925 926 /* scheduled the IO to happen at the next convenient time */ 927 wakeup(&(raidPtrs[raidID]->iodone)); 928 929 splx(s); 930 return; 931 932 done: 933 bp->b_resid = bp->b_bcount; 934 biodone(bp); 935 } 936 /* ARGSUSED */ 937 int 938 raidread(dev_t dev, struct uio *uio, int flags) 939 { 940 int unit = raidunit(dev); 941 struct raid_softc *rs; 942 943 if (unit >= numraid) 944 return (ENXIO); 945 rs = &raid_softc[unit]; 946 947 if ((rs->sc_flags & RAIDF_INITED) == 0) 948 return (ENXIO); 949 950 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio)); 951 952 } 953 /* ARGSUSED */ 954 int 955 raidwrite(dev_t dev, struct uio *uio, int flags) 956 { 957 int unit = raidunit(dev); 958 struct raid_softc *rs; 959 960 if (unit >= numraid) 961 return (ENXIO); 962 rs = &raid_softc[unit]; 963 964 if ((rs->sc_flags & RAIDF_INITED) == 0) 965 return (ENXIO); 966 967 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio)); 968 969 } 970 971 int 972 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 973 { 974 int unit = raidunit(dev); 975 int error = 0; 976 int part, pmask; 977 struct cfdata *cf; 978 struct raid_softc *rs; 979 RF_Config_t *k_cfg, *u_cfg; 980 RF_Raid_t *raidPtr; 981 RF_RaidDisk_t *diskPtr; 982 RF_AccTotals_t *totals; 983 RF_DeviceConfig_t *d_cfg, **ucfgp; 984 u_char *specific_buf; 985 int retcode = 0; 986 int column; 987 int raidid; 988 struct rf_recon_req *rrcopy, *rr; 989 RF_ComponentLabel_t *clabel; 990 RF_ComponentLabel_t *ci_label; 991 RF_ComponentLabel_t **clabel_ptr; 992 RF_SingleComponent_t *sparePtr,*componentPtr; 993 RF_SingleComponent_t component; 994 RF_ProgressInfo_t progressInfo, **progressInfoPtr; 995 int i, j, d; 996 #ifdef __HAVE_OLD_DISKLABEL 997 struct disklabel newlabel; 998 #endif 999 struct dkwedge_info *dkw; 1000 1001 if (unit >= numraid) 1002 return (ENXIO); 1003 rs = &raid_softc[unit]; 1004 raidPtr = raidPtrs[unit]; 1005 1006 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev, 1007 (int) DISKPART(dev), (int) unit, (int) cmd)); 1008 1009 /* Must be open for writes for these commands... */ 1010 switch (cmd) { 1011 #ifdef DIOCGSECTORSIZE 1012 case DIOCGSECTORSIZE: 1013 *(u_int *)data = raidPtr->bytesPerSector; 1014 return 0; 1015 case DIOCGMEDIASIZE: 1016 *(off_t *)data = 1017 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector; 1018 return 0; 1019 #endif 1020 case DIOCSDINFO: 1021 case DIOCWDINFO: 1022 #ifdef __HAVE_OLD_DISKLABEL 1023 case ODIOCWDINFO: 1024 case ODIOCSDINFO: 1025 #endif 1026 case DIOCWLABEL: 1027 case DIOCAWEDGE: 1028 case DIOCDWEDGE: 1029 if ((flag & FWRITE) == 0) 1030 return (EBADF); 1031 } 1032 1033 /* Must be initialized for these... */ 1034 switch (cmd) { 1035 case DIOCGDINFO: 1036 case DIOCSDINFO: 1037 case DIOCWDINFO: 1038 #ifdef __HAVE_OLD_DISKLABEL 1039 case ODIOCGDINFO: 1040 case ODIOCWDINFO: 1041 case ODIOCSDINFO: 1042 case ODIOCGDEFLABEL: 1043 #endif 1044 case DIOCGPART: 1045 case DIOCWLABEL: 1046 case DIOCGDEFLABEL: 1047 case DIOCAWEDGE: 1048 case DIOCDWEDGE: 1049 case DIOCLWEDGES: 1050 case RAIDFRAME_SHUTDOWN: 1051 case RAIDFRAME_REWRITEPARITY: 1052 case RAIDFRAME_GET_INFO: 1053 case RAIDFRAME_RESET_ACCTOTALS: 1054 case RAIDFRAME_GET_ACCTOTALS: 1055 case RAIDFRAME_KEEP_ACCTOTALS: 1056 case RAIDFRAME_GET_SIZE: 1057 case RAIDFRAME_FAIL_DISK: 1058 case RAIDFRAME_COPYBACK: 1059 case RAIDFRAME_CHECK_RECON_STATUS: 1060 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 1061 case RAIDFRAME_GET_COMPONENT_LABEL: 1062 case RAIDFRAME_SET_COMPONENT_LABEL: 1063 case RAIDFRAME_ADD_HOT_SPARE: 1064 case RAIDFRAME_REMOVE_HOT_SPARE: 1065 case RAIDFRAME_INIT_LABELS: 1066 case RAIDFRAME_REBUILD_IN_PLACE: 1067 case RAIDFRAME_CHECK_PARITY: 1068 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 1069 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 1070 case RAIDFRAME_CHECK_COPYBACK_STATUS: 1071 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 1072 case RAIDFRAME_SET_AUTOCONFIG: 1073 case RAIDFRAME_SET_ROOT: 1074 case RAIDFRAME_DELETE_COMPONENT: 1075 case RAIDFRAME_INCORPORATE_HOT_SPARE: 1076 if ((rs->sc_flags & RAIDF_INITED) == 0) 1077 return (ENXIO); 1078 } 1079 1080 switch (cmd) { 1081 1082 /* configure the system */ 1083 case RAIDFRAME_CONFIGURE: 1084 1085 if (raidPtr->valid) { 1086 /* There is a valid RAID set running on this unit! */ 1087 printf("raid%d: Device already configured!\n",unit); 1088 return(EINVAL); 1089 } 1090 1091 /* copy-in the configuration information */ 1092 /* data points to a pointer to the configuration structure */ 1093 1094 u_cfg = *((RF_Config_t **) data); 1095 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *)); 1096 if (k_cfg == NULL) { 1097 return (ENOMEM); 1098 } 1099 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t)); 1100 if (retcode) { 1101 RF_Free(k_cfg, sizeof(RF_Config_t)); 1102 db1_printf(("rf_ioctl: retcode=%d copyin.1\n", 1103 retcode)); 1104 return (retcode); 1105 } 1106 /* allocate a buffer for the layout-specific data, and copy it 1107 * in */ 1108 if (k_cfg->layoutSpecificSize) { 1109 if (k_cfg->layoutSpecificSize > 10000) { 1110 /* sanity check */ 1111 RF_Free(k_cfg, sizeof(RF_Config_t)); 1112 return (EINVAL); 1113 } 1114 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize, 1115 (u_char *)); 1116 if (specific_buf == NULL) { 1117 RF_Free(k_cfg, sizeof(RF_Config_t)); 1118 return (ENOMEM); 1119 } 1120 retcode = copyin(k_cfg->layoutSpecific, specific_buf, 1121 k_cfg->layoutSpecificSize); 1122 if (retcode) { 1123 RF_Free(k_cfg, sizeof(RF_Config_t)); 1124 RF_Free(specific_buf, 1125 k_cfg->layoutSpecificSize); 1126 db1_printf(("rf_ioctl: retcode=%d copyin.2\n", 1127 retcode)); 1128 return (retcode); 1129 } 1130 } else 1131 specific_buf = NULL; 1132 k_cfg->layoutSpecific = specific_buf; 1133 1134 /* should do some kind of sanity check on the configuration. 1135 * Store the sum of all the bytes in the last byte? */ 1136 1137 /* configure the system */ 1138 1139 /* 1140 * Clear the entire RAID descriptor, just to make sure 1141 * there is no stale data left in the case of a 1142 * reconfiguration 1143 */ 1144 memset((char *) raidPtr, 0, sizeof(RF_Raid_t)); 1145 raidPtr->raidid = unit; 1146 1147 retcode = rf_Configure(raidPtr, k_cfg, NULL); 1148 1149 if (retcode == 0) { 1150 1151 /* allow this many simultaneous IO's to 1152 this RAID device */ 1153 raidPtr->openings = RAIDOUTSTANDING; 1154 1155 raidinit(raidPtr); 1156 rf_markalldirty(raidPtr); 1157 } 1158 /* free the buffers. No return code here. */ 1159 if (k_cfg->layoutSpecificSize) { 1160 RF_Free(specific_buf, k_cfg->layoutSpecificSize); 1161 } 1162 RF_Free(k_cfg, sizeof(RF_Config_t)); 1163 1164 return (retcode); 1165 1166 /* shutdown the system */ 1167 case RAIDFRAME_SHUTDOWN: 1168 1169 if ((error = raidlock(rs)) != 0) 1170 return (error); 1171 1172 /* 1173 * If somebody has a partition mounted, we shouldn't 1174 * shutdown. 1175 */ 1176 1177 part = DISKPART(dev); 1178 pmask = (1 << part); 1179 if ((rs->sc_dkdev.dk_openmask & ~pmask) || 1180 ((rs->sc_dkdev.dk_bopenmask & pmask) && 1181 (rs->sc_dkdev.dk_copenmask & pmask))) { 1182 raidunlock(rs); 1183 return (EBUSY); 1184 } 1185 1186 retcode = rf_Shutdown(raidPtr); 1187 1188 /* It's no longer initialized... */ 1189 rs->sc_flags &= ~RAIDF_INITED; 1190 1191 /* free the pseudo device attach bits */ 1192 1193 cf = device_cfdata(rs->sc_dev); 1194 /* XXX this causes us to not return any errors 1195 from the above call to rf_Shutdown() */ 1196 retcode = config_detach(rs->sc_dev, DETACH_QUIET); 1197 free(cf, M_RAIDFRAME); 1198 1199 /* Detach the disk. */ 1200 disk_detach(&rs->sc_dkdev); 1201 disk_destroy(&rs->sc_dkdev); 1202 1203 raidunlock(rs); 1204 1205 return (retcode); 1206 case RAIDFRAME_GET_COMPONENT_LABEL: 1207 clabel_ptr = (RF_ComponentLabel_t **) data; 1208 /* need to read the component label for the disk indicated 1209 by row,column in clabel */ 1210 1211 /* For practice, let's get it directly fromdisk, rather 1212 than from the in-core copy */ 1213 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ), 1214 (RF_ComponentLabel_t *)); 1215 if (clabel == NULL) 1216 return (ENOMEM); 1217 1218 retcode = copyin( *clabel_ptr, clabel, 1219 sizeof(RF_ComponentLabel_t)); 1220 1221 if (retcode) { 1222 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1223 return(retcode); 1224 } 1225 1226 clabel->row = 0; /* Don't allow looking at anything else.*/ 1227 1228 column = clabel->column; 1229 1230 if ((column < 0) || (column >= raidPtr->numCol + 1231 raidPtr->numSpare)) { 1232 RF_Free( clabel, sizeof(RF_ComponentLabel_t)); 1233 return(EINVAL); 1234 } 1235 1236 retcode = raidread_component_label(raidPtr->Disks[column].dev, 1237 raidPtr->raid_cinfo[column].ci_vp, 1238 clabel ); 1239 1240 if (retcode == 0) { 1241 retcode = copyout(clabel, *clabel_ptr, 1242 sizeof(RF_ComponentLabel_t)); 1243 } 1244 RF_Free(clabel, sizeof(RF_ComponentLabel_t)); 1245 return (retcode); 1246 1247 case RAIDFRAME_SET_COMPONENT_LABEL: 1248 clabel = (RF_ComponentLabel_t *) data; 1249 1250 /* XXX check the label for valid stuff... */ 1251 /* Note that some things *should not* get modified -- 1252 the user should be re-initing the labels instead of 1253 trying to patch things. 1254 */ 1255 1256 raidid = raidPtr->raidid; 1257 #ifdef DEBUG 1258 printf("raid%d: Got component label:\n", raidid); 1259 printf("raid%d: Version: %d\n", raidid, clabel->version); 1260 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number); 1261 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter); 1262 printf("raid%d: Column: %d\n", raidid, clabel->column); 1263 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns); 1264 printf("raid%d: Clean: %d\n", raidid, clabel->clean); 1265 printf("raid%d: Status: %d\n", raidid, clabel->status); 1266 #endif 1267 clabel->row = 0; 1268 column = clabel->column; 1269 1270 if ((column < 0) || (column >= raidPtr->numCol)) { 1271 return(EINVAL); 1272 } 1273 1274 /* XXX this isn't allowed to do anything for now :-) */ 1275 1276 /* XXX and before it is, we need to fill in the rest 1277 of the fields!?!?!?! */ 1278 #if 0 1279 raidwrite_component_label( 1280 raidPtr->Disks[column].dev, 1281 raidPtr->raid_cinfo[column].ci_vp, 1282 clabel ); 1283 #endif 1284 return (0); 1285 1286 case RAIDFRAME_INIT_LABELS: 1287 clabel = (RF_ComponentLabel_t *) data; 1288 /* 1289 we only want the serial number from 1290 the above. We get all the rest of the information 1291 from the config that was used to create this RAID 1292 set. 1293 */ 1294 1295 raidPtr->serial_number = clabel->serial_number; 1296 1297 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t), 1298 (RF_ComponentLabel_t *)); 1299 if (ci_label == NULL) 1300 return (ENOMEM); 1301 1302 raid_init_component_label(raidPtr, ci_label); 1303 ci_label->serial_number = clabel->serial_number; 1304 ci_label->row = 0; /* we dont' pretend to support more */ 1305 1306 for(column=0;column<raidPtr->numCol;column++) { 1307 diskPtr = &raidPtr->Disks[column]; 1308 if (!RF_DEAD_DISK(diskPtr->status)) { 1309 ci_label->partitionSize = diskPtr->partitionSize; 1310 ci_label->column = column; 1311 raidwrite_component_label( 1312 raidPtr->Disks[column].dev, 1313 raidPtr->raid_cinfo[column].ci_vp, 1314 ci_label ); 1315 } 1316 } 1317 RF_Free(ci_label, sizeof(RF_ComponentLabel_t)); 1318 1319 return (retcode); 1320 case RAIDFRAME_SET_AUTOCONFIG: 1321 d = rf_set_autoconfig(raidPtr, *(int *) data); 1322 printf("raid%d: New autoconfig value is: %d\n", 1323 raidPtr->raidid, d); 1324 *(int *) data = d; 1325 return (retcode); 1326 1327 case RAIDFRAME_SET_ROOT: 1328 d = rf_set_rootpartition(raidPtr, *(int *) data); 1329 printf("raid%d: New rootpartition value is: %d\n", 1330 raidPtr->raidid, d); 1331 *(int *) data = d; 1332 return (retcode); 1333 1334 /* initialize all parity */ 1335 case RAIDFRAME_REWRITEPARITY: 1336 1337 if (raidPtr->Layout.map->faultsTolerated == 0) { 1338 /* Parity for RAID 0 is trivially correct */ 1339 raidPtr->parity_good = RF_RAID_CLEAN; 1340 return(0); 1341 } 1342 1343 if (raidPtr->parity_rewrite_in_progress == 1) { 1344 /* Re-write is already in progress! */ 1345 return(EINVAL); 1346 } 1347 1348 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, 1349 rf_RewriteParityThread, 1350 raidPtr,"raid_parity"); 1351 return (retcode); 1352 1353 1354 case RAIDFRAME_ADD_HOT_SPARE: 1355 sparePtr = (RF_SingleComponent_t *) data; 1356 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t)); 1357 retcode = rf_add_hot_spare(raidPtr, &component); 1358 return(retcode); 1359 1360 case RAIDFRAME_REMOVE_HOT_SPARE: 1361 return(retcode); 1362 1363 case RAIDFRAME_DELETE_COMPONENT: 1364 componentPtr = (RF_SingleComponent_t *)data; 1365 memcpy( &component, componentPtr, 1366 sizeof(RF_SingleComponent_t)); 1367 retcode = rf_delete_component(raidPtr, &component); 1368 return(retcode); 1369 1370 case RAIDFRAME_INCORPORATE_HOT_SPARE: 1371 componentPtr = (RF_SingleComponent_t *)data; 1372 memcpy( &component, componentPtr, 1373 sizeof(RF_SingleComponent_t)); 1374 retcode = rf_incorporate_hot_spare(raidPtr, &component); 1375 return(retcode); 1376 1377 case RAIDFRAME_REBUILD_IN_PLACE: 1378 1379 if (raidPtr->Layout.map->faultsTolerated == 0) { 1380 /* Can't do this on a RAID 0!! */ 1381 return(EINVAL); 1382 } 1383 1384 if (raidPtr->recon_in_progress == 1) { 1385 /* a reconstruct is already in progress! */ 1386 return(EINVAL); 1387 } 1388 1389 componentPtr = (RF_SingleComponent_t *) data; 1390 memcpy( &component, componentPtr, 1391 sizeof(RF_SingleComponent_t)); 1392 component.row = 0; /* we don't support any more */ 1393 column = component.column; 1394 1395 if ((column < 0) || (column >= raidPtr->numCol)) { 1396 return(EINVAL); 1397 } 1398 1399 RF_LOCK_MUTEX(raidPtr->mutex); 1400 if ((raidPtr->Disks[column].status == rf_ds_optimal) && 1401 (raidPtr->numFailures > 0)) { 1402 /* XXX 0 above shouldn't be constant!!! */ 1403 /* some component other than this has failed. 1404 Let's not make things worse than they already 1405 are... */ 1406 printf("raid%d: Unable to reconstruct to disk at:\n", 1407 raidPtr->raidid); 1408 printf("raid%d: Col: %d Too many failures.\n", 1409 raidPtr->raidid, column); 1410 RF_UNLOCK_MUTEX(raidPtr->mutex); 1411 return (EINVAL); 1412 } 1413 if (raidPtr->Disks[column].status == 1414 rf_ds_reconstructing) { 1415 printf("raid%d: Unable to reconstruct to disk at:\n", 1416 raidPtr->raidid); 1417 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column); 1418 1419 RF_UNLOCK_MUTEX(raidPtr->mutex); 1420 return (EINVAL); 1421 } 1422 if (raidPtr->Disks[column].status == rf_ds_spared) { 1423 RF_UNLOCK_MUTEX(raidPtr->mutex); 1424 return (EINVAL); 1425 } 1426 RF_UNLOCK_MUTEX(raidPtr->mutex); 1427 1428 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1429 if (rrcopy == NULL) 1430 return(ENOMEM); 1431 1432 rrcopy->raidPtr = (void *) raidPtr; 1433 rrcopy->col = column; 1434 1435 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1436 rf_ReconstructInPlaceThread, 1437 rrcopy,"raid_reconip"); 1438 return(retcode); 1439 1440 case RAIDFRAME_GET_INFO: 1441 if (!raidPtr->valid) 1442 return (ENODEV); 1443 ucfgp = (RF_DeviceConfig_t **) data; 1444 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t), 1445 (RF_DeviceConfig_t *)); 1446 if (d_cfg == NULL) 1447 return (ENOMEM); 1448 d_cfg->rows = 1; /* there is only 1 row now */ 1449 d_cfg->cols = raidPtr->numCol; 1450 d_cfg->ndevs = raidPtr->numCol; 1451 if (d_cfg->ndevs >= RF_MAX_DISKS) { 1452 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1453 return (ENOMEM); 1454 } 1455 d_cfg->nspares = raidPtr->numSpare; 1456 if (d_cfg->nspares >= RF_MAX_DISKS) { 1457 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1458 return (ENOMEM); 1459 } 1460 d_cfg->maxqdepth = raidPtr->maxQueueDepth; 1461 d = 0; 1462 for (j = 0; j < d_cfg->cols; j++) { 1463 d_cfg->devs[d] = raidPtr->Disks[j]; 1464 d++; 1465 } 1466 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) { 1467 d_cfg->spares[i] = raidPtr->Disks[j]; 1468 } 1469 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t)); 1470 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1471 1472 return (retcode); 1473 1474 case RAIDFRAME_CHECK_PARITY: 1475 *(int *) data = raidPtr->parity_good; 1476 return (0); 1477 1478 case RAIDFRAME_RESET_ACCTOTALS: 1479 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals)); 1480 return (0); 1481 1482 case RAIDFRAME_GET_ACCTOTALS: 1483 totals = (RF_AccTotals_t *) data; 1484 *totals = raidPtr->acc_totals; 1485 return (0); 1486 1487 case RAIDFRAME_KEEP_ACCTOTALS: 1488 raidPtr->keep_acc_totals = *(int *)data; 1489 return (0); 1490 1491 case RAIDFRAME_GET_SIZE: 1492 *(int *) data = raidPtr->totalSectors; 1493 return (0); 1494 1495 /* fail a disk & optionally start reconstruction */ 1496 case RAIDFRAME_FAIL_DISK: 1497 1498 if (raidPtr->Layout.map->faultsTolerated == 0) { 1499 /* Can't do this on a RAID 0!! */ 1500 return(EINVAL); 1501 } 1502 1503 rr = (struct rf_recon_req *) data; 1504 rr->row = 0; 1505 if (rr->col < 0 || rr->col >= raidPtr->numCol) 1506 return (EINVAL); 1507 1508 1509 RF_LOCK_MUTEX(raidPtr->mutex); 1510 if (raidPtr->status == rf_rs_reconstructing) { 1511 /* you can't fail a disk while we're reconstructing! */ 1512 /* XXX wrong for RAID6 */ 1513 RF_UNLOCK_MUTEX(raidPtr->mutex); 1514 return (EINVAL); 1515 } 1516 if ((raidPtr->Disks[rr->col].status == 1517 rf_ds_optimal) && (raidPtr->numFailures > 0)) { 1518 /* some other component has failed. Let's not make 1519 things worse. XXX wrong for RAID6 */ 1520 RF_UNLOCK_MUTEX(raidPtr->mutex); 1521 return (EINVAL); 1522 } 1523 if (raidPtr->Disks[rr->col].status == rf_ds_spared) { 1524 /* Can't fail a spared disk! */ 1525 RF_UNLOCK_MUTEX(raidPtr->mutex); 1526 return (EINVAL); 1527 } 1528 RF_UNLOCK_MUTEX(raidPtr->mutex); 1529 1530 /* make a copy of the recon request so that we don't rely on 1531 * the user's buffer */ 1532 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *)); 1533 if (rrcopy == NULL) 1534 return(ENOMEM); 1535 memcpy(rrcopy, rr, sizeof(*rr)); 1536 rrcopy->raidPtr = (void *) raidPtr; 1537 1538 retcode = RF_CREATE_THREAD(raidPtr->recon_thread, 1539 rf_ReconThread, 1540 rrcopy,"raid_recon"); 1541 return (0); 1542 1543 /* invoke a copyback operation after recon on whatever disk 1544 * needs it, if any */ 1545 case RAIDFRAME_COPYBACK: 1546 1547 if (raidPtr->Layout.map->faultsTolerated == 0) { 1548 /* This makes no sense on a RAID 0!! */ 1549 return(EINVAL); 1550 } 1551 1552 if (raidPtr->copyback_in_progress == 1) { 1553 /* Copyback is already in progress! */ 1554 return(EINVAL); 1555 } 1556 1557 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread, 1558 rf_CopybackThread, 1559 raidPtr,"raid_copyback"); 1560 return (retcode); 1561 1562 /* return the percentage completion of reconstruction */ 1563 case RAIDFRAME_CHECK_RECON_STATUS: 1564 if (raidPtr->Layout.map->faultsTolerated == 0) { 1565 /* This makes no sense on a RAID 0, so tell the 1566 user it's done. */ 1567 *(int *) data = 100; 1568 return(0); 1569 } 1570 if (raidPtr->status != rf_rs_reconstructing) 1571 *(int *) data = 100; 1572 else { 1573 if (raidPtr->reconControl->numRUsTotal > 0) { 1574 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); 1575 } else { 1576 *(int *) data = 0; 1577 } 1578 } 1579 return (0); 1580 case RAIDFRAME_CHECK_RECON_STATUS_EXT: 1581 progressInfoPtr = (RF_ProgressInfo_t **) data; 1582 if (raidPtr->status != rf_rs_reconstructing) { 1583 progressInfo.remaining = 0; 1584 progressInfo.completed = 100; 1585 progressInfo.total = 100; 1586 } else { 1587 progressInfo.total = 1588 raidPtr->reconControl->numRUsTotal; 1589 progressInfo.completed = 1590 raidPtr->reconControl->numRUsComplete; 1591 progressInfo.remaining = progressInfo.total - 1592 progressInfo.completed; 1593 } 1594 retcode = copyout(&progressInfo, *progressInfoPtr, 1595 sizeof(RF_ProgressInfo_t)); 1596 return (retcode); 1597 1598 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 1599 if (raidPtr->Layout.map->faultsTolerated == 0) { 1600 /* This makes no sense on a RAID 0, so tell the 1601 user it's done. */ 1602 *(int *) data = 100; 1603 return(0); 1604 } 1605 if (raidPtr->parity_rewrite_in_progress == 1) { 1606 *(int *) data = 100 * 1607 raidPtr->parity_rewrite_stripes_done / 1608 raidPtr->Layout.numStripe; 1609 } else { 1610 *(int *) data = 100; 1611 } 1612 return (0); 1613 1614 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 1615 progressInfoPtr = (RF_ProgressInfo_t **) data; 1616 if (raidPtr->parity_rewrite_in_progress == 1) { 1617 progressInfo.total = raidPtr->Layout.numStripe; 1618 progressInfo.completed = 1619 raidPtr->parity_rewrite_stripes_done; 1620 progressInfo.remaining = progressInfo.total - 1621 progressInfo.completed; 1622 } else { 1623 progressInfo.remaining = 0; 1624 progressInfo.completed = 100; 1625 progressInfo.total = 100; 1626 } 1627 retcode = copyout(&progressInfo, *progressInfoPtr, 1628 sizeof(RF_ProgressInfo_t)); 1629 return (retcode); 1630 1631 case RAIDFRAME_CHECK_COPYBACK_STATUS: 1632 if (raidPtr->Layout.map->faultsTolerated == 0) { 1633 /* This makes no sense on a RAID 0 */ 1634 *(int *) data = 100; 1635 return(0); 1636 } 1637 if (raidPtr->copyback_in_progress == 1) { 1638 *(int *) data = 100 * raidPtr->copyback_stripes_done / 1639 raidPtr->Layout.numStripe; 1640 } else { 1641 *(int *) data = 100; 1642 } 1643 return (0); 1644 1645 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 1646 progressInfoPtr = (RF_ProgressInfo_t **) data; 1647 if (raidPtr->copyback_in_progress == 1) { 1648 progressInfo.total = raidPtr->Layout.numStripe; 1649 progressInfo.completed = 1650 raidPtr->copyback_stripes_done; 1651 progressInfo.remaining = progressInfo.total - 1652 progressInfo.completed; 1653 } else { 1654 progressInfo.remaining = 0; 1655 progressInfo.completed = 100; 1656 progressInfo.total = 100; 1657 } 1658 retcode = copyout(&progressInfo, *progressInfoPtr, 1659 sizeof(RF_ProgressInfo_t)); 1660 return (retcode); 1661 1662 /* the sparetable daemon calls this to wait for the kernel to 1663 * need a spare table. this ioctl does not return until a 1664 * spare table is needed. XXX -- calling mpsleep here in the 1665 * ioctl code is almost certainly wrong and evil. -- XXX XXX 1666 * -- I should either compute the spare table in the kernel, 1667 * or have a different -- XXX XXX -- interface (a different 1668 * character device) for delivering the table -- XXX */ 1669 #if 0 1670 case RAIDFRAME_SPARET_WAIT: 1671 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1672 while (!rf_sparet_wait_queue) 1673 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE); 1674 waitreq = rf_sparet_wait_queue; 1675 rf_sparet_wait_queue = rf_sparet_wait_queue->next; 1676 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1677 1678 /* structure assignment */ 1679 *((RF_SparetWait_t *) data) = *waitreq; 1680 1681 RF_Free(waitreq, sizeof(*waitreq)); 1682 return (0); 1683 1684 /* wakes up a process waiting on SPARET_WAIT and puts an error 1685 * code in it that will cause the dameon to exit */ 1686 case RAIDFRAME_ABORT_SPARET_WAIT: 1687 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1688 waitreq->fcol = -1; 1689 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1690 waitreq->next = rf_sparet_wait_queue; 1691 rf_sparet_wait_queue = waitreq; 1692 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1693 wakeup(&rf_sparet_wait_queue); 1694 return (0); 1695 1696 /* used by the spare table daemon to deliver a spare table 1697 * into the kernel */ 1698 case RAIDFRAME_SEND_SPARET: 1699 1700 /* install the spare table */ 1701 retcode = rf_SetSpareTable(raidPtr, *(void **) data); 1702 1703 /* respond to the requestor. the return status of the spare 1704 * table installation is passed in the "fcol" field */ 1705 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *)); 1706 waitreq->fcol = retcode; 1707 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1708 waitreq->next = rf_sparet_resp_queue; 1709 rf_sparet_resp_queue = waitreq; 1710 wakeup(&rf_sparet_resp_queue); 1711 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1712 1713 return (retcode); 1714 #endif 1715 1716 default: 1717 break; /* fall through to the os-specific code below */ 1718 1719 } 1720 1721 if (!raidPtr->valid) 1722 return (EINVAL); 1723 1724 /* 1725 * Add support for "regular" device ioctls here. 1726 */ 1727 1728 switch (cmd) { 1729 case DIOCGDINFO: 1730 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label); 1731 break; 1732 #ifdef __HAVE_OLD_DISKLABEL 1733 case ODIOCGDINFO: 1734 newlabel = *(rs->sc_dkdev.dk_label); 1735 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1736 return ENOTTY; 1737 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1738 break; 1739 #endif 1740 1741 case DIOCGPART: 1742 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label; 1743 ((struct partinfo *) data)->part = 1744 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)]; 1745 break; 1746 1747 case DIOCWDINFO: 1748 case DIOCSDINFO: 1749 #ifdef __HAVE_OLD_DISKLABEL 1750 case ODIOCWDINFO: 1751 case ODIOCSDINFO: 1752 #endif 1753 { 1754 struct disklabel *lp; 1755 #ifdef __HAVE_OLD_DISKLABEL 1756 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) { 1757 memset(&newlabel, 0, sizeof newlabel); 1758 memcpy(&newlabel, data, sizeof (struct olddisklabel)); 1759 lp = &newlabel; 1760 } else 1761 #endif 1762 lp = (struct disklabel *)data; 1763 1764 if ((error = raidlock(rs)) != 0) 1765 return (error); 1766 1767 rs->sc_flags |= RAIDF_LABELLING; 1768 1769 error = setdisklabel(rs->sc_dkdev.dk_label, 1770 lp, 0, rs->sc_dkdev.dk_cpulabel); 1771 if (error == 0) { 1772 if (cmd == DIOCWDINFO 1773 #ifdef __HAVE_OLD_DISKLABEL 1774 || cmd == ODIOCWDINFO 1775 #endif 1776 ) 1777 error = writedisklabel(RAIDLABELDEV(dev), 1778 raidstrategy, rs->sc_dkdev.dk_label, 1779 rs->sc_dkdev.dk_cpulabel); 1780 } 1781 rs->sc_flags &= ~RAIDF_LABELLING; 1782 1783 raidunlock(rs); 1784 1785 if (error) 1786 return (error); 1787 break; 1788 } 1789 1790 case DIOCWLABEL: 1791 if (*(int *) data != 0) 1792 rs->sc_flags |= RAIDF_WLABEL; 1793 else 1794 rs->sc_flags &= ~RAIDF_WLABEL; 1795 break; 1796 1797 case DIOCGDEFLABEL: 1798 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data); 1799 break; 1800 1801 #ifdef __HAVE_OLD_DISKLABEL 1802 case ODIOCGDEFLABEL: 1803 raidgetdefaultlabel(raidPtr, rs, &newlabel); 1804 if (newlabel.d_npartitions > OLDMAXPARTITIONS) 1805 return ENOTTY; 1806 memcpy(data, &newlabel, sizeof (struct olddisklabel)); 1807 break; 1808 #endif 1809 1810 case DIOCAWEDGE: 1811 case DIOCDWEDGE: 1812 dkw = (void *)data; 1813 1814 /* If the ioctl happens here, the parent is us. */ 1815 (void)strcpy(dkw->dkw_parent, rs->sc_xname); 1816 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw); 1817 1818 case DIOCLWEDGES: 1819 return dkwedge_list(&rs->sc_dkdev, 1820 (struct dkwedge_list *)data, l); 1821 1822 default: 1823 retcode = ENOTTY; 1824 } 1825 return (retcode); 1826 1827 } 1828 1829 1830 /* raidinit -- complete the rest of the initialization for the 1831 RAIDframe device. */ 1832 1833 1834 static void 1835 raidinit(RF_Raid_t *raidPtr) 1836 { 1837 struct cfdata *cf; 1838 struct raid_softc *rs; 1839 int unit; 1840 1841 unit = raidPtr->raidid; 1842 1843 rs = &raid_softc[unit]; 1844 1845 /* XXX should check return code first... */ 1846 rs->sc_flags |= RAIDF_INITED; 1847 1848 /* XXX doesn't check bounds. */ 1849 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit); 1850 1851 /* attach the pseudo device */ 1852 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK); 1853 cf->cf_name = raid_cd.cd_name; 1854 cf->cf_atname = raid_cd.cd_name; 1855 cf->cf_unit = unit; 1856 cf->cf_fstate = FSTATE_STAR; 1857 1858 rs->sc_dev = config_attach_pseudo(cf); 1859 1860 if (rs->sc_dev==NULL) { 1861 printf("raid%d: config_attach_pseudo failed\n", 1862 raidPtr->raidid); 1863 } 1864 1865 /* disk_attach actually creates space for the CPU disklabel, among 1866 * other things, so it's critical to call this *BEFORE* we try putzing 1867 * with disklabels. */ 1868 1869 disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver); 1870 disk_attach(&rs->sc_dkdev); 1871 1872 /* XXX There may be a weird interaction here between this, and 1873 * protectedSectors, as used in RAIDframe. */ 1874 1875 rs->sc_size = raidPtr->totalSectors; 1876 1877 dkwedge_discover(&rs->sc_dkdev); 1878 1879 rf_set_properties(rs, raidPtr); 1880 1881 } 1882 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 1883 /* wake up the daemon & tell it to get us a spare table 1884 * XXX 1885 * the entries in the queues should be tagged with the raidPtr 1886 * so that in the extremely rare case that two recons happen at once, 1887 * we know for which device were requesting a spare table 1888 * XXX 1889 * 1890 * XXX This code is not currently used. GO 1891 */ 1892 int 1893 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req) 1894 { 1895 int retcode; 1896 1897 RF_LOCK_MUTEX(rf_sparet_wait_mutex); 1898 req->next = rf_sparet_wait_queue; 1899 rf_sparet_wait_queue = req; 1900 wakeup(&rf_sparet_wait_queue); 1901 1902 /* mpsleep unlocks the mutex */ 1903 while (!rf_sparet_resp_queue) { 1904 tsleep(&rf_sparet_resp_queue, PRIBIO, 1905 "raidframe getsparetable", 0); 1906 } 1907 req = rf_sparet_resp_queue; 1908 rf_sparet_resp_queue = req->next; 1909 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex); 1910 1911 retcode = req->fcol; 1912 RF_Free(req, sizeof(*req)); /* this is not the same req as we 1913 * alloc'd */ 1914 return (retcode); 1915 } 1916 #endif 1917 1918 /* a wrapper around rf_DoAccess that extracts appropriate info from the 1919 * bp & passes it down. 1920 * any calls originating in the kernel must use non-blocking I/O 1921 * do some extra sanity checking to return "appropriate" error values for 1922 * certain conditions (to make some standard utilities work) 1923 * 1924 * Formerly known as: rf_DoAccessKernel 1925 */ 1926 void 1927 raidstart(RF_Raid_t *raidPtr) 1928 { 1929 RF_SectorCount_t num_blocks, pb, sum; 1930 RF_RaidAddr_t raid_addr; 1931 struct partition *pp; 1932 daddr_t blocknum; 1933 int unit; 1934 struct raid_softc *rs; 1935 int do_async; 1936 struct buf *bp; 1937 int rc; 1938 1939 unit = raidPtr->raidid; 1940 rs = &raid_softc[unit]; 1941 1942 /* quick check to see if anything has died recently */ 1943 RF_LOCK_MUTEX(raidPtr->mutex); 1944 if (raidPtr->numNewFailures > 0) { 1945 RF_UNLOCK_MUTEX(raidPtr->mutex); 1946 rf_update_component_labels(raidPtr, 1947 RF_NORMAL_COMPONENT_UPDATE); 1948 RF_LOCK_MUTEX(raidPtr->mutex); 1949 raidPtr->numNewFailures--; 1950 } 1951 1952 /* Check to see if we're at the limit... */ 1953 while (raidPtr->openings > 0) { 1954 RF_UNLOCK_MUTEX(raidPtr->mutex); 1955 1956 /* get the next item, if any, from the queue */ 1957 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) { 1958 /* nothing more to do */ 1959 return; 1960 } 1961 1962 /* Ok, for the bp we have here, bp->b_blkno is relative to the 1963 * partition.. Need to make it absolute to the underlying 1964 * device.. */ 1965 1966 blocknum = bp->b_blkno; 1967 if (DISKPART(bp->b_dev) != RAW_PART) { 1968 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)]; 1969 blocknum += pp->p_offset; 1970 } 1971 1972 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, 1973 (int) blocknum)); 1974 1975 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount)); 1976 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid)); 1977 1978 /* *THIS* is where we adjust what block we're going to... 1979 * but DO NOT TOUCH bp->b_blkno!!! */ 1980 raid_addr = blocknum; 1981 1982 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector; 1983 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0; 1984 sum = raid_addr + num_blocks + pb; 1985 if (1 || rf_debugKernelAccess) { 1986 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n", 1987 (int) raid_addr, (int) sum, (int) num_blocks, 1988 (int) pb, (int) bp->b_resid)); 1989 } 1990 if ((sum > raidPtr->totalSectors) || (sum < raid_addr) 1991 || (sum < num_blocks) || (sum < pb)) { 1992 bp->b_error = ENOSPC; 1993 bp->b_resid = bp->b_bcount; 1994 biodone(bp); 1995 RF_LOCK_MUTEX(raidPtr->mutex); 1996 continue; 1997 } 1998 /* 1999 * XXX rf_DoAccess() should do this, not just DoAccessKernel() 2000 */ 2001 2002 if (bp->b_bcount & raidPtr->sectorMask) { 2003 bp->b_error = EINVAL; 2004 bp->b_resid = bp->b_bcount; 2005 biodone(bp); 2006 RF_LOCK_MUTEX(raidPtr->mutex); 2007 continue; 2008 2009 } 2010 db1_printf(("Calling DoAccess..\n")); 2011 2012 2013 RF_LOCK_MUTEX(raidPtr->mutex); 2014 raidPtr->openings--; 2015 RF_UNLOCK_MUTEX(raidPtr->mutex); 2016 2017 /* 2018 * Everything is async. 2019 */ 2020 do_async = 1; 2021 2022 disk_busy(&rs->sc_dkdev); 2023 2024 /* XXX we're still at splbio() here... do we *really* 2025 need to be? */ 2026 2027 /* don't ever condition on bp->b_flags & B_WRITE. 2028 * always condition on B_READ instead */ 2029 2030 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ? 2031 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, 2032 do_async, raid_addr, num_blocks, 2033 bp->b_data, bp, RF_DAG_NONBLOCKING_IO); 2034 2035 if (rc) { 2036 bp->b_error = rc; 2037 bp->b_resid = bp->b_bcount; 2038 biodone(bp); 2039 /* continue loop */ 2040 } 2041 2042 RF_LOCK_MUTEX(raidPtr->mutex); 2043 } 2044 RF_UNLOCK_MUTEX(raidPtr->mutex); 2045 } 2046 2047 2048 2049 2050 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */ 2051 2052 int 2053 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req) 2054 { 2055 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE; 2056 struct buf *bp; 2057 2058 req->queue = queue; 2059 2060 #if DIAGNOSTIC 2061 if (queue->raidPtr->raidid >= numraid) { 2062 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid, 2063 numraid); 2064 panic("Invalid Unit number in rf_DispatchKernelIO"); 2065 } 2066 #endif 2067 2068 bp = req->bp; 2069 2070 switch (req->type) { 2071 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */ 2072 /* XXX need to do something extra here.. */ 2073 /* I'm leaving this in, as I've never actually seen it used, 2074 * and I'd like folks to report it... GO */ 2075 printf(("WAKEUP CALLED\n")); 2076 queue->numOutstanding++; 2077 2078 bp->b_flags = 0; 2079 bp->b_private = req; 2080 2081 KernelWakeupFunc(bp); 2082 break; 2083 2084 case RF_IO_TYPE_READ: 2085 case RF_IO_TYPE_WRITE: 2086 #if RF_ACC_TRACE > 0 2087 if (req->tracerec) { 2088 RF_ETIMER_START(req->tracerec->timer); 2089 } 2090 #endif 2091 InitBP(bp, queue->rf_cinfo->ci_vp, 2092 op, queue->rf_cinfo->ci_dev, 2093 req->sectorOffset, req->numSector, 2094 req->buf, KernelWakeupFunc, (void *) req, 2095 queue->raidPtr->logBytesPerSector, req->b_proc); 2096 2097 if (rf_debugKernelAccess) { 2098 db1_printf(("dispatch: bp->b_blkno = %ld\n", 2099 (long) bp->b_blkno)); 2100 } 2101 queue->numOutstanding++; 2102 queue->last_deq_sector = req->sectorOffset; 2103 /* acc wouldn't have been let in if there were any pending 2104 * reqs at any other priority */ 2105 queue->curPriority = req->priority; 2106 2107 db1_printf(("Going for %c to unit %d col %d\n", 2108 req->type, queue->raidPtr->raidid, 2109 queue->col)); 2110 db1_printf(("sector %d count %d (%d bytes) %d\n", 2111 (int) req->sectorOffset, (int) req->numSector, 2112 (int) (req->numSector << 2113 queue->raidPtr->logBytesPerSector), 2114 (int) queue->raidPtr->logBytesPerSector)); 2115 bdev_strategy(bp); 2116 2117 break; 2118 2119 default: 2120 panic("bad req->type in rf_DispatchKernelIO"); 2121 } 2122 db1_printf(("Exiting from DispatchKernelIO\n")); 2123 2124 return (0); 2125 } 2126 /* this is the callback function associated with a I/O invoked from 2127 kernel code. 2128 */ 2129 static void 2130 KernelWakeupFunc(struct buf *bp) 2131 { 2132 RF_DiskQueueData_t *req = NULL; 2133 RF_DiskQueue_t *queue; 2134 int s; 2135 2136 s = splbio(); 2137 db1_printf(("recovering the request queue:\n")); 2138 req = bp->b_private; 2139 2140 queue = (RF_DiskQueue_t *) req->queue; 2141 2142 #if RF_ACC_TRACE > 0 2143 if (req->tracerec) { 2144 RF_ETIMER_STOP(req->tracerec->timer); 2145 RF_ETIMER_EVAL(req->tracerec->timer); 2146 RF_LOCK_MUTEX(rf_tracing_mutex); 2147 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); 2148 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); 2149 req->tracerec->num_phys_ios++; 2150 RF_UNLOCK_MUTEX(rf_tracing_mutex); 2151 } 2152 #endif 2153 2154 /* XXX Ok, let's get aggressive... If b_error is set, let's go 2155 * ballistic, and mark the component as hosed... */ 2156 2157 if (bp->b_error != 0) { 2158 /* Mark the disk as dead */ 2159 /* but only mark it once... */ 2160 /* and only if it wouldn't leave this RAID set 2161 completely broken */ 2162 if (((queue->raidPtr->Disks[queue->col].status == 2163 rf_ds_optimal) || 2164 (queue->raidPtr->Disks[queue->col].status == 2165 rf_ds_used_spare)) && 2166 (queue->raidPtr->numFailures < 2167 queue->raidPtr->Layout.map->faultsTolerated)) { 2168 printf("raid%d: IO Error. Marking %s as failed.\n", 2169 queue->raidPtr->raidid, 2170 queue->raidPtr->Disks[queue->col].devname); 2171 queue->raidPtr->Disks[queue->col].status = 2172 rf_ds_failed; 2173 queue->raidPtr->status = rf_rs_degraded; 2174 queue->raidPtr->numFailures++; 2175 queue->raidPtr->numNewFailures++; 2176 } else { /* Disk is already dead... */ 2177 /* printf("Disk already marked as dead!\n"); */ 2178 } 2179 2180 } 2181 2182 /* Fill in the error value */ 2183 2184 req->error = bp->b_error; 2185 2186 simple_lock(&queue->raidPtr->iodone_lock); 2187 2188 /* Drop this one on the "finished" queue... */ 2189 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries); 2190 2191 /* Let the raidio thread know there is work to be done. */ 2192 wakeup(&(queue->raidPtr->iodone)); 2193 2194 simple_unlock(&queue->raidPtr->iodone_lock); 2195 2196 splx(s); 2197 } 2198 2199 2200 2201 /* 2202 * initialize a buf structure for doing an I/O in the kernel. 2203 */ 2204 static void 2205 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev, 2206 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf, 2207 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector, 2208 struct proc *b_proc) 2209 { 2210 /* bp->b_flags = B_PHYS | rw_flag; */ 2211 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */ 2212 bp->b_oflags = 0; 2213 bp->b_cflags = 0; 2214 bp->b_bcount = numSect << logBytesPerSector; 2215 bp->b_bufsize = bp->b_bcount; 2216 bp->b_error = 0; 2217 bp->b_dev = dev; 2218 bp->b_data = bf; 2219 bp->b_blkno = startSect; 2220 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */ 2221 if (bp->b_bcount == 0) { 2222 panic("bp->b_bcount is zero in InitBP!!"); 2223 } 2224 bp->b_proc = b_proc; 2225 bp->b_iodone = cbFunc; 2226 bp->b_private = cbArg; 2227 } 2228 2229 static void 2230 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs, 2231 struct disklabel *lp) 2232 { 2233 memset(lp, 0, sizeof(*lp)); 2234 2235 /* fabricate a label... */ 2236 lp->d_secperunit = raidPtr->totalSectors; 2237 lp->d_secsize = raidPtr->bytesPerSector; 2238 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe; 2239 lp->d_ntracks = 4 * raidPtr->numCol; 2240 lp->d_ncylinders = raidPtr->totalSectors / 2241 (lp->d_nsectors * lp->d_ntracks); 2242 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; 2243 2244 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename)); 2245 lp->d_type = DTYPE_RAID; 2246 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); 2247 lp->d_rpm = 3600; 2248 lp->d_interleave = 1; 2249 lp->d_flags = 0; 2250 2251 lp->d_partitions[RAW_PART].p_offset = 0; 2252 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors; 2253 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; 2254 lp->d_npartitions = RAW_PART + 1; 2255 2256 lp->d_magic = DISKMAGIC; 2257 lp->d_magic2 = DISKMAGIC; 2258 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label); 2259 2260 } 2261 /* 2262 * Read the disklabel from the raid device. If one is not present, fake one 2263 * up. 2264 */ 2265 static void 2266 raidgetdisklabel(dev_t dev) 2267 { 2268 int unit = raidunit(dev); 2269 struct raid_softc *rs = &raid_softc[unit]; 2270 const char *errstring; 2271 struct disklabel *lp = rs->sc_dkdev.dk_label; 2272 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel; 2273 RF_Raid_t *raidPtr; 2274 2275 db1_printf(("Getting the disklabel...\n")); 2276 2277 memset(clp, 0, sizeof(*clp)); 2278 2279 raidPtr = raidPtrs[unit]; 2280 2281 raidgetdefaultlabel(raidPtr, rs, lp); 2282 2283 /* 2284 * Call the generic disklabel extraction routine. 2285 */ 2286 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy, 2287 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel); 2288 if (errstring) 2289 raidmakedisklabel(rs); 2290 else { 2291 int i; 2292 struct partition *pp; 2293 2294 /* 2295 * Sanity check whether the found disklabel is valid. 2296 * 2297 * This is necessary since total size of the raid device 2298 * may vary when an interleave is changed even though exactly 2299 * same components are used, and old disklabel may used 2300 * if that is found. 2301 */ 2302 if (lp->d_secperunit != rs->sc_size) 2303 printf("raid%d: WARNING: %s: " 2304 "total sector size in disklabel (%d) != " 2305 "the size of raid (%ld)\n", unit, rs->sc_xname, 2306 lp->d_secperunit, (long) rs->sc_size); 2307 for (i = 0; i < lp->d_npartitions; i++) { 2308 pp = &lp->d_partitions[i]; 2309 if (pp->p_offset + pp->p_size > rs->sc_size) 2310 printf("raid%d: WARNING: %s: end of partition `%c' " 2311 "exceeds the size of raid (%ld)\n", 2312 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size); 2313 } 2314 } 2315 2316 } 2317 /* 2318 * Take care of things one might want to take care of in the event 2319 * that a disklabel isn't present. 2320 */ 2321 static void 2322 raidmakedisklabel(struct raid_softc *rs) 2323 { 2324 struct disklabel *lp = rs->sc_dkdev.dk_label; 2325 db1_printf(("Making a label..\n")); 2326 2327 /* 2328 * For historical reasons, if there's no disklabel present 2329 * the raw partition must be marked FS_BSDFFS. 2330 */ 2331 2332 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS; 2333 2334 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname)); 2335 2336 lp->d_checksum = dkcksum(lp); 2337 } 2338 /* 2339 * Wait interruptibly for an exclusive lock. 2340 * 2341 * XXX 2342 * Several drivers do this; it should be abstracted and made MP-safe. 2343 * (Hmm... where have we seen this warning before :-> GO ) 2344 */ 2345 static int 2346 raidlock(struct raid_softc *rs) 2347 { 2348 int error; 2349 2350 while ((rs->sc_flags & RAIDF_LOCKED) != 0) { 2351 rs->sc_flags |= RAIDF_WANTED; 2352 if ((error = 2353 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0) 2354 return (error); 2355 } 2356 rs->sc_flags |= RAIDF_LOCKED; 2357 return (0); 2358 } 2359 /* 2360 * Unlock and wake up any waiters. 2361 */ 2362 static void 2363 raidunlock(struct raid_softc *rs) 2364 { 2365 2366 rs->sc_flags &= ~RAIDF_LOCKED; 2367 if ((rs->sc_flags & RAIDF_WANTED) != 0) { 2368 rs->sc_flags &= ~RAIDF_WANTED; 2369 wakeup(rs); 2370 } 2371 } 2372 2373 2374 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ 2375 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ 2376 2377 int 2378 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter) 2379 { 2380 RF_ComponentLabel_t clabel; 2381 raidread_component_label(dev, b_vp, &clabel); 2382 clabel.mod_counter = mod_counter; 2383 clabel.clean = RF_RAID_CLEAN; 2384 raidwrite_component_label(dev, b_vp, &clabel); 2385 return(0); 2386 } 2387 2388 2389 int 2390 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter) 2391 { 2392 RF_ComponentLabel_t clabel; 2393 raidread_component_label(dev, b_vp, &clabel); 2394 clabel.mod_counter = mod_counter; 2395 clabel.clean = RF_RAID_DIRTY; 2396 raidwrite_component_label(dev, b_vp, &clabel); 2397 return(0); 2398 } 2399 2400 /* ARGSUSED */ 2401 int 2402 raidread_component_label(dev_t dev, struct vnode *b_vp, 2403 RF_ComponentLabel_t *clabel) 2404 { 2405 struct buf *bp; 2406 const struct bdevsw *bdev; 2407 int error; 2408 2409 /* XXX should probably ensure that we don't try to do this if 2410 someone has changed rf_protected_sectors. */ 2411 2412 if (b_vp == NULL) { 2413 /* For whatever reason, this component is not valid. 2414 Don't try to read a component label from it. */ 2415 return(EINVAL); 2416 } 2417 2418 /* get a block of the appropriate size... */ 2419 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2420 bp->b_dev = dev; 2421 2422 /* get our ducks in a row for the read */ 2423 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2424 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2425 bp->b_flags |= B_READ; 2426 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2427 2428 bdev = bdevsw_lookup(bp->b_dev); 2429 if (bdev == NULL) 2430 return (ENXIO); 2431 (*bdev->d_strategy)(bp); 2432 2433 error = biowait(bp); 2434 2435 if (!error) { 2436 memcpy(clabel, bp->b_data, 2437 sizeof(RF_ComponentLabel_t)); 2438 } 2439 2440 brelse(bp, 0); 2441 return(error); 2442 } 2443 /* ARGSUSED */ 2444 int 2445 raidwrite_component_label(dev_t dev, struct vnode *b_vp, 2446 RF_ComponentLabel_t *clabel) 2447 { 2448 struct buf *bp; 2449 const struct bdevsw *bdev; 2450 int error; 2451 2452 /* get a block of the appropriate size... */ 2453 bp = geteblk((int)RF_COMPONENT_INFO_SIZE); 2454 bp->b_dev = dev; 2455 2456 /* get our ducks in a row for the write */ 2457 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE; 2458 bp->b_bcount = RF_COMPONENT_INFO_SIZE; 2459 bp->b_flags |= B_WRITE; 2460 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE; 2461 2462 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE ); 2463 2464 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t)); 2465 2466 bdev = bdevsw_lookup(bp->b_dev); 2467 if (bdev == NULL) 2468 return (ENXIO); 2469 (*bdev->d_strategy)(bp); 2470 error = biowait(bp); 2471 brelse(bp, 0); 2472 if (error) { 2473 #if 1 2474 printf("Failed to write RAID component info!\n"); 2475 #endif 2476 } 2477 2478 return(error); 2479 } 2480 2481 void 2482 rf_markalldirty(RF_Raid_t *raidPtr) 2483 { 2484 RF_ComponentLabel_t clabel; 2485 int sparecol; 2486 int c; 2487 int j; 2488 int scol = -1; 2489 2490 raidPtr->mod_counter++; 2491 for (c = 0; c < raidPtr->numCol; c++) { 2492 /* we don't want to touch (at all) a disk that has 2493 failed */ 2494 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) { 2495 raidread_component_label( 2496 raidPtr->Disks[c].dev, 2497 raidPtr->raid_cinfo[c].ci_vp, 2498 &clabel); 2499 if (clabel.status == rf_ds_spared) { 2500 /* XXX do something special... 2501 but whatever you do, don't 2502 try to access it!! */ 2503 } else { 2504 raidmarkdirty( 2505 raidPtr->Disks[c].dev, 2506 raidPtr->raid_cinfo[c].ci_vp, 2507 raidPtr->mod_counter); 2508 } 2509 } 2510 } 2511 2512 for( c = 0; c < raidPtr->numSpare ; c++) { 2513 sparecol = raidPtr->numCol + c; 2514 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2515 /* 2516 2517 we claim this disk is "optimal" if it's 2518 rf_ds_used_spare, as that means it should be 2519 directly substitutable for the disk it replaced. 2520 We note that too... 2521 2522 */ 2523 2524 for(j=0;j<raidPtr->numCol;j++) { 2525 if (raidPtr->Disks[j].spareCol == sparecol) { 2526 scol = j; 2527 break; 2528 } 2529 } 2530 2531 raidread_component_label( 2532 raidPtr->Disks[sparecol].dev, 2533 raidPtr->raid_cinfo[sparecol].ci_vp, 2534 &clabel); 2535 /* make sure status is noted */ 2536 2537 raid_init_component_label(raidPtr, &clabel); 2538 2539 clabel.row = 0; 2540 clabel.column = scol; 2541 /* Note: we *don't* change status from rf_ds_used_spare 2542 to rf_ds_optimal */ 2543 /* clabel.status = rf_ds_optimal; */ 2544 2545 raidmarkdirty(raidPtr->Disks[sparecol].dev, 2546 raidPtr->raid_cinfo[sparecol].ci_vp, 2547 raidPtr->mod_counter); 2548 } 2549 } 2550 } 2551 2552 2553 void 2554 rf_update_component_labels(RF_Raid_t *raidPtr, int final) 2555 { 2556 RF_ComponentLabel_t clabel; 2557 int sparecol; 2558 int c; 2559 int j; 2560 int scol; 2561 2562 scol = -1; 2563 2564 /* XXX should do extra checks to make sure things really are clean, 2565 rather than blindly setting the clean bit... */ 2566 2567 raidPtr->mod_counter++; 2568 2569 for (c = 0; c < raidPtr->numCol; c++) { 2570 if (raidPtr->Disks[c].status == rf_ds_optimal) { 2571 raidread_component_label( 2572 raidPtr->Disks[c].dev, 2573 raidPtr->raid_cinfo[c].ci_vp, 2574 &clabel); 2575 /* make sure status is noted */ 2576 clabel.status = rf_ds_optimal; 2577 2578 /* bump the counter */ 2579 clabel.mod_counter = raidPtr->mod_counter; 2580 2581 /* note what unit we are configured as */ 2582 clabel.last_unit = raidPtr->raidid; 2583 2584 raidwrite_component_label( 2585 raidPtr->Disks[c].dev, 2586 raidPtr->raid_cinfo[c].ci_vp, 2587 &clabel); 2588 if (final == RF_FINAL_COMPONENT_UPDATE) { 2589 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2590 raidmarkclean( 2591 raidPtr->Disks[c].dev, 2592 raidPtr->raid_cinfo[c].ci_vp, 2593 raidPtr->mod_counter); 2594 } 2595 } 2596 } 2597 /* else we don't touch it.. */ 2598 } 2599 2600 for( c = 0; c < raidPtr->numSpare ; c++) { 2601 sparecol = raidPtr->numCol + c; 2602 /* Need to ensure that the reconstruct actually completed! */ 2603 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2604 /* 2605 2606 we claim this disk is "optimal" if it's 2607 rf_ds_used_spare, as that means it should be 2608 directly substitutable for the disk it replaced. 2609 We note that too... 2610 2611 */ 2612 2613 for(j=0;j<raidPtr->numCol;j++) { 2614 if (raidPtr->Disks[j].spareCol == sparecol) { 2615 scol = j; 2616 break; 2617 } 2618 } 2619 2620 /* XXX shouldn't *really* need this... */ 2621 raidread_component_label( 2622 raidPtr->Disks[sparecol].dev, 2623 raidPtr->raid_cinfo[sparecol].ci_vp, 2624 &clabel); 2625 /* make sure status is noted */ 2626 2627 raid_init_component_label(raidPtr, &clabel); 2628 2629 clabel.mod_counter = raidPtr->mod_counter; 2630 clabel.column = scol; 2631 clabel.status = rf_ds_optimal; 2632 clabel.last_unit = raidPtr->raidid; 2633 2634 raidwrite_component_label( 2635 raidPtr->Disks[sparecol].dev, 2636 raidPtr->raid_cinfo[sparecol].ci_vp, 2637 &clabel); 2638 if (final == RF_FINAL_COMPONENT_UPDATE) { 2639 if (raidPtr->parity_good == RF_RAID_CLEAN) { 2640 raidmarkclean( raidPtr->Disks[sparecol].dev, 2641 raidPtr->raid_cinfo[sparecol].ci_vp, 2642 raidPtr->mod_counter); 2643 } 2644 } 2645 } 2646 } 2647 } 2648 2649 void 2650 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured) 2651 { 2652 2653 if (vp != NULL) { 2654 if (auto_configured == 1) { 2655 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2656 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2657 vput(vp); 2658 2659 } else { 2660 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred); 2661 } 2662 } 2663 } 2664 2665 2666 void 2667 rf_UnconfigureVnodes(RF_Raid_t *raidPtr) 2668 { 2669 int r,c; 2670 struct vnode *vp; 2671 int acd; 2672 2673 2674 /* We take this opportunity to close the vnodes like we should.. */ 2675 2676 for (c = 0; c < raidPtr->numCol; c++) { 2677 vp = raidPtr->raid_cinfo[c].ci_vp; 2678 acd = raidPtr->Disks[c].auto_configured; 2679 rf_close_component(raidPtr, vp, acd); 2680 raidPtr->raid_cinfo[c].ci_vp = NULL; 2681 raidPtr->Disks[c].auto_configured = 0; 2682 } 2683 2684 for (r = 0; r < raidPtr->numSpare; r++) { 2685 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp; 2686 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured; 2687 rf_close_component(raidPtr, vp, acd); 2688 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL; 2689 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0; 2690 } 2691 } 2692 2693 2694 void 2695 rf_ReconThread(struct rf_recon_req *req) 2696 { 2697 int s; 2698 RF_Raid_t *raidPtr; 2699 2700 s = splbio(); 2701 raidPtr = (RF_Raid_t *) req->raidPtr; 2702 raidPtr->recon_in_progress = 1; 2703 2704 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col, 2705 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); 2706 2707 RF_Free(req, sizeof(*req)); 2708 2709 raidPtr->recon_in_progress = 0; 2710 splx(s); 2711 2712 /* That's all... */ 2713 kthread_exit(0); /* does not return */ 2714 } 2715 2716 void 2717 rf_RewriteParityThread(RF_Raid_t *raidPtr) 2718 { 2719 int retcode; 2720 int s; 2721 2722 raidPtr->parity_rewrite_stripes_done = 0; 2723 raidPtr->parity_rewrite_in_progress = 1; 2724 s = splbio(); 2725 retcode = rf_RewriteParity(raidPtr); 2726 splx(s); 2727 if (retcode) { 2728 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid); 2729 } else { 2730 /* set the clean bit! If we shutdown correctly, 2731 the clean bit on each component label will get 2732 set */ 2733 raidPtr->parity_good = RF_RAID_CLEAN; 2734 } 2735 raidPtr->parity_rewrite_in_progress = 0; 2736 2737 /* Anyone waiting for us to stop? If so, inform them... */ 2738 if (raidPtr->waitShutdown) { 2739 wakeup(&raidPtr->parity_rewrite_in_progress); 2740 } 2741 2742 /* That's all... */ 2743 kthread_exit(0); /* does not return */ 2744 } 2745 2746 2747 void 2748 rf_CopybackThread(RF_Raid_t *raidPtr) 2749 { 2750 int s; 2751 2752 raidPtr->copyback_in_progress = 1; 2753 s = splbio(); 2754 rf_CopybackReconstructedData(raidPtr); 2755 splx(s); 2756 raidPtr->copyback_in_progress = 0; 2757 2758 /* That's all... */ 2759 kthread_exit(0); /* does not return */ 2760 } 2761 2762 2763 void 2764 rf_ReconstructInPlaceThread(struct rf_recon_req *req) 2765 { 2766 int s; 2767 RF_Raid_t *raidPtr; 2768 2769 s = splbio(); 2770 raidPtr = req->raidPtr; 2771 raidPtr->recon_in_progress = 1; 2772 rf_ReconstructInPlace(raidPtr, req->col); 2773 RF_Free(req, sizeof(*req)); 2774 raidPtr->recon_in_progress = 0; 2775 splx(s); 2776 2777 /* That's all... */ 2778 kthread_exit(0); /* does not return */ 2779 } 2780 2781 static RF_AutoConfig_t * 2782 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp, 2783 const char *cname, RF_SectorCount_t size) 2784 { 2785 int good_one = 0; 2786 RF_ComponentLabel_t *clabel; 2787 RF_AutoConfig_t *ac; 2788 2789 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT); 2790 if (clabel == NULL) { 2791 oomem: 2792 while(ac_list) { 2793 ac = ac_list; 2794 if (ac->clabel) 2795 free(ac->clabel, M_RAIDFRAME); 2796 ac_list = ac_list->next; 2797 free(ac, M_RAIDFRAME); 2798 } 2799 printf("RAID auto config: out of memory!\n"); 2800 return NULL; /* XXX probably should panic? */ 2801 } 2802 2803 if (!raidread_component_label(dev, vp, clabel)) { 2804 /* Got the label. Does it look reasonable? */ 2805 if (rf_reasonable_label(clabel) && 2806 (clabel->partitionSize <= size)) { 2807 #ifdef DEBUG 2808 printf("Component on: %s: %llu\n", 2809 cname, (unsigned long long)size); 2810 rf_print_component_label(clabel); 2811 #endif 2812 /* if it's reasonable, add it, else ignore it. */ 2813 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME, 2814 M_NOWAIT); 2815 if (ac == NULL) { 2816 free(clabel, M_RAIDFRAME); 2817 goto oomem; 2818 } 2819 strlcpy(ac->devname, cname, sizeof(ac->devname)); 2820 ac->dev = dev; 2821 ac->vp = vp; 2822 ac->clabel = clabel; 2823 ac->next = ac_list; 2824 ac_list = ac; 2825 good_one = 1; 2826 } 2827 } 2828 if (!good_one) { 2829 /* cleanup */ 2830 free(clabel, M_RAIDFRAME); 2831 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2832 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2833 vput(vp); 2834 } 2835 return ac_list; 2836 } 2837 2838 RF_AutoConfig_t * 2839 rf_find_raid_components() 2840 { 2841 struct vnode *vp; 2842 struct disklabel label; 2843 struct device *dv; 2844 dev_t dev; 2845 int bmajor, bminor, wedge; 2846 int error; 2847 int i; 2848 RF_AutoConfig_t *ac_list; 2849 2850 2851 /* initialize the AutoConfig list */ 2852 ac_list = NULL; 2853 2854 /* we begin by trolling through *all* the devices on the system */ 2855 2856 for (dv = alldevs.tqh_first; dv != NULL; 2857 dv = dv->dv_list.tqe_next) { 2858 2859 /* we are only interested in disks... */ 2860 if (device_class(dv) != DV_DISK) 2861 continue; 2862 2863 /* we don't care about floppies... */ 2864 if (device_is_a(dv, "fd")) { 2865 continue; 2866 } 2867 2868 /* we don't care about CD's... */ 2869 if (device_is_a(dv, "cd")) { 2870 continue; 2871 } 2872 2873 /* we don't care about md's... */ 2874 if (device_is_a(dv, "md")) { 2875 continue; 2876 } 2877 2878 /* hdfd is the Atari/Hades floppy driver */ 2879 if (device_is_a(dv, "hdfd")) { 2880 continue; 2881 } 2882 2883 /* fdisa is the Atari/Milan floppy driver */ 2884 if (device_is_a(dv, "fdisa")) { 2885 continue; 2886 } 2887 2888 /* need to find the device_name_to_block_device_major stuff */ 2889 bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 2890 2891 /* get a vnode for the raw partition of this disk */ 2892 2893 wedge = device_is_a(dv, "dk"); 2894 bminor = minor(device_unit(dv)); 2895 dev = wedge ? makedev(bmajor, bminor) : 2896 MAKEDISKDEV(bmajor, bminor, RAW_PART); 2897 if (bdevvp(dev, &vp)) 2898 panic("RAID can't alloc vnode"); 2899 2900 error = VOP_OPEN(vp, FREAD, NOCRED); 2901 2902 if (error) { 2903 /* "Who cares." Continue looking 2904 for something that exists*/ 2905 vput(vp); 2906 continue; 2907 } 2908 2909 if (wedge) { 2910 struct dkwedge_info dkw; 2911 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, 2912 NOCRED); 2913 if (error) { 2914 printf("RAIDframe: can't get wedge info for " 2915 "dev %s (%d)\n", device_xname(dv), error); 2916 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2917 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2918 vput(vp); 2919 continue; 2920 } 2921 2922 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) { 2923 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2924 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2925 vput(vp); 2926 continue; 2927 } 2928 2929 ac_list = rf_get_component(ac_list, dev, vp, 2930 device_xname(dv), dkw.dkw_size); 2931 continue; 2932 } 2933 2934 /* Ok, the disk exists. Go get the disklabel. */ 2935 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED); 2936 if (error) { 2937 /* 2938 * XXX can't happen - open() would 2939 * have errored out (or faked up one) 2940 */ 2941 if (error != ENOTTY) 2942 printf("RAIDframe: can't get label for dev " 2943 "%s (%d)\n", device_xname(dv), error); 2944 } 2945 2946 /* don't need this any more. We'll allocate it again 2947 a little later if we really do... */ 2948 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2949 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2950 vput(vp); 2951 2952 if (error) 2953 continue; 2954 2955 for (i = 0; i < label.d_npartitions; i++) { 2956 char cname[sizeof(ac_list->devname)]; 2957 2958 /* We only support partitions marked as RAID */ 2959 if (label.d_partitions[i].p_fstype != FS_RAID) 2960 continue; 2961 2962 dev = MAKEDISKDEV(bmajor, device_unit(dv), i); 2963 if (bdevvp(dev, &vp)) 2964 panic("RAID can't alloc vnode"); 2965 2966 error = VOP_OPEN(vp, FREAD, NOCRED); 2967 if (error) { 2968 /* Whatever... */ 2969 vput(vp); 2970 continue; 2971 } 2972 snprintf(cname, sizeof(cname), "%s%c", 2973 device_xname(dv), 'a' + i); 2974 ac_list = rf_get_component(ac_list, dev, vp, cname, 2975 label.d_partitions[i].p_size); 2976 } 2977 } 2978 return ac_list; 2979 } 2980 2981 2982 static int 2983 rf_reasonable_label(RF_ComponentLabel_t *clabel) 2984 { 2985 2986 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) || 2987 (clabel->version==RF_COMPONENT_LABEL_VERSION)) && 2988 ((clabel->clean == RF_RAID_CLEAN) || 2989 (clabel->clean == RF_RAID_DIRTY)) && 2990 clabel->row >=0 && 2991 clabel->column >= 0 && 2992 clabel->num_rows > 0 && 2993 clabel->num_columns > 0 && 2994 clabel->row < clabel->num_rows && 2995 clabel->column < clabel->num_columns && 2996 clabel->blockSize > 0 && 2997 clabel->numBlocks > 0) { 2998 /* label looks reasonable enough... */ 2999 return(1); 3000 } 3001 return(0); 3002 } 3003 3004 3005 #ifdef DEBUG 3006 void 3007 rf_print_component_label(RF_ComponentLabel_t *clabel) 3008 { 3009 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", 3010 clabel->row, clabel->column, 3011 clabel->num_rows, clabel->num_columns); 3012 printf(" Version: %d Serial Number: %d Mod Counter: %d\n", 3013 clabel->version, clabel->serial_number, 3014 clabel->mod_counter); 3015 printf(" Clean: %s Status: %d\n", 3016 clabel->clean ? "Yes" : "No", clabel->status ); 3017 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", 3018 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); 3019 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n", 3020 (char) clabel->parityConfig, clabel->blockSize, 3021 clabel->numBlocks); 3022 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" ); 3023 printf(" Contains root partition: %s\n", 3024 clabel->root_partition ? "Yes" : "No" ); 3025 printf(" Last configured as: raid%d\n", clabel->last_unit ); 3026 #if 0 3027 printf(" Config order: %d\n", clabel->config_order); 3028 #endif 3029 3030 } 3031 #endif 3032 3033 RF_ConfigSet_t * 3034 rf_create_auto_sets(RF_AutoConfig_t *ac_list) 3035 { 3036 RF_AutoConfig_t *ac; 3037 RF_ConfigSet_t *config_sets; 3038 RF_ConfigSet_t *cset; 3039 RF_AutoConfig_t *ac_next; 3040 3041 3042 config_sets = NULL; 3043 3044 /* Go through the AutoConfig list, and figure out which components 3045 belong to what sets. */ 3046 ac = ac_list; 3047 while(ac!=NULL) { 3048 /* we're going to putz with ac->next, so save it here 3049 for use at the end of the loop */ 3050 ac_next = ac->next; 3051 3052 if (config_sets == NULL) { 3053 /* will need at least this one... */ 3054 config_sets = (RF_ConfigSet_t *) 3055 malloc(sizeof(RF_ConfigSet_t), 3056 M_RAIDFRAME, M_NOWAIT); 3057 if (config_sets == NULL) { 3058 panic("rf_create_auto_sets: No memory!"); 3059 } 3060 /* this one is easy :) */ 3061 config_sets->ac = ac; 3062 config_sets->next = NULL; 3063 config_sets->rootable = 0; 3064 ac->next = NULL; 3065 } else { 3066 /* which set does this component fit into? */ 3067 cset = config_sets; 3068 while(cset!=NULL) { 3069 if (rf_does_it_fit(cset, ac)) { 3070 /* looks like it matches... */ 3071 ac->next = cset->ac; 3072 cset->ac = ac; 3073 break; 3074 } 3075 cset = cset->next; 3076 } 3077 if (cset==NULL) { 3078 /* didn't find a match above... new set..*/ 3079 cset = (RF_ConfigSet_t *) 3080 malloc(sizeof(RF_ConfigSet_t), 3081 M_RAIDFRAME, M_NOWAIT); 3082 if (cset == NULL) { 3083 panic("rf_create_auto_sets: No memory!"); 3084 } 3085 cset->ac = ac; 3086 ac->next = NULL; 3087 cset->next = config_sets; 3088 cset->rootable = 0; 3089 config_sets = cset; 3090 } 3091 } 3092 ac = ac_next; 3093 } 3094 3095 3096 return(config_sets); 3097 } 3098 3099 static int 3100 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac) 3101 { 3102 RF_ComponentLabel_t *clabel1, *clabel2; 3103 3104 /* If this one matches the *first* one in the set, that's good 3105 enough, since the other members of the set would have been 3106 through here too... */ 3107 /* note that we are not checking partitionSize here.. 3108 3109 Note that we are also not checking the mod_counters here. 3110 If everything else matches execpt the mod_counter, that's 3111 good enough for this test. We will deal with the mod_counters 3112 a little later in the autoconfiguration process. 3113 3114 (clabel1->mod_counter == clabel2->mod_counter) && 3115 3116 The reason we don't check for this is that failed disks 3117 will have lower modification counts. If those disks are 3118 not added to the set they used to belong to, then they will 3119 form their own set, which may result in 2 different sets, 3120 for example, competing to be configured at raid0, and 3121 perhaps competing to be the root filesystem set. If the 3122 wrong ones get configured, or both attempt to become /, 3123 weird behaviour and or serious lossage will occur. Thus we 3124 need to bring them into the fold here, and kick them out at 3125 a later point. 3126 3127 */ 3128 3129 clabel1 = cset->ac->clabel; 3130 clabel2 = ac->clabel; 3131 if ((clabel1->version == clabel2->version) && 3132 (clabel1->serial_number == clabel2->serial_number) && 3133 (clabel1->num_rows == clabel2->num_rows) && 3134 (clabel1->num_columns == clabel2->num_columns) && 3135 (clabel1->sectPerSU == clabel2->sectPerSU) && 3136 (clabel1->SUsPerPU == clabel2->SUsPerPU) && 3137 (clabel1->SUsPerRU == clabel2->SUsPerRU) && 3138 (clabel1->parityConfig == clabel2->parityConfig) && 3139 (clabel1->maxOutstanding == clabel2->maxOutstanding) && 3140 (clabel1->blockSize == clabel2->blockSize) && 3141 (clabel1->numBlocks == clabel2->numBlocks) && 3142 (clabel1->autoconfigure == clabel2->autoconfigure) && 3143 (clabel1->root_partition == clabel2->root_partition) && 3144 (clabel1->last_unit == clabel2->last_unit) && 3145 (clabel1->config_order == clabel2->config_order)) { 3146 /* if it get's here, it almost *has* to be a match */ 3147 } else { 3148 /* it's not consistent with somebody in the set.. 3149 punt */ 3150 return(0); 3151 } 3152 /* all was fine.. it must fit... */ 3153 return(1); 3154 } 3155 3156 int 3157 rf_have_enough_components(RF_ConfigSet_t *cset) 3158 { 3159 RF_AutoConfig_t *ac; 3160 RF_AutoConfig_t *auto_config; 3161 RF_ComponentLabel_t *clabel; 3162 int c; 3163 int num_cols; 3164 int num_missing; 3165 int mod_counter; 3166 int mod_counter_found; 3167 int even_pair_failed; 3168 char parity_type; 3169 3170 3171 /* check to see that we have enough 'live' components 3172 of this set. If so, we can configure it if necessary */ 3173 3174 num_cols = cset->ac->clabel->num_columns; 3175 parity_type = cset->ac->clabel->parityConfig; 3176 3177 /* XXX Check for duplicate components!?!?!? */ 3178 3179 /* Determine what the mod_counter is supposed to be for this set. */ 3180 3181 mod_counter_found = 0; 3182 mod_counter = 0; 3183 ac = cset->ac; 3184 while(ac!=NULL) { 3185 if (mod_counter_found==0) { 3186 mod_counter = ac->clabel->mod_counter; 3187 mod_counter_found = 1; 3188 } else { 3189 if (ac->clabel->mod_counter > mod_counter) { 3190 mod_counter = ac->clabel->mod_counter; 3191 } 3192 } 3193 ac = ac->next; 3194 } 3195 3196 num_missing = 0; 3197 auto_config = cset->ac; 3198 3199 even_pair_failed = 0; 3200 for(c=0; c<num_cols; c++) { 3201 ac = auto_config; 3202 while(ac!=NULL) { 3203 if ((ac->clabel->column == c) && 3204 (ac->clabel->mod_counter == mod_counter)) { 3205 /* it's this one... */ 3206 #ifdef DEBUG 3207 printf("Found: %s at %d\n", 3208 ac->devname,c); 3209 #endif 3210 break; 3211 } 3212 ac=ac->next; 3213 } 3214 if (ac==NULL) { 3215 /* Didn't find one here! */ 3216 /* special case for RAID 1, especially 3217 where there are more than 2 3218 components (where RAIDframe treats 3219 things a little differently :( ) */ 3220 if (parity_type == '1') { 3221 if (c%2 == 0) { /* even component */ 3222 even_pair_failed = 1; 3223 } else { /* odd component. If 3224 we're failed, and 3225 so is the even 3226 component, it's 3227 "Good Night, Charlie" */ 3228 if (even_pair_failed == 1) { 3229 return(0); 3230 } 3231 } 3232 } else { 3233 /* normal accounting */ 3234 num_missing++; 3235 } 3236 } 3237 if ((parity_type == '1') && (c%2 == 1)) { 3238 /* Just did an even component, and we didn't 3239 bail.. reset the even_pair_failed flag, 3240 and go on to the next component.... */ 3241 even_pair_failed = 0; 3242 } 3243 } 3244 3245 clabel = cset->ac->clabel; 3246 3247 if (((clabel->parityConfig == '0') && (num_missing > 0)) || 3248 ((clabel->parityConfig == '4') && (num_missing > 1)) || 3249 ((clabel->parityConfig == '5') && (num_missing > 1))) { 3250 /* XXX this needs to be made *much* more general */ 3251 /* Too many failures */ 3252 return(0); 3253 } 3254 /* otherwise, all is well, and we've got enough to take a kick 3255 at autoconfiguring this set */ 3256 return(1); 3257 } 3258 3259 void 3260 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config, 3261 RF_Raid_t *raidPtr) 3262 { 3263 RF_ComponentLabel_t *clabel; 3264 int i; 3265 3266 clabel = ac->clabel; 3267 3268 /* 1. Fill in the common stuff */ 3269 config->numRow = clabel->num_rows = 1; 3270 config->numCol = clabel->num_columns; 3271 config->numSpare = 0; /* XXX should this be set here? */ 3272 config->sectPerSU = clabel->sectPerSU; 3273 config->SUsPerPU = clabel->SUsPerPU; 3274 config->SUsPerRU = clabel->SUsPerRU; 3275 config->parityConfig = clabel->parityConfig; 3276 /* XXX... */ 3277 strcpy(config->diskQueueType,"fifo"); 3278 config->maxOutstandingDiskReqs = clabel->maxOutstanding; 3279 config->layoutSpecificSize = 0; /* XXX ?? */ 3280 3281 while(ac!=NULL) { 3282 /* row/col values will be in range due to the checks 3283 in reasonable_label() */ 3284 strcpy(config->devnames[0][ac->clabel->column], 3285 ac->devname); 3286 ac = ac->next; 3287 } 3288 3289 for(i=0;i<RF_MAXDBGV;i++) { 3290 config->debugVars[i][0] = 0; 3291 } 3292 } 3293 3294 int 3295 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value) 3296 { 3297 RF_ComponentLabel_t clabel; 3298 struct vnode *vp; 3299 dev_t dev; 3300 int column; 3301 int sparecol; 3302 3303 raidPtr->autoconfigure = new_value; 3304 3305 for(column=0; column<raidPtr->numCol; column++) { 3306 if (raidPtr->Disks[column].status == rf_ds_optimal) { 3307 dev = raidPtr->Disks[column].dev; 3308 vp = raidPtr->raid_cinfo[column].ci_vp; 3309 raidread_component_label(dev, vp, &clabel); 3310 clabel.autoconfigure = new_value; 3311 raidwrite_component_label(dev, vp, &clabel); 3312 } 3313 } 3314 for(column = 0; column < raidPtr->numSpare ; column++) { 3315 sparecol = raidPtr->numCol + column; 3316 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3317 dev = raidPtr->Disks[sparecol].dev; 3318 vp = raidPtr->raid_cinfo[sparecol].ci_vp; 3319 raidread_component_label(dev, vp, &clabel); 3320 clabel.autoconfigure = new_value; 3321 raidwrite_component_label(dev, vp, &clabel); 3322 } 3323 } 3324 return(new_value); 3325 } 3326 3327 int 3328 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value) 3329 { 3330 RF_ComponentLabel_t clabel; 3331 struct vnode *vp; 3332 dev_t dev; 3333 int column; 3334 int sparecol; 3335 3336 raidPtr->root_partition = new_value; 3337 for(column=0; column<raidPtr->numCol; column++) { 3338 if (raidPtr->Disks[column].status == rf_ds_optimal) { 3339 dev = raidPtr->Disks[column].dev; 3340 vp = raidPtr->raid_cinfo[column].ci_vp; 3341 raidread_component_label(dev, vp, &clabel); 3342 clabel.root_partition = new_value; 3343 raidwrite_component_label(dev, vp, &clabel); 3344 } 3345 } 3346 for(column = 0; column < raidPtr->numSpare ; column++) { 3347 sparecol = raidPtr->numCol + column; 3348 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3349 dev = raidPtr->Disks[sparecol].dev; 3350 vp = raidPtr->raid_cinfo[sparecol].ci_vp; 3351 raidread_component_label(dev, vp, &clabel); 3352 clabel.root_partition = new_value; 3353 raidwrite_component_label(dev, vp, &clabel); 3354 } 3355 } 3356 return(new_value); 3357 } 3358 3359 void 3360 rf_release_all_vps(RF_ConfigSet_t *cset) 3361 { 3362 RF_AutoConfig_t *ac; 3363 3364 ac = cset->ac; 3365 while(ac!=NULL) { 3366 /* Close the vp, and give it back */ 3367 if (ac->vp) { 3368 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY); 3369 VOP_CLOSE(ac->vp, FREAD, NOCRED); 3370 vput(ac->vp); 3371 ac->vp = NULL; 3372 } 3373 ac = ac->next; 3374 } 3375 } 3376 3377 3378 void 3379 rf_cleanup_config_set(RF_ConfigSet_t *cset) 3380 { 3381 RF_AutoConfig_t *ac; 3382 RF_AutoConfig_t *next_ac; 3383 3384 ac = cset->ac; 3385 while(ac!=NULL) { 3386 next_ac = ac->next; 3387 /* nuke the label */ 3388 free(ac->clabel, M_RAIDFRAME); 3389 /* cleanup the config structure */ 3390 free(ac, M_RAIDFRAME); 3391 /* "next.." */ 3392 ac = next_ac; 3393 } 3394 /* and, finally, nuke the config set */ 3395 free(cset, M_RAIDFRAME); 3396 } 3397 3398 3399 void 3400 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) 3401 { 3402 /* current version number */ 3403 clabel->version = RF_COMPONENT_LABEL_VERSION; 3404 clabel->serial_number = raidPtr->serial_number; 3405 clabel->mod_counter = raidPtr->mod_counter; 3406 clabel->num_rows = 1; 3407 clabel->num_columns = raidPtr->numCol; 3408 clabel->clean = RF_RAID_DIRTY; /* not clean */ 3409 clabel->status = rf_ds_optimal; /* "It's good!" */ 3410 3411 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; 3412 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; 3413 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; 3414 3415 clabel->blockSize = raidPtr->bytesPerSector; 3416 clabel->numBlocks = raidPtr->sectorsPerDisk; 3417 3418 /* XXX not portable */ 3419 clabel->parityConfig = raidPtr->Layout.map->parityConfig; 3420 clabel->maxOutstanding = raidPtr->maxOutstanding; 3421 clabel->autoconfigure = raidPtr->autoconfigure; 3422 clabel->root_partition = raidPtr->root_partition; 3423 clabel->last_unit = raidPtr->raidid; 3424 clabel->config_order = raidPtr->config_order; 3425 } 3426 3427 int 3428 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit) 3429 { 3430 RF_Raid_t *raidPtr; 3431 RF_Config_t *config; 3432 int raidID; 3433 int retcode; 3434 3435 #ifdef DEBUG 3436 printf("RAID autoconfigure\n"); 3437 #endif 3438 3439 retcode = 0; 3440 *unit = -1; 3441 3442 /* 1. Create a config structure */ 3443 3444 config = (RF_Config_t *)malloc(sizeof(RF_Config_t), 3445 M_RAIDFRAME, 3446 M_NOWAIT); 3447 if (config==NULL) { 3448 printf("Out of mem!?!?\n"); 3449 /* XXX do something more intelligent here. */ 3450 return(1); 3451 } 3452 3453 memset(config, 0, sizeof(RF_Config_t)); 3454 3455 /* 3456 2. Figure out what RAID ID this one is supposed to live at 3457 See if we can get the same RAID dev that it was configured 3458 on last time.. 3459 */ 3460 3461 raidID = cset->ac->clabel->last_unit; 3462 if ((raidID < 0) || (raidID >= numraid)) { 3463 /* let's not wander off into lala land. */ 3464 raidID = numraid - 1; 3465 } 3466 if (raidPtrs[raidID]->valid != 0) { 3467 3468 /* 3469 Nope... Go looking for an alternative... 3470 Start high so we don't immediately use raid0 if that's 3471 not taken. 3472 */ 3473 3474 for(raidID = numraid - 1; raidID >= 0; raidID--) { 3475 if (raidPtrs[raidID]->valid == 0) { 3476 /* can use this one! */ 3477 break; 3478 } 3479 } 3480 } 3481 3482 if (raidID < 0) { 3483 /* punt... */ 3484 printf("Unable to auto configure this set!\n"); 3485 printf("(Out of RAID devs!)\n"); 3486 free(config, M_RAIDFRAME); 3487 return(1); 3488 } 3489 3490 #ifdef DEBUG 3491 printf("Configuring raid%d:\n",raidID); 3492 #endif 3493 3494 raidPtr = raidPtrs[raidID]; 3495 3496 /* XXX all this stuff should be done SOMEWHERE ELSE! */ 3497 raidPtr->raidid = raidID; 3498 raidPtr->openings = RAIDOUTSTANDING; 3499 3500 /* 3. Build the configuration structure */ 3501 rf_create_configuration(cset->ac, config, raidPtr); 3502 3503 /* 4. Do the configuration */ 3504 retcode = rf_Configure(raidPtr, config, cset->ac); 3505 3506 if (retcode == 0) { 3507 3508 raidinit(raidPtrs[raidID]); 3509 3510 rf_markalldirty(raidPtrs[raidID]); 3511 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */ 3512 if (cset->ac->clabel->root_partition==1) { 3513 /* everything configured just fine. Make a note 3514 that this set is eligible to be root. */ 3515 cset->rootable = 1; 3516 /* XXX do this here? */ 3517 raidPtrs[raidID]->root_partition = 1; 3518 } 3519 } 3520 3521 /* 5. Cleanup */ 3522 free(config, M_RAIDFRAME); 3523 3524 *unit = raidID; 3525 return(retcode); 3526 } 3527 3528 void 3529 rf_disk_unbusy(RF_RaidAccessDesc_t *desc) 3530 { 3531 struct buf *bp; 3532 3533 bp = (struct buf *)desc->bp; 3534 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev, 3535 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ)); 3536 } 3537 3538 void 3539 rf_pool_init(struct pool *p, size_t size, const char *w_chan, 3540 size_t xmin, size_t xmax) 3541 { 3542 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO); 3543 pool_sethiwat(p, xmax); 3544 pool_prime(p, xmin); 3545 pool_setlowat(p, xmin); 3546 } 3547 3548 /* 3549 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see 3550 * if there is IO pending and if that IO could possibly be done for a 3551 * given RAID set. Returns 0 if IO is waiting and can be done, 1 3552 * otherwise. 3553 * 3554 */ 3555 3556 int 3557 rf_buf_queue_check(int raidid) 3558 { 3559 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) && 3560 raidPtrs[raidid]->openings > 0) { 3561 /* there is work to do */ 3562 return 0; 3563 } 3564 /* default is nothing to do */ 3565 return 1; 3566 } 3567 3568 int 3569 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr) 3570 { 3571 struct partinfo dpart; 3572 struct dkwedge_info dkw; 3573 int error; 3574 3575 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred); 3576 if (error == 0) { 3577 diskPtr->blockSize = dpart.disklab->d_secsize; 3578 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors; 3579 diskPtr->partitionSize = dpart.part->p_size; 3580 return 0; 3581 } 3582 3583 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred); 3584 if (error == 0) { 3585 diskPtr->blockSize = 512; /* XXX */ 3586 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors; 3587 diskPtr->partitionSize = dkw.dkw_size; 3588 return 0; 3589 } 3590 return error; 3591 } 3592 3593 static int 3594 raid_match(struct device *self, struct cfdata *cfdata, 3595 void *aux) 3596 { 3597 return 1; 3598 } 3599 3600 static void 3601 raid_attach(struct device *parent, struct device *self, 3602 void *aux) 3603 { 3604 3605 } 3606 3607 3608 static int 3609 raid_detach(struct device *self, int flags) 3610 { 3611 struct raid_softc *rs = (struct raid_softc *)self; 3612 3613 if (rs->sc_flags & RAIDF_INITED) 3614 return EBUSY; 3615 3616 return 0; 3617 } 3618 3619 static void 3620 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr) 3621 { 3622 prop_dictionary_t disk_info, odisk_info, geom; 3623 disk_info = prop_dictionary_create(); 3624 geom = prop_dictionary_create(); 3625 prop_dictionary_set_uint64(geom, "sectors-per-unit", 3626 raidPtr->totalSectors); 3627 prop_dictionary_set_uint32(geom, "sector-size", 3628 raidPtr->bytesPerSector); 3629 3630 prop_dictionary_set_uint16(geom, "sectors-per-track", 3631 raidPtr->Layout.dataSectorsPerStripe); 3632 prop_dictionary_set_uint16(geom, "tracks-per-cylinder", 3633 4 * raidPtr->numCol); 3634 3635 prop_dictionary_set_uint64(geom, "cylinders-per-unit", 3636 raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe * 3637 (4 * raidPtr->numCol))); 3638 3639 prop_dictionary_set(disk_info, "geometry", geom); 3640 prop_object_release(geom); 3641 prop_dictionary_set(device_properties(rs->sc_dev), 3642 "disk-info", disk_info); 3643 odisk_info = rs->sc_dkdev.dk_info; 3644 rs->sc_dkdev.dk_info = disk_info; 3645 if (odisk_info) 3646 prop_object_release(odisk_info); 3647 } 3648