xref: /netbsd-src/sys/dev/raidframe/rf_netbsdkintf.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: rf_netbsdkintf.c,v 1.271 2009/12/01 01:03:54 dyoung Exp $	*/
2 /*-
3  * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Greg Oster; Jason R. Thorpe.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * Copyright (c) 1990, 1993
33  *      The Regents of the University of California.  All rights reserved.
34  *
35  * This code is derived from software contributed to Berkeley by
36  * the Systems Programming Group of the University of Utah Computer
37  * Science Department.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. Neither the name of the University nor the names of its contributors
48  *    may be used to endorse or promote products derived from this software
49  *    without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61  * SUCH DAMAGE.
62  *
63  * from: Utah $Hdr: cd.c 1.6 90/11/28$
64  *
65  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
66  */
67 
68 /*
69  * Copyright (c) 1988 University of Utah.
70  *
71  * This code is derived from software contributed to Berkeley by
72  * the Systems Programming Group of the University of Utah Computer
73  * Science Department.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *      This product includes software developed by the University of
86  *      California, Berkeley and its contributors.
87  * 4. Neither the name of the University nor the names of its contributors
88  *    may be used to endorse or promote products derived from this software
89  *    without specific prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
92  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
94  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
95  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
96  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
97  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * from: Utah $Hdr: cd.c 1.6 90/11/28$
104  *
105  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
106  */
107 
108 /*
109  * Copyright (c) 1995 Carnegie-Mellon University.
110  * All rights reserved.
111  *
112  * Authors: Mark Holland, Jim Zelenka
113  *
114  * Permission to use, copy, modify and distribute this software and
115  * its documentation is hereby granted, provided that both the copyright
116  * notice and this permission notice appear in all copies of the
117  * software, derivative works or modified versions, and any portions
118  * thereof, and that both notices appear in supporting documentation.
119  *
120  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
121  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
122  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
123  *
124  * Carnegie Mellon requests users of this software to return to
125  *
126  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
127  *  School of Computer Science
128  *  Carnegie Mellon University
129  *  Pittsburgh PA 15213-3890
130  *
131  * any improvements or extensions that they make and grant Carnegie the
132  * rights to redistribute these changes.
133  */
134 
135 /***********************************************************
136  *
137  * rf_kintf.c -- the kernel interface routines for RAIDframe
138  *
139  ***********************************************************/
140 
141 #include <sys/cdefs.h>
142 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.271 2009/12/01 01:03:54 dyoung Exp $");
143 
144 #ifdef _KERNEL_OPT
145 #include "opt_compat_netbsd.h"
146 #include "opt_raid_autoconfig.h"
147 #include "raid.h"
148 #endif
149 
150 #include <sys/param.h>
151 #include <sys/errno.h>
152 #include <sys/pool.h>
153 #include <sys/proc.h>
154 #include <sys/queue.h>
155 #include <sys/disk.h>
156 #include <sys/device.h>
157 #include <sys/stat.h>
158 #include <sys/ioctl.h>
159 #include <sys/fcntl.h>
160 #include <sys/systm.h>
161 #include <sys/vnode.h>
162 #include <sys/disklabel.h>
163 #include <sys/conf.h>
164 #include <sys/buf.h>
165 #include <sys/bufq.h>
166 #include <sys/reboot.h>
167 #include <sys/kauth.h>
168 
169 #include <prop/proplib.h>
170 
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include <dev/raidframe/rf_paritymap.h>
174 
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188 
189 #ifdef COMPAT_50
190 #include "rf_compat50.h"
191 #endif
192 
193 #ifdef DEBUG
194 int     rf_kdebug_level = 0;
195 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
196 #else				/* DEBUG */
197 #define db1_printf(a) { }
198 #endif				/* DEBUG */
199 
200 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
201 
202 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
203 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
204 
205 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
206 						 * spare table */
207 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
208 						 * installation process */
209 #endif
210 
211 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
212 
213 /* prototypes */
214 static void KernelWakeupFunc(struct buf *);
215 static void InitBP(struct buf *, struct vnode *, unsigned,
216     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
217     void *, int, struct proc *);
218 static void raidinit(RF_Raid_t *);
219 
220 void raidattach(int);
221 static int raid_match(device_t, cfdata_t, void *);
222 static void raid_attach(device_t, device_t, void *);
223 static int raid_detach(device_t, int);
224 
225 static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
226     daddr_t, daddr_t);
227 static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
228     daddr_t, daddr_t, int);
229 
230 static int raidwrite_component_label(dev_t, struct vnode *,
231     RF_ComponentLabel_t *);
232 static int raidread_component_label(dev_t, struct vnode *,
233     RF_ComponentLabel_t *);
234 
235 
236 dev_type_open(raidopen);
237 dev_type_close(raidclose);
238 dev_type_read(raidread);
239 dev_type_write(raidwrite);
240 dev_type_ioctl(raidioctl);
241 dev_type_strategy(raidstrategy);
242 dev_type_dump(raiddump);
243 dev_type_size(raidsize);
244 
245 const struct bdevsw raid_bdevsw = {
246 	raidopen, raidclose, raidstrategy, raidioctl,
247 	raiddump, raidsize, D_DISK
248 };
249 
250 const struct cdevsw raid_cdevsw = {
251 	raidopen, raidclose, raidread, raidwrite, raidioctl,
252 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
253 };
254 
255 static struct dkdriver rf_dkdriver = { raidstrategy, minphys };
256 
257 /* XXX Not sure if the following should be replacing the raidPtrs above,
258    or if it should be used in conjunction with that...
259 */
260 
261 struct raid_softc {
262 	device_t sc_dev;
263 	int     sc_flags;	/* flags */
264 	int     sc_cflags;	/* configuration flags */
265 	uint64_t sc_size;	/* size of the raid device */
266 	char    sc_xname[20];	/* XXX external name */
267 	struct disk sc_dkdev;	/* generic disk device info */
268 	struct bufq_state *buf_queue;	/* used for the device queue */
269 };
270 /* sc_flags */
271 #define RAIDF_INITED	0x01	/* unit has been initialized */
272 #define RAIDF_WLABEL	0x02	/* label area is writable */
273 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
274 #define RAIDF_SHUTDOWN	0x08	/* unit is being shutdown */
275 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
276 #define RAIDF_LOCKED	0x80	/* unit is locked */
277 
278 #define	raidunit(x)	DISKUNIT(x)
279 int numraid = 0;
280 
281 extern struct cfdriver raid_cd;
282 CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
283     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
284     DVF_DETACH_SHUTDOWN);
285 
286 /*
287  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
288  * Be aware that large numbers can allow the driver to consume a lot of
289  * kernel memory, especially on writes, and in degraded mode reads.
290  *
291  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
292  * a single 64K write will typically require 64K for the old data,
293  * 64K for the old parity, and 64K for the new parity, for a total
294  * of 192K (if the parity buffer is not re-used immediately).
295  * Even it if is used immediately, that's still 128K, which when multiplied
296  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
297  *
298  * Now in degraded mode, for example, a 64K read on the above setup may
299  * require data reconstruction, which will require *all* of the 4 remaining
300  * disks to participate -- 4 * 32K/disk == 128K again.
301  */
302 
303 #ifndef RAIDOUTSTANDING
304 #define RAIDOUTSTANDING   6
305 #endif
306 
307 #define RAIDLABELDEV(dev)	\
308 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
309 
310 /* declared here, and made public, for the benefit of KVM stuff.. */
311 struct raid_softc *raid_softc;
312 
313 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
314 				     struct disklabel *);
315 static void raidgetdisklabel(dev_t);
316 static void raidmakedisklabel(struct raid_softc *);
317 
318 static int raidlock(struct raid_softc *);
319 static void raidunlock(struct raid_softc *);
320 
321 static int raid_detach_unlocked(struct raid_softc *);
322 
323 static void rf_markalldirty(RF_Raid_t *);
324 static void rf_set_properties(struct raid_softc *, RF_Raid_t *);
325 
326 void rf_ReconThread(struct rf_recon_req *);
327 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
328 void rf_CopybackThread(RF_Raid_t *raidPtr);
329 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
330 int rf_autoconfig(device_t);
331 void rf_buildroothack(RF_ConfigSet_t *);
332 
333 RF_AutoConfig_t *rf_find_raid_components(void);
334 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
335 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
336 static int rf_reasonable_label(RF_ComponentLabel_t *);
337 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
338 int rf_set_autoconfig(RF_Raid_t *, int);
339 int rf_set_rootpartition(RF_Raid_t *, int);
340 void rf_release_all_vps(RF_ConfigSet_t *);
341 void rf_cleanup_config_set(RF_ConfigSet_t *);
342 int rf_have_enough_components(RF_ConfigSet_t *);
343 int rf_auto_config_set(RF_ConfigSet_t *, int *);
344 
345 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
346 				  allow autoconfig to take place.
347 				  Note that this is overridden by having
348 				  RAID_AUTOCONFIG as an option in the
349 				  kernel config file.  */
350 
351 struct RF_Pools_s rf_pools;
352 
353 void
354 raidattach(int num)
355 {
356 	int raidID;
357 	int i, rc;
358 
359 	aprint_debug("raidattach: Asked for %d units\n", num);
360 
361 	if (num <= 0) {
362 #ifdef DIAGNOSTIC
363 		panic("raidattach: count <= 0");
364 #endif
365 		return;
366 	}
367 	/* This is where all the initialization stuff gets done. */
368 
369 	numraid = num;
370 
371 	/* Make some space for requested number of units... */
372 
373 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
374 	if (raidPtrs == NULL) {
375 		panic("raidPtrs is NULL!!");
376 	}
377 
378 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
379 	rf_mutex_init(&rf_sparet_wait_mutex);
380 
381 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
382 #endif
383 
384 	for (i = 0; i < num; i++)
385 		raidPtrs[i] = NULL;
386 	rc = rf_BootRaidframe();
387 	if (rc == 0)
388 		aprint_normal("Kernelized RAIDframe activated\n");
389 	else
390 		panic("Serious error booting RAID!!");
391 
392 	/* put together some datastructures like the CCD device does.. This
393 	 * lets us lock the device and what-not when it gets opened. */
394 
395 	raid_softc = (struct raid_softc *)
396 		malloc(num * sizeof(struct raid_softc),
397 		       M_RAIDFRAME, M_NOWAIT);
398 	if (raid_softc == NULL) {
399 		aprint_error("WARNING: no memory for RAIDframe driver\n");
400 		return;
401 	}
402 
403 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
404 
405 	for (raidID = 0; raidID < num; raidID++) {
406 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
407 
408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 			  (RF_Raid_t *));
410 		if (raidPtrs[raidID] == NULL) {
411 			aprint_error("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 			numraid = raidID;
413 			return;
414 		}
415 	}
416 
417 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
418 		aprint_error("raidattach: config_cfattach_attach failed?\n");
419 	}
420 
421 #ifdef RAID_AUTOCONFIG
422 	raidautoconfig = 1;
423 #endif
424 
425 	/*
426 	 * Register a finalizer which will be used to auto-config RAID
427 	 * sets once all real hardware devices have been found.
428 	 */
429 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
430 		aprint_error("WARNING: unable to register RAIDframe finalizer\n");
431 }
432 
433 int
434 rf_autoconfig(device_t self)
435 {
436 	RF_AutoConfig_t *ac_list;
437 	RF_ConfigSet_t *config_sets;
438 
439 	if (raidautoconfig == 0)
440 		return (0);
441 
442 	/* XXX This code can only be run once. */
443 	raidautoconfig = 0;
444 
445 	/* 1. locate all RAID components on the system */
446 	aprint_debug("Searching for RAID components...\n");
447 	ac_list = rf_find_raid_components();
448 
449 	/* 2. Sort them into their respective sets. */
450 	config_sets = rf_create_auto_sets(ac_list);
451 
452 	/*
453 	 * 3. Evaluate each set andconfigure the valid ones.
454 	 * This gets done in rf_buildroothack().
455 	 */
456 	rf_buildroothack(config_sets);
457 
458 	return 1;
459 }
460 
461 void
462 rf_buildroothack(RF_ConfigSet_t *config_sets)
463 {
464 	RF_ConfigSet_t *cset;
465 	RF_ConfigSet_t *next_cset;
466 	int retcode;
467 	int raidID;
468 	int rootID;
469 	int col;
470 	int num_root;
471 	char *devname;
472 
473 	rootID = 0;
474 	num_root = 0;
475 	cset = config_sets;
476 	while (cset != NULL) {
477 		next_cset = cset->next;
478 		if (rf_have_enough_components(cset) &&
479 		    cset->ac->clabel->autoconfigure==1) {
480 			retcode = rf_auto_config_set(cset,&raidID);
481 			if (!retcode) {
482 				aprint_debug("raid%d: configured ok\n", raidID);
483 				if (cset->rootable) {
484 					rootID = raidID;
485 					num_root++;
486 				}
487 			} else {
488 				/* The autoconfig didn't work :( */
489 				aprint_debug("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
490 				rf_release_all_vps(cset);
491 			}
492 		} else {
493 			/* we're not autoconfiguring this set...
494 			   release the associated resources */
495 			rf_release_all_vps(cset);
496 		}
497 		/* cleanup */
498 		rf_cleanup_config_set(cset);
499 		cset = next_cset;
500 	}
501 
502 	/* if the user has specified what the root device should be
503 	   then we don't touch booted_device or boothowto... */
504 
505 	if (rootspec != NULL)
506 		return;
507 
508 	/* we found something bootable... */
509 
510 	if (num_root == 1) {
511 		booted_device = raid_softc[rootID].sc_dev;
512 	} else if (num_root > 1) {
513 
514 		/*
515 		 * Maybe the MD code can help. If it cannot, then
516 		 * setroot() will discover that we have no
517 		 * booted_device and will ask the user if nothing was
518 		 * hardwired in the kernel config file
519 		 */
520 
521 		if (booted_device == NULL)
522 			cpu_rootconf();
523 		if (booted_device == NULL)
524 			return;
525 
526 		num_root = 0;
527 		for (raidID = 0; raidID < numraid; raidID++) {
528 			if (raidPtrs[raidID]->valid == 0)
529 				continue;
530 
531 			if (raidPtrs[raidID]->root_partition == 0)
532 				continue;
533 
534 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
535 				devname = raidPtrs[raidID]->Disks[col].devname;
536 				devname += sizeof("/dev/") - 1;
537 				if (strncmp(devname, device_xname(booted_device),
538 					    strlen(device_xname(booted_device))) != 0)
539 					continue;
540 				aprint_debug("raid%d includes boot device %s\n",
541 				       raidID, devname);
542 				num_root++;
543 				rootID = raidID;
544 			}
545 		}
546 
547 		if (num_root == 1) {
548 			booted_device = raid_softc[rootID].sc_dev;
549 		} else {
550 			/* we can't guess.. require the user to answer... */
551 			boothowto |= RB_ASKNAME;
552 		}
553 	}
554 }
555 
556 
557 int
558 raidsize(dev_t dev)
559 {
560 	struct raid_softc *rs;
561 	struct disklabel *lp;
562 	int     part, unit, omask, size;
563 
564 	unit = raidunit(dev);
565 	if (unit >= numraid)
566 		return (-1);
567 	rs = &raid_softc[unit];
568 
569 	if ((rs->sc_flags & RAIDF_INITED) == 0)
570 		return (-1);
571 
572 	part = DISKPART(dev);
573 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
574 	lp = rs->sc_dkdev.dk_label;
575 
576 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
577 		return (-1);
578 
579 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
580 		size = -1;
581 	else
582 		size = lp->d_partitions[part].p_size *
583 		    (lp->d_secsize / DEV_BSIZE);
584 
585 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
586 		return (-1);
587 
588 	return (size);
589 
590 }
591 
592 int
593 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
594 {
595 	int     unit = raidunit(dev);
596 	struct raid_softc *rs;
597 	const struct bdevsw *bdev;
598 	struct disklabel *lp;
599 	RF_Raid_t *raidPtr;
600 	daddr_t offset;
601 	int     part, c, sparecol, j, scol, dumpto;
602 	int     error = 0;
603 
604 	if (unit >= numraid)
605 		return (ENXIO);
606 
607 	rs = &raid_softc[unit];
608 	raidPtr = raidPtrs[unit];
609 
610 	if ((rs->sc_flags & RAIDF_INITED) == 0)
611 		return ENXIO;
612 
613 	/* we only support dumping to RAID 1 sets */
614 	if (raidPtr->Layout.numDataCol != 1 ||
615 	    raidPtr->Layout.numParityCol != 1)
616 		return EINVAL;
617 
618 
619 	if ((error = raidlock(rs)) != 0)
620 		return error;
621 
622 	if (size % DEV_BSIZE != 0) {
623 		error = EINVAL;
624 		goto out;
625 	}
626 
627 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
628 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
629 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
630 		    size / DEV_BSIZE, rs->sc_size);
631 		error = EINVAL;
632 		goto out;
633 	}
634 
635 	part = DISKPART(dev);
636 	lp = rs->sc_dkdev.dk_label;
637 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
638 
639 	/* figure out what device is alive.. */
640 
641 	/*
642 	   Look for a component to dump to.  The preference for the
643 	   component to dump to is as follows:
644 	   1) the master
645 	   2) a used_spare of the master
646 	   3) the slave
647 	   4) a used_spare of the slave
648 	*/
649 
650 	dumpto = -1;
651 	for (c = 0; c < raidPtr->numCol; c++) {
652 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
653 			/* this might be the one */
654 			dumpto = c;
655 			break;
656 		}
657 	}
658 
659 	/*
660 	   At this point we have possibly selected a live master or a
661 	   live slave.  We now check to see if there is a spared
662 	   master (or a spared slave), if we didn't find a live master
663 	   or a live slave.
664 	*/
665 
666 	for (c = 0; c < raidPtr->numSpare; c++) {
667 		sparecol = raidPtr->numCol + c;
668 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
669 			/* How about this one? */
670 			scol = -1;
671 			for(j=0;j<raidPtr->numCol;j++) {
672 				if (raidPtr->Disks[j].spareCol == sparecol) {
673 					scol = j;
674 					break;
675 				}
676 			}
677 			if (scol == 0) {
678 				/*
679 				   We must have found a spared master!
680 				   We'll take that over anything else
681 				   found so far.  (We couldn't have
682 				   found a real master before, since
683 				   this is a used spare, and it's
684 				   saying that it's replacing the
685 				   master.)  On reboot (with
686 				   autoconfiguration turned on)
687 				   sparecol will become the 1st
688 				   component (component0) of this set.
689 				*/
690 				dumpto = sparecol;
691 				break;
692 			} else if (scol != -1) {
693 				/*
694 				   Must be a spared slave.  We'll dump
695 				   to that if we havn't found anything
696 				   else so far.
697 				*/
698 				if (dumpto == -1)
699 					dumpto = sparecol;
700 			}
701 		}
702 	}
703 
704 	if (dumpto == -1) {
705 		/* we couldn't find any live components to dump to!?!?
706 		 */
707 		error = EINVAL;
708 		goto out;
709 	}
710 
711 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
712 
713 	/*
714 	   Note that blkno is relative to this particular partition.
715 	   By adding the offset of this partition in the RAID
716 	   set, and also adding RF_PROTECTED_SECTORS, we get a
717 	   value that is relative to the partition used for the
718 	   underlying component.
719 	*/
720 
721 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
722 				blkno + offset, va, size);
723 
724 out:
725 	raidunlock(rs);
726 
727 	return error;
728 }
729 /* ARGSUSED */
730 int
731 raidopen(dev_t dev, int flags, int fmt,
732     struct lwp *l)
733 {
734 	int     unit = raidunit(dev);
735 	struct raid_softc *rs;
736 	struct disklabel *lp;
737 	int     part, pmask;
738 	int     error = 0;
739 
740 	if (unit >= numraid)
741 		return (ENXIO);
742 	rs = &raid_softc[unit];
743 
744 	if ((error = raidlock(rs)) != 0)
745 		return (error);
746 
747 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
748 		error = EBUSY;
749 		goto bad;
750 	}
751 
752 	lp = rs->sc_dkdev.dk_label;
753 
754 	part = DISKPART(dev);
755 
756 	/*
757 	 * If there are wedges, and this is not RAW_PART, then we
758 	 * need to fail.
759 	 */
760 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
761 		error = EBUSY;
762 		goto bad;
763 	}
764 	pmask = (1 << part);
765 
766 	if ((rs->sc_flags & RAIDF_INITED) &&
767 	    (rs->sc_dkdev.dk_openmask == 0))
768 		raidgetdisklabel(dev);
769 
770 	/* make sure that this partition exists */
771 
772 	if (part != RAW_PART) {
773 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
774 		    ((part >= lp->d_npartitions) ||
775 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
776 			error = ENXIO;
777 			goto bad;
778 		}
779 	}
780 	/* Prevent this unit from being unconfigured while open. */
781 	switch (fmt) {
782 	case S_IFCHR:
783 		rs->sc_dkdev.dk_copenmask |= pmask;
784 		break;
785 
786 	case S_IFBLK:
787 		rs->sc_dkdev.dk_bopenmask |= pmask;
788 		break;
789 	}
790 
791 	if ((rs->sc_dkdev.dk_openmask == 0) &&
792 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
793 		/* First one... mark things as dirty... Note that we *MUST*
794 		 have done a configure before this.  I DO NOT WANT TO BE
795 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
796 		 THAT THEY BELONG TOGETHER!!!!! */
797 		/* XXX should check to see if we're only open for reading
798 		   here... If so, we needn't do this, but then need some
799 		   other way of keeping track of what's happened.. */
800 
801 		rf_markalldirty(raidPtrs[unit]);
802 	}
803 
804 
805 	rs->sc_dkdev.dk_openmask =
806 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
807 
808 bad:
809 	raidunlock(rs);
810 
811 	return (error);
812 
813 
814 }
815 /* ARGSUSED */
816 int
817 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
818 {
819 	int     unit = raidunit(dev);
820 	struct raid_softc *rs;
821 	int     error = 0;
822 	int     part;
823 
824 	if (unit >= numraid)
825 		return (ENXIO);
826 	rs = &raid_softc[unit];
827 
828 	if ((error = raidlock(rs)) != 0)
829 		return (error);
830 
831 	part = DISKPART(dev);
832 
833 	/* ...that much closer to allowing unconfiguration... */
834 	switch (fmt) {
835 	case S_IFCHR:
836 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
837 		break;
838 
839 	case S_IFBLK:
840 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
841 		break;
842 	}
843 	rs->sc_dkdev.dk_openmask =
844 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
845 
846 	if ((rs->sc_dkdev.dk_openmask == 0) &&
847 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
848 		/* Last one... device is not unconfigured yet.
849 		   Device shutdown has taken care of setting the
850 		   clean bits if RAIDF_INITED is not set
851 		   mark things as clean... */
852 
853 		rf_update_component_labels(raidPtrs[unit],
854 						 RF_FINAL_COMPONENT_UPDATE);
855 
856 		/* If the kernel is shutting down, it will detach
857 		 * this RAID set soon enough.
858 		 */
859 	}
860 
861 	raidunlock(rs);
862 	return (0);
863 
864 }
865 
866 void
867 raidstrategy(struct buf *bp)
868 {
869 	int s;
870 
871 	unsigned int raidID = raidunit(bp->b_dev);
872 	RF_Raid_t *raidPtr;
873 	struct raid_softc *rs = &raid_softc[raidID];
874 	int     wlabel;
875 
876 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
877 		bp->b_error = ENXIO;
878 		goto done;
879 	}
880 	if (raidID >= numraid || !raidPtrs[raidID]) {
881 		bp->b_error = ENODEV;
882 		goto done;
883 	}
884 	raidPtr = raidPtrs[raidID];
885 	if (!raidPtr->valid) {
886 		bp->b_error = ENODEV;
887 		goto done;
888 	}
889 	if (bp->b_bcount == 0) {
890 		db1_printf(("b_bcount is zero..\n"));
891 		goto done;
892 	}
893 
894 	/*
895 	 * Do bounds checking and adjust transfer.  If there's an
896 	 * error, the bounds check will flag that for us.
897 	 */
898 
899 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
900 	if (DISKPART(bp->b_dev) == RAW_PART) {
901 		uint64_t size; /* device size in DEV_BSIZE unit */
902 
903 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
904 			size = raidPtr->totalSectors <<
905 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
906 		} else {
907 			size = raidPtr->totalSectors >>
908 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
909 		}
910 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
911 			goto done;
912 		}
913 	} else {
914 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
915 			db1_printf(("Bounds check failed!!:%d %d\n",
916 				(int) bp->b_blkno, (int) wlabel));
917 			goto done;
918 		}
919 	}
920 	s = splbio();
921 
922 	bp->b_resid = 0;
923 
924 	/* stuff it onto our queue */
925 	bufq_put(rs->buf_queue, bp);
926 
927 	/* scheduled the IO to happen at the next convenient time */
928 	wakeup(&(raidPtrs[raidID]->iodone));
929 
930 	splx(s);
931 	return;
932 
933 done:
934 	bp->b_resid = bp->b_bcount;
935 	biodone(bp);
936 }
937 /* ARGSUSED */
938 int
939 raidread(dev_t dev, struct uio *uio, int flags)
940 {
941 	int     unit = raidunit(dev);
942 	struct raid_softc *rs;
943 
944 	if (unit >= numraid)
945 		return (ENXIO);
946 	rs = &raid_softc[unit];
947 
948 	if ((rs->sc_flags & RAIDF_INITED) == 0)
949 		return (ENXIO);
950 
951 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
952 
953 }
954 /* ARGSUSED */
955 int
956 raidwrite(dev_t dev, struct uio *uio, int flags)
957 {
958 	int     unit = raidunit(dev);
959 	struct raid_softc *rs;
960 
961 	if (unit >= numraid)
962 		return (ENXIO);
963 	rs = &raid_softc[unit];
964 
965 	if ((rs->sc_flags & RAIDF_INITED) == 0)
966 		return (ENXIO);
967 
968 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
969 
970 }
971 
972 static int
973 raid_detach_unlocked(struct raid_softc *rs)
974 {
975 	int error;
976 	RF_Raid_t *raidPtr;
977 
978 	raidPtr = raidPtrs[device_unit(rs->sc_dev)];
979 
980 	/*
981 	 * If somebody has a partition mounted, we shouldn't
982 	 * shutdown.
983 	 */
984 	if (rs->sc_dkdev.dk_openmask != 0)
985 		return EBUSY;
986 
987 	if ((rs->sc_flags & RAIDF_INITED) == 0)
988 		;	/* not initialized: nothing to do */
989 	else if ((error = rf_Shutdown(raidPtr)) != 0)
990 		return error;
991 	else
992 		rs->sc_flags &= ~(RAIDF_INITED|RAIDF_SHUTDOWN);
993 
994 	/* Detach the disk. */
995 	disk_detach(&rs->sc_dkdev);
996 	disk_destroy(&rs->sc_dkdev);
997 
998 	return 0;
999 }
1000 
1001 int
1002 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1003 {
1004 	int     unit = raidunit(dev);
1005 	int     error = 0;
1006 	int     part, pmask;
1007 	cfdata_t cf;
1008 	struct raid_softc *rs;
1009 	RF_Config_t *k_cfg, *u_cfg;
1010 	RF_Raid_t *raidPtr;
1011 	RF_RaidDisk_t *diskPtr;
1012 	RF_AccTotals_t *totals;
1013 	RF_DeviceConfig_t *d_cfg, **ucfgp;
1014 	u_char *specific_buf;
1015 	int retcode = 0;
1016 	int column;
1017 /*	int raidid; */
1018 	struct rf_recon_req *rrcopy, *rr;
1019 	RF_ComponentLabel_t *clabel;
1020 	RF_ComponentLabel_t *ci_label;
1021 	RF_ComponentLabel_t **clabel_ptr;
1022 	RF_SingleComponent_t *sparePtr,*componentPtr;
1023 	RF_SingleComponent_t component;
1024 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1025 	int i, j, d;
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 	struct disklabel newlabel;
1028 #endif
1029 	struct dkwedge_info *dkw;
1030 
1031 	if (unit >= numraid)
1032 		return (ENXIO);
1033 	rs = &raid_softc[unit];
1034 	raidPtr = raidPtrs[unit];
1035 
1036 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1037 		(int) DISKPART(dev), (int) unit, (int) cmd));
1038 
1039 	/* Must be open for writes for these commands... */
1040 	switch (cmd) {
1041 #ifdef DIOCGSECTORSIZE
1042 	case DIOCGSECTORSIZE:
1043 		*(u_int *)data = raidPtr->bytesPerSector;
1044 		return 0;
1045 	case DIOCGMEDIASIZE:
1046 		*(off_t *)data =
1047 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1048 		return 0;
1049 #endif
1050 	case DIOCSDINFO:
1051 	case DIOCWDINFO:
1052 #ifdef __HAVE_OLD_DISKLABEL
1053 	case ODIOCWDINFO:
1054 	case ODIOCSDINFO:
1055 #endif
1056 	case DIOCWLABEL:
1057 	case DIOCAWEDGE:
1058 	case DIOCDWEDGE:
1059 		if ((flag & FWRITE) == 0)
1060 			return (EBADF);
1061 	}
1062 
1063 	/* Must be initialized for these... */
1064 	switch (cmd) {
1065 	case DIOCGDINFO:
1066 	case DIOCSDINFO:
1067 	case DIOCWDINFO:
1068 #ifdef __HAVE_OLD_DISKLABEL
1069 	case ODIOCGDINFO:
1070 	case ODIOCWDINFO:
1071 	case ODIOCSDINFO:
1072 	case ODIOCGDEFLABEL:
1073 #endif
1074 	case DIOCGPART:
1075 	case DIOCWLABEL:
1076 	case DIOCGDEFLABEL:
1077 	case DIOCAWEDGE:
1078 	case DIOCDWEDGE:
1079 	case DIOCLWEDGES:
1080 	case DIOCCACHESYNC:
1081 	case RAIDFRAME_SHUTDOWN:
1082 	case RAIDFRAME_REWRITEPARITY:
1083 	case RAIDFRAME_GET_INFO:
1084 	case RAIDFRAME_RESET_ACCTOTALS:
1085 	case RAIDFRAME_GET_ACCTOTALS:
1086 	case RAIDFRAME_KEEP_ACCTOTALS:
1087 	case RAIDFRAME_GET_SIZE:
1088 	case RAIDFRAME_FAIL_DISK:
1089 	case RAIDFRAME_COPYBACK:
1090 	case RAIDFRAME_CHECK_RECON_STATUS:
1091 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1092 	case RAIDFRAME_GET_COMPONENT_LABEL:
1093 	case RAIDFRAME_SET_COMPONENT_LABEL:
1094 	case RAIDFRAME_ADD_HOT_SPARE:
1095 	case RAIDFRAME_REMOVE_HOT_SPARE:
1096 	case RAIDFRAME_INIT_LABELS:
1097 	case RAIDFRAME_REBUILD_IN_PLACE:
1098 	case RAIDFRAME_CHECK_PARITY:
1099 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1100 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1101 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1102 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1103 	case RAIDFRAME_SET_AUTOCONFIG:
1104 	case RAIDFRAME_SET_ROOT:
1105 	case RAIDFRAME_DELETE_COMPONENT:
1106 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1107 	case RAIDFRAME_PARITYMAP_STATUS:
1108 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
1109 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
1110 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
1111 		if ((rs->sc_flags & RAIDF_INITED) == 0)
1112 			return (ENXIO);
1113 	}
1114 
1115 	switch (cmd) {
1116 #ifdef COMPAT_50
1117 	case RAIDFRAME_GET_INFO50:
1118 		return rf_get_info50(raidPtr, data);
1119 
1120 	case RAIDFRAME_CONFIGURE50:
1121 		if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1122 			return retcode;
1123 		goto config;
1124 #endif
1125 		/* configure the system */
1126 	case RAIDFRAME_CONFIGURE:
1127 
1128 		if (raidPtr->valid) {
1129 			/* There is a valid RAID set running on this unit! */
1130 			printf("raid%d: Device already configured!\n",unit);
1131 			return(EINVAL);
1132 		}
1133 
1134 		/* copy-in the configuration information */
1135 		/* data points to a pointer to the configuration structure */
1136 
1137 		u_cfg = *((RF_Config_t **) data);
1138 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1139 		if (k_cfg == NULL) {
1140 			return (ENOMEM);
1141 		}
1142 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1143 		if (retcode) {
1144 			RF_Free(k_cfg, sizeof(RF_Config_t));
1145 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1146 				retcode));
1147 			return (retcode);
1148 		}
1149 		goto config;
1150 	config:
1151 		/* allocate a buffer for the layout-specific data, and copy it
1152 		 * in */
1153 		if (k_cfg->layoutSpecificSize) {
1154 			if (k_cfg->layoutSpecificSize > 10000) {
1155 				/* sanity check */
1156 				RF_Free(k_cfg, sizeof(RF_Config_t));
1157 				return (EINVAL);
1158 			}
1159 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1160 			    (u_char *));
1161 			if (specific_buf == NULL) {
1162 				RF_Free(k_cfg, sizeof(RF_Config_t));
1163 				return (ENOMEM);
1164 			}
1165 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1166 			    k_cfg->layoutSpecificSize);
1167 			if (retcode) {
1168 				RF_Free(k_cfg, sizeof(RF_Config_t));
1169 				RF_Free(specific_buf,
1170 					k_cfg->layoutSpecificSize);
1171 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1172 					retcode));
1173 				return (retcode);
1174 			}
1175 		} else
1176 			specific_buf = NULL;
1177 		k_cfg->layoutSpecific = specific_buf;
1178 
1179 		/* should do some kind of sanity check on the configuration.
1180 		 * Store the sum of all the bytes in the last byte? */
1181 
1182 		/* configure the system */
1183 
1184 		/*
1185 		 * Clear the entire RAID descriptor, just to make sure
1186 		 *  there is no stale data left in the case of a
1187 		 *  reconfiguration
1188 		 */
1189 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1190 		raidPtr->raidid = unit;
1191 
1192 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
1193 
1194 		if (retcode == 0) {
1195 
1196 			/* allow this many simultaneous IO's to
1197 			   this RAID device */
1198 			raidPtr->openings = RAIDOUTSTANDING;
1199 
1200 			raidinit(raidPtr);
1201 			rf_markalldirty(raidPtr);
1202 		}
1203 		/* free the buffers.  No return code here. */
1204 		if (k_cfg->layoutSpecificSize) {
1205 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1206 		}
1207 		RF_Free(k_cfg, sizeof(RF_Config_t));
1208 
1209 		return (retcode);
1210 
1211 		/* shutdown the system */
1212 	case RAIDFRAME_SHUTDOWN:
1213 
1214 		part = DISKPART(dev);
1215 		pmask = (1 << part);
1216 
1217 		if ((error = raidlock(rs)) != 0)
1218 			return (error);
1219 
1220 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1221 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1222 			(rs->sc_dkdev.dk_copenmask & pmask)))
1223 			retcode = EBUSY;
1224 		else {
1225 			rs->sc_flags |= RAIDF_SHUTDOWN;
1226 			rs->sc_dkdev.dk_copenmask &= ~pmask;
1227 			rs->sc_dkdev.dk_bopenmask &= ~pmask;
1228 			rs->sc_dkdev.dk_openmask &= ~pmask;
1229 			retcode = 0;
1230 		}
1231 
1232 		raidunlock(rs);
1233 
1234 		if (retcode != 0)
1235 			return retcode;
1236 
1237 		/* free the pseudo device attach bits */
1238 
1239 		cf = device_cfdata(rs->sc_dev);
1240 		if ((retcode = config_detach(rs->sc_dev, DETACH_QUIET)) == 0)
1241 			free(cf, M_RAIDFRAME);
1242 
1243 		return (retcode);
1244 	case RAIDFRAME_GET_COMPONENT_LABEL:
1245 		clabel_ptr = (RF_ComponentLabel_t **) data;
1246 		/* need to read the component label for the disk indicated
1247 		   by row,column in clabel */
1248 
1249 		/*
1250 		 * Perhaps there should be an option to skip the in-core
1251 		 * copy and hit the disk, as with disklabel(8).
1252 		 */
1253 		RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1254 
1255 		retcode = copyin( *clabel_ptr, clabel,
1256 				  sizeof(RF_ComponentLabel_t));
1257 
1258 		if (retcode) {
1259 			return(retcode);
1260 		}
1261 
1262 		clabel->row = 0; /* Don't allow looking at anything else.*/
1263 
1264 		column = clabel->column;
1265 
1266 		if ((column < 0) || (column >= raidPtr->numCol +
1267 				     raidPtr->numSpare)) {
1268 			return(EINVAL);
1269 		}
1270 
1271 		RF_Free(clabel, sizeof(*clabel));
1272 
1273 		clabel = raidget_component_label(raidPtr, column);
1274 
1275 		if (retcode == 0) {
1276 			retcode = copyout(clabel, *clabel_ptr,
1277 					  sizeof(RF_ComponentLabel_t));
1278 		}
1279 		return (retcode);
1280 
1281 #if 0
1282 	case RAIDFRAME_SET_COMPONENT_LABEL:
1283 		clabel = (RF_ComponentLabel_t *) data;
1284 
1285 		/* XXX check the label for valid stuff... */
1286 		/* Note that some things *should not* get modified --
1287 		   the user should be re-initing the labels instead of
1288 		   trying to patch things.
1289 		   */
1290 
1291 		raidid = raidPtr->raidid;
1292 #ifdef DEBUG
1293 		printf("raid%d: Got component label:\n", raidid);
1294 		printf("raid%d: Version: %d\n", raidid, clabel->version);
1295 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1296 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1297 		printf("raid%d: Column: %d\n", raidid, clabel->column);
1298 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1299 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1300 		printf("raid%d: Status: %d\n", raidid, clabel->status);
1301 #endif
1302 		clabel->row = 0;
1303 		column = clabel->column;
1304 
1305 		if ((column < 0) || (column >= raidPtr->numCol)) {
1306 			return(EINVAL);
1307 		}
1308 
1309 		/* XXX this isn't allowed to do anything for now :-) */
1310 
1311 		/* XXX and before it is, we need to fill in the rest
1312 		   of the fields!?!?!?! */
1313 		memcpy(raidget_component_label(raidPtr, column),
1314 		    clabel, sizeof(*clabel));
1315 		raidflush_component_label(raidPtr, column);
1316 		return (0);
1317 #endif
1318 
1319 	case RAIDFRAME_INIT_LABELS:
1320 		clabel = (RF_ComponentLabel_t *) data;
1321 		/*
1322 		   we only want the serial number from
1323 		   the above.  We get all the rest of the information
1324 		   from the config that was used to create this RAID
1325 		   set.
1326 		   */
1327 
1328 		raidPtr->serial_number = clabel->serial_number;
1329 
1330 		for(column=0;column<raidPtr->numCol;column++) {
1331 			diskPtr = &raidPtr->Disks[column];
1332 			if (!RF_DEAD_DISK(diskPtr->status)) {
1333 				ci_label = raidget_component_label(raidPtr,
1334 				    column);
1335 				/* Zeroing this is important. */
1336 				memset(ci_label, 0, sizeof(*ci_label));
1337 				raid_init_component_label(raidPtr, ci_label);
1338 				ci_label->serial_number =
1339 				    raidPtr->serial_number;
1340 				ci_label->row = 0; /* we dont' pretend to support more */
1341 				ci_label->partitionSize =
1342 				    diskPtr->partitionSize;
1343 				ci_label->column = column;
1344 				raidflush_component_label(raidPtr, column);
1345 			}
1346 			/* XXXjld what about the spares? */
1347 		}
1348 
1349 		return (retcode);
1350 	case RAIDFRAME_SET_AUTOCONFIG:
1351 		d = rf_set_autoconfig(raidPtr, *(int *) data);
1352 		printf("raid%d: New autoconfig value is: %d\n",
1353 		       raidPtr->raidid, d);
1354 		*(int *) data = d;
1355 		return (retcode);
1356 
1357 	case RAIDFRAME_SET_ROOT:
1358 		d = rf_set_rootpartition(raidPtr, *(int *) data);
1359 		printf("raid%d: New rootpartition value is: %d\n",
1360 		       raidPtr->raidid, d);
1361 		*(int *) data = d;
1362 		return (retcode);
1363 
1364 		/* initialize all parity */
1365 	case RAIDFRAME_REWRITEPARITY:
1366 
1367 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1368 			/* Parity for RAID 0 is trivially correct */
1369 			raidPtr->parity_good = RF_RAID_CLEAN;
1370 			return(0);
1371 		}
1372 
1373 		if (raidPtr->parity_rewrite_in_progress == 1) {
1374 			/* Re-write is already in progress! */
1375 			return(EINVAL);
1376 		}
1377 
1378 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1379 					   rf_RewriteParityThread,
1380 					   raidPtr,"raid_parity");
1381 		return (retcode);
1382 
1383 
1384 	case RAIDFRAME_ADD_HOT_SPARE:
1385 		sparePtr = (RF_SingleComponent_t *) data;
1386 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1387 		retcode = rf_add_hot_spare(raidPtr, &component);
1388 		return(retcode);
1389 
1390 	case RAIDFRAME_REMOVE_HOT_SPARE:
1391 		return(retcode);
1392 
1393 	case RAIDFRAME_DELETE_COMPONENT:
1394 		componentPtr = (RF_SingleComponent_t *)data;
1395 		memcpy( &component, componentPtr,
1396 			sizeof(RF_SingleComponent_t));
1397 		retcode = rf_delete_component(raidPtr, &component);
1398 		return(retcode);
1399 
1400 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
1401 		componentPtr = (RF_SingleComponent_t *)data;
1402 		memcpy( &component, componentPtr,
1403 			sizeof(RF_SingleComponent_t));
1404 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
1405 		return(retcode);
1406 
1407 	case RAIDFRAME_REBUILD_IN_PLACE:
1408 
1409 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1410 			/* Can't do this on a RAID 0!! */
1411 			return(EINVAL);
1412 		}
1413 
1414 		if (raidPtr->recon_in_progress == 1) {
1415 			/* a reconstruct is already in progress! */
1416 			return(EINVAL);
1417 		}
1418 
1419 		componentPtr = (RF_SingleComponent_t *) data;
1420 		memcpy( &component, componentPtr,
1421 			sizeof(RF_SingleComponent_t));
1422 		component.row = 0; /* we don't support any more */
1423 		column = component.column;
1424 
1425 		if ((column < 0) || (column >= raidPtr->numCol)) {
1426 			return(EINVAL);
1427 		}
1428 
1429 		RF_LOCK_MUTEX(raidPtr->mutex);
1430 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1431 		    (raidPtr->numFailures > 0)) {
1432 			/* XXX 0 above shouldn't be constant!!! */
1433 			/* some component other than this has failed.
1434 			   Let's not make things worse than they already
1435 			   are... */
1436 			printf("raid%d: Unable to reconstruct to disk at:\n",
1437 			       raidPtr->raidid);
1438 			printf("raid%d:     Col: %d   Too many failures.\n",
1439 			       raidPtr->raidid, column);
1440 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1441 			return (EINVAL);
1442 		}
1443 		if (raidPtr->Disks[column].status ==
1444 		    rf_ds_reconstructing) {
1445 			printf("raid%d: Unable to reconstruct to disk at:\n",
1446 			       raidPtr->raidid);
1447 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
1448 
1449 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1450 			return (EINVAL);
1451 		}
1452 		if (raidPtr->Disks[column].status == rf_ds_spared) {
1453 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1454 			return (EINVAL);
1455 		}
1456 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1457 
1458 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1459 		if (rrcopy == NULL)
1460 			return(ENOMEM);
1461 
1462 		rrcopy->raidPtr = (void *) raidPtr;
1463 		rrcopy->col = column;
1464 
1465 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1466 					   rf_ReconstructInPlaceThread,
1467 					   rrcopy,"raid_reconip");
1468 		return(retcode);
1469 
1470 	case RAIDFRAME_GET_INFO:
1471 		if (!raidPtr->valid)
1472 			return (ENODEV);
1473 		ucfgp = (RF_DeviceConfig_t **) data;
1474 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1475 			  (RF_DeviceConfig_t *));
1476 		if (d_cfg == NULL)
1477 			return (ENOMEM);
1478 		d_cfg->rows = 1; /* there is only 1 row now */
1479 		d_cfg->cols = raidPtr->numCol;
1480 		d_cfg->ndevs = raidPtr->numCol;
1481 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
1482 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1483 			return (ENOMEM);
1484 		}
1485 		d_cfg->nspares = raidPtr->numSpare;
1486 		if (d_cfg->nspares >= RF_MAX_DISKS) {
1487 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1488 			return (ENOMEM);
1489 		}
1490 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1491 		d = 0;
1492 		for (j = 0; j < d_cfg->cols; j++) {
1493 			d_cfg->devs[d] = raidPtr->Disks[j];
1494 			d++;
1495 		}
1496 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1497 			d_cfg->spares[i] = raidPtr->Disks[j];
1498 		}
1499 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1500 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1501 
1502 		return (retcode);
1503 
1504 	case RAIDFRAME_CHECK_PARITY:
1505 		*(int *) data = raidPtr->parity_good;
1506 		return (0);
1507 
1508 	case RAIDFRAME_PARITYMAP_STATUS:
1509 		rf_paritymap_status(raidPtr->parity_map,
1510 		    (struct rf_pmstat *)data);
1511 		return 0;
1512 
1513 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
1514 		if (raidPtr->parity_map == NULL)
1515 			return ENOENT; /* ??? */
1516 		if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1517 			(struct rf_pmparams *)data, 1))
1518 			return EINVAL;
1519 		return 0;
1520 
1521 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
1522 		*(int *) data = rf_paritymap_get_disable(raidPtr);
1523 		return 0;
1524 
1525 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
1526 		rf_paritymap_set_disable(raidPtr, *(int *)data);
1527 		/* XXX should errors be passed up? */
1528 		return 0;
1529 
1530 	case RAIDFRAME_RESET_ACCTOTALS:
1531 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1532 		return (0);
1533 
1534 	case RAIDFRAME_GET_ACCTOTALS:
1535 		totals = (RF_AccTotals_t *) data;
1536 		*totals = raidPtr->acc_totals;
1537 		return (0);
1538 
1539 	case RAIDFRAME_KEEP_ACCTOTALS:
1540 		raidPtr->keep_acc_totals = *(int *)data;
1541 		return (0);
1542 
1543 	case RAIDFRAME_GET_SIZE:
1544 		*(int *) data = raidPtr->totalSectors;
1545 		return (0);
1546 
1547 		/* fail a disk & optionally start reconstruction */
1548 	case RAIDFRAME_FAIL_DISK:
1549 
1550 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1551 			/* Can't do this on a RAID 0!! */
1552 			return(EINVAL);
1553 		}
1554 
1555 		rr = (struct rf_recon_req *) data;
1556 		rr->row = 0;
1557 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
1558 			return (EINVAL);
1559 
1560 
1561 		RF_LOCK_MUTEX(raidPtr->mutex);
1562 		if (raidPtr->status == rf_rs_reconstructing) {
1563 			/* you can't fail a disk while we're reconstructing! */
1564 			/* XXX wrong for RAID6 */
1565 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1566 			return (EINVAL);
1567 		}
1568 		if ((raidPtr->Disks[rr->col].status ==
1569 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1570 			/* some other component has failed.  Let's not make
1571 			   things worse. XXX wrong for RAID6 */
1572 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1573 			return (EINVAL);
1574 		}
1575 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1576 			/* Can't fail a spared disk! */
1577 			RF_UNLOCK_MUTEX(raidPtr->mutex);
1578 			return (EINVAL);
1579 		}
1580 		RF_UNLOCK_MUTEX(raidPtr->mutex);
1581 
1582 		/* make a copy of the recon request so that we don't rely on
1583 		 * the user's buffer */
1584 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1585 		if (rrcopy == NULL)
1586 			return(ENOMEM);
1587 		memcpy(rrcopy, rr, sizeof(*rr));
1588 		rrcopy->raidPtr = (void *) raidPtr;
1589 
1590 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1591 					   rf_ReconThread,
1592 					   rrcopy,"raid_recon");
1593 		return (0);
1594 
1595 		/* invoke a copyback operation after recon on whatever disk
1596 		 * needs it, if any */
1597 	case RAIDFRAME_COPYBACK:
1598 
1599 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1600 			/* This makes no sense on a RAID 0!! */
1601 			return(EINVAL);
1602 		}
1603 
1604 		if (raidPtr->copyback_in_progress == 1) {
1605 			/* Copyback is already in progress! */
1606 			return(EINVAL);
1607 		}
1608 
1609 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1610 					   rf_CopybackThread,
1611 					   raidPtr,"raid_copyback");
1612 		return (retcode);
1613 
1614 		/* return the percentage completion of reconstruction */
1615 	case RAIDFRAME_CHECK_RECON_STATUS:
1616 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1617 			/* This makes no sense on a RAID 0, so tell the
1618 			   user it's done. */
1619 			*(int *) data = 100;
1620 			return(0);
1621 		}
1622 		if (raidPtr->status != rf_rs_reconstructing)
1623 			*(int *) data = 100;
1624 		else {
1625 			if (raidPtr->reconControl->numRUsTotal > 0) {
1626 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1627 			} else {
1628 				*(int *) data = 0;
1629 			}
1630 		}
1631 		return (0);
1632 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1633 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1634 		if (raidPtr->status != rf_rs_reconstructing) {
1635 			progressInfo.remaining = 0;
1636 			progressInfo.completed = 100;
1637 			progressInfo.total = 100;
1638 		} else {
1639 			progressInfo.total =
1640 				raidPtr->reconControl->numRUsTotal;
1641 			progressInfo.completed =
1642 				raidPtr->reconControl->numRUsComplete;
1643 			progressInfo.remaining = progressInfo.total -
1644 				progressInfo.completed;
1645 		}
1646 		retcode = copyout(&progressInfo, *progressInfoPtr,
1647 				  sizeof(RF_ProgressInfo_t));
1648 		return (retcode);
1649 
1650 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1651 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1652 			/* This makes no sense on a RAID 0, so tell the
1653 			   user it's done. */
1654 			*(int *) data = 100;
1655 			return(0);
1656 		}
1657 		if (raidPtr->parity_rewrite_in_progress == 1) {
1658 			*(int *) data = 100 *
1659 				raidPtr->parity_rewrite_stripes_done /
1660 				raidPtr->Layout.numStripe;
1661 		} else {
1662 			*(int *) data = 100;
1663 		}
1664 		return (0);
1665 
1666 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1667 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1668 		if (raidPtr->parity_rewrite_in_progress == 1) {
1669 			progressInfo.total = raidPtr->Layout.numStripe;
1670 			progressInfo.completed =
1671 				raidPtr->parity_rewrite_stripes_done;
1672 			progressInfo.remaining = progressInfo.total -
1673 				progressInfo.completed;
1674 		} else {
1675 			progressInfo.remaining = 0;
1676 			progressInfo.completed = 100;
1677 			progressInfo.total = 100;
1678 		}
1679 		retcode = copyout(&progressInfo, *progressInfoPtr,
1680 				  sizeof(RF_ProgressInfo_t));
1681 		return (retcode);
1682 
1683 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
1684 		if (raidPtr->Layout.map->faultsTolerated == 0) {
1685 			/* This makes no sense on a RAID 0 */
1686 			*(int *) data = 100;
1687 			return(0);
1688 		}
1689 		if (raidPtr->copyback_in_progress == 1) {
1690 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
1691 				raidPtr->Layout.numStripe;
1692 		} else {
1693 			*(int *) data = 100;
1694 		}
1695 		return (0);
1696 
1697 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1698 		progressInfoPtr = (RF_ProgressInfo_t **) data;
1699 		if (raidPtr->copyback_in_progress == 1) {
1700 			progressInfo.total = raidPtr->Layout.numStripe;
1701 			progressInfo.completed =
1702 				raidPtr->copyback_stripes_done;
1703 			progressInfo.remaining = progressInfo.total -
1704 				progressInfo.completed;
1705 		} else {
1706 			progressInfo.remaining = 0;
1707 			progressInfo.completed = 100;
1708 			progressInfo.total = 100;
1709 		}
1710 		retcode = copyout(&progressInfo, *progressInfoPtr,
1711 				  sizeof(RF_ProgressInfo_t));
1712 		return (retcode);
1713 
1714 		/* the sparetable daemon calls this to wait for the kernel to
1715 		 * need a spare table. this ioctl does not return until a
1716 		 * spare table is needed. XXX -- calling mpsleep here in the
1717 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1718 		 * -- I should either compute the spare table in the kernel,
1719 		 * or have a different -- XXX XXX -- interface (a different
1720 		 * character device) for delivering the table     -- XXX */
1721 #if 0
1722 	case RAIDFRAME_SPARET_WAIT:
1723 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1724 		while (!rf_sparet_wait_queue)
1725 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1726 		waitreq = rf_sparet_wait_queue;
1727 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1728 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1729 
1730 		/* structure assignment */
1731 		*((RF_SparetWait_t *) data) = *waitreq;
1732 
1733 		RF_Free(waitreq, sizeof(*waitreq));
1734 		return (0);
1735 
1736 		/* wakes up a process waiting on SPARET_WAIT and puts an error
1737 		 * code in it that will cause the dameon to exit */
1738 	case RAIDFRAME_ABORT_SPARET_WAIT:
1739 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1740 		waitreq->fcol = -1;
1741 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1742 		waitreq->next = rf_sparet_wait_queue;
1743 		rf_sparet_wait_queue = waitreq;
1744 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1745 		wakeup(&rf_sparet_wait_queue);
1746 		return (0);
1747 
1748 		/* used by the spare table daemon to deliver a spare table
1749 		 * into the kernel */
1750 	case RAIDFRAME_SEND_SPARET:
1751 
1752 		/* install the spare table */
1753 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1754 
1755 		/* respond to the requestor.  the return status of the spare
1756 		 * table installation is passed in the "fcol" field */
1757 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1758 		waitreq->fcol = retcode;
1759 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1760 		waitreq->next = rf_sparet_resp_queue;
1761 		rf_sparet_resp_queue = waitreq;
1762 		wakeup(&rf_sparet_resp_queue);
1763 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1764 
1765 		return (retcode);
1766 #endif
1767 
1768 	default:
1769 		break; /* fall through to the os-specific code below */
1770 
1771 	}
1772 
1773 	if (!raidPtr->valid)
1774 		return (EINVAL);
1775 
1776 	/*
1777 	 * Add support for "regular" device ioctls here.
1778 	 */
1779 
1780 	error = disk_ioctl(&rs->sc_dkdev, cmd, data, flag, l);
1781 	if (error != EPASSTHROUGH)
1782 		return (error);
1783 
1784 	switch (cmd) {
1785 	case DIOCGDINFO:
1786 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1787 		break;
1788 #ifdef __HAVE_OLD_DISKLABEL
1789 	case ODIOCGDINFO:
1790 		newlabel = *(rs->sc_dkdev.dk_label);
1791 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1792 			return ENOTTY;
1793 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1794 		break;
1795 #endif
1796 
1797 	case DIOCGPART:
1798 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1799 		((struct partinfo *) data)->part =
1800 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1801 		break;
1802 
1803 	case DIOCWDINFO:
1804 	case DIOCSDINFO:
1805 #ifdef __HAVE_OLD_DISKLABEL
1806 	case ODIOCWDINFO:
1807 	case ODIOCSDINFO:
1808 #endif
1809 	{
1810 		struct disklabel *lp;
1811 #ifdef __HAVE_OLD_DISKLABEL
1812 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1813 			memset(&newlabel, 0, sizeof newlabel);
1814 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
1815 			lp = &newlabel;
1816 		} else
1817 #endif
1818 		lp = (struct disklabel *)data;
1819 
1820 		if ((error = raidlock(rs)) != 0)
1821 			return (error);
1822 
1823 		rs->sc_flags |= RAIDF_LABELLING;
1824 
1825 		error = setdisklabel(rs->sc_dkdev.dk_label,
1826 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
1827 		if (error == 0) {
1828 			if (cmd == DIOCWDINFO
1829 #ifdef __HAVE_OLD_DISKLABEL
1830 			    || cmd == ODIOCWDINFO
1831 #endif
1832 			   )
1833 				error = writedisklabel(RAIDLABELDEV(dev),
1834 				    raidstrategy, rs->sc_dkdev.dk_label,
1835 				    rs->sc_dkdev.dk_cpulabel);
1836 		}
1837 		rs->sc_flags &= ~RAIDF_LABELLING;
1838 
1839 		raidunlock(rs);
1840 
1841 		if (error)
1842 			return (error);
1843 		break;
1844 	}
1845 
1846 	case DIOCWLABEL:
1847 		if (*(int *) data != 0)
1848 			rs->sc_flags |= RAIDF_WLABEL;
1849 		else
1850 			rs->sc_flags &= ~RAIDF_WLABEL;
1851 		break;
1852 
1853 	case DIOCGDEFLABEL:
1854 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1855 		break;
1856 
1857 #ifdef __HAVE_OLD_DISKLABEL
1858 	case ODIOCGDEFLABEL:
1859 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
1860 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1861 			return ENOTTY;
1862 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
1863 		break;
1864 #endif
1865 
1866 	case DIOCAWEDGE:
1867 	case DIOCDWEDGE:
1868 	    	dkw = (void *)data;
1869 
1870 		/* If the ioctl happens here, the parent is us. */
1871 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
1872 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1873 
1874 	case DIOCLWEDGES:
1875 		return dkwedge_list(&rs->sc_dkdev,
1876 		    (struct dkwedge_list *)data, l);
1877 	case DIOCCACHESYNC:
1878 		return rf_sync_component_caches(raidPtr);
1879 	default:
1880 		retcode = ENOTTY;
1881 	}
1882 	return (retcode);
1883 
1884 }
1885 
1886 
1887 /* raidinit -- complete the rest of the initialization for the
1888    RAIDframe device.  */
1889 
1890 
1891 static void
1892 raidinit(RF_Raid_t *raidPtr)
1893 {
1894 	cfdata_t cf;
1895 	struct raid_softc *rs;
1896 	int     unit;
1897 
1898 	unit = raidPtr->raidid;
1899 
1900 	rs = &raid_softc[unit];
1901 
1902 	/* XXX should check return code first... */
1903 	rs->sc_flags |= RAIDF_INITED;
1904 
1905 	/* XXX doesn't check bounds. */
1906 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1907 
1908 	/* attach the pseudo device */
1909 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1910 	cf->cf_name = raid_cd.cd_name;
1911 	cf->cf_atname = raid_cd.cd_name;
1912 	cf->cf_unit = unit;
1913 	cf->cf_fstate = FSTATE_STAR;
1914 
1915 	rs->sc_dev = config_attach_pseudo(cf);
1916 
1917 	if (rs->sc_dev == NULL) {
1918 		printf("raid%d: config_attach_pseudo failed\n",
1919 		    raidPtr->raidid);
1920 		rs->sc_flags &= ~RAIDF_INITED;
1921 		free(cf, M_RAIDFRAME);
1922 		return;
1923 	}
1924 
1925 	/* disk_attach actually creates space for the CPU disklabel, among
1926 	 * other things, so it's critical to call this *BEFORE* we try putzing
1927 	 * with disklabels. */
1928 
1929 	disk_init(&rs->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1930 	disk_attach(&rs->sc_dkdev);
1931 
1932 	/* XXX There may be a weird interaction here between this, and
1933 	 * protectedSectors, as used in RAIDframe.  */
1934 
1935 	rs->sc_size = raidPtr->totalSectors;
1936 
1937 	dkwedge_discover(&rs->sc_dkdev);
1938 
1939 	rf_set_properties(rs, raidPtr);
1940 
1941 }
1942 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1943 /* wake up the daemon & tell it to get us a spare table
1944  * XXX
1945  * the entries in the queues should be tagged with the raidPtr
1946  * so that in the extremely rare case that two recons happen at once,
1947  * we know for which device were requesting a spare table
1948  * XXX
1949  *
1950  * XXX This code is not currently used. GO
1951  */
1952 int
1953 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1954 {
1955 	int     retcode;
1956 
1957 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1958 	req->next = rf_sparet_wait_queue;
1959 	rf_sparet_wait_queue = req;
1960 	wakeup(&rf_sparet_wait_queue);
1961 
1962 	/* mpsleep unlocks the mutex */
1963 	while (!rf_sparet_resp_queue) {
1964 		tsleep(&rf_sparet_resp_queue, PRIBIO,
1965 		    "raidframe getsparetable", 0);
1966 	}
1967 	req = rf_sparet_resp_queue;
1968 	rf_sparet_resp_queue = req->next;
1969 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1970 
1971 	retcode = req->fcol;
1972 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
1973 					 * alloc'd */
1974 	return (retcode);
1975 }
1976 #endif
1977 
1978 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1979  * bp & passes it down.
1980  * any calls originating in the kernel must use non-blocking I/O
1981  * do some extra sanity checking to return "appropriate" error values for
1982  * certain conditions (to make some standard utilities work)
1983  *
1984  * Formerly known as: rf_DoAccessKernel
1985  */
1986 void
1987 raidstart(RF_Raid_t *raidPtr)
1988 {
1989 	RF_SectorCount_t num_blocks, pb, sum;
1990 	RF_RaidAddr_t raid_addr;
1991 	struct partition *pp;
1992 	daddr_t blocknum;
1993 	int     unit;
1994 	struct raid_softc *rs;
1995 	int     do_async;
1996 	struct buf *bp;
1997 	int rc;
1998 
1999 	unit = raidPtr->raidid;
2000 	rs = &raid_softc[unit];
2001 
2002 	/* quick check to see if anything has died recently */
2003 	RF_LOCK_MUTEX(raidPtr->mutex);
2004 	if (raidPtr->numNewFailures > 0) {
2005 		RF_UNLOCK_MUTEX(raidPtr->mutex);
2006 		rf_update_component_labels(raidPtr,
2007 					   RF_NORMAL_COMPONENT_UPDATE);
2008 		RF_LOCK_MUTEX(raidPtr->mutex);
2009 		raidPtr->numNewFailures--;
2010 	}
2011 
2012 	/* Check to see if we're at the limit... */
2013 	while (raidPtr->openings > 0) {
2014 		RF_UNLOCK_MUTEX(raidPtr->mutex);
2015 
2016 		/* get the next item, if any, from the queue */
2017 		if ((bp = bufq_get(rs->buf_queue)) == NULL) {
2018 			/* nothing more to do */
2019 			return;
2020 		}
2021 
2022 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
2023 		 * partition.. Need to make it absolute to the underlying
2024 		 * device.. */
2025 
2026 		blocknum = bp->b_blkno;
2027 		if (DISKPART(bp->b_dev) != RAW_PART) {
2028 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
2029 			blocknum += pp->p_offset;
2030 		}
2031 
2032 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2033 			    (int) blocknum));
2034 
2035 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2036 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2037 
2038 		/* *THIS* is where we adjust what block we're going to...
2039 		 * but DO NOT TOUCH bp->b_blkno!!! */
2040 		raid_addr = blocknum;
2041 
2042 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2043 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2044 		sum = raid_addr + num_blocks + pb;
2045 		if (1 || rf_debugKernelAccess) {
2046 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2047 				    (int) raid_addr, (int) sum, (int) num_blocks,
2048 				    (int) pb, (int) bp->b_resid));
2049 		}
2050 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2051 		    || (sum < num_blocks) || (sum < pb)) {
2052 			bp->b_error = ENOSPC;
2053 			bp->b_resid = bp->b_bcount;
2054 			biodone(bp);
2055 			RF_LOCK_MUTEX(raidPtr->mutex);
2056 			continue;
2057 		}
2058 		/*
2059 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2060 		 */
2061 
2062 		if (bp->b_bcount & raidPtr->sectorMask) {
2063 			bp->b_error = EINVAL;
2064 			bp->b_resid = bp->b_bcount;
2065 			biodone(bp);
2066 			RF_LOCK_MUTEX(raidPtr->mutex);
2067 			continue;
2068 
2069 		}
2070 		db1_printf(("Calling DoAccess..\n"));
2071 
2072 
2073 		RF_LOCK_MUTEX(raidPtr->mutex);
2074 		raidPtr->openings--;
2075 		RF_UNLOCK_MUTEX(raidPtr->mutex);
2076 
2077 		/*
2078 		 * Everything is async.
2079 		 */
2080 		do_async = 1;
2081 
2082 		disk_busy(&rs->sc_dkdev);
2083 
2084 		/* XXX we're still at splbio() here... do we *really*
2085 		   need to be? */
2086 
2087 		/* don't ever condition on bp->b_flags & B_WRITE.
2088 		 * always condition on B_READ instead */
2089 
2090 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2091 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2092 				 do_async, raid_addr, num_blocks,
2093 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2094 
2095 		if (rc) {
2096 			bp->b_error = rc;
2097 			bp->b_resid = bp->b_bcount;
2098 			biodone(bp);
2099 			/* continue loop */
2100 		}
2101 
2102 		RF_LOCK_MUTEX(raidPtr->mutex);
2103 	}
2104 	RF_UNLOCK_MUTEX(raidPtr->mutex);
2105 }
2106 
2107 
2108 
2109 
2110 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
2111 
2112 int
2113 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2114 {
2115 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2116 	struct buf *bp;
2117 
2118 	req->queue = queue;
2119 	bp = req->bp;
2120 
2121 	switch (req->type) {
2122 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
2123 		/* XXX need to do something extra here.. */
2124 		/* I'm leaving this in, as I've never actually seen it used,
2125 		 * and I'd like folks to report it... GO */
2126 		printf(("WAKEUP CALLED\n"));
2127 		queue->numOutstanding++;
2128 
2129 		bp->b_flags = 0;
2130 		bp->b_private = req;
2131 
2132 		KernelWakeupFunc(bp);
2133 		break;
2134 
2135 	case RF_IO_TYPE_READ:
2136 	case RF_IO_TYPE_WRITE:
2137 #if RF_ACC_TRACE > 0
2138 		if (req->tracerec) {
2139 			RF_ETIMER_START(req->tracerec->timer);
2140 		}
2141 #endif
2142 		InitBP(bp, queue->rf_cinfo->ci_vp,
2143 		    op, queue->rf_cinfo->ci_dev,
2144 		    req->sectorOffset, req->numSector,
2145 		    req->buf, KernelWakeupFunc, (void *) req,
2146 		    queue->raidPtr->logBytesPerSector, req->b_proc);
2147 
2148 		if (rf_debugKernelAccess) {
2149 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
2150 				(long) bp->b_blkno));
2151 		}
2152 		queue->numOutstanding++;
2153 		queue->last_deq_sector = req->sectorOffset;
2154 		/* acc wouldn't have been let in if there were any pending
2155 		 * reqs at any other priority */
2156 		queue->curPriority = req->priority;
2157 
2158 		db1_printf(("Going for %c to unit %d col %d\n",
2159 			    req->type, queue->raidPtr->raidid,
2160 			    queue->col));
2161 		db1_printf(("sector %d count %d (%d bytes) %d\n",
2162 			(int) req->sectorOffset, (int) req->numSector,
2163 			(int) (req->numSector <<
2164 			    queue->raidPtr->logBytesPerSector),
2165 			(int) queue->raidPtr->logBytesPerSector));
2166 
2167 		/*
2168 		 * XXX: drop lock here since this can block at
2169 		 * least with backing SCSI devices.  Retake it
2170 		 * to minimize fuss with calling interfaces.
2171 		 */
2172 
2173 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2174 		bdev_strategy(bp);
2175 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2176 		break;
2177 
2178 	default:
2179 		panic("bad req->type in rf_DispatchKernelIO");
2180 	}
2181 	db1_printf(("Exiting from DispatchKernelIO\n"));
2182 
2183 	return (0);
2184 }
2185 /* this is the callback function associated with a I/O invoked from
2186    kernel code.
2187  */
2188 static void
2189 KernelWakeupFunc(struct buf *bp)
2190 {
2191 	RF_DiskQueueData_t *req = NULL;
2192 	RF_DiskQueue_t *queue;
2193 	int s;
2194 
2195 	s = splbio();
2196 	db1_printf(("recovering the request queue:\n"));
2197 	req = bp->b_private;
2198 
2199 	queue = (RF_DiskQueue_t *) req->queue;
2200 
2201 #if RF_ACC_TRACE > 0
2202 	if (req->tracerec) {
2203 		RF_ETIMER_STOP(req->tracerec->timer);
2204 		RF_ETIMER_EVAL(req->tracerec->timer);
2205 		RF_LOCK_MUTEX(rf_tracing_mutex);
2206 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2207 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2208 		req->tracerec->num_phys_ios++;
2209 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
2210 	}
2211 #endif
2212 
2213 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
2214 	 * ballistic, and mark the component as hosed... */
2215 
2216 	if (bp->b_error != 0) {
2217 		/* Mark the disk as dead */
2218 		/* but only mark it once... */
2219 		/* and only if it wouldn't leave this RAID set
2220 		   completely broken */
2221 		if (((queue->raidPtr->Disks[queue->col].status ==
2222 		      rf_ds_optimal) ||
2223 		     (queue->raidPtr->Disks[queue->col].status ==
2224 		      rf_ds_used_spare)) &&
2225 		     (queue->raidPtr->numFailures <
2226 		      queue->raidPtr->Layout.map->faultsTolerated)) {
2227 			printf("raid%d: IO Error.  Marking %s as failed.\n",
2228 			       queue->raidPtr->raidid,
2229 			       queue->raidPtr->Disks[queue->col].devname);
2230 			queue->raidPtr->Disks[queue->col].status =
2231 			    rf_ds_failed;
2232 			queue->raidPtr->status = rf_rs_degraded;
2233 			queue->raidPtr->numFailures++;
2234 			queue->raidPtr->numNewFailures++;
2235 		} else {	/* Disk is already dead... */
2236 			/* printf("Disk already marked as dead!\n"); */
2237 		}
2238 
2239 	}
2240 
2241 	/* Fill in the error value */
2242 
2243 	req->error = bp->b_error;
2244 
2245 	simple_lock(&queue->raidPtr->iodone_lock);
2246 
2247 	/* Drop this one on the "finished" queue... */
2248 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2249 
2250 	/* Let the raidio thread know there is work to be done. */
2251 	wakeup(&(queue->raidPtr->iodone));
2252 
2253 	simple_unlock(&queue->raidPtr->iodone_lock);
2254 
2255 	splx(s);
2256 }
2257 
2258 
2259 
2260 /*
2261  * initialize a buf structure for doing an I/O in the kernel.
2262  */
2263 static void
2264 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2265        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2266        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2267        struct proc *b_proc)
2268 {
2269 	/* bp->b_flags       = B_PHYS | rw_flag; */
2270 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
2271 	bp->b_oflags = 0;
2272 	bp->b_cflags = 0;
2273 	bp->b_bcount = numSect << logBytesPerSector;
2274 	bp->b_bufsize = bp->b_bcount;
2275 	bp->b_error = 0;
2276 	bp->b_dev = dev;
2277 	bp->b_data = bf;
2278 	bp->b_blkno = startSect;
2279 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
2280 	if (bp->b_bcount == 0) {
2281 		panic("bp->b_bcount is zero in InitBP!!");
2282 	}
2283 	bp->b_proc = b_proc;
2284 	bp->b_iodone = cbFunc;
2285 	bp->b_private = cbArg;
2286 }
2287 
2288 static void
2289 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2290 		    struct disklabel *lp)
2291 {
2292 	memset(lp, 0, sizeof(*lp));
2293 
2294 	/* fabricate a label... */
2295 	lp->d_secperunit = raidPtr->totalSectors;
2296 	lp->d_secsize = raidPtr->bytesPerSector;
2297 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2298 	lp->d_ntracks = 4 * raidPtr->numCol;
2299 	lp->d_ncylinders = raidPtr->totalSectors /
2300 		(lp->d_nsectors * lp->d_ntracks);
2301 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2302 
2303 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2304 	lp->d_type = DTYPE_RAID;
2305 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2306 	lp->d_rpm = 3600;
2307 	lp->d_interleave = 1;
2308 	lp->d_flags = 0;
2309 
2310 	lp->d_partitions[RAW_PART].p_offset = 0;
2311 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2312 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2313 	lp->d_npartitions = RAW_PART + 1;
2314 
2315 	lp->d_magic = DISKMAGIC;
2316 	lp->d_magic2 = DISKMAGIC;
2317 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2318 
2319 }
2320 /*
2321  * Read the disklabel from the raid device.  If one is not present, fake one
2322  * up.
2323  */
2324 static void
2325 raidgetdisklabel(dev_t dev)
2326 {
2327 	int     unit = raidunit(dev);
2328 	struct raid_softc *rs = &raid_softc[unit];
2329 	const char   *errstring;
2330 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2331 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2332 	RF_Raid_t *raidPtr;
2333 
2334 	db1_printf(("Getting the disklabel...\n"));
2335 
2336 	memset(clp, 0, sizeof(*clp));
2337 
2338 	raidPtr = raidPtrs[unit];
2339 
2340 	raidgetdefaultlabel(raidPtr, rs, lp);
2341 
2342 	/*
2343 	 * Call the generic disklabel extraction routine.
2344 	 */
2345 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2346 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2347 	if (errstring)
2348 		raidmakedisklabel(rs);
2349 	else {
2350 		int     i;
2351 		struct partition *pp;
2352 
2353 		/*
2354 		 * Sanity check whether the found disklabel is valid.
2355 		 *
2356 		 * This is necessary since total size of the raid device
2357 		 * may vary when an interleave is changed even though exactly
2358 		 * same components are used, and old disklabel may used
2359 		 * if that is found.
2360 		 */
2361 		if (lp->d_secperunit != rs->sc_size)
2362 			printf("raid%d: WARNING: %s: "
2363 			    "total sector size in disklabel (%" PRIu32 ") != "
2364 			    "the size of raid (%" PRIu64 ")\n", unit, rs->sc_xname,
2365 			    lp->d_secperunit, rs->sc_size);
2366 		for (i = 0; i < lp->d_npartitions; i++) {
2367 			pp = &lp->d_partitions[i];
2368 			if (pp->p_offset + pp->p_size > rs->sc_size)
2369 				printf("raid%d: WARNING: %s: end of partition `%c' "
2370 				       "exceeds the size of raid (%" PRIu64 ")\n",
2371 				       unit, rs->sc_xname, 'a' + i, rs->sc_size);
2372 		}
2373 	}
2374 
2375 }
2376 /*
2377  * Take care of things one might want to take care of in the event
2378  * that a disklabel isn't present.
2379  */
2380 static void
2381 raidmakedisklabel(struct raid_softc *rs)
2382 {
2383 	struct disklabel *lp = rs->sc_dkdev.dk_label;
2384 	db1_printf(("Making a label..\n"));
2385 
2386 	/*
2387 	 * For historical reasons, if there's no disklabel present
2388 	 * the raw partition must be marked FS_BSDFFS.
2389 	 */
2390 
2391 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2392 
2393 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2394 
2395 	lp->d_checksum = dkcksum(lp);
2396 }
2397 /*
2398  * Wait interruptibly for an exclusive lock.
2399  *
2400  * XXX
2401  * Several drivers do this; it should be abstracted and made MP-safe.
2402  * (Hmm... where have we seen this warning before :->  GO )
2403  */
2404 static int
2405 raidlock(struct raid_softc *rs)
2406 {
2407 	int     error;
2408 
2409 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2410 		rs->sc_flags |= RAIDF_WANTED;
2411 		if ((error =
2412 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2413 			return (error);
2414 	}
2415 	rs->sc_flags |= RAIDF_LOCKED;
2416 	return (0);
2417 }
2418 /*
2419  * Unlock and wake up any waiters.
2420  */
2421 static void
2422 raidunlock(struct raid_softc *rs)
2423 {
2424 
2425 	rs->sc_flags &= ~RAIDF_LOCKED;
2426 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2427 		rs->sc_flags &= ~RAIDF_WANTED;
2428 		wakeup(rs);
2429 	}
2430 }
2431 
2432 
2433 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
2434 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
2435 #define RF_PARITY_MAP_OFFSET \
2436 	(RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
2437 #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
2438 
2439 int
2440 raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2441 {
2442 	RF_ComponentLabel_t *clabel;
2443 
2444 	clabel = raidget_component_label(raidPtr, col);
2445 	clabel->clean = RF_RAID_CLEAN;
2446 	raidflush_component_label(raidPtr, col);
2447 	return(0);
2448 }
2449 
2450 
2451 int
2452 raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2453 {
2454 	RF_ComponentLabel_t *clabel;
2455 
2456 	clabel = raidget_component_label(raidPtr, col);
2457 	clabel->clean = RF_RAID_DIRTY;
2458 	raidflush_component_label(raidPtr, col);
2459 	return(0);
2460 }
2461 
2462 int
2463 raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2464 {
2465 	return raidread_component_label(raidPtr->Disks[col].dev,
2466 	    raidPtr->raid_cinfo[col].ci_vp,
2467 	    &raidPtr->raid_cinfo[col].ci_label);
2468 }
2469 
2470 RF_ComponentLabel_t *
2471 raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2472 {
2473 	return &raidPtr->raid_cinfo[col].ci_label;
2474 }
2475 
2476 int
2477 raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2478 {
2479 	RF_ComponentLabel_t *label;
2480 
2481 	label = &raidPtr->raid_cinfo[col].ci_label;
2482 	label->mod_counter = raidPtr->mod_counter;
2483 #ifndef RF_NO_PARITY_MAP
2484 	label->parity_map_modcount = label->mod_counter;
2485 #endif
2486 	return raidwrite_component_label(raidPtr->Disks[col].dev,
2487 	    raidPtr->raid_cinfo[col].ci_vp, label);
2488 }
2489 
2490 
2491 static int
2492 raidread_component_label(dev_t dev, struct vnode *b_vp,
2493     RF_ComponentLabel_t *clabel)
2494 {
2495 	return raidread_component_area(dev, b_vp, clabel,
2496 	    sizeof(RF_ComponentLabel_t),
2497 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
2498 }
2499 
2500 /* ARGSUSED */
2501 static int
2502 raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2503     size_t msize, daddr_t offset, daddr_t dsize)
2504 {
2505 	struct buf *bp;
2506 	const struct bdevsw *bdev;
2507 	int error;
2508 
2509 	/* XXX should probably ensure that we don't try to do this if
2510 	   someone has changed rf_protected_sectors. */
2511 
2512 	if (b_vp == NULL) {
2513 		/* For whatever reason, this component is not valid.
2514 		   Don't try to read a component label from it. */
2515 		return(EINVAL);
2516 	}
2517 
2518 	/* get a block of the appropriate size... */
2519 	bp = geteblk((int)dsize);
2520 	bp->b_dev = dev;
2521 
2522 	/* get our ducks in a row for the read */
2523 	bp->b_blkno = offset / DEV_BSIZE;
2524 	bp->b_bcount = dsize;
2525 	bp->b_flags |= B_READ;
2526  	bp->b_resid = dsize;
2527 
2528 	bdev = bdevsw_lookup(bp->b_dev);
2529 	if (bdev == NULL)
2530 		return (ENXIO);
2531 	(*bdev->d_strategy)(bp);
2532 
2533 	error = biowait(bp);
2534 
2535 	if (!error) {
2536 		memcpy(data, bp->b_data, msize);
2537 	}
2538 
2539 	brelse(bp, 0);
2540 	return(error);
2541 }
2542 
2543 
2544 static int
2545 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2546 	RF_ComponentLabel_t *clabel)
2547 {
2548 	return raidwrite_component_area(dev, b_vp, clabel,
2549 	    sizeof(RF_ComponentLabel_t),
2550 	    RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
2551 }
2552 
2553 /* ARGSUSED */
2554 static int
2555 raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2556     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2557 {
2558 	struct buf *bp;
2559 	const struct bdevsw *bdev;
2560 	int error;
2561 
2562 	/* get a block of the appropriate size... */
2563 	bp = geteblk((int)dsize);
2564 	bp->b_dev = dev;
2565 
2566 	/* get our ducks in a row for the write */
2567 	bp->b_blkno = offset / DEV_BSIZE;
2568 	bp->b_bcount = dsize;
2569 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2570  	bp->b_resid = dsize;
2571 
2572 	memset(bp->b_data, 0, dsize);
2573 	memcpy(bp->b_data, data, msize);
2574 
2575 	bdev = bdevsw_lookup(bp->b_dev);
2576 	if (bdev == NULL)
2577 		return (ENXIO);
2578 	(*bdev->d_strategy)(bp);
2579 	if (asyncp)
2580 		return 0;
2581 	error = biowait(bp);
2582 	brelse(bp, 0);
2583 	if (error) {
2584 #if 1
2585 		printf("Failed to write RAID component info!\n");
2586 #endif
2587 	}
2588 
2589 	return(error);
2590 }
2591 
2592 void
2593 rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2594 {
2595 	int c;
2596 
2597 	for (c = 0; c < raidPtr->numCol; c++) {
2598 		/* Skip dead disks. */
2599 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2600 			continue;
2601 		/* XXXjld: what if an error occurs here? */
2602 		raidwrite_component_area(raidPtr->Disks[c].dev,
2603 		    raidPtr->raid_cinfo[c].ci_vp, map,
2604 		    RF_PARITYMAP_NBYTE,
2605 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
2606 	}
2607 }
2608 
2609 void
2610 rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2611 {
2612 	struct rf_paritymap_ondisk tmp;
2613 	int c;
2614 
2615 	for (c = 0; c < raidPtr->numCol; c++) {
2616 		/* Skip dead disks. */
2617 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2618 			continue;
2619 		raidread_component_area(raidPtr->Disks[c].dev,
2620 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
2621 		    RF_PARITYMAP_NBYTE,
2622 		    RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
2623 		if (c == 0) {
2624 			memcpy(map, &tmp, sizeof(*map));
2625 		} else {
2626 			rf_paritymap_merge(map, &tmp);
2627 		}
2628 	}
2629 }
2630 
2631 void
2632 rf_markalldirty(RF_Raid_t *raidPtr)
2633 {
2634 	RF_ComponentLabel_t *clabel;
2635 	int sparecol;
2636 	int c;
2637 	int j;
2638 	int scol = -1;
2639 
2640 	raidPtr->mod_counter++;
2641 	for (c = 0; c < raidPtr->numCol; c++) {
2642 		/* we don't want to touch (at all) a disk that has
2643 		   failed */
2644 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2645 			clabel = raidget_component_label(raidPtr, c);
2646 			if (clabel->status == rf_ds_spared) {
2647 				/* XXX do something special...
2648 				   but whatever you do, don't
2649 				   try to access it!! */
2650 			} else {
2651 				raidmarkdirty(raidPtr, c);
2652 			}
2653 		}
2654 	}
2655 
2656 	for( c = 0; c < raidPtr->numSpare ; c++) {
2657 		sparecol = raidPtr->numCol + c;
2658 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2659 			/*
2660 
2661 			   we claim this disk is "optimal" if it's
2662 			   rf_ds_used_spare, as that means it should be
2663 			   directly substitutable for the disk it replaced.
2664 			   We note that too...
2665 
2666 			 */
2667 
2668 			for(j=0;j<raidPtr->numCol;j++) {
2669 				if (raidPtr->Disks[j].spareCol == sparecol) {
2670 					scol = j;
2671 					break;
2672 				}
2673 			}
2674 
2675 			clabel = raidget_component_label(raidPtr, sparecol);
2676 			/* make sure status is noted */
2677 
2678 			raid_init_component_label(raidPtr, clabel);
2679 
2680 			clabel->row = 0;
2681 			clabel->column = scol;
2682 			/* Note: we *don't* change status from rf_ds_used_spare
2683 			   to rf_ds_optimal */
2684 			/* clabel.status = rf_ds_optimal; */
2685 
2686 			raidmarkdirty(raidPtr, sparecol);
2687 		}
2688 	}
2689 }
2690 
2691 
2692 void
2693 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2694 {
2695 	RF_ComponentLabel_t *clabel;
2696 	int sparecol;
2697 	int c;
2698 	int j;
2699 	int scol;
2700 
2701 	scol = -1;
2702 
2703 	/* XXX should do extra checks to make sure things really are clean,
2704 	   rather than blindly setting the clean bit... */
2705 
2706 	raidPtr->mod_counter++;
2707 
2708 	for (c = 0; c < raidPtr->numCol; c++) {
2709 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
2710 			clabel = raidget_component_label(raidPtr, c);
2711 			/* make sure status is noted */
2712 			clabel->status = rf_ds_optimal;
2713 
2714 			/* note what unit we are configured as */
2715 			clabel->last_unit = raidPtr->raidid;
2716 
2717 			raidflush_component_label(raidPtr, c);
2718 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2719 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2720 					raidmarkclean(raidPtr, c);
2721 				}
2722 			}
2723 		}
2724 		/* else we don't touch it.. */
2725 	}
2726 
2727 	for( c = 0; c < raidPtr->numSpare ; c++) {
2728 		sparecol = raidPtr->numCol + c;
2729 		/* Need to ensure that the reconstruct actually completed! */
2730 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2731 			/*
2732 
2733 			   we claim this disk is "optimal" if it's
2734 			   rf_ds_used_spare, as that means it should be
2735 			   directly substitutable for the disk it replaced.
2736 			   We note that too...
2737 
2738 			 */
2739 
2740 			for(j=0;j<raidPtr->numCol;j++) {
2741 				if (raidPtr->Disks[j].spareCol == sparecol) {
2742 					scol = j;
2743 					break;
2744 				}
2745 			}
2746 
2747 			/* XXX shouldn't *really* need this... */
2748 			clabel = raidget_component_label(raidPtr, sparecol);
2749 			/* make sure status is noted */
2750 
2751 			raid_init_component_label(raidPtr, clabel);
2752 
2753 			clabel->column = scol;
2754 			clabel->status = rf_ds_optimal;
2755 			clabel->last_unit = raidPtr->raidid;
2756 
2757 			raidflush_component_label(raidPtr, sparecol);
2758 			if (final == RF_FINAL_COMPONENT_UPDATE) {
2759 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
2760 					raidmarkclean(raidPtr, sparecol);
2761 				}
2762 			}
2763 		}
2764 	}
2765 }
2766 
2767 void
2768 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2769 {
2770 
2771 	if (vp != NULL) {
2772 		if (auto_configured == 1) {
2773 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2774 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2775 			vput(vp);
2776 
2777 		} else {
2778 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2779 		}
2780 	}
2781 }
2782 
2783 
2784 void
2785 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2786 {
2787 	int r,c;
2788 	struct vnode *vp;
2789 	int acd;
2790 
2791 
2792 	/* We take this opportunity to close the vnodes like we should.. */
2793 
2794 	for (c = 0; c < raidPtr->numCol; c++) {
2795 		vp = raidPtr->raid_cinfo[c].ci_vp;
2796 		acd = raidPtr->Disks[c].auto_configured;
2797 		rf_close_component(raidPtr, vp, acd);
2798 		raidPtr->raid_cinfo[c].ci_vp = NULL;
2799 		raidPtr->Disks[c].auto_configured = 0;
2800 	}
2801 
2802 	for (r = 0; r < raidPtr->numSpare; r++) {
2803 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2804 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2805 		rf_close_component(raidPtr, vp, acd);
2806 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2807 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2808 	}
2809 }
2810 
2811 
2812 void
2813 rf_ReconThread(struct rf_recon_req *req)
2814 {
2815 	int     s;
2816 	RF_Raid_t *raidPtr;
2817 
2818 	s = splbio();
2819 	raidPtr = (RF_Raid_t *) req->raidPtr;
2820 	raidPtr->recon_in_progress = 1;
2821 
2822 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2823 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2824 
2825 	RF_Free(req, sizeof(*req));
2826 
2827 	raidPtr->recon_in_progress = 0;
2828 	splx(s);
2829 
2830 	/* That's all... */
2831 	kthread_exit(0);	/* does not return */
2832 }
2833 
2834 void
2835 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2836 {
2837 	int retcode;
2838 	int s;
2839 
2840 	raidPtr->parity_rewrite_stripes_done = 0;
2841 	raidPtr->parity_rewrite_in_progress = 1;
2842 	s = splbio();
2843 	retcode = rf_RewriteParity(raidPtr);
2844 	splx(s);
2845 	if (retcode) {
2846 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2847 	} else {
2848 		/* set the clean bit!  If we shutdown correctly,
2849 		   the clean bit on each component label will get
2850 		   set */
2851 		raidPtr->parity_good = RF_RAID_CLEAN;
2852 	}
2853 	raidPtr->parity_rewrite_in_progress = 0;
2854 
2855 	/* Anyone waiting for us to stop?  If so, inform them... */
2856 	if (raidPtr->waitShutdown) {
2857 		wakeup(&raidPtr->parity_rewrite_in_progress);
2858 	}
2859 
2860 	/* That's all... */
2861 	kthread_exit(0);	/* does not return */
2862 }
2863 
2864 
2865 void
2866 rf_CopybackThread(RF_Raid_t *raidPtr)
2867 {
2868 	int s;
2869 
2870 	raidPtr->copyback_in_progress = 1;
2871 	s = splbio();
2872 	rf_CopybackReconstructedData(raidPtr);
2873 	splx(s);
2874 	raidPtr->copyback_in_progress = 0;
2875 
2876 	/* That's all... */
2877 	kthread_exit(0);	/* does not return */
2878 }
2879 
2880 
2881 void
2882 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2883 {
2884 	int s;
2885 	RF_Raid_t *raidPtr;
2886 
2887 	s = splbio();
2888 	raidPtr = req->raidPtr;
2889 	raidPtr->recon_in_progress = 1;
2890 	rf_ReconstructInPlace(raidPtr, req->col);
2891 	RF_Free(req, sizeof(*req));
2892 	raidPtr->recon_in_progress = 0;
2893 	splx(s);
2894 
2895 	/* That's all... */
2896 	kthread_exit(0);	/* does not return */
2897 }
2898 
2899 static RF_AutoConfig_t *
2900 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2901     const char *cname, RF_SectorCount_t size)
2902 {
2903 	int good_one = 0;
2904 	RF_ComponentLabel_t *clabel;
2905 	RF_AutoConfig_t *ac;
2906 
2907 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2908 	if (clabel == NULL) {
2909 oomem:
2910 		    while(ac_list) {
2911 			    ac = ac_list;
2912 			    if (ac->clabel)
2913 				    free(ac->clabel, M_RAIDFRAME);
2914 			    ac_list = ac_list->next;
2915 			    free(ac, M_RAIDFRAME);
2916 		    }
2917 		    printf("RAID auto config: out of memory!\n");
2918 		    return NULL; /* XXX probably should panic? */
2919 	}
2920 
2921 	if (!raidread_component_label(dev, vp, clabel)) {
2922 		    /* Got the label.  Does it look reasonable? */
2923 		    if (rf_reasonable_label(clabel) &&
2924 			(clabel->partitionSize <= size)) {
2925 #ifdef DEBUG
2926 			    printf("Component on: %s: %llu\n",
2927 				cname, (unsigned long long)size);
2928 			    rf_print_component_label(clabel);
2929 #endif
2930 			    /* if it's reasonable, add it, else ignore it. */
2931 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2932 				M_NOWAIT);
2933 			    if (ac == NULL) {
2934 				    free(clabel, M_RAIDFRAME);
2935 				    goto oomem;
2936 			    }
2937 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
2938 			    ac->dev = dev;
2939 			    ac->vp = vp;
2940 			    ac->clabel = clabel;
2941 			    ac->next = ac_list;
2942 			    ac_list = ac;
2943 			    good_one = 1;
2944 		    }
2945 	}
2946 	if (!good_one) {
2947 		/* cleanup */
2948 		free(clabel, M_RAIDFRAME);
2949 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2950 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2951 		vput(vp);
2952 	}
2953 	return ac_list;
2954 }
2955 
2956 RF_AutoConfig_t *
2957 rf_find_raid_components(void)
2958 {
2959 	struct vnode *vp;
2960 	struct disklabel label;
2961 	device_t dv;
2962 	deviter_t di;
2963 	dev_t dev;
2964 	int bmajor, bminor, wedge;
2965 	int error;
2966 	int i;
2967 	RF_AutoConfig_t *ac_list;
2968 
2969 
2970 	/* initialize the AutoConfig list */
2971 	ac_list = NULL;
2972 
2973 	/* we begin by trolling through *all* the devices on the system */
2974 
2975 	for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2976 	     dv = deviter_next(&di)) {
2977 
2978 		/* we are only interested in disks... */
2979 		if (device_class(dv) != DV_DISK)
2980 			continue;
2981 
2982 		/* we don't care about floppies... */
2983 		if (device_is_a(dv, "fd")) {
2984 			continue;
2985 		}
2986 
2987 		/* we don't care about CD's... */
2988 		if (device_is_a(dv, "cd")) {
2989 			continue;
2990 		}
2991 
2992 		/* we don't care about md's... */
2993 		if (device_is_a(dv, "md")) {
2994 			continue;
2995 		}
2996 
2997 		/* hdfd is the Atari/Hades floppy driver */
2998 		if (device_is_a(dv, "hdfd")) {
2999 			continue;
3000 		}
3001 
3002 		/* fdisa is the Atari/Milan floppy driver */
3003 		if (device_is_a(dv, "fdisa")) {
3004 			continue;
3005 		}
3006 
3007 		/* need to find the device_name_to_block_device_major stuff */
3008 		bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
3009 
3010 		/* get a vnode for the raw partition of this disk */
3011 
3012 		wedge = device_is_a(dv, "dk");
3013 		bminor = minor(device_unit(dv));
3014 		dev = wedge ? makedev(bmajor, bminor) :
3015 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
3016 		if (bdevvp(dev, &vp))
3017 			panic("RAID can't alloc vnode");
3018 
3019 		error = VOP_OPEN(vp, FREAD, NOCRED);
3020 
3021 		if (error) {
3022 			/* "Who cares."  Continue looking
3023 			   for something that exists*/
3024 			vput(vp);
3025 			continue;
3026 		}
3027 
3028 		if (wedge) {
3029 			struct dkwedge_info dkw;
3030 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
3031 			    NOCRED);
3032 			if (error) {
3033 				printf("RAIDframe: can't get wedge info for "
3034 				    "dev %s (%d)\n", device_xname(dv), error);
3035 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3036 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3037 				vput(vp);
3038 				continue;
3039 			}
3040 
3041 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3042 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3043 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3044 				vput(vp);
3045 				continue;
3046 			}
3047 
3048 			ac_list = rf_get_component(ac_list, dev, vp,
3049 			    device_xname(dv), dkw.dkw_size);
3050 			continue;
3051 		}
3052 
3053 		/* Ok, the disk exists.  Go get the disklabel. */
3054 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3055 		if (error) {
3056 			/*
3057 			 * XXX can't happen - open() would
3058 			 * have errored out (or faked up one)
3059 			 */
3060 			if (error != ENOTTY)
3061 				printf("RAIDframe: can't get label for dev "
3062 				    "%s (%d)\n", device_xname(dv), error);
3063 		}
3064 
3065 		/* don't need this any more.  We'll allocate it again
3066 		   a little later if we really do... */
3067 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3068 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3069 		vput(vp);
3070 
3071 		if (error)
3072 			continue;
3073 
3074 		for (i = 0; i < label.d_npartitions; i++) {
3075 			char cname[sizeof(ac_list->devname)];
3076 
3077 			/* We only support partitions marked as RAID */
3078 			if (label.d_partitions[i].p_fstype != FS_RAID)
3079 				continue;
3080 
3081 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3082 			if (bdevvp(dev, &vp))
3083 				panic("RAID can't alloc vnode");
3084 
3085 			error = VOP_OPEN(vp, FREAD, NOCRED);
3086 			if (error) {
3087 				/* Whatever... */
3088 				vput(vp);
3089 				continue;
3090 			}
3091 			snprintf(cname, sizeof(cname), "%s%c",
3092 			    device_xname(dv), 'a' + i);
3093 			ac_list = rf_get_component(ac_list, dev, vp, cname,
3094 				label.d_partitions[i].p_size);
3095 		}
3096 	}
3097 	deviter_release(&di);
3098 	return ac_list;
3099 }
3100 
3101 
3102 static int
3103 rf_reasonable_label(RF_ComponentLabel_t *clabel)
3104 {
3105 
3106 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3107 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3108 	    ((clabel->clean == RF_RAID_CLEAN) ||
3109 	     (clabel->clean == RF_RAID_DIRTY)) &&
3110 	    clabel->row >=0 &&
3111 	    clabel->column >= 0 &&
3112 	    clabel->num_rows > 0 &&
3113 	    clabel->num_columns > 0 &&
3114 	    clabel->row < clabel->num_rows &&
3115 	    clabel->column < clabel->num_columns &&
3116 	    clabel->blockSize > 0 &&
3117 	    clabel->numBlocks > 0) {
3118 		/* label looks reasonable enough... */
3119 		return(1);
3120 	}
3121 	return(0);
3122 }
3123 
3124 
3125 #ifdef DEBUG
3126 void
3127 rf_print_component_label(RF_ComponentLabel_t *clabel)
3128 {
3129 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3130 	       clabel->row, clabel->column,
3131 	       clabel->num_rows, clabel->num_columns);
3132 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
3133 	       clabel->version, clabel->serial_number,
3134 	       clabel->mod_counter);
3135 	printf("   Clean: %s Status: %d\n",
3136 	       clabel->clean ? "Yes" : "No", clabel->status);
3137 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3138 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3139 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
3140 	       (char) clabel->parityConfig, clabel->blockSize,
3141 	       clabel->numBlocks);
3142 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3143 	printf("   Contains root partition: %s\n",
3144 	       clabel->root_partition ? "Yes" : "No");
3145 	printf("   Last configured as: raid%d\n", clabel->last_unit);
3146 #if 0
3147 	   printf("   Config order: %d\n", clabel->config_order);
3148 #endif
3149 
3150 }
3151 #endif
3152 
3153 RF_ConfigSet_t *
3154 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3155 {
3156 	RF_AutoConfig_t *ac;
3157 	RF_ConfigSet_t *config_sets;
3158 	RF_ConfigSet_t *cset;
3159 	RF_AutoConfig_t *ac_next;
3160 
3161 
3162 	config_sets = NULL;
3163 
3164 	/* Go through the AutoConfig list, and figure out which components
3165 	   belong to what sets.  */
3166 	ac = ac_list;
3167 	while(ac!=NULL) {
3168 		/* we're going to putz with ac->next, so save it here
3169 		   for use at the end of the loop */
3170 		ac_next = ac->next;
3171 
3172 		if (config_sets == NULL) {
3173 			/* will need at least this one... */
3174 			config_sets = (RF_ConfigSet_t *)
3175 				malloc(sizeof(RF_ConfigSet_t),
3176 				       M_RAIDFRAME, M_NOWAIT);
3177 			if (config_sets == NULL) {
3178 				panic("rf_create_auto_sets: No memory!");
3179 			}
3180 			/* this one is easy :) */
3181 			config_sets->ac = ac;
3182 			config_sets->next = NULL;
3183 			config_sets->rootable = 0;
3184 			ac->next = NULL;
3185 		} else {
3186 			/* which set does this component fit into? */
3187 			cset = config_sets;
3188 			while(cset!=NULL) {
3189 				if (rf_does_it_fit(cset, ac)) {
3190 					/* looks like it matches... */
3191 					ac->next = cset->ac;
3192 					cset->ac = ac;
3193 					break;
3194 				}
3195 				cset = cset->next;
3196 			}
3197 			if (cset==NULL) {
3198 				/* didn't find a match above... new set..*/
3199 				cset = (RF_ConfigSet_t *)
3200 					malloc(sizeof(RF_ConfigSet_t),
3201 					       M_RAIDFRAME, M_NOWAIT);
3202 				if (cset == NULL) {
3203 					panic("rf_create_auto_sets: No memory!");
3204 				}
3205 				cset->ac = ac;
3206 				ac->next = NULL;
3207 				cset->next = config_sets;
3208 				cset->rootable = 0;
3209 				config_sets = cset;
3210 			}
3211 		}
3212 		ac = ac_next;
3213 	}
3214 
3215 
3216 	return(config_sets);
3217 }
3218 
3219 static int
3220 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3221 {
3222 	RF_ComponentLabel_t *clabel1, *clabel2;
3223 
3224 	/* If this one matches the *first* one in the set, that's good
3225 	   enough, since the other members of the set would have been
3226 	   through here too... */
3227 	/* note that we are not checking partitionSize here..
3228 
3229 	   Note that we are also not checking the mod_counters here.
3230 	   If everything else matches execpt the mod_counter, that's
3231 	   good enough for this test.  We will deal with the mod_counters
3232 	   a little later in the autoconfiguration process.
3233 
3234 	    (clabel1->mod_counter == clabel2->mod_counter) &&
3235 
3236 	   The reason we don't check for this is that failed disks
3237 	   will have lower modification counts.  If those disks are
3238 	   not added to the set they used to belong to, then they will
3239 	   form their own set, which may result in 2 different sets,
3240 	   for example, competing to be configured at raid0, and
3241 	   perhaps competing to be the root filesystem set.  If the
3242 	   wrong ones get configured, or both attempt to become /,
3243 	   weird behaviour and or serious lossage will occur.  Thus we
3244 	   need to bring them into the fold here, and kick them out at
3245 	   a later point.
3246 
3247 	*/
3248 
3249 	clabel1 = cset->ac->clabel;
3250 	clabel2 = ac->clabel;
3251 	if ((clabel1->version == clabel2->version) &&
3252 	    (clabel1->serial_number == clabel2->serial_number) &&
3253 	    (clabel1->num_rows == clabel2->num_rows) &&
3254 	    (clabel1->num_columns == clabel2->num_columns) &&
3255 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
3256 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3257 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3258 	    (clabel1->parityConfig == clabel2->parityConfig) &&
3259 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3260 	    (clabel1->blockSize == clabel2->blockSize) &&
3261 	    (clabel1->numBlocks == clabel2->numBlocks) &&
3262 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
3263 	    (clabel1->root_partition == clabel2->root_partition) &&
3264 	    (clabel1->last_unit == clabel2->last_unit) &&
3265 	    (clabel1->config_order == clabel2->config_order)) {
3266 		/* if it get's here, it almost *has* to be a match */
3267 	} else {
3268 		/* it's not consistent with somebody in the set..
3269 		   punt */
3270 		return(0);
3271 	}
3272 	/* all was fine.. it must fit... */
3273 	return(1);
3274 }
3275 
3276 int
3277 rf_have_enough_components(RF_ConfigSet_t *cset)
3278 {
3279 	RF_AutoConfig_t *ac;
3280 	RF_AutoConfig_t *auto_config;
3281 	RF_ComponentLabel_t *clabel;
3282 	int c;
3283 	int num_cols;
3284 	int num_missing;
3285 	int mod_counter;
3286 	int mod_counter_found;
3287 	int even_pair_failed;
3288 	char parity_type;
3289 
3290 
3291 	/* check to see that we have enough 'live' components
3292 	   of this set.  If so, we can configure it if necessary */
3293 
3294 	num_cols = cset->ac->clabel->num_columns;
3295 	parity_type = cset->ac->clabel->parityConfig;
3296 
3297 	/* XXX Check for duplicate components!?!?!? */
3298 
3299 	/* Determine what the mod_counter is supposed to be for this set. */
3300 
3301 	mod_counter_found = 0;
3302 	mod_counter = 0;
3303 	ac = cset->ac;
3304 	while(ac!=NULL) {
3305 		if (mod_counter_found==0) {
3306 			mod_counter = ac->clabel->mod_counter;
3307 			mod_counter_found = 1;
3308 		} else {
3309 			if (ac->clabel->mod_counter > mod_counter) {
3310 				mod_counter = ac->clabel->mod_counter;
3311 			}
3312 		}
3313 		ac = ac->next;
3314 	}
3315 
3316 	num_missing = 0;
3317 	auto_config = cset->ac;
3318 
3319 	even_pair_failed = 0;
3320 	for(c=0; c<num_cols; c++) {
3321 		ac = auto_config;
3322 		while(ac!=NULL) {
3323 			if ((ac->clabel->column == c) &&
3324 			    (ac->clabel->mod_counter == mod_counter)) {
3325 				/* it's this one... */
3326 #ifdef DEBUG
3327 				printf("Found: %s at %d\n",
3328 				       ac->devname,c);
3329 #endif
3330 				break;
3331 			}
3332 			ac=ac->next;
3333 		}
3334 		if (ac==NULL) {
3335 				/* Didn't find one here! */
3336 				/* special case for RAID 1, especially
3337 				   where there are more than 2
3338 				   components (where RAIDframe treats
3339 				   things a little differently :( ) */
3340 			if (parity_type == '1') {
3341 				if (c%2 == 0) { /* even component */
3342 					even_pair_failed = 1;
3343 				} else { /* odd component.  If
3344 					    we're failed, and
3345 					    so is the even
3346 					    component, it's
3347 					    "Good Night, Charlie" */
3348 					if (even_pair_failed == 1) {
3349 						return(0);
3350 					}
3351 				}
3352 			} else {
3353 				/* normal accounting */
3354 				num_missing++;
3355 			}
3356 		}
3357 		if ((parity_type == '1') && (c%2 == 1)) {
3358 				/* Just did an even component, and we didn't
3359 				   bail.. reset the even_pair_failed flag,
3360 				   and go on to the next component.... */
3361 			even_pair_failed = 0;
3362 		}
3363 	}
3364 
3365 	clabel = cset->ac->clabel;
3366 
3367 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3368 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3369 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
3370 		/* XXX this needs to be made *much* more general */
3371 		/* Too many failures */
3372 		return(0);
3373 	}
3374 	/* otherwise, all is well, and we've got enough to take a kick
3375 	   at autoconfiguring this set */
3376 	return(1);
3377 }
3378 
3379 void
3380 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3381 			RF_Raid_t *raidPtr)
3382 {
3383 	RF_ComponentLabel_t *clabel;
3384 	int i;
3385 
3386 	clabel = ac->clabel;
3387 
3388 	/* 1. Fill in the common stuff */
3389 	config->numRow = clabel->num_rows = 1;
3390 	config->numCol = clabel->num_columns;
3391 	config->numSpare = 0; /* XXX should this be set here? */
3392 	config->sectPerSU = clabel->sectPerSU;
3393 	config->SUsPerPU = clabel->SUsPerPU;
3394 	config->SUsPerRU = clabel->SUsPerRU;
3395 	config->parityConfig = clabel->parityConfig;
3396 	/* XXX... */
3397 	strcpy(config->diskQueueType,"fifo");
3398 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3399 	config->layoutSpecificSize = 0; /* XXX ?? */
3400 
3401 	while(ac!=NULL) {
3402 		/* row/col values will be in range due to the checks
3403 		   in reasonable_label() */
3404 		strcpy(config->devnames[0][ac->clabel->column],
3405 		       ac->devname);
3406 		ac = ac->next;
3407 	}
3408 
3409 	for(i=0;i<RF_MAXDBGV;i++) {
3410 		config->debugVars[i][0] = 0;
3411 	}
3412 }
3413 
3414 int
3415 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3416 {
3417 	RF_ComponentLabel_t *clabel;
3418 	int column;
3419 	int sparecol;
3420 
3421 	raidPtr->autoconfigure = new_value;
3422 
3423 	for(column=0; column<raidPtr->numCol; column++) {
3424 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3425 			clabel = raidget_component_label(raidPtr, column);
3426 			clabel->autoconfigure = new_value;
3427 			raidflush_component_label(raidPtr, column);
3428 		}
3429 	}
3430 	for(column = 0; column < raidPtr->numSpare ; column++) {
3431 		sparecol = raidPtr->numCol + column;
3432 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3433 			clabel = raidget_component_label(raidPtr, sparecol);
3434 			clabel->autoconfigure = new_value;
3435 			raidflush_component_label(raidPtr, sparecol);
3436 		}
3437 	}
3438 	return(new_value);
3439 }
3440 
3441 int
3442 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3443 {
3444 	RF_ComponentLabel_t *clabel;
3445 	int column;
3446 	int sparecol;
3447 
3448 	raidPtr->root_partition = new_value;
3449 	for(column=0; column<raidPtr->numCol; column++) {
3450 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
3451 			clabel = raidget_component_label(raidPtr, column);
3452 			clabel->root_partition = new_value;
3453 			raidflush_component_label(raidPtr, column);
3454 		}
3455 	}
3456 	for(column = 0; column < raidPtr->numSpare ; column++) {
3457 		sparecol = raidPtr->numCol + column;
3458 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3459 			clabel = raidget_component_label(raidPtr, sparecol);
3460 			clabel->root_partition = new_value;
3461 			raidflush_component_label(raidPtr, sparecol);
3462 		}
3463 	}
3464 	return(new_value);
3465 }
3466 
3467 void
3468 rf_release_all_vps(RF_ConfigSet_t *cset)
3469 {
3470 	RF_AutoConfig_t *ac;
3471 
3472 	ac = cset->ac;
3473 	while(ac!=NULL) {
3474 		/* Close the vp, and give it back */
3475 		if (ac->vp) {
3476 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3477 			VOP_CLOSE(ac->vp, FREAD, NOCRED);
3478 			vput(ac->vp);
3479 			ac->vp = NULL;
3480 		}
3481 		ac = ac->next;
3482 	}
3483 }
3484 
3485 
3486 void
3487 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3488 {
3489 	RF_AutoConfig_t *ac;
3490 	RF_AutoConfig_t *next_ac;
3491 
3492 	ac = cset->ac;
3493 	while(ac!=NULL) {
3494 		next_ac = ac->next;
3495 		/* nuke the label */
3496 		free(ac->clabel, M_RAIDFRAME);
3497 		/* cleanup the config structure */
3498 		free(ac, M_RAIDFRAME);
3499 		/* "next.." */
3500 		ac = next_ac;
3501 	}
3502 	/* and, finally, nuke the config set */
3503 	free(cset, M_RAIDFRAME);
3504 }
3505 
3506 
3507 void
3508 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3509 {
3510 	/* current version number */
3511 	clabel->version = RF_COMPONENT_LABEL_VERSION;
3512 	clabel->serial_number = raidPtr->serial_number;
3513 	clabel->mod_counter = raidPtr->mod_counter;
3514 
3515 	clabel->num_rows = 1;
3516 	clabel->num_columns = raidPtr->numCol;
3517 	clabel->clean = RF_RAID_DIRTY; /* not clean */
3518 	clabel->status = rf_ds_optimal; /* "It's good!" */
3519 
3520 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3521 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3522 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3523 
3524 	clabel->blockSize = raidPtr->bytesPerSector;
3525 	clabel->numBlocks = raidPtr->sectorsPerDisk;
3526 
3527 	/* XXX not portable */
3528 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3529 	clabel->maxOutstanding = raidPtr->maxOutstanding;
3530 	clabel->autoconfigure = raidPtr->autoconfigure;
3531 	clabel->root_partition = raidPtr->root_partition;
3532 	clabel->last_unit = raidPtr->raidid;
3533 	clabel->config_order = raidPtr->config_order;
3534 
3535 #ifndef RF_NO_PARITY_MAP
3536 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
3537 #endif
3538 }
3539 
3540 int
3541 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3542 {
3543 	RF_Raid_t *raidPtr;
3544 	RF_Config_t *config;
3545 	int raidID;
3546 	int retcode;
3547 
3548 #ifdef DEBUG
3549 	printf("RAID autoconfigure\n");
3550 #endif
3551 
3552 	retcode = 0;
3553 	*unit = -1;
3554 
3555 	/* 1. Create a config structure */
3556 
3557 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3558 				       M_RAIDFRAME,
3559 				       M_NOWAIT);
3560 	if (config==NULL) {
3561 		printf("Out of mem!?!?\n");
3562 				/* XXX do something more intelligent here. */
3563 		return(1);
3564 	}
3565 
3566 	memset(config, 0, sizeof(RF_Config_t));
3567 
3568 	/*
3569 	   2. Figure out what RAID ID this one is supposed to live at
3570 	   See if we can get the same RAID dev that it was configured
3571 	   on last time..
3572 	*/
3573 
3574 	raidID = cset->ac->clabel->last_unit;
3575 	if ((raidID < 0) || (raidID >= numraid)) {
3576 		/* let's not wander off into lala land. */
3577 		raidID = numraid - 1;
3578 	}
3579 	if (raidPtrs[raidID]->valid != 0) {
3580 
3581 		/*
3582 		   Nope... Go looking for an alternative...
3583 		   Start high so we don't immediately use raid0 if that's
3584 		   not taken.
3585 		*/
3586 
3587 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
3588 			if (raidPtrs[raidID]->valid == 0) {
3589 				/* can use this one! */
3590 				break;
3591 			}
3592 		}
3593 	}
3594 
3595 	if (raidID < 0) {
3596 		/* punt... */
3597 		printf("Unable to auto configure this set!\n");
3598 		printf("(Out of RAID devs!)\n");
3599 		free(config, M_RAIDFRAME);
3600 		return(1);
3601 	}
3602 
3603 #ifdef DEBUG
3604 	printf("Configuring raid%d:\n",raidID);
3605 #endif
3606 
3607 	raidPtr = raidPtrs[raidID];
3608 
3609 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
3610 	raidPtr->raidid = raidID;
3611 	raidPtr->openings = RAIDOUTSTANDING;
3612 
3613 	/* 3. Build the configuration structure */
3614 	rf_create_configuration(cset->ac, config, raidPtr);
3615 
3616 	/* 4. Do the configuration */
3617 	retcode = rf_Configure(raidPtr, config, cset->ac);
3618 
3619 	if (retcode == 0) {
3620 
3621 		raidinit(raidPtrs[raidID]);
3622 
3623 		rf_markalldirty(raidPtrs[raidID]);
3624 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3625 		if (cset->ac->clabel->root_partition==1) {
3626 			/* everything configured just fine.  Make a note
3627 			   that this set is eligible to be root. */
3628 			cset->rootable = 1;
3629 			/* XXX do this here? */
3630 			raidPtrs[raidID]->root_partition = 1;
3631 		}
3632 	}
3633 
3634 	/* 5. Cleanup */
3635 	free(config, M_RAIDFRAME);
3636 
3637 	*unit = raidID;
3638 	return(retcode);
3639 }
3640 
3641 void
3642 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3643 {
3644 	struct buf *bp;
3645 
3646 	bp = (struct buf *)desc->bp;
3647 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3648 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3649 }
3650 
3651 void
3652 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3653 	     size_t xmin, size_t xmax)
3654 {
3655 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3656 	pool_sethiwat(p, xmax);
3657 	pool_prime(p, xmin);
3658 	pool_setlowat(p, xmin);
3659 }
3660 
3661 /*
3662  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3663  * if there is IO pending and if that IO could possibly be done for a
3664  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
3665  * otherwise.
3666  *
3667  */
3668 
3669 int
3670 rf_buf_queue_check(int raidid)
3671 {
3672 	if ((bufq_peek(raid_softc[raidid].buf_queue) != NULL) &&
3673 	    raidPtrs[raidid]->openings > 0) {
3674 		/* there is work to do */
3675 		return 0;
3676 	}
3677 	/* default is nothing to do */
3678 	return 1;
3679 }
3680 
3681 int
3682 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3683 {
3684 	struct partinfo dpart;
3685 	struct dkwedge_info dkw;
3686 	int error;
3687 
3688 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
3689 	if (error == 0) {
3690 		diskPtr->blockSize = dpart.disklab->d_secsize;
3691 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3692 		diskPtr->partitionSize = dpart.part->p_size;
3693 		return 0;
3694 	}
3695 
3696 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred);
3697 	if (error == 0) {
3698 		diskPtr->blockSize = 512;	/* XXX */
3699 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3700 		diskPtr->partitionSize = dkw.dkw_size;
3701 		return 0;
3702 	}
3703 	return error;
3704 }
3705 
3706 static int
3707 raid_match(device_t self, cfdata_t cfdata, void *aux)
3708 {
3709 	return 1;
3710 }
3711 
3712 static void
3713 raid_attach(device_t parent, device_t self, void *aux)
3714 {
3715 
3716 }
3717 
3718 
3719 static int
3720 raid_detach(device_t self, int flags)
3721 {
3722 	int error;
3723 	struct raid_softc *rs = &raid_softc[device_unit(self)];
3724 
3725 	if ((error = raidlock(rs)) != 0)
3726 		return (error);
3727 
3728 	error = raid_detach_unlocked(rs);
3729 
3730 	raidunlock(rs);
3731 
3732 	return error;
3733 }
3734 
3735 static void
3736 rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
3737 {
3738 	prop_dictionary_t disk_info, odisk_info, geom;
3739 	disk_info = prop_dictionary_create();
3740 	geom = prop_dictionary_create();
3741 	prop_dictionary_set_uint64(geom, "sectors-per-unit",
3742 				   raidPtr->totalSectors);
3743 	prop_dictionary_set_uint32(geom, "sector-size",
3744 				   raidPtr->bytesPerSector);
3745 
3746 	prop_dictionary_set_uint16(geom, "sectors-per-track",
3747 				   raidPtr->Layout.dataSectorsPerStripe);
3748 	prop_dictionary_set_uint16(geom, "tracks-per-cylinder",
3749 				   4 * raidPtr->numCol);
3750 
3751 	prop_dictionary_set_uint64(geom, "cylinders-per-unit",
3752 	   raidPtr->totalSectors / (raidPtr->Layout.dataSectorsPerStripe *
3753 	   (4 * raidPtr->numCol)));
3754 
3755 	prop_dictionary_set(disk_info, "geometry", geom);
3756 	prop_object_release(geom);
3757 	prop_dictionary_set(device_properties(rs->sc_dev),
3758 			    "disk-info", disk_info);
3759 	odisk_info = rs->sc_dkdev.dk_info;
3760 	rs->sc_dkdev.dk_info = disk_info;
3761 	if (odisk_info)
3762 		prop_object_release(odisk_info);
3763 }
3764 
3765 /*
3766  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3767  * We end up returning whatever error was returned by the first cache flush
3768  * that fails.
3769  */
3770 
3771 int
3772 rf_sync_component_caches(RF_Raid_t *raidPtr)
3773 {
3774 	int c, sparecol;
3775 	int e,error;
3776 	int force = 1;
3777 
3778 	error = 0;
3779 	for (c = 0; c < raidPtr->numCol; c++) {
3780 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
3781 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3782 					  &force, FWRITE, NOCRED);
3783 			if (e) {
3784 				if (e != ENODEV)
3785 					printf("raid%d: cache flush to component %s failed.\n",
3786 					       raidPtr->raidid, raidPtr->Disks[c].devname);
3787 				if (error == 0) {
3788 					error = e;
3789 				}
3790 			}
3791 		}
3792 	}
3793 
3794 	for( c = 0; c < raidPtr->numSpare ; c++) {
3795 		sparecol = raidPtr->numCol + c;
3796 		/* Need to ensure that the reconstruct actually completed! */
3797 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3798 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3799 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
3800 			if (e) {
3801 				if (e != ENODEV)
3802 					printf("raid%d: cache flush to component %s failed.\n",
3803 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3804 				if (error == 0) {
3805 					error = e;
3806 				}
3807 			}
3808 		}
3809 	}
3810 	return error;
3811 }
3812