1 /* $NetBSD: rf_map.c,v 1.14 2002/09/14 17:53:59 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /************************************************************************** 30 * 31 * map.c -- main code for mapping RAID addresses to physical disk addresses 32 * 33 **************************************************************************/ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.14 2002/09/14 17:53:59 oster Exp $"); 37 38 #include <dev/raidframe/raidframevar.h> 39 40 #include "rf_threadstuff.h" 41 #include "rf_raid.h" 42 #include "rf_general.h" 43 #include "rf_map.h" 44 #include "rf_freelist.h" 45 #include "rf_shutdown.h" 46 47 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count); 48 static void 49 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end, 50 int count); 51 52 /***************************************************************************************** 53 * 54 * MapAccess -- main 1st order mapping routine. 55 * 56 * Maps an access in the RAID address space to the corresponding set of physical disk 57 * addresses. The result is returned as a list of AccessStripeMap structures, one per 58 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr 59 * structures, which describe the physical locations touched by the user access. Note 60 * that this routine returns only static mapping information, i.e. the list of physical 61 * addresses returned does not necessarily identify the set of physical locations that 62 * will actually be read or written. 63 * 64 * The routine also maps the parity. The physical disk location returned always 65 * indicates the entire parity unit, even when only a subset of it is being accessed. 66 * This is because an access that is not stripe unit aligned but that spans a stripe 67 * unit boundary may require access two distinct portions of the parity unit, and we 68 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm 69 * selection code to decide what subset of the parity unit to access. 70 * 71 * Note that addresses in the RAID address space must always be maintained as 72 * longs, instead of ints. 73 * 74 * This routine returns NULL if numBlocks is 0 75 * 76 ****************************************************************************************/ 77 78 RF_AccessStripeMapHeader_t * 79 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap) 80 RF_Raid_t *raidPtr; 81 RF_RaidAddr_t raidAddress; /* starting address in RAID address 82 * space */ 83 RF_SectorCount_t numBlocks; /* number of blocks in RAID address 84 * space to access */ 85 caddr_t buffer; /* buffer to supply/receive data */ 86 int remap; /* 1 => remap addresses to spare space */ 87 { 88 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); 89 RF_AccessStripeMapHeader_t *asm_hdr = NULL; 90 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL; 91 int faultsTolerated = layoutPtr->map->faultsTolerated; 92 RF_RaidAddr_t startAddress = raidAddress; /* we'll change 93 * raidAddress along the 94 * way */ 95 RF_RaidAddr_t endAddress = raidAddress + numBlocks; 96 RF_RaidDisk_t **disks = raidPtr->Disks; 97 98 RF_PhysDiskAddr_t *pda_p, *pda_q; 99 RF_StripeCount_t numStripes = 0; 100 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress; 101 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr; 102 RF_StripeCount_t totStripes; 103 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID; 104 RF_AccessStripeMap_t *asmList, *t_asm; 105 RF_PhysDiskAddr_t *pdaList, *t_pda; 106 107 /* allocate all the ASMs and PDAs up front */ 108 lastRaidAddr = raidAddress + numBlocks - 1; 109 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress); 110 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr); 111 totStripes = lastSID - stripeID + 1; 112 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress); 113 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr); 114 115 asmList = rf_AllocASMList(totStripes); 116 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s) 117 * per stripe for parity */ 118 119 if (raidAddress + numBlocks > raidPtr->totalSectors) { 120 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n", 121 (int) raidAddress); 122 return (NULL); 123 } 124 if (rf_mapDebug) 125 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks); 126 for (; raidAddress < endAddress;) { 127 /* make the next stripe structure */ 128 RF_ASSERT(asmList); 129 t_asm = asmList; 130 asmList = asmList->next; 131 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t)); 132 if (!asm_p) 133 asm_list = asm_p = t_asm; 134 else { 135 asm_p->next = t_asm; 136 asm_p = asm_p->next; 137 } 138 numStripes++; 139 140 /* map SUs from current location to the end of the stripe */ 141 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr, 142 raidAddress) */ stripeID++; 143 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress); 144 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress); 145 asm_p->raidAddress = raidAddress; 146 asm_p->endRaidAddress = stripeEndAddress; 147 148 /* map each stripe unit in the stripe */ 149 pda_p = NULL; 150 startAddrWithinStripe = raidAddress; /* Raid addr of start of 151 * portion of access 152 * that is within this 153 * stripe */ 154 for (; raidAddress < stripeEndAddress;) { 155 RF_ASSERT(pdaList); 156 t_pda = pdaList; 157 pdaList = pdaList->next; 158 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); 159 if (!pda_p) 160 asm_p->physInfo = pda_p = t_pda; 161 else { 162 pda_p->next = t_pda; 163 pda_p = pda_p->next; 164 } 165 166 pda_p->type = RF_PDA_TYPE_DATA; 167 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); 168 169 /* mark any failures we find. failedPDA is don't-care 170 * if there is more than one failure */ 171 pda_p->raidAddress = raidAddress; /* the RAID address 172 * corresponding to this 173 * physical disk address */ 174 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress); 175 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress; 176 RF_ASSERT(pda_p->numSector != 0); 177 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0); 178 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress)); 179 asm_p->totalSectorsAccessed += pda_p->numSector; 180 asm_p->numStripeUnitsAccessed++; 181 asm_p->origRow = pda_p->row; /* redundant but 182 * harmless to do this 183 * in every loop 184 * iteration */ 185 186 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress); 187 } 188 189 /* Map the parity. At this stage, the startSector and 190 * numSector fields for the parity unit are always set to 191 * indicate the entire parity unit. We may modify this after 192 * mapping the data portion. */ 193 switch (faultsTolerated) { 194 case 0: 195 break; 196 case 1: /* single fault tolerant */ 197 RF_ASSERT(pdaList); 198 t_pda = pdaList; 199 pdaList = pdaList->next; 200 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); 201 pda_p = asm_p->parityInfo = t_pda; 202 pda_p->type = RF_PDA_TYPE_PARITY; 203 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), 204 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); 205 pda_p->numSector = layoutPtr->sectorsPerStripeUnit; 206 /* raidAddr may be needed to find unit to redirect to */ 207 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); 208 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); 209 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); 210 211 break; 212 case 2: /* two fault tolerant */ 213 RF_ASSERT(pdaList && pdaList->next); 214 t_pda = pdaList; 215 pdaList = pdaList->next; 216 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); 217 pda_p = asm_p->parityInfo = t_pda; 218 pda_p->type = RF_PDA_TYPE_PARITY; 219 t_pda = pdaList; 220 pdaList = pdaList->next; 221 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); 222 pda_q = asm_p->qInfo = t_pda; 223 pda_q->type = RF_PDA_TYPE_Q; 224 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), 225 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap); 226 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), 227 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap); 228 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit; 229 /* raidAddr may be needed to find unit to redirect to */ 230 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); 231 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); 232 /* failure mode stuff */ 233 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); 234 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1); 235 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); 236 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); 237 break; 238 } 239 } 240 RF_ASSERT(asmList == NULL && pdaList == NULL); 241 /* make the header structure */ 242 asm_hdr = rf_AllocAccessStripeMapHeader(); 243 RF_ASSERT(numStripes == totStripes); 244 asm_hdr->numStripes = numStripes; 245 asm_hdr->stripeMap = asm_list; 246 247 if (rf_mapDebug) 248 rf_PrintAccessStripeMap(asm_hdr); 249 return (asm_hdr); 250 } 251 /***************************************************************************************** 252 * This routine walks through an ASM list and marks the PDAs that have failed. 253 * It's called only when a disk failure causes an in-flight DAG to fail. 254 * The parity may consist of two components, but we want to use only one failedPDA 255 * pointer. Thus we set failedPDA to point to the first parity component, and rely 256 * on the rest of the code to do the right thing with this. 257 ****************************************************************************************/ 258 259 void 260 rf_MarkFailuresInASMList(raidPtr, asm_h) 261 RF_Raid_t *raidPtr; 262 RF_AccessStripeMapHeader_t *asm_h; 263 { 264 RF_RaidDisk_t **disks = raidPtr->Disks; 265 RF_AccessStripeMap_t *asmap; 266 RF_PhysDiskAddr_t *pda; 267 268 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) { 269 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0; 270 asmap->numFailedPDAs = 0; 271 memset((char *) asmap->failedPDAs, 0, 272 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *)); 273 for (pda = asmap->physInfo; pda; pda = pda->next) { 274 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) { 275 asmap->numDataFailed++; 276 asmap->failedPDAs[asmap->numFailedPDAs] = pda; 277 asmap->numFailedPDAs++; 278 } 279 } 280 pda = asmap->parityInfo; 281 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { 282 asmap->numParityFailed++; 283 asmap->failedPDAs[asmap->numFailedPDAs] = pda; 284 asmap->numFailedPDAs++; 285 } 286 pda = asmap->qInfo; 287 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) { 288 asmap->numQFailed++; 289 asmap->failedPDAs[asmap->numFailedPDAs] = pda; 290 asmap->numFailedPDAs++; 291 } 292 } 293 } 294 295 /***************************************************************************************** 296 * 297 * routines to allocate and free list elements. All allocation routines zero the 298 * structure before returning it. 299 * 300 * FreePhysDiskAddr is static. It should never be called directly, because 301 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list. 302 * 303 ****************************************************************************************/ 304 305 static RF_FreeList_t *rf_asmhdr_freelist; 306 #define RF_MAX_FREE_ASMHDR 128 307 #define RF_ASMHDR_INC 16 308 #define RF_ASMHDR_INITIAL 32 309 310 static RF_FreeList_t *rf_asm_freelist; 311 #define RF_MAX_FREE_ASM 192 312 #define RF_ASM_INC 24 313 #define RF_ASM_INITIAL 64 314 315 static RF_FreeList_t *rf_pda_freelist; 316 #define RF_MAX_FREE_PDA 192 317 #define RF_PDA_INC 24 318 #define RF_PDA_INITIAL 64 319 320 /* called at shutdown time. So far, all that is necessary is to release all the free lists */ 321 static void rf_ShutdownMapModule(void *); 322 static void 323 rf_ShutdownMapModule(ignored) 324 void *ignored; 325 { 326 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); 327 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); 328 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *)); 329 } 330 331 int 332 rf_ConfigureMapModule(listp) 333 RF_ShutdownList_t **listp; 334 { 335 int rc; 336 337 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR, 338 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t)); 339 if (rf_asmhdr_freelist == NULL) { 340 return (ENOMEM); 341 } 342 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM, 343 RF_ASM_INC, sizeof(RF_AccessStripeMap_t)); 344 if (rf_asm_freelist == NULL) { 345 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); 346 return (ENOMEM); 347 } 348 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA, 349 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t)); 350 if (rf_pda_freelist == NULL) { 351 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *)); 352 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *)); 353 return (ENOMEM); 354 } 355 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL); 356 if (rc) { 357 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); 358 rf_ShutdownMapModule(NULL); 359 return (rc); 360 } 361 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next, 362 (RF_AccessStripeMapHeader_t *)); 363 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next, 364 (RF_AccessStripeMap_t *)); 365 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next, 366 (RF_PhysDiskAddr_t *)); 367 368 return (0); 369 } 370 371 RF_AccessStripeMapHeader_t * 372 rf_AllocAccessStripeMapHeader() 373 { 374 RF_AccessStripeMapHeader_t *p; 375 376 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *)); 377 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t)); 378 379 return (p); 380 } 381 382 383 void 384 rf_FreeAccessStripeMapHeader(p) 385 RF_AccessStripeMapHeader_t *p; 386 { 387 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next); 388 } 389 390 RF_PhysDiskAddr_t * 391 rf_AllocPhysDiskAddr() 392 { 393 RF_PhysDiskAddr_t *p; 394 395 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *)); 396 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t)); 397 398 return (p); 399 } 400 /* allocates a list of PDAs, locking the free list only once 401 * when we have to call calloc, we do it one component at a time to simplify 402 * the process of freeing the list at program shutdown. This should not be 403 * much of a performance hit, because it should be very infrequently executed. 404 */ 405 RF_PhysDiskAddr_t * 406 rf_AllocPDAList(count) 407 int count; 408 { 409 RF_PhysDiskAddr_t *p = NULL; 410 411 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count); 412 return (p); 413 } 414 415 void 416 rf_FreePhysDiskAddr(p) 417 RF_PhysDiskAddr_t *p; 418 { 419 RF_FREELIST_FREE(rf_pda_freelist, p, next); 420 } 421 422 static void 423 rf_FreePDAList(l_start, l_end, count) 424 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end 425 * of list */ 426 int count; /* number of elements in list */ 427 { 428 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count); 429 } 430 431 RF_AccessStripeMap_t * 432 rf_AllocAccessStripeMapComponent() 433 { 434 RF_AccessStripeMap_t *p; 435 436 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *)); 437 memset((char *) p, 0, sizeof(RF_AccessStripeMap_t)); 438 439 return (p); 440 } 441 /* this is essentially identical to AllocPDAList. I should combine the two. 442 * when we have to call calloc, we do it one component at a time to simplify 443 * the process of freeing the list at program shutdown. This should not be 444 * much of a performance hit, because it should be very infrequently executed. 445 */ 446 RF_AccessStripeMap_t * 447 rf_AllocASMList(count) 448 int count; 449 { 450 RF_AccessStripeMap_t *p = NULL; 451 452 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count); 453 return (p); 454 } 455 456 void 457 rf_FreeAccessStripeMapComponent(p) 458 RF_AccessStripeMap_t *p; 459 { 460 RF_FREELIST_FREE(rf_asm_freelist, p, next); 461 } 462 463 static void 464 rf_FreeASMList(l_start, l_end, count) 465 RF_AccessStripeMap_t *l_start, *l_end; 466 int count; 467 { 468 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count); 469 } 470 471 void 472 rf_FreeAccessStripeMap(hdr) 473 RF_AccessStripeMapHeader_t *hdr; 474 { 475 RF_AccessStripeMap_t *p, *pt = NULL; 476 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL; 477 int count = 0, t, asm_count = 0; 478 479 for (p = hdr->stripeMap; p; p = p->next) { 480 481 /* link the 3 pda lists into the accumulating pda list */ 482 483 if (!pdaList) 484 pdaList = p->qInfo; 485 else 486 pdaEnd->next = p->qInfo; 487 for (trailer = NULL, pdp = p->qInfo; pdp;) { 488 trailer = pdp; 489 pdp = pdp->next; 490 count++; 491 } 492 if (trailer) 493 pdaEnd = trailer; 494 495 if (!pdaList) 496 pdaList = p->parityInfo; 497 else 498 pdaEnd->next = p->parityInfo; 499 for (trailer = NULL, pdp = p->parityInfo; pdp;) { 500 trailer = pdp; 501 pdp = pdp->next; 502 count++; 503 } 504 if (trailer) 505 pdaEnd = trailer; 506 507 if (!pdaList) 508 pdaList = p->physInfo; 509 else 510 pdaEnd->next = p->physInfo; 511 for (trailer = NULL, pdp = p->physInfo; pdp;) { 512 trailer = pdp; 513 pdp = pdp->next; 514 count++; 515 } 516 if (trailer) 517 pdaEnd = trailer; 518 519 pt = p; 520 asm_count++; 521 } 522 523 /* debug only */ 524 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next) 525 t++; 526 RF_ASSERT(t == count); 527 528 if (pdaList) 529 rf_FreePDAList(pdaList, pdaEnd, count); 530 rf_FreeASMList(hdr->stripeMap, pt, asm_count); 531 rf_FreeAccessStripeMapHeader(hdr); 532 } 533 /* We can't use the large write optimization if there are any failures in the stripe. 534 * In the declustered layout, there is no way to immediately determine what disks 535 * constitute a stripe, so we actually have to hunt through the stripe looking for failures. 536 * The reason we map the parity instead of just using asm->parityInfo->col is because 537 * the latter may have been already redirected to a spare drive, which would 538 * mess up the computation of the stripe offset. 539 * 540 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. 541 */ 542 int 543 rf_CheckStripeForFailures(raidPtr, asmap) 544 RF_Raid_t *raidPtr; 545 RF_AccessStripeMap_t *asmap; 546 { 547 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i; 548 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 549 RF_StripeCount_t stripeOffset; 550 int numFailures; 551 RF_RaidAddr_t sosAddr; 552 RF_SectorNum_t diskOffset, poffset; 553 RF_RowCol_t testrow; 554 555 /* quick out in the fault-free case. */ 556 RF_LOCK_MUTEX(raidPtr->mutex); 557 numFailures = raidPtr->numFailures; 558 RF_UNLOCK_MUTEX(raidPtr->mutex); 559 if (numFailures == 0) 560 return (0); 561 562 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 563 row = asmap->physInfo->row; 564 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow); 565 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */ 566 567 /* this need not be true if we've redirected the access to a spare in 568 * another row RF_ASSERT(row == testrow); */ 569 stripeOffset = 0; 570 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) { 571 if (diskids[i] != pcol) { 572 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) { 573 if (raidPtr->status[testrow] != rf_rs_reconstructing) 574 return (1); 575 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]); 576 layoutPtr->map->MapSector(raidPtr, 577 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit, 578 &trow, &tcol, &diskOffset, 0); 579 RF_ASSERT((trow == testrow) && (tcol == diskids[i])); 580 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset)) 581 return (1); 582 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE; 583 return (0); 584 } 585 stripeOffset++; 586 } 587 } 588 return (0); 589 } 590 /* 591 return the number of failed data units in the stripe. 592 */ 593 594 int 595 rf_NumFailedDataUnitsInStripe(raidPtr, asmap) 596 RF_Raid_t *raidPtr; 597 RF_AccessStripeMap_t *asmap; 598 { 599 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 600 RF_RowCol_t trow, tcol, row, i; 601 RF_SectorNum_t diskOffset; 602 RF_RaidAddr_t sosAddr; 603 int numFailures; 604 605 /* quick out in the fault-free case. */ 606 RF_LOCK_MUTEX(raidPtr->mutex); 607 numFailures = raidPtr->numFailures; 608 RF_UNLOCK_MUTEX(raidPtr->mutex); 609 if (numFailures == 0) 610 return (0); 611 numFailures = 0; 612 613 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); 614 row = asmap->physInfo->row; 615 for (i = 0; i < layoutPtr->numDataCol; i++) { 616 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit, 617 &trow, &tcol, &diskOffset, 0); 618 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status)) 619 numFailures++; 620 } 621 622 return numFailures; 623 } 624 625 626 /***************************************************************************************** 627 * 628 * debug routines 629 * 630 ****************************************************************************************/ 631 632 void 633 rf_PrintAccessStripeMap(asm_h) 634 RF_AccessStripeMapHeader_t *asm_h; 635 { 636 rf_PrintFullAccessStripeMap(asm_h, 0); 637 } 638 639 void 640 rf_PrintFullAccessStripeMap(asm_h, prbuf) 641 RF_AccessStripeMapHeader_t *asm_h; 642 int prbuf; /* flag to print buffer pointers */ 643 { 644 int i; 645 RF_AccessStripeMap_t *asmap = asm_h->stripeMap; 646 RF_PhysDiskAddr_t *p; 647 printf("%d stripes total\n", (int) asm_h->numStripes); 648 for (; asmap; asmap = asmap->next) { 649 /* printf("Num failures: %d\n",asmap->numDataFailed); */ 650 /* printf("Num sectors: 651 * %d\n",(int)asmap->totalSectorsAccessed); */ 652 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ", 653 (int) asmap->stripeID, 654 (int) asmap->totalSectorsAccessed, 655 (int) asmap->numDataFailed, 656 (int) asmap->numParityFailed); 657 if (asmap->parityInfo) { 658 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col, 659 (int) asmap->parityInfo->startSector, 660 (int) (asmap->parityInfo->startSector + 661 asmap->parityInfo->numSector - 1)); 662 if (prbuf) 663 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr); 664 if (asmap->parityInfo->next) { 665 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row, 666 asmap->parityInfo->next->col, 667 (int) asmap->parityInfo->next->startSector, 668 (int) (asmap->parityInfo->next->startSector + 669 asmap->parityInfo->next->numSector - 1)); 670 if (prbuf) 671 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr); 672 RF_ASSERT(asmap->parityInfo->next->next == NULL); 673 } 674 printf("]\n\t"); 675 } 676 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) { 677 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector, 678 (int) (p->startSector + p->numSector - 1)); 679 if (prbuf) 680 printf("b0x%lx ", (unsigned long) p->bufPtr); 681 if (i && !(i & 1)) 682 printf("\n\t"); 683 } 684 printf("\n"); 685 p = asm_h->stripeMap->failedPDAs[0]; 686 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1) 687 printf("[multiple failures]\n"); 688 else 689 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0) 690 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col, 691 (int) p->startSector, (int) (p->startSector + p->numSector - 1)); 692 } 693 } 694 695 void 696 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks) 697 RF_Raid_t *raidPtr; 698 RF_RaidAddr_t raidAddr; 699 RF_SectorCount_t numBlocks; 700 { 701 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; 702 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); 703 704 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t"); 705 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) { 706 printf("%d (0x%x), ", (int) ra, (int) ra); 707 } 708 printf("\n"); 709 printf("Offset into stripe unit: %d (0x%x)\n", 710 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit), 711 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit)); 712 } 713 /* 714 given a parity descriptor and the starting address within a stripe, 715 range restrict the parity descriptor to touch only the correct stuff. 716 */ 717 void 718 rf_ASMParityAdjust( 719 RF_PhysDiskAddr_t * toAdjust, 720 RF_StripeNum_t startAddrWithinStripe, 721 RF_SectorNum_t endAddress, 722 RF_RaidLayout_t * layoutPtr, 723 RF_AccessStripeMap_t * asm_p) 724 { 725 RF_PhysDiskAddr_t *new_pda; 726 727 /* when we're accessing only a portion of one stripe unit, we want the 728 * parity descriptor to identify only the chunk of parity associated 729 * with the data. When the access spans exactly one stripe unit 730 * boundary and is less than a stripe unit in size, it uses two 731 * disjoint regions of the parity unit. When an access spans more 732 * than one stripe unit boundary, it uses all of the parity unit. 733 * 734 * To better handle the case where stripe units are small, we may 735 * eventually want to change the 2nd case so that if the SU size is 736 * below some threshold, we just read/write the whole thing instead of 737 * breaking it up into two accesses. */ 738 if (asm_p->numStripeUnitsAccessed == 1) { 739 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); 740 toAdjust->startSector += x; 741 toAdjust->raidAddress += x; 742 toAdjust->numSector = asm_p->physInfo->numSector; 743 RF_ASSERT(toAdjust->numSector != 0); 744 } else 745 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) { 746 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); 747 748 /* create a second pda and copy the parity map info 749 * into it */ 750 RF_ASSERT(toAdjust->next == NULL); 751 new_pda = toAdjust->next = rf_AllocPhysDiskAddr(); 752 *new_pda = *toAdjust; /* structure assignment */ 753 new_pda->next = NULL; 754 755 /* adjust the start sector & number of blocks for the 756 * first parity pda */ 757 toAdjust->startSector += x; 758 toAdjust->raidAddress += x; 759 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe; 760 RF_ASSERT(toAdjust->numSector != 0); 761 762 /* adjust the second pda */ 763 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress); 764 /* new_pda->raidAddress = 765 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, 766 * toAdjust->raidAddress); */ 767 RF_ASSERT(new_pda->numSector != 0); 768 } 769 } 770 771 /* 772 Check if a disk has been spared or failed. If spared, 773 redirect the I/O. 774 If it has been failed, record it in the asm pointer. 775 Fourth arg is whether data or parity. 776 */ 777 void 778 rf_ASMCheckStatus( 779 RF_Raid_t * raidPtr, 780 RF_PhysDiskAddr_t * pda_p, 781 RF_AccessStripeMap_t * asm_p, 782 RF_RaidDisk_t ** disks, 783 int parity) 784 { 785 RF_DiskStatus_t dstatus; 786 RF_RowCol_t frow, fcol; 787 788 dstatus = disks[pda_p->row][pda_p->col].status; 789 790 if (dstatus == rf_ds_spared) { 791 /* if the disk has been spared, redirect access to the spare */ 792 frow = pda_p->row; 793 fcol = pda_p->col; 794 pda_p->row = disks[frow][fcol].spareRow; 795 pda_p->col = disks[frow][fcol].spareCol; 796 } else 797 if (dstatus == rf_ds_dist_spared) { 798 /* ditto if disk has been spared to dist spare space */ 799 RF_RowCol_t or = pda_p->row, oc = pda_p->col; 800 RF_SectorNum_t oo = pda_p->startSector; 801 802 if (pda_p->type == RF_PDA_TYPE_DATA) 803 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); 804 else 805 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP); 806 807 if (rf_mapDebug) { 808 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo, 809 pda_p->row, pda_p->col, (int) pda_p->startSector); 810 } 811 } else 812 if (RF_DEAD_DISK(dstatus)) { 813 /* if the disk is inaccessible, mark the 814 * failure */ 815 if (parity) 816 asm_p->numParityFailed++; 817 else { 818 asm_p->numDataFailed++; 819 } 820 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p; 821 asm_p->numFailedPDAs++; 822 #if 0 823 switch (asm_p->numParityFailed + asm_p->numDataFailed) { 824 case 1: 825 asm_p->failedPDAs[0] = pda_p; 826 break; 827 case 2: 828 asm_p->failedPDAs[1] = pda_p; 829 default: 830 break; 831 } 832 #endif 833 } 834 /* the redirected access should never span a stripe unit boundary */ 835 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) == 836 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1)); 837 RF_ASSERT(pda_p->col != -1); 838 } 839