1 /* $NetBSD: rf_layout.h,v 1.4 2000/05/23 00:44:38 thorpej Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /* rf_layout.h -- header file defining layout data structures 30 */ 31 32 #ifndef _RF__RF_LAYOUT_H_ 33 #define _RF__RF_LAYOUT_H_ 34 35 #include "rf_types.h" 36 #include "rf_archs.h" 37 #include "rf_alloclist.h" 38 39 #ifndef _KERNEL 40 #include <stdio.h> 41 #endif 42 43 /***************************************************************************************** 44 * 45 * This structure identifies all layout-specific operations and parameters. 46 * 47 ****************************************************************************************/ 48 49 typedef struct RF_LayoutSW_s { 50 RF_ParityConfig_t parityConfig; 51 const char *configName; 52 53 #ifndef _KERNEL 54 /* layout-specific parsing */ 55 int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg); 56 void *makeLayoutSpecificArg; 57 #endif /* !KERNEL */ 58 59 #if RF_UTILITY == 0 60 /* initialization routine */ 61 int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr); 62 63 /* routine to map RAID sector address -> physical (row, col, offset) */ 64 void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, 65 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 66 67 /* routine to map RAID sector address -> physical (r,c,o) of parity 68 * unit */ 69 void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, 70 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 71 72 /* routine to map RAID sector address -> physical (r,c,o) of Q unit */ 73 void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row, 74 RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 75 76 /* routine to identify the disks comprising a stripe */ 77 void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr, 78 RF_RowCol_t ** diskids, RF_RowCol_t * outRow); 79 80 /* routine to select a dag */ 81 void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type, 82 RF_AccessStripeMap_t * asmap, 83 RF_VoidFuncPtr *); 84 #if 0 85 void (**createFunc) (RF_Raid_t *, 86 RF_AccessStripeMap_t *, 87 RF_DagHeader_t *, void *, 88 RF_RaidAccessFlags_t, 89 /**INDENT** Warning@88: Extra ) */ 90 RF_AllocListElem_t *)); 91 92 #endif 93 94 /* map a stripe ID to a parity stripe ID. This is typically the 95 * identity mapping */ 96 void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID, 97 RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru); 98 99 /* get default head separation limit (may be NULL) */ 100 RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr); 101 102 /* get default num recon buffers (may be NULL) */ 103 int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr); 104 105 /* get number of spare recon units (may be NULL) */ 106 RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr); 107 108 /* spare table installation (may be NULL) */ 109 int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol); 110 111 /* recon buffer submission function */ 112 int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it, 113 int use_committed); 114 115 /* 116 * verify that parity information for a stripe is correct 117 * see rf_parityscan.h for return vals 118 */ 119 int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, 120 RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); 121 122 /* number of faults tolerated by this mapping */ 123 int faultsTolerated; 124 125 /* states to step through in an access. Must end with "LastState". The 126 * default is DefaultStates in rf_layout.c */ 127 RF_AccessState_t *states; 128 129 RF_AccessStripeMapFlags_t flags; 130 #endif /* RF_UTILITY == 0 */ 131 } RF_LayoutSW_t; 132 /* enables remapping to spare location under dist sparing */ 133 #define RF_REMAP 1 134 #define RF_DONT_REMAP 0 135 136 /* 137 * Flags values for RF_AccessStripeMapFlags_t 138 */ 139 #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */ 140 #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs 141 * that support it */ 142 #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */ 143 144 /************************************************************************* 145 * 146 * this structure forms the layout component of the main Raid 147 * structure. It describes everything needed to define and perform 148 * the mapping of logical RAID addresses <-> physical disk addresses. 149 * 150 *************************************************************************/ 151 struct RF_RaidLayout_s { 152 /* configuration parameters */ 153 RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one 154 * stripe unit */ 155 RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ 156 RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction 157 * unit */ 158 159 /* redundant-but-useful info computed from the above, used in all 160 * layouts */ 161 RF_StripeCount_t numStripe; /* total number of stripes in the 162 * array */ 163 RF_SectorCount_t dataSectorsPerStripe; 164 RF_StripeCount_t dataStripeUnitsPerDisk; 165 u_int bytesPerStripeUnit; 166 u_int dataBytesPerStripe; 167 RF_StripeCount_t numDataCol; /* number of SUs of data per stripe 168 * (name here is a la RAID4) */ 169 RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. 170 * Always 1 for now */ 171 RF_StripeCount_t numParityLogCol; /* number of SUs of parity log 172 * per stripe. Always 1 for 173 * now */ 174 RF_StripeCount_t stripeUnitsPerDisk; 175 176 RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and 177 * information */ 178 void *layoutSpecificInfo; /* ptr to a structure holding 179 * layout-specific params */ 180 }; 181 /***************************************************************************************** 182 * 183 * The mapping code returns a pointer to a list of AccessStripeMap structures, which 184 * describes all the mapping information about an access. The list contains one 185 * AccessStripeMap structure per stripe touched by the access. Each element in the list 186 * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each 187 * element in this latter list describes the physical location of a stripe unit accessed 188 * within the corresponding stripe. 189 * 190 ****************************************************************************************/ 191 192 #define RF_PDA_TYPE_DATA 0 193 #define RF_PDA_TYPE_PARITY 1 194 #define RF_PDA_TYPE_Q 2 195 196 struct RF_PhysDiskAddr_s { 197 RF_RowCol_t row, col; /* disk identifier */ 198 RF_SectorNum_t startSector; /* sector offset into the disk */ 199 RF_SectorCount_t numSector; /* number of sectors accessed */ 200 int type; /* used by higher levels: currently, data, 201 * parity, or q */ 202 caddr_t bufPtr; /* pointer to buffer supplying/receiving data */ 203 RF_RaidAddr_t raidAddress; /* raid address corresponding to this 204 * physical disk address */ 205 RF_PhysDiskAddr_t *next; 206 }; 207 #define RF_MAX_FAILED_PDA RF_MAXCOL 208 209 struct RF_AccessStripeMap_s { 210 RF_StripeNum_t stripeID;/* the stripe index */ 211 RF_RaidAddr_t raidAddress; /* the starting raid address within 212 * this stripe */ 213 RF_RaidAddr_t endRaidAddress; /* raid address one sector past the 214 * end of the access */ 215 RF_SectorCount_t totalSectorsAccessed; /* total num sectors 216 * identified in physInfo list */ 217 RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in 218 * physInfo list */ 219 int numDataFailed; /* number of failed data disks accessed */ 220 int numParityFailed;/* number of failed parity disks accessed (0 221 * or 1) */ 222 int numQFailed; /* number of failed Q units accessed (0 or 1) */ 223 RF_AccessStripeMapFlags_t flags; /* various flags */ 224 #if 0 225 RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */ 226 RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA 227 * that has failed, if any */ 228 #else 229 int numFailedPDAs; /* number of failed phys addrs */ 230 RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys 231 * addrs */ 232 #endif 233 RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ 234 RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the 235 * parity (P of P + Q ) */ 236 RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of 237 * P + Q */ 238 RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ 239 RF_RowCol_t origRow; /* the original row: we may redirect the acc 240 * to a different row */ 241 RF_AccessStripeMap_t *next; 242 }; 243 /* flag values */ 244 #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation 245 * code to redirect failed 246 * accs */ 247 #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect 248 * recursive calls to the 249 * bailout write dag */ 250 #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on 251 * the first parity range in 252 * this parity stripe */ 253 #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on 254 * the 2nd parity range in 255 * this parity stripe */ 256 #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon 257 * call on this parity stripe */ 258 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must 259 * unblock it later */ 260 261 struct RF_AccessStripeMapHeader_s { 262 RF_StripeCount_t numStripes; /* total number of stripes touched by 263 * this acc */ 264 RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map. 265 * Also used for making lists */ 266 RF_AccessStripeMapHeader_t *next; 267 }; 268 /***************************************************************************************** 269 * 270 * various routines mapping addresses in the RAID address space. These work across 271 * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. 272 * 273 ****************************************************************************************/ 274 275 /* return the identifier of the stripe containing the given address */ 276 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ 277 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol ) 278 279 /* return the raid address of the start of the indicates stripe ID */ 280 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ 281 ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol ) 282 283 /* return the identifier of the stripe containing the given stripe unit id */ 284 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ 285 ( (_addr_) / (_layoutPtr_)->numDataCol ) 286 287 /* return the identifier of the stripe unit containing the given address */ 288 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ 289 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) ) 290 291 /* return the RAID address of next stripe boundary beyond the given address */ 292 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ 293 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe ) 294 295 /* return the RAID address of the start of the stripe containing the given address */ 296 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ 297 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe ) 298 299 /* return the RAID address of next stripe unit boundary beyond the given address */ 300 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ 301 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit ) 302 303 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */ 304 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ 305 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit ) 306 307 /* returns the offset into the stripe. used by RaidAddressStripeAligned */ 308 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ 309 ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) ) 310 311 /* returns the offset into the stripe unit. */ 312 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ 313 ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) ) 314 315 /* returns nonzero if the given RAID address is stripe-aligned */ 316 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ 317 ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 ) 318 319 /* returns nonzero if the given address is stripe-unit aligned */ 320 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ 321 ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 ) 322 323 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */ 324 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \ 325 ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) ) 326 327 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ 328 ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) ) 329 330 /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, 331 * since we're asking for the address of the first sector in the parity stripe. Conversion to a 332 * parity stripe ID is more complex, since stripes are not contiguously allocated in 333 * parity stripes. 334 */ 335 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ 336 rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) ) 337 338 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ 339 ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit ) 340 341 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig); 342 int 343 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, 344 RF_Config_t * cfgPtr); 345 RF_StripeNum_t 346 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr, 347 RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru); 348 349 #endif /* !_RF__RF_LAYOUT_H_ */ 350