xref: /netbsd-src/sys/dev/raidframe/rf_layout.h (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: rf_layout.h,v 1.5 2001/01/26 04:14:14 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /* rf_layout.h -- header file defining layout data structures
30  */
31 
32 #ifndef _RF__RF_LAYOUT_H_
33 #define _RF__RF_LAYOUT_H_
34 
35 #include "rf_types.h"
36 #include "rf_archs.h"
37 #include "rf_alloclist.h"
38 
39 #ifndef _KERNEL
40 #include <stdio.h>
41 #endif
42 
43 /*****************************************************************************************
44  *
45  * This structure identifies all layout-specific operations and parameters.
46  *
47  ****************************************************************************************/
48 
49 typedef struct RF_LayoutSW_s {
50 	RF_ParityConfig_t parityConfig;
51 	const char *configName;
52 
53 #ifndef _KERNEL
54 	/* layout-specific parsing */
55 	int     (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg);
56 	void   *makeLayoutSpecificArg;
57 #endif				/* !KERNEL */
58 
59 #if RF_UTILITY == 0
60 	/* initialization routine */
61 	int     (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr);
62 
63 	/* routine to map RAID sector address -> physical (row, col, offset) */
64 	void    (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
65 	            RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
66 
67 	/* routine to map RAID sector address -> physical (r,c,o) of parity
68 	 * unit */
69 	void    (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector,
70 	            RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
71 
72 	/* routine to map RAID sector address -> physical (r,c,o) of Q unit */
73 	void    (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row,
74 	            RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap);
75 
76 	/* routine to identify the disks comprising a stripe */
77 	void    (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr,
78 	            RF_RowCol_t ** diskids, RF_RowCol_t * outRow);
79 
80 	/* routine to select a dag */
81 	void    (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type,
82 	            RF_AccessStripeMap_t * asmap,
83 	            RF_VoidFuncPtr *);
84 #if 0
85 	void    (**createFunc) (RF_Raid_t *,
86 	            RF_AccessStripeMap_t *,
87 	            RF_DagHeader_t *, void *,
88 	            RF_RaidAccessFlags_t,
89 	            RF_AllocListElem_t *);
90 
91 #endif
92 
93 	/* map a stripe ID to a parity stripe ID.  This is typically the
94 	 * identity mapping */
95 	void    (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID,
96 	            RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru);
97 
98 	/* get default head separation limit (may be NULL) */
99 	        RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr);
100 
101 	/* get default num recon buffers (may be NULL) */
102 	int     (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr);
103 
104 	/* get number of spare recon units (may be NULL) */
105 	        RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr);
106 
107 	/* spare table installation (may be NULL) */
108 	int     (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol);
109 
110 	/* recon buffer submission function */
111 	int     (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it,
112 	            int use_committed);
113 
114 	/*
115          * verify that parity information for a stripe is correct
116          * see rf_parityscan.h for return vals
117          */
118 	int     (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr,
119 	            RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags);
120 
121 	/* number of faults tolerated by this mapping */
122 	int     faultsTolerated;
123 
124 	/* states to step through in an access. Must end with "LastState". The
125 	 * default is DefaultStates in rf_layout.c */
126 	RF_AccessState_t *states;
127 
128 	RF_AccessStripeMapFlags_t flags;
129 #endif				/* RF_UTILITY == 0 */
130 }       RF_LayoutSW_t;
131 /* enables remapping to spare location under dist sparing */
132 #define RF_REMAP       1
133 #define RF_DONT_REMAP  0
134 
135 /*
136  * Flags values for RF_AccessStripeMapFlags_t
137  */
138 #define RF_NO_STRIPE_LOCKS   0x0001	/* suppress stripe locks */
139 #define RF_DISTRIBUTE_SPARE  0x0002	/* distribute spare space in archs
140 					 * that support it */
141 #define RF_BD_DECLUSTERED    0x0004	/* declustering uses block designs */
142 
143 /*************************************************************************
144  *
145  * this structure forms the layout component of the main Raid
146  * structure.  It describes everything needed to define and perform
147  * the mapping of logical RAID addresses <-> physical disk addresses.
148  *
149  *************************************************************************/
150 struct RF_RaidLayout_s {
151 	/* configuration parameters */
152 	RF_SectorCount_t sectorsPerStripeUnit;	/* number of sectors in one
153 						 * stripe unit */
154 	RF_StripeCount_t SUsPerPU;	/* stripe units per parity unit */
155 	RF_StripeCount_t SUsPerRU;	/* stripe units per reconstruction
156 					 * unit */
157 
158 	/* redundant-but-useful info computed from the above, used in all
159 	 * layouts */
160 	RF_StripeCount_t numStripe;	/* total number of stripes in the
161 					 * array */
162 	RF_SectorCount_t dataSectorsPerStripe;
163 	RF_StripeCount_t dataStripeUnitsPerDisk;
164 	u_int   bytesPerStripeUnit;
165 	u_int   dataBytesPerStripe;
166 	RF_StripeCount_t numDataCol;	/* number of SUs of data per stripe
167 					 * (name here is a la RAID4) */
168 	RF_StripeCount_t numParityCol;	/* number of SUs of parity per stripe.
169 					 * Always 1 for now */
170 	RF_StripeCount_t numParityLogCol;	/* number of SUs of parity log
171 						 * per stripe.  Always 1 for
172 						 * now */
173 	RF_StripeCount_t stripeUnitsPerDisk;
174 
175 	RF_LayoutSW_t *map;	/* ptr to struct holding mapping fns and
176 				 * information */
177 	void   *layoutSpecificInfo;	/* ptr to a structure holding
178 					 * layout-specific params */
179 };
180 /*****************************************************************************************
181  *
182  * The mapping code returns a pointer to a list of AccessStripeMap structures, which
183  * describes all the mapping information about an access.  The list contains one
184  * AccessStripeMap structure per stripe touched by the access.  Each element in the list
185  * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress.  Each
186  * element in this latter list describes the physical location of a stripe unit accessed
187  * within the corresponding stripe.
188  *
189  ****************************************************************************************/
190 
191 #define RF_PDA_TYPE_DATA   0
192 #define RF_PDA_TYPE_PARITY 1
193 #define RF_PDA_TYPE_Q      2
194 
195 struct RF_PhysDiskAddr_s {
196 	RF_RowCol_t row, col;	/* disk identifier */
197 	RF_SectorNum_t startSector;	/* sector offset into the disk */
198 	RF_SectorCount_t numSector;	/* number of sectors accessed */
199 	int     type;		/* used by higher levels: currently, data,
200 				 * parity, or q */
201 	caddr_t bufPtr;		/* pointer to buffer supplying/receiving data */
202 	RF_RaidAddr_t raidAddress;	/* raid address corresponding to this
203 					 * physical disk address */
204 	RF_PhysDiskAddr_t *next;
205 };
206 #define RF_MAX_FAILED_PDA RF_MAXCOL
207 
208 struct RF_AccessStripeMap_s {
209 	RF_StripeNum_t stripeID;/* the stripe index */
210 	RF_RaidAddr_t raidAddress;	/* the starting raid address within
211 					 * this stripe */
212 	RF_RaidAddr_t endRaidAddress;	/* raid address one sector past the
213 					 * end of the access */
214 	RF_SectorCount_t totalSectorsAccessed;	/* total num sectors
215 						 * identified in physInfo list */
216 	RF_StripeCount_t numStripeUnitsAccessed;	/* total num elements in
217 							 * physInfo list */
218 	int     numDataFailed;	/* number of failed data disks accessed */
219 	int     numParityFailed;/* number of failed parity disks accessed (0
220 				 * or 1) */
221 	int     numQFailed;	/* number of failed Q units accessed (0 or 1) */
222 	RF_AccessStripeMapFlags_t flags;	/* various flags */
223 #if 0
224 	RF_PhysDiskAddr_t *failedPDA;	/* points to the PDA that has failed */
225 	RF_PhysDiskAddr_t *failedPDAtwo;	/* points to the second PDA
226 						 * that has failed, if any */
227 #else
228 	int     numFailedPDAs;	/* number of failed phys addrs */
229 	RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];	/* array of failed phys
230 								 * addrs */
231 #endif
232 	RF_PhysDiskAddr_t *physInfo;	/* a list of PhysDiskAddr structs */
233 	RF_PhysDiskAddr_t *parityInfo;	/* list of physical addrs for the
234 					 * parity (P of P + Q ) */
235 	RF_PhysDiskAddr_t *qInfo;	/* list of physical addrs for the Q of
236 					 * P + Q */
237 	RF_LockReqDesc_t lockReqDesc;	/* used for stripe locking */
238 	RF_RowCol_t origRow;	/* the original row:  we may redirect the acc
239 				 * to a different row */
240 	RF_AccessStripeMap_t *next;
241 };
242 /* flag values */
243 #define RF_ASM_REDIR_LARGE_WRITE   0x00000001	/* allows large-write creation
244 						 * code to redirect failed
245 						 * accs */
246 #define RF_ASM_BAILOUT_DAG_USED    0x00000002	/* allows us to detect
247 						 * recursive calls to the
248 						 * bailout write dag */
249 #define RF_ASM_FLAGS_LOCK_TRIED    0x00000004	/* we've acquired the lock on
250 						 * the first parity range in
251 						 * this parity stripe */
252 #define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008	/* we've acquired the lock on
253 						 * the 2nd   parity range in
254 						 * this parity stripe */
255 #define RF_ASM_FLAGS_FORCE_TRIED   0x00000010	/* we've done the force-recon
256 						 * call on this parity stripe */
257 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020	/* we blocked recon => we must
258 						 * unblock it later */
259 
260 struct RF_AccessStripeMapHeader_s {
261 	RF_StripeCount_t numStripes;	/* total number of stripes touched by
262 					 * this acc */
263 	RF_AccessStripeMap_t *stripeMap;	/* pointer to the actual map.
264 						 * Also used for making lists */
265 	RF_AccessStripeMapHeader_t *next;
266 };
267 /*****************************************************************************************
268  *
269  * various routines mapping addresses in the RAID address space.  These work across
270  * all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
271  *
272  ****************************************************************************************/
273 
274 /* return the identifier of the stripe containing the given address */
275 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
276   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
277 
278 /* return the raid address of the start of the indicates stripe ID */
279 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
280   ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
281 
282 /* return the identifier of the stripe containing the given stripe unit id */
283 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
284   ( (_addr_) / (_layoutPtr_)->numDataCol )
285 
286 /* return the identifier of the stripe unit containing the given address */
287 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
288   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
289 
290 /* return the RAID address of next stripe boundary beyond the given address */
291 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
292   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
293 
294 /* return the RAID address of the start of the stripe containing the given address */
295 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
296   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
297 
298 /* return the RAID address of next stripe unit boundary beyond the given address */
299 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
300   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
301 
302 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
303 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
304   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
305 
306 /* returns the offset into the stripe.  used by RaidAddressStripeAligned */
307 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
308   ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
309 
310 /* returns the offset into the stripe unit.  */
311 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
312   ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
313 
314 /* returns nonzero if the given RAID address is stripe-aligned */
315 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
316   ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
317 
318 /* returns nonzero if the given address is stripe-unit aligned */
319 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
320   ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
321 
322 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
323 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
324   ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
325 
326 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
327   ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
328 
329 /* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
330  * since we're asking for the address of the first sector in the parity stripe.  Conversion to a
331  * parity stripe ID is more complex, since stripes are not contiguously allocated in
332  * parity stripes.
333  */
334 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
335   rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
336 
337 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
338   ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
339 
340 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
341 int
342 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
343     RF_Config_t * cfgPtr);
344 RF_StripeNum_t
345 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
346     RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
347 
348 #endif				/* !_RF__RF_LAYOUT_H_ */
349