1 /* $NetBSD: rf_layout.h,v 1.5 2001/01/26 04:14:14 oster Exp $ */ 2 /* 3 * Copyright (c) 1995 Carnegie-Mellon University. 4 * All rights reserved. 5 * 6 * Author: Mark Holland 7 * 8 * Permission to use, copy, modify and distribute this software and 9 * its documentation is hereby granted, provided that both the copyright 10 * notice and this permission notice appear in all copies of the 11 * software, derivative works or modified versions, and any portions 12 * thereof, and that both notices appear in supporting documentation. 13 * 14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 17 * 18 * Carnegie Mellon requests users of this software to return to 19 * 20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 21 * School of Computer Science 22 * Carnegie Mellon University 23 * Pittsburgh PA 15213-3890 24 * 25 * any improvements or extensions that they make and grant Carnegie the 26 * rights to redistribute these changes. 27 */ 28 29 /* rf_layout.h -- header file defining layout data structures 30 */ 31 32 #ifndef _RF__RF_LAYOUT_H_ 33 #define _RF__RF_LAYOUT_H_ 34 35 #include "rf_types.h" 36 #include "rf_archs.h" 37 #include "rf_alloclist.h" 38 39 #ifndef _KERNEL 40 #include <stdio.h> 41 #endif 42 43 /***************************************************************************************** 44 * 45 * This structure identifies all layout-specific operations and parameters. 46 * 47 ****************************************************************************************/ 48 49 typedef struct RF_LayoutSW_s { 50 RF_ParityConfig_t parityConfig; 51 const char *configName; 52 53 #ifndef _KERNEL 54 /* layout-specific parsing */ 55 int (*MakeLayoutSpecific) (FILE * fp, RF_Config_t * cfgPtr, void *arg); 56 void *makeLayoutSpecificArg; 57 #endif /* !KERNEL */ 58 59 #if RF_UTILITY == 0 60 /* initialization routine */ 61 int (*Configure) (RF_ShutdownList_t ** shutdownListp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr); 62 63 /* routine to map RAID sector address -> physical (row, col, offset) */ 64 void (*MapSector) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, 65 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 66 67 /* routine to map RAID sector address -> physical (r,c,o) of parity 68 * unit */ 69 void (*MapParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, 70 RF_RowCol_t * row, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 71 72 /* routine to map RAID sector address -> physical (r,c,o) of Q unit */ 73 void (*MapQ) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * row, 74 RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap); 75 76 /* routine to identify the disks comprising a stripe */ 77 void (*IdentifyStripe) (RF_Raid_t * raidPtr, RF_RaidAddr_t addr, 78 RF_RowCol_t ** diskids, RF_RowCol_t * outRow); 79 80 /* routine to select a dag */ 81 void (*SelectionFunc) (RF_Raid_t * raidPtr, RF_IoType_t type, 82 RF_AccessStripeMap_t * asmap, 83 RF_VoidFuncPtr *); 84 #if 0 85 void (**createFunc) (RF_Raid_t *, 86 RF_AccessStripeMap_t *, 87 RF_DagHeader_t *, void *, 88 RF_RaidAccessFlags_t, 89 RF_AllocListElem_t *); 90 91 #endif 92 93 /* map a stripe ID to a parity stripe ID. This is typically the 94 * identity mapping */ 95 void (*MapSIDToPSID) (RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID, 96 RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru); 97 98 /* get default head separation limit (may be NULL) */ 99 RF_HeadSepLimit_t(*GetDefaultHeadSepLimit) (RF_Raid_t * raidPtr); 100 101 /* get default num recon buffers (may be NULL) */ 102 int (*GetDefaultNumFloatingReconBuffers) (RF_Raid_t * raidPtr); 103 104 /* get number of spare recon units (may be NULL) */ 105 RF_ReconUnitCount_t(*GetNumSpareRUs) (RF_Raid_t * raidPtr); 106 107 /* spare table installation (may be NULL) */ 108 int (*InstallSpareTable) (RF_Raid_t * raidPtr, RF_RowCol_t frow, RF_RowCol_t fcol); 109 110 /* recon buffer submission function */ 111 int (*SubmitReconBuffer) (RF_ReconBuffer_t * rbuf, int keep_it, 112 int use_committed); 113 114 /* 115 * verify that parity information for a stripe is correct 116 * see rf_parityscan.h for return vals 117 */ 118 int (*VerifyParity) (RF_Raid_t * raidPtr, RF_RaidAddr_t raidAddr, 119 RF_PhysDiskAddr_t * parityPDA, int correct_it, RF_RaidAccessFlags_t flags); 120 121 /* number of faults tolerated by this mapping */ 122 int faultsTolerated; 123 124 /* states to step through in an access. Must end with "LastState". The 125 * default is DefaultStates in rf_layout.c */ 126 RF_AccessState_t *states; 127 128 RF_AccessStripeMapFlags_t flags; 129 #endif /* RF_UTILITY == 0 */ 130 } RF_LayoutSW_t; 131 /* enables remapping to spare location under dist sparing */ 132 #define RF_REMAP 1 133 #define RF_DONT_REMAP 0 134 135 /* 136 * Flags values for RF_AccessStripeMapFlags_t 137 */ 138 #define RF_NO_STRIPE_LOCKS 0x0001 /* suppress stripe locks */ 139 #define RF_DISTRIBUTE_SPARE 0x0002 /* distribute spare space in archs 140 * that support it */ 141 #define RF_BD_DECLUSTERED 0x0004 /* declustering uses block designs */ 142 143 /************************************************************************* 144 * 145 * this structure forms the layout component of the main Raid 146 * structure. It describes everything needed to define and perform 147 * the mapping of logical RAID addresses <-> physical disk addresses. 148 * 149 *************************************************************************/ 150 struct RF_RaidLayout_s { 151 /* configuration parameters */ 152 RF_SectorCount_t sectorsPerStripeUnit; /* number of sectors in one 153 * stripe unit */ 154 RF_StripeCount_t SUsPerPU; /* stripe units per parity unit */ 155 RF_StripeCount_t SUsPerRU; /* stripe units per reconstruction 156 * unit */ 157 158 /* redundant-but-useful info computed from the above, used in all 159 * layouts */ 160 RF_StripeCount_t numStripe; /* total number of stripes in the 161 * array */ 162 RF_SectorCount_t dataSectorsPerStripe; 163 RF_StripeCount_t dataStripeUnitsPerDisk; 164 u_int bytesPerStripeUnit; 165 u_int dataBytesPerStripe; 166 RF_StripeCount_t numDataCol; /* number of SUs of data per stripe 167 * (name here is a la RAID4) */ 168 RF_StripeCount_t numParityCol; /* number of SUs of parity per stripe. 169 * Always 1 for now */ 170 RF_StripeCount_t numParityLogCol; /* number of SUs of parity log 171 * per stripe. Always 1 for 172 * now */ 173 RF_StripeCount_t stripeUnitsPerDisk; 174 175 RF_LayoutSW_t *map; /* ptr to struct holding mapping fns and 176 * information */ 177 void *layoutSpecificInfo; /* ptr to a structure holding 178 * layout-specific params */ 179 }; 180 /***************************************************************************************** 181 * 182 * The mapping code returns a pointer to a list of AccessStripeMap structures, which 183 * describes all the mapping information about an access. The list contains one 184 * AccessStripeMap structure per stripe touched by the access. Each element in the list 185 * contains a stripe identifier and a pointer to a list of PhysDiskAddr structuress. Each 186 * element in this latter list describes the physical location of a stripe unit accessed 187 * within the corresponding stripe. 188 * 189 ****************************************************************************************/ 190 191 #define RF_PDA_TYPE_DATA 0 192 #define RF_PDA_TYPE_PARITY 1 193 #define RF_PDA_TYPE_Q 2 194 195 struct RF_PhysDiskAddr_s { 196 RF_RowCol_t row, col; /* disk identifier */ 197 RF_SectorNum_t startSector; /* sector offset into the disk */ 198 RF_SectorCount_t numSector; /* number of sectors accessed */ 199 int type; /* used by higher levels: currently, data, 200 * parity, or q */ 201 caddr_t bufPtr; /* pointer to buffer supplying/receiving data */ 202 RF_RaidAddr_t raidAddress; /* raid address corresponding to this 203 * physical disk address */ 204 RF_PhysDiskAddr_t *next; 205 }; 206 #define RF_MAX_FAILED_PDA RF_MAXCOL 207 208 struct RF_AccessStripeMap_s { 209 RF_StripeNum_t stripeID;/* the stripe index */ 210 RF_RaidAddr_t raidAddress; /* the starting raid address within 211 * this stripe */ 212 RF_RaidAddr_t endRaidAddress; /* raid address one sector past the 213 * end of the access */ 214 RF_SectorCount_t totalSectorsAccessed; /* total num sectors 215 * identified in physInfo list */ 216 RF_StripeCount_t numStripeUnitsAccessed; /* total num elements in 217 * physInfo list */ 218 int numDataFailed; /* number of failed data disks accessed */ 219 int numParityFailed;/* number of failed parity disks accessed (0 220 * or 1) */ 221 int numQFailed; /* number of failed Q units accessed (0 or 1) */ 222 RF_AccessStripeMapFlags_t flags; /* various flags */ 223 #if 0 224 RF_PhysDiskAddr_t *failedPDA; /* points to the PDA that has failed */ 225 RF_PhysDiskAddr_t *failedPDAtwo; /* points to the second PDA 226 * that has failed, if any */ 227 #else 228 int numFailedPDAs; /* number of failed phys addrs */ 229 RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA]; /* array of failed phys 230 * addrs */ 231 #endif 232 RF_PhysDiskAddr_t *physInfo; /* a list of PhysDiskAddr structs */ 233 RF_PhysDiskAddr_t *parityInfo; /* list of physical addrs for the 234 * parity (P of P + Q ) */ 235 RF_PhysDiskAddr_t *qInfo; /* list of physical addrs for the Q of 236 * P + Q */ 237 RF_LockReqDesc_t lockReqDesc; /* used for stripe locking */ 238 RF_RowCol_t origRow; /* the original row: we may redirect the acc 239 * to a different row */ 240 RF_AccessStripeMap_t *next; 241 }; 242 /* flag values */ 243 #define RF_ASM_REDIR_LARGE_WRITE 0x00000001 /* allows large-write creation 244 * code to redirect failed 245 * accs */ 246 #define RF_ASM_BAILOUT_DAG_USED 0x00000002 /* allows us to detect 247 * recursive calls to the 248 * bailout write dag */ 249 #define RF_ASM_FLAGS_LOCK_TRIED 0x00000004 /* we've acquired the lock on 250 * the first parity range in 251 * this parity stripe */ 252 #define RF_ASM_FLAGS_LOCK_TRIED2 0x00000008 /* we've acquired the lock on 253 * the 2nd parity range in 254 * this parity stripe */ 255 #define RF_ASM_FLAGS_FORCE_TRIED 0x00000010 /* we've done the force-recon 256 * call on this parity stripe */ 257 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020 /* we blocked recon => we must 258 * unblock it later */ 259 260 struct RF_AccessStripeMapHeader_s { 261 RF_StripeCount_t numStripes; /* total number of stripes touched by 262 * this acc */ 263 RF_AccessStripeMap_t *stripeMap; /* pointer to the actual map. 264 * Also used for making lists */ 265 RF_AccessStripeMapHeader_t *next; 266 }; 267 /***************************************************************************************** 268 * 269 * various routines mapping addresses in the RAID address space. These work across 270 * all layouts. DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE. 271 * 272 ****************************************************************************************/ 273 274 /* return the identifier of the stripe containing the given address */ 275 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \ 276 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol ) 277 278 /* return the raid address of the start of the indicates stripe ID */ 279 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \ 280 ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol ) 281 282 /* return the identifier of the stripe containing the given stripe unit id */ 283 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \ 284 ( (_addr_) / (_layoutPtr_)->numDataCol ) 285 286 /* return the identifier of the stripe unit containing the given address */ 287 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \ 288 ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) ) 289 290 /* return the RAID address of next stripe boundary beyond the given address */ 291 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \ 292 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe ) 293 294 /* return the RAID address of the start of the stripe containing the given address */ 295 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \ 296 ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe ) 297 298 /* return the RAID address of next stripe unit boundary beyond the given address */ 299 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \ 300 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit ) 301 302 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */ 303 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \ 304 ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit ) 305 306 /* returns the offset into the stripe. used by RaidAddressStripeAligned */ 307 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \ 308 ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) ) 309 310 /* returns the offset into the stripe unit. */ 311 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \ 312 ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) ) 313 314 /* returns nonzero if the given RAID address is stripe-aligned */ 315 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \ 316 ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 ) 317 318 /* returns nonzero if the given address is stripe-unit aligned */ 319 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \ 320 ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 ) 321 322 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */ 323 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \ 324 ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) ) 325 326 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \ 327 ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) ) 328 329 /* convert a raid address to/from a parity stripe ID. Conversion to raid address is easy, 330 * since we're asking for the address of the first sector in the parity stripe. Conversion to a 331 * parity stripe ID is more complex, since stripes are not contiguously allocated in 332 * parity stripes. 333 */ 334 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \ 335 rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) ) 336 337 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \ 338 ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit ) 339 340 RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig); 341 int 342 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, 343 RF_Config_t * cfgPtr); 344 RF_StripeNum_t 345 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr, 346 RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru); 347 348 #endif /* !_RF__RF_LAYOUT_H_ */ 349