xref: /netbsd-src/sys/dev/raidframe/rf_engine.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: rf_engine.c,v 1.34 2004/03/09 03:10:26 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II, Mark Holland, Rachad Youssef
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *                                                                          *
31  * engine.c -- code for DAG execution engine                                *
32  *                                                                          *
33  * Modified to work as follows (holland):                                   *
34  *   A user-thread calls into DispatchDAG, which fires off the nodes that   *
35  *   are direct successors to the header node.  DispatchDAG then returns,   *
36  *   and the rest of the I/O continues asynchronously.  As each node        *
37  *   completes, the node execution function calls FinishNode().  FinishNode *
38  *   scans the list of successors to the node and increments the antecedent *
39  *   counts.  Each node that becomes enabled is placed on a central node    *
40  *   queue.  A dedicated dag-execution thread grabs nodes off of this       *
41  *   queue and fires them.                                                  *
42  *                                                                          *
43  *   NULL nodes are never fired.                                            *
44  *                                                                          *
45  *   Terminator nodes are never fired, but rather cause the callback        *
46  *   associated with the DAG to be invoked.                                 *
47  *                                                                          *
48  *   If a node fails, the dag either rolls forward to the completion or     *
49  *   rolls back, undoing previously-completed nodes and fails atomically.   *
50  *   The direction of recovery is determined by the location of the failed  *
51  *   node in the graph.  If the failure occurred before the commit node in   *
52  *   the graph, backward recovery is used.  Otherwise, forward recovery is  *
53  *   used.                                                                  *
54  *                                                                          *
55  ****************************************************************************/
56 
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.34 2004/03/09 03:10:26 oster Exp $");
59 
60 #include <sys/errno.h>
61 
62 #include "rf_threadstuff.h"
63 #include "rf_dag.h"
64 #include "rf_engine.h"
65 #include "rf_etimer.h"
66 #include "rf_general.h"
67 #include "rf_dagutils.h"
68 #include "rf_shutdown.h"
69 #include "rf_raid.h"
70 
71 static void rf_ShutdownEngine(void *);
72 static void DAGExecutionThread(RF_ThreadArg_t arg);
73 static void rf_RaidIOThread(RF_ThreadArg_t arg);
74 
75 /* synchronization primitives for this file.  DO_WAIT should be enclosed in a while loop. */
76 
77 #define DO_LOCK(_r_) \
78 do { \
79 	ks = splbio(); \
80 	RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
81 } while (0)
82 
83 #define DO_UNLOCK(_r_) \
84 do { \
85 	RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
86 	splx(ks); \
87 } while (0)
88 
89 #define	DO_WAIT(_r_) \
90 	RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
91 
92 #define	DO_SIGNAL(_r_) \
93 	RF_BROADCAST_COND((_r_)->node_queue)	/* XXX RF_SIGNAL_COND? */
94 
95 static void
96 rf_ShutdownEngine(void *arg)
97 {
98 	RF_Raid_t *raidPtr;
99 	int ks;
100 
101 	raidPtr = (RF_Raid_t *) arg;
102 
103 	/* Tell the rf_RaidIOThread to shutdown */
104 	simple_lock(&(raidPtr->iodone_lock));
105 
106 	raidPtr->shutdown_raidio = 1;
107 	wakeup(&(raidPtr->iodone));
108 
109 	/* ...and wait for it to tell us it has finished */
110 	while (raidPtr->shutdown_raidio)
111  		ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
112 			&(raidPtr->iodone_lock));
113 
114 	simple_unlock(&(raidPtr->iodone_lock));
115 
116  	/* Now shut down the DAG execution engine. */
117  	DO_LOCK(raidPtr);
118   	raidPtr->shutdown_engine = 1;
119   	DO_SIGNAL(raidPtr);
120  	DO_UNLOCK(raidPtr);
121 
122 }
123 
124 int
125 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
126 		   RF_Config_t *cfgPtr)
127 {
128 
129 	rf_mutex_init(&raidPtr->node_queue_mutex);
130 	raidPtr->node_queue = NULL;
131 	raidPtr->dags_in_flight = 0;
132 
133 	/* we create the execution thread only once per system boot. no need
134 	 * to check return code b/c the kernel panics if it can't create the
135 	 * thread. */
136 #if RF_DEBUG_ENGINE
137 	if (rf_engineDebug) {
138 		printf("raid%d: Creating engine thread\n", raidPtr->raidid);
139 	}
140 #endif
141 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
142 				    DAGExecutionThread, raidPtr,
143 				    "raid%d", raidPtr->raidid)) {
144 		printf("raid%d: Unable to create engine thread\n",
145 		       raidPtr->raidid);
146 		return (ENOMEM);
147 	}
148 	if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
149 				    rf_RaidIOThread, raidPtr,
150 				    "raidio%d", raidPtr->raidid)) {
151 		printf("raid%d: Unable to create raidio thread\n",
152 		       raidPtr->raidid);
153 		return (ENOMEM);
154 	}
155 #if RF_DEBUG_ENGINE
156 	if (rf_engineDebug) {
157 		printf("raid%d: Created engine thread\n", raidPtr->raidid);
158 	}
159 #endif
160 
161 	/* engine thread is now running and waiting for work */
162 #if RF_DEBUG_ENGINE
163 	if (rf_engineDebug) {
164 		printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
165 	}
166 #endif
167 	rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
168 
169 	return (0);
170 }
171 
172 static int
173 BranchDone(RF_DagNode_t *node)
174 {
175 	int     i;
176 
177 	/* return true if forward execution is completed for a node and it's
178 	 * succedents */
179 	switch (node->status) {
180 	case rf_wait:
181 		/* should never be called in this state */
182 		RF_PANIC();
183 		break;
184 	case rf_fired:
185 		/* node is currently executing, so we're not done */
186 		return (RF_FALSE);
187 	case rf_good:
188 		/* for each succedent recursively check branch */
189 		for (i = 0; i < node->numSuccedents; i++)
190 			if (!BranchDone(node->succedents[i]))
191 				return RF_FALSE;
192 		return RF_TRUE;	/* node and all succedent branches aren't in
193 				 * fired state */
194 	case rf_bad:
195 		/* succedents can't fire */
196 		return (RF_TRUE);
197 	case rf_recover:
198 		/* should never be called in this state */
199 		RF_PANIC();
200 		break;
201 	case rf_undone:
202 	case rf_panic:
203 		/* XXX need to fix this case */
204 		/* for now, assume that we're done */
205 		return (RF_TRUE);
206 	default:
207 		/* illegal node status */
208 		RF_PANIC();
209 		break;
210 	}
211 }
212 
213 static int
214 NodeReady(RF_DagNode_t *node)
215 {
216 	int     ready;
217 
218 	switch (node->dagHdr->status) {
219 	case rf_enable:
220 	case rf_rollForward:
221 		if ((node->status == rf_wait) &&
222 		    (node->numAntecedents == node->numAntDone))
223 			ready = RF_TRUE;
224 		else
225 			ready = RF_FALSE;
226 		break;
227 	case rf_rollBackward:
228 		RF_ASSERT(node->numSuccDone <= node->numSuccedents);
229 		RF_ASSERT(node->numSuccFired <= node->numSuccedents);
230 		RF_ASSERT(node->numSuccFired <= node->numSuccDone);
231 		if ((node->status == rf_good) &&
232 		    (node->numSuccDone == node->numSuccedents))
233 			ready = RF_TRUE;
234 		else
235 			ready = RF_FALSE;
236 		break;
237 	default:
238 		printf("Execution engine found illegal DAG status in NodeReady\n");
239 		RF_PANIC();
240 		break;
241 	}
242 
243 	return (ready);
244 }
245 
246 
247 
248 /* user context and dag-exec-thread context: Fire a node.  The node's
249  * status field determines which function, do or undo, to be fired.
250  * This routine assumes that the node's status field has alread been
251  * set to "fired" or "recover" to indicate the direction of execution.
252  */
253 static void
254 FireNode(RF_DagNode_t *node)
255 {
256 	switch (node->status) {
257 	case rf_fired:
258 		/* fire the do function of a node */
259 #if RF_DEBUG_ENGINE
260 		if (rf_engineDebug) {
261 			printf("raid%d: Firing node 0x%lx (%s)\n",
262 			       node->dagHdr->raidPtr->raidid,
263 			       (unsigned long) node, node->name);
264 		}
265 #endif
266 		if (node->flags & RF_DAGNODE_FLAG_YIELD) {
267 #if defined(__NetBSD__) && defined(_KERNEL)
268 			/* thread_block(); */
269 			/* printf("Need to block the thread here...\n");  */
270 			/* XXX thread_block is actually mentioned in
271 			 * /usr/include/vm/vm_extern.h */
272 #else
273 			thread_block();
274 #endif
275 		}
276 		(*(node->doFunc)) (node);
277 		break;
278 	case rf_recover:
279 		/* fire the undo function of a node */
280 #if RF_DEBUG_ENGINE
281 		if (rf_engineDebug) {
282 			printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
283 			       node->dagHdr->raidPtr->raidid,
284 			       (unsigned long) node, node->name);
285 		}
286 #endif
287 		if (node->flags & RF_DAGNODE_FLAG_YIELD)
288 #if defined(__NetBSD__) && defined(_KERNEL)
289 			/* thread_block(); */
290 			/* printf("Need to block the thread here...\n"); */
291 			/* XXX thread_block is actually mentioned in
292 			 * /usr/include/vm/vm_extern.h */
293 #else
294 			thread_block();
295 #endif
296 		(*(node->undoFunc)) (node);
297 		break;
298 	default:
299 		RF_PANIC();
300 		break;
301 	}
302 }
303 
304 
305 
306 /* user context:
307  * Attempt to fire each node in a linear array.
308  * The entire list is fired atomically.
309  */
310 static void
311 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
312 {
313 	RF_DagStatus_t dstat;
314 	RF_DagNode_t *node;
315 	int     i, j;
316 
317 	/* first, mark all nodes which are ready to be fired */
318 	for (i = 0; i < numNodes; i++) {
319 		node = nodeList[i];
320 		dstat = node->dagHdr->status;
321 		RF_ASSERT((node->status == rf_wait) ||
322 			  (node->status == rf_good));
323 		if (NodeReady(node)) {
324 			if ((dstat == rf_enable) ||
325 			    (dstat == rf_rollForward)) {
326 				RF_ASSERT(node->status == rf_wait);
327 				if (node->commitNode)
328 					node->dagHdr->numCommits++;
329 				node->status = rf_fired;
330 				for (j = 0; j < node->numAntecedents; j++)
331 					node->antecedents[j]->numSuccFired++;
332 			} else {
333 				RF_ASSERT(dstat == rf_rollBackward);
334 				RF_ASSERT(node->status == rf_good);
335 				/* only one commit node per graph */
336 				RF_ASSERT(node->commitNode == RF_FALSE);
337 				node->status = rf_recover;
338 			}
339 		}
340 	}
341 	/* now, fire the nodes */
342 	for (i = 0; i < numNodes; i++) {
343 		if ((nodeList[i]->status == rf_fired) ||
344 		    (nodeList[i]->status == rf_recover))
345 			FireNode(nodeList[i]);
346 	}
347 }
348 
349 
350 /* user context:
351  * Attempt to fire each node in a linked list.
352  * The entire list is fired atomically.
353  */
354 static void
355 FireNodeList(RF_DagNode_t *nodeList)
356 {
357 	RF_DagNode_t *node, *next;
358 	RF_DagStatus_t dstat;
359 	int     j;
360 
361 	if (nodeList) {
362 		/* first, mark all nodes which are ready to be fired */
363 		for (node = nodeList; node; node = next) {
364 			next = node->next;
365 			dstat = node->dagHdr->status;
366 			RF_ASSERT((node->status == rf_wait) ||
367 				  (node->status == rf_good));
368 			if (NodeReady(node)) {
369 				if ((dstat == rf_enable) ||
370 				    (dstat == rf_rollForward)) {
371 					RF_ASSERT(node->status == rf_wait);
372 					if (node->commitNode)
373 						node->dagHdr->numCommits++;
374 					node->status = rf_fired;
375 					for (j = 0; j < node->numAntecedents; j++)
376 						node->antecedents[j]->numSuccFired++;
377 				} else {
378 					RF_ASSERT(dstat == rf_rollBackward);
379 					RF_ASSERT(node->status == rf_good);
380 					/* only one commit node per graph */
381 					RF_ASSERT(node->commitNode == RF_FALSE);
382 					node->status = rf_recover;
383 				}
384 			}
385 		}
386 		/* now, fire the nodes */
387 		for (node = nodeList; node; node = next) {
388 			next = node->next;
389 			if ((node->status == rf_fired) ||
390 			    (node->status == rf_recover))
391 				FireNode(node);
392 		}
393 	}
394 }
395 /* interrupt context:
396  * for each succedent
397  *    propagate required results from node to succedent
398  *    increment succedent's numAntDone
399  *    place newly-enable nodes on node queue for firing
400  *
401  * To save context switches, we don't place NIL nodes on the node queue,
402  * but rather just process them as if they had fired.  Note that NIL nodes
403  * that are the direct successors of the header will actually get fired by
404  * DispatchDAG, which is fine because no context switches are involved.
405  *
406  * Important:  when running at user level, this can be called by any
407  * disk thread, and so the increment and check of the antecedent count
408  * must be locked.  I used the node queue mutex and locked down the
409  * entire function, but this is certainly overkill.
410  */
411 static void
412 PropagateResults(RF_DagNode_t *node, int context)
413 {
414 	RF_DagNode_t *s, *a;
415 	RF_Raid_t *raidPtr;
416 	int     i, ks;
417 	RF_DagNode_t *finishlist = NULL;	/* a list of NIL nodes to be
418 						 * finished */
419 	RF_DagNode_t *skiplist = NULL;	/* list of nodes with failed truedata
420 					 * antecedents */
421 	RF_DagNode_t *firelist = NULL;	/* a list of nodes to be fired */
422 	RF_DagNode_t *q = NULL, *qh = NULL, *next;
423 	int     j, skipNode;
424 
425 	raidPtr = node->dagHdr->raidPtr;
426 
427 	DO_LOCK(raidPtr);
428 
429 	/* debug - validate fire counts */
430 	for (i = 0; i < node->numAntecedents; i++) {
431 		a = *(node->antecedents + i);
432 		RF_ASSERT(a->numSuccFired >= a->numSuccDone);
433 		RF_ASSERT(a->numSuccFired <= a->numSuccedents);
434 		a->numSuccDone++;
435 	}
436 
437 	switch (node->dagHdr->status) {
438 	case rf_enable:
439 	case rf_rollForward:
440 		for (i = 0; i < node->numSuccedents; i++) {
441 			s = *(node->succedents + i);
442 			RF_ASSERT(s->status == rf_wait);
443 			(s->numAntDone)++;
444 			if (s->numAntDone == s->numAntecedents) {
445 				/* look for NIL nodes */
446 				if (s->doFunc == rf_NullNodeFunc) {
447 					/* don't fire NIL nodes, just process
448 					 * them */
449 					s->next = finishlist;
450 					finishlist = s;
451 				} else {
452 					/* look to see if the node is to be
453 					 * skipped */
454 					skipNode = RF_FALSE;
455 					for (j = 0; j < s->numAntecedents; j++)
456 						if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
457 							skipNode = RF_TRUE;
458 					if (skipNode) {
459 						/* this node has one or more
460 						 * failed true data
461 						 * dependencies, so skip it */
462 						s->next = skiplist;
463 						skiplist = s;
464 					} else
465 						/* add s to list of nodes (q)
466 						 * to execute */
467 						if (context != RF_INTR_CONTEXT) {
468 							/* we only have to
469 							 * enqueue if we're at
470 							 * intr context */
471 							/* put node on
472                                                            a list to
473                                                            be fired
474                                                            after we
475                                                            unlock */
476 							s->next = firelist;
477 							firelist = s;
478 						} else {
479 							/* enqueue the
480 							   node for
481 							   the dag
482 							   exec thread
483 							   to fire */
484 							RF_ASSERT(NodeReady(s));
485 							if (q) {
486 								q->next = s;
487 								q = s;
488 							} else {
489 								qh = q = s;
490 								qh->next = NULL;
491 							}
492 						}
493 				}
494 			}
495 		}
496 
497 		if (q) {
498 			/* xfer our local list of nodes to the node queue */
499 			q->next = raidPtr->node_queue;
500 			raidPtr->node_queue = qh;
501 			DO_SIGNAL(raidPtr);
502 		}
503 		DO_UNLOCK(raidPtr);
504 
505 		for (; skiplist; skiplist = next) {
506 			next = skiplist->next;
507 			skiplist->status = rf_skipped;
508 			for (i = 0; i < skiplist->numAntecedents; i++) {
509 				skiplist->antecedents[i]->numSuccFired++;
510 			}
511 			if (skiplist->commitNode) {
512 				skiplist->dagHdr->numCommits++;
513 			}
514 			rf_FinishNode(skiplist, context);
515 		}
516 		for (; finishlist; finishlist = next) {
517 			/* NIL nodes: no need to fire them */
518 			next = finishlist->next;
519 			finishlist->status = rf_good;
520 			for (i = 0; i < finishlist->numAntecedents; i++) {
521 				finishlist->antecedents[i]->numSuccFired++;
522 			}
523 			if (finishlist->commitNode)
524 				finishlist->dagHdr->numCommits++;
525 			/*
526 		         * Okay, here we're calling rf_FinishNode() on
527 		         * nodes that have the null function as their
528 		         * work proc. Such a node could be the
529 		         * terminal node in a DAG. If so, it will
530 		         * cause the DAG to complete, which will in
531 		         * turn free memory used by the DAG, which
532 		         * includes the node in question. Thus, we
533 		         * must avoid referencing the node at all
534 		         * after calling rf_FinishNode() on it.  */
535 			rf_FinishNode(finishlist, context);	/* recursive call */
536 		}
537 		/* fire all nodes in firelist */
538 		FireNodeList(firelist);
539 		break;
540 
541 	case rf_rollBackward:
542 		for (i = 0; i < node->numAntecedents; i++) {
543 			a = *(node->antecedents + i);
544 			RF_ASSERT(a->status == rf_good);
545 			RF_ASSERT(a->numSuccDone <= a->numSuccedents);
546 			RF_ASSERT(a->numSuccDone <= a->numSuccFired);
547 
548 			if (a->numSuccDone == a->numSuccFired) {
549 				if (a->undoFunc == rf_NullNodeFunc) {
550 					/* don't fire NIL nodes, just process
551 					 * them */
552 					a->next = finishlist;
553 					finishlist = a;
554 				} else {
555 					if (context != RF_INTR_CONTEXT) {
556 						/* we only have to enqueue if
557 						 * we're at intr context */
558 						/* put node on a list to be
559 						   fired after we unlock */
560 						a->next = firelist;
561 
562 						firelist = a;
563 					} else {
564 						/* enqueue the node for the
565 						   dag exec thread to fire */
566 						RF_ASSERT(NodeReady(a));
567 						if (q) {
568 							q->next = a;
569 							q = a;
570 						} else {
571 							qh = q = a;
572 							qh->next = NULL;
573 						}
574 					}
575 				}
576 			}
577 		}
578 		if (q) {
579 			/* xfer our local list of nodes to the node queue */
580 			q->next = raidPtr->node_queue;
581 			raidPtr->node_queue = qh;
582 			DO_SIGNAL(raidPtr);
583 		}
584 		DO_UNLOCK(raidPtr);
585 		for (; finishlist; finishlist = next) {
586 			/* NIL nodes: no need to fire them */
587 			next = finishlist->next;
588 			finishlist->status = rf_good;
589 			/*
590 		         * Okay, here we're calling rf_FinishNode() on
591 		         * nodes that have the null function as their
592 		         * work proc. Such a node could be the first
593 		         * node in a DAG. If so, it will cause the DAG
594 		         * to complete, which will in turn free memory
595 		         * used by the DAG, which includes the node in
596 		         * question. Thus, we must avoid referencing
597 		         * the node at all after calling
598 		         * rf_FinishNode() on it.  */
599 			rf_FinishNode(finishlist, context);	/* recursive call */
600 		}
601 		/* fire all nodes in firelist */
602 		FireNodeList(firelist);
603 
604 		break;
605 	default:
606 		printf("Engine found illegal DAG status in PropagateResults()\n");
607 		RF_PANIC();
608 		break;
609 	}
610 }
611 
612 
613 
614 /*
615  * Process a fired node which has completed
616  */
617 static void
618 ProcessNode(RF_DagNode_t *node, int context)
619 {
620 	RF_Raid_t *raidPtr;
621 
622 	raidPtr = node->dagHdr->raidPtr;
623 
624 	switch (node->status) {
625 	case rf_good:
626 		/* normal case, don't need to do anything */
627 		break;
628 	case rf_bad:
629 		if ((node->dagHdr->numCommits > 0) ||
630 		    (node->dagHdr->numCommitNodes == 0)) {
631 			/* crossed commit barrier */
632 			node->dagHdr->status = rf_rollForward;
633 #if RF_DEBUG_ENGINE
634 			if (rf_engineDebug) {
635 				printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
636 			}
637 #endif
638 		} else {
639 			/* never reached commit barrier */
640 			node->dagHdr->status = rf_rollBackward;
641 #if RF_DEBUG_ENGINE
642 			if (rf_engineDebug) {
643 				printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
644 			}
645 #endif
646 		}
647 		break;
648 	case rf_undone:
649 		/* normal rollBackward case, don't need to do anything */
650 		break;
651 	case rf_panic:
652 		/* an undo node failed!!! */
653 		printf("UNDO of a node failed!!!/n");
654 		break;
655 	default:
656 		printf("node finished execution with an illegal status!!!\n");
657 		RF_PANIC();
658 		break;
659 	}
660 
661 	/* enqueue node's succedents (antecedents if rollBackward) for
662 	 * execution */
663 	PropagateResults(node, context);
664 }
665 
666 
667 
668 /* user context or dag-exec-thread context:
669  * This is the first step in post-processing a newly-completed node.
670  * This routine is called by each node execution function to mark the node
671  * as complete and fire off any successors that have been enabled.
672  */
673 int
674 rf_FinishNode(RF_DagNode_t *node, int context)
675 {
676 	int     retcode = RF_FALSE;
677 	node->dagHdr->numNodesCompleted++;
678 	ProcessNode(node, context);
679 
680 	return (retcode);
681 }
682 
683 
684 /* user context: submit dag for execution, return non-zero if we have
685  * to wait for completion.  if and only if we return non-zero, we'll
686  * cause cbFunc to get invoked with cbArg when the DAG has completed.
687  *
688  * for now we always return 1.  If the DAG does not cause any I/O,
689  * then the callback may get invoked before DispatchDAG returns.
690  * There's code in state 5 of ContinueRaidAccess to handle this.
691  *
692  * All we do here is fire the direct successors of the header node.
693  * The DAG execution thread does the rest of the dag processing.  */
694 int
695 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
696 	       void *cbArg)
697 {
698 	RF_Raid_t *raidPtr;
699 
700 	raidPtr = dag->raidPtr;
701 #if RF_ACC_TRACE > 0
702 	if (dag->tracerec) {
703 		RF_ETIMER_START(dag->tracerec->timer);
704 	}
705 #endif
706 #if DEBUG
707 #if RF_DEBUG_VALIDATE_DAG
708 	if (rf_engineDebug || rf_validateDAGDebug) {
709 		if (rf_ValidateDAG(dag))
710 			RF_PANIC();
711 	}
712 #endif
713 #endif
714 #if RF_DEBUG_ENGINE
715 	if (rf_engineDebug) {
716 		printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
717 	}
718 #endif
719 	raidPtr->dags_in_flight++;	/* debug only:  blow off proper
720 					 * locking */
721 	dag->cbFunc = cbFunc;
722 	dag->cbArg = cbArg;
723 	dag->numNodesCompleted = 0;
724 	dag->status = rf_enable;
725 	FireNodeArray(dag->numSuccedents, dag->succedents);
726 	return (1);
727 }
728 /* dedicated kernel thread: the thread that handles all DAG node
729  * firing.  To minimize locking and unlocking, we grab a copy of the
730  * entire node queue and then set the node queue to NULL before doing
731  * any firing of nodes.  This way we only have to release the lock
732  * once.  Of course, it's probably rare that there's more than one
733  * node in the queue at any one time, but it sometimes happens.
734  */
735 
736 static void
737 DAGExecutionThread(RF_ThreadArg_t arg)
738 {
739 	RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
740 	RF_Raid_t *raidPtr;
741 	int     ks;
742 	int     s;
743 
744 	raidPtr = (RF_Raid_t *) arg;
745 
746 #if RF_DEBUG_ENGINE
747 	if (rf_engineDebug) {
748 		printf("raid%d: Engine thread is running\n", raidPtr->raidid);
749 	}
750 #endif
751 	s = splbio();
752 
753 	DO_LOCK(raidPtr);
754 	while (!raidPtr->shutdown_engine) {
755 
756 		while (raidPtr->node_queue != NULL) {
757 			local_nq = raidPtr->node_queue;
758 			fire_nq = NULL;
759 			term_nq = NULL;
760 			raidPtr->node_queue = NULL;
761 			DO_UNLOCK(raidPtr);
762 
763 			/* first, strip out the terminal nodes */
764 			while (local_nq) {
765 				nd = local_nq;
766 				local_nq = local_nq->next;
767 				switch (nd->dagHdr->status) {
768 				case rf_enable:
769 				case rf_rollForward:
770 					if (nd->numSuccedents == 0) {
771 						/* end of the dag, add to
772 						 * callback list */
773 						nd->next = term_nq;
774 						term_nq = nd;
775 					} else {
776 						/* not the end, add to the
777 						 * fire queue */
778 						nd->next = fire_nq;
779 						fire_nq = nd;
780 					}
781 					break;
782 				case rf_rollBackward:
783 					if (nd->numAntecedents == 0) {
784 						/* end of the dag, add to the
785 						 * callback list */
786 						nd->next = term_nq;
787 						term_nq = nd;
788 					} else {
789 						/* not the end, add to the
790 						 * fire queue */
791 						nd->next = fire_nq;
792 						fire_nq = nd;
793 					}
794 					break;
795 				default:
796 					RF_PANIC();
797 					break;
798 				}
799 			}
800 
801 			/* execute callback of dags which have reached the
802 			 * terminal node */
803 			while (term_nq) {
804 				nd = term_nq;
805 				term_nq = term_nq->next;
806 				nd->next = NULL;
807 				(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
808 				raidPtr->dags_in_flight--;	/* debug only */
809 			}
810 
811 			/* fire remaining nodes */
812 			FireNodeList(fire_nq);
813 
814 			DO_LOCK(raidPtr);
815 		}
816 		while (!raidPtr->shutdown_engine &&
817 		       raidPtr->node_queue == NULL) {
818 			DO_WAIT(raidPtr);
819 		}
820 	}
821 	DO_UNLOCK(raidPtr);
822 
823 	splx(s);
824 	kthread_exit(0);
825 }
826 
827 /*
828  * rf_RaidIOThread() -- When I/O to a component completes,
829  * KernelWakeupFunc() puts the completed request onto raidPtr->iodone
830  * TAILQ.  This function looks after requests on that queue by calling
831  * rf_DiskIOComplete() for the request, and by calling any required
832  * CompleteFunc for the request.
833  */
834 
835 static void
836 rf_RaidIOThread(RF_ThreadArg_t arg)
837 {
838 	RF_Raid_t *raidPtr;
839 	RF_DiskQueueData_t *req;
840 	int s;
841 
842 	raidPtr = (RF_Raid_t *) arg;
843 
844 	s = splbio();
845 	simple_lock(&(raidPtr->iodone_lock));
846 
847 	while (!raidPtr->shutdown_raidio) {
848 		/* if there is nothing to do, then snooze. */
849 		if (TAILQ_EMPTY(&(raidPtr->iodone))) {
850 			ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
851 				&(raidPtr->iodone_lock));
852 		}
853 
854 		/* See what I/Os, if any, have arrived */
855 		while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
856 			TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
857 			simple_unlock(&(raidPtr->iodone_lock));
858 			rf_DiskIOComplete(req->queue, req, req->error);
859 			(req->CompleteFunc) (req->argument, req->error);
860 			simple_lock(&(raidPtr->iodone_lock));
861 		}
862 	}
863 
864 	/* Let rf_ShutdownEngine know that we're done... */
865 	raidPtr->shutdown_raidio = 0;
866 	wakeup(&(raidPtr->shutdown_raidio));
867 
868 	simple_unlock(&(raidPtr->iodone_lock));
869 	splx(s);
870 
871 	kthread_exit(0);
872 }
873