xref: /netbsd-src/sys/dev/raidframe/rf_diskqueue.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *
31  * rf_diskqueue.c -- higher-level disk queue code
32  *
33  * the routines here are a generic wrapper around the actual queueing
34  * routines.  The code here implements thread scheduling, synchronization,
35  * and locking ops (see below) on top of the lower-level queueing code.
36  *
37  * to support atomic RMW, we implement "locking operations".  When a
38  * locking op is dispatched to the lower levels of the driver, the
39  * queue is locked, and no further I/Os are dispatched until the queue
40  * receives & completes a corresponding "unlocking operation".  This
41  * code relies on the higher layers to guarantee that a locking op
42  * will always be eventually followed by an unlocking op.  The model
43  * is that the higher layers are structured so locking and unlocking
44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45  * after a locking op reports completion.  There is no good way to
46  * check to see that an unlocking op "corresponds" to the op that
47  * currently has the queue locked, so we make no such attempt.  Since
48  * by definition there can be only one locking op outstanding on a
49  * disk, this should not be a problem.
50  *
51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
52  * to the disk driver.  In order to support locking ops in this
53  * environment, when we decide to do a locking op, we stop dispatching
54  * new I/Os and wait until all dispatched I/Os have completed before
55  * dispatching the locking op.
56  *
57  * Unfortunately, the code is different in the 3 different operating
58  * states (user level, kernel, simulator).  In the kernel, I/O is
59  * non-blocking, and we have no disk threads to dispatch for us.
60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
61  * time of enqueue, and also at the time of completion.  At user
62  * level, I/O is blocking, and so only the disk threads may dispatch
63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64  * and wake up the disk thread to do the dispatch.
65  *
66  ****************************************************************************/
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.29 2004/01/01 19:27:35 oster Exp $");
70 
71 #include <dev/raidframe/raidframevar.h>
72 
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_debugprint.h"
81 #include "rf_shutdown.h"
82 #include "rf_cvscan.h"
83 #include "rf_sstf.h"
84 #include "rf_fifo.h"
85 #include "rf_kintf.h"
86 
87 static void rf_ShutdownDiskQueueSystem(void *);
88 
89 #ifndef RF_DEBUG_DISKQUEUE
90 #define RF_DEBUG_DISKQUEUE 0
91 #endif
92 
93 #if RF_DEBUG_DISKQUEUE
94 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
95 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
96 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
97 #else
98 #define Dprintf1(s,a)
99 #define Dprintf2(s,a,b)
100 #define Dprintf3(s,a,b,c)
101 #endif
102 
103 /*****************************************************************************
104  *
105  * the disk queue switch defines all the functions used in the
106  * different queueing disciplines queue ID, init routine, enqueue
107  * routine, dequeue routine
108  *
109  ****************************************************************************/
110 
111 static const RF_DiskQueueSW_t diskqueuesw[] = {
112 	{"fifo",		/* FIFO */
113 		rf_FifoCreate,
114 		rf_FifoEnqueue,
115 		rf_FifoDequeue,
116 		rf_FifoPeek,
117 	rf_FifoPromote},
118 
119 	{"cvscan",		/* cvscan */
120 		rf_CvscanCreate,
121 		rf_CvscanEnqueue,
122 		rf_CvscanDequeue,
123 		rf_CvscanPeek,
124 	rf_CvscanPromote},
125 
126 	{"sstf",		/* shortest seek time first */
127 		rf_SstfCreate,
128 		rf_SstfEnqueue,
129 		rf_SstfDequeue,
130 		rf_SstfPeek,
131 	rf_SstfPromote},
132 
133 	{"scan",		/* SCAN (two-way elevator) */
134 		rf_ScanCreate,
135 		rf_SstfEnqueue,
136 		rf_ScanDequeue,
137 		rf_ScanPeek,
138 	rf_SstfPromote},
139 
140 	{"cscan",		/* CSCAN (one-way elevator) */
141 		rf_CscanCreate,
142 		rf_SstfEnqueue,
143 		rf_CscanDequeue,
144 		rf_CscanPeek,
145 	rf_SstfPromote},
146 
147 };
148 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
149 
150 static struct pool rf_dqd_pool;
151 #define RF_MAX_FREE_DQD 256
152 #define RF_DQD_INC       16
153 #define RF_DQD_INITIAL   64
154 
155 #include <sys/buf.h>
156 
157 /* configures a single disk queue */
158 
159 int
160 rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
161 		      RF_RowCol_t c, const RF_DiskQueueSW_t *p,
162 		      RF_SectorCount_t sectPerDisk, dev_t dev,
163 		      int maxOutstanding, RF_ShutdownList_t **listp,
164 		      RF_AllocListElem_t *clList)
165 {
166 	diskqueue->col = c;
167 	diskqueue->qPtr = p;
168 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
169 	diskqueue->dev = dev;
170 	diskqueue->numOutstanding = 0;
171 	diskqueue->queueLength = 0;
172 	diskqueue->maxOutstanding = maxOutstanding;
173 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
174 	diskqueue->nextLockingOp = NULL;
175 	diskqueue->flags = 0;
176 	diskqueue->raidPtr = raidPtr;
177 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
178 	rf_mutex_init(&diskqueue->mutex);
179 	diskqueue->cond = 0;
180 	return (0);
181 }
182 
183 static void
184 rf_ShutdownDiskQueueSystem(void *ignored)
185 {
186 	pool_destroy(&rf_dqd_pool);
187 }
188 
189 int
190 rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
191 {
192 	int     rc;
193 
194 	pool_init(&rf_dqd_pool, sizeof(RF_DiskQueueData_t), 0, 0, 0,
195 		  "rf_dqd_pl", NULL);
196 	pool_sethiwat(&rf_dqd_pool, RF_MAX_FREE_DQD);
197 	pool_prime(&rf_dqd_pool, RF_DQD_INITIAL);
198 
199 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
200 	if (rc) {
201 		rf_print_unable_to_add_shutdown( __FILE__, __LINE__, rc);
202 		rf_ShutdownDiskQueueSystem(NULL);
203 		return (rc);
204 	}
205 
206 	return (0);
207 }
208 
209 int
210 rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
211 		       RF_Config_t *cfgPtr)
212 {
213 	RF_DiskQueue_t *diskQueues, *spareQueues;
214 	const RF_DiskQueueSW_t *p;
215 	RF_RowCol_t r,c;
216 	int     rc, i;
217 
218 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
219 
220 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
221 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
222 			p = &diskqueuesw[i];
223 			break;
224 		}
225 	}
226 	if (p == NULL) {
227 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
228 		p = &diskqueuesw[0];
229 	}
230 	raidPtr->qType = p;
231 
232 	RF_MallocAndAdd(diskQueues,
233 			(raidPtr->numCol + RF_MAXSPARE) *
234 			sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
235 			raidPtr->cleanupList);
236 	if (diskQueues == NULL)
237 		return (ENOMEM);
238 	raidPtr->Queues = diskQueues;
239 
240 	for (c = 0; c < raidPtr->numCol; c++) {
241 		rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
242 					   c, p,
243 					   raidPtr->sectorsPerDisk,
244 					   raidPtr->Disks[c].dev,
245 					   cfgPtr->maxOutstandingDiskReqs,
246 					   listp, raidPtr->cleanupList);
247 		if (rc)
248 			return (rc);
249 	}
250 
251 	spareQueues = &raidPtr->Queues[raidPtr->numCol];
252 	for (r = 0; r < raidPtr->numSpare; r++) {
253 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
254 					   raidPtr->numCol + r, p,
255 					   raidPtr->sectorsPerDisk,
256 					   raidPtr->Disks[raidPtr->numCol + r].dev,
257 					   cfgPtr->maxOutstandingDiskReqs, listp,
258 					   raidPtr->cleanupList);
259 		if (rc)
260 			return (rc);
261 	}
262 	return (0);
263 }
264 /* Enqueue a disk I/O
265  *
266  * Unfortunately, we have to do things differently in the different
267  * environments (simulator, user-level, kernel).
268  * At user level, all I/O is blocking, so we have 1 or more threads/disk
269  * and the thread that enqueues is different from the thread that dequeues.
270  * In the kernel, I/O is non-blocking and so we'd like to have multiple
271  * I/Os outstanding on the physical disks when possible.
272  *
273  * when any request arrives at a queue, we have two choices:
274  *    dispatch it to the lower levels
275  *    queue it up
276  *
277  * kernel rules for when to do what:
278  *    locking request:  queue empty => dispatch and lock queue,
279  *                      else queue it
280  *    unlocking req  :  always dispatch it
281  *    normal req     :  queue empty => dispatch it & set priority
282  *                      queue not full & priority is ok => dispatch it
283  *                      else queue it
284  *
285  * user-level rules:
286  *    always enqueue.  In the special case of an unlocking op, enqueue
287  *    in a special way that will cause the unlocking op to be the next
288  *    thing dequeued.
289  *
290  * simulator rules:
291  *    Do the same as at user level, with the sleeps and wakeups suppressed.
292  */
293 void
294 rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
295 {
296 	RF_ETIMER_START(req->qtime);
297 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
298 	req->priority = pri;
299 
300 #if RF_DEBUG_DISKQUEUE
301 	if (rf_queueDebug && (req->numSector == 0)) {
302 		printf("Warning: Enqueueing zero-sector access\n");
303 	}
304 #endif
305 	/*
306          * kernel
307          */
308 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
309 	/* locking request */
310 	if (RF_LOCKING_REQ(req)) {
311 		if (RF_QUEUE_EMPTY(queue)) {
312 			Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
313 			RF_LOCK_QUEUE(queue);
314 			rf_DispatchKernelIO(queue, req);
315 		} else {
316 			queue->queueLength++;	/* increment count of number
317 						 * of requests waiting in this
318 						 * queue */
319 			Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
320 			req->queue = (void *) queue;
321 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
322 		}
323 	}
324 	/* unlocking request */
325 	else
326 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
327 						 * when this I/O completes */
328 			Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
329 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
330 			rf_DispatchKernelIO(queue, req);
331 		}
332 	/* normal request */
333 		else
334 			if (RF_OK_TO_DISPATCH(queue, req)) {
335 				Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
336 				rf_DispatchKernelIO(queue, req);
337 			} else {
338 				queue->queueLength++;	/* increment count of
339 							 * number of requests
340 							 * waiting in this queue */
341 				Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
342 				req->queue = (void *) queue;
343 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
344 			}
345 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
346 }
347 
348 
349 /* get the next set of I/Os started, kernel version only */
350 void
351 rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
352 {
353 	int     done = 0;
354 
355 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
356 
357 	/* unlock the queue: (1) after an unlocking req completes (2) after a
358 	 * locking req fails */
359 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
360 		Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
361 		RF_ASSERT(RF_QUEUE_LOCKED(queue));
362 		RF_UNLOCK_QUEUE(queue);
363 	}
364 	queue->numOutstanding--;
365 	RF_ASSERT(queue->numOutstanding >= 0);
366 
367 	/* dispatch requests to the disk until we find one that we can't. */
368 	/* no reason to continue once we've filled up the queue */
369 	/* no reason to even start if the queue is locked */
370 
371 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
372 		if (queue->nextLockingOp) {
373 			req = queue->nextLockingOp;
374 			queue->nextLockingOp = NULL;
375 			Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
376 		} else {
377 			req = (queue->qPtr->Dequeue) (queue->qHdr);
378 			if (req != NULL) {
379 				Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
380 			} else {
381 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
382 			}
383 		}
384 		if (req) {
385 			queue->queueLength--;	/* decrement count of number
386 						 * of requests waiting in this
387 						 * queue */
388 			RF_ASSERT(queue->queueLength >= 0);
389 		}
390 		if (!req)
391 			done = 1;
392 		else
393 			if (RF_LOCKING_REQ(req)) {
394 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
395 					Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
396 					RF_LOCK_QUEUE(queue);
397 					rf_DispatchKernelIO(queue, req);
398 					done = 1;
399 				} else {	/* put it aside to wait for
400 						 * the queue to drain */
401 					Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
402 					RF_ASSERT(queue->nextLockingOp == NULL);
403 					queue->nextLockingOp = req;
404 					done = 1;
405 				}
406 			} else
407 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
408 								 * unlocking ops should
409 								 * not get queued */
410 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
411 										 * the future */
412 					Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
413 					rf_DispatchKernelIO(queue, req);
414 					done = 1;
415 				} else
416 					if (RF_OK_TO_DISPATCH(queue, req)) {
417 						Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
418 						rf_DispatchKernelIO(queue, req);
419 					} else {	/* we can't dispatch it,
420 							 * so just re-enqueue
421 							 * it.  */
422 						/* potential trouble here if
423 						 * disk queues batch reqs */
424 						Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
425 						queue->queueLength++;
426 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
427 						done = 1;
428 					}
429 	}
430 
431 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
432 }
433 /* promotes accesses tagged with the given parityStripeID from low priority
434  * to normal priority.  This promotion is optional, meaning that a queue
435  * need not implement it.  If there is no promotion routine associated with
436  * a queue, this routine does nothing and returns -1.
437  */
438 int
439 rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
440 		 RF_ReconUnitNum_t which_ru)
441 {
442 	int     retval;
443 
444 	if (!queue->qPtr->Promote)
445 		return (-1);
446 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
447 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
448 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
449 	return (retval);
450 }
451 
452 RF_DiskQueueData_t *
453 rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
454 		       RF_SectorCount_t nsect, caddr_t buf,
455 		       RF_StripeNum_t parityStripeID,
456 		       RF_ReconUnitNum_t which_ru,
457 		       int (*wakeF) (void *, int), void *arg,
458 		       RF_DiskQueueData_t *next,
459 		       RF_AccTraceEntry_t *tracerec, void *raidPtr,
460 		       RF_DiskQueueDataFlags_t flags, void *kb_proc)
461 {
462 	RF_DiskQueueData_t *p;
463 
464 	p = pool_get(&rf_dqd_pool, PR_WAITOK);
465 	p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
466 						  WAITOK, or NOWAIT?? */
467 
468 	if (p->bp == NULL) {
469 		/* no memory for the buffer!?!? */
470 		pool_put(&rf_dqd_pool, p);
471 		return(NULL);
472 	}
473 
474 	memset(p->bp, 0, sizeof(struct buf));
475 	p->sectorOffset = ssect + rf_protectedSectors;
476 	p->numSector = nsect;
477 	p->type = typ;
478 	p->buf = buf;
479 	p->parityStripeID = parityStripeID;
480 	p->which_ru = which_ru;
481 	p->CompleteFunc = wakeF;
482 	p->argument = arg;
483 	p->next = next;
484 	p->tracerec = tracerec;
485 	p->priority = RF_IO_NORMAL_PRIORITY;
486 	p->raidPtr = raidPtr;
487 	p->flags = flags;
488 	p->b_proc = kb_proc;
489 	return (p);
490 }
491 
492 void
493 rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
494 {
495 	pool_put(&bufpool, p->bp);
496 	pool_put(&rf_dqd_pool, p);
497 }
498