xref: /netbsd-src/sys/dev/raidframe/rf_diskqueue.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /*	$NetBSD: rf_diskqueue.c,v 1.15 2001/11/13 07:11:13 lukem Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /****************************************************************************
30  *
31  * rf_diskqueue.c -- higher-level disk queue code
32  *
33  * the routines here are a generic wrapper around the actual queueing
34  * routines.  The code here implements thread scheduling, synchronization,
35  * and locking ops (see below) on top of the lower-level queueing code.
36  *
37  * to support atomic RMW, we implement "locking operations".  When a
38  * locking op is dispatched to the lower levels of the driver, the
39  * queue is locked, and no further I/Os are dispatched until the queue
40  * receives & completes a corresponding "unlocking operation".  This
41  * code relies on the higher layers to guarantee that a locking op
42  * will always be eventually followed by an unlocking op.  The model
43  * is that the higher layers are structured so locking and unlocking
44  * ops occur in pairs, i.e.  an unlocking op cannot be generated until
45  * after a locking op reports completion.  There is no good way to
46  * check to see that an unlocking op "corresponds" to the op that
47  * currently has the queue locked, so we make no such attempt.  Since
48  * by definition there can be only one locking op outstanding on a
49  * disk, this should not be a problem.
50  *
51  * In the kernel, we allow multiple I/Os to be concurrently dispatched
52  * to the disk driver.  In order to support locking ops in this
53  * environment, when we decide to do a locking op, we stop dispatching
54  * new I/Os and wait until all dispatched I/Os have completed before
55  * dispatching the locking op.
56  *
57  * Unfortunately, the code is different in the 3 different operating
58  * states (user level, kernel, simulator).  In the kernel, I/O is
59  * non-blocking, and we have no disk threads to dispatch for us.
60  * Therefore, we have to dispatch new I/Os to the scsi driver at the
61  * time of enqueue, and also at the time of completion.  At user
62  * level, I/O is blocking, and so only the disk threads may dispatch
63  * I/Os.  Thus at user level, all we can do at enqueue time is enqueue
64  * and wake up the disk thread to do the dispatch.
65  *
66  ****************************************************************************/
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.15 2001/11/13 07:11:13 lukem Exp $");
70 
71 #include <dev/raidframe/raidframevar.h>
72 
73 #include "rf_threadstuff.h"
74 #include "rf_raid.h"
75 #include "rf_diskqueue.h"
76 #include "rf_alloclist.h"
77 #include "rf_acctrace.h"
78 #include "rf_etimer.h"
79 #include "rf_general.h"
80 #include "rf_freelist.h"
81 #include "rf_debugprint.h"
82 #include "rf_shutdown.h"
83 #include "rf_cvscan.h"
84 #include "rf_sstf.h"
85 #include "rf_fifo.h"
86 #include "rf_kintf.h"
87 
88 static int init_dqd(RF_DiskQueueData_t *);
89 static void clean_dqd(RF_DiskQueueData_t *);
90 static void rf_ShutdownDiskQueueSystem(void *);
91 
92 #define Dprintf1(s,a)         if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
93 #define Dprintf2(s,a,b)       if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
94 #define Dprintf3(s,a,b,c)     if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
95 
96 /*****************************************************************************
97  *
98  * the disk queue switch defines all the functions used in the
99  * different queueing disciplines queue ID, init routine, enqueue
100  * routine, dequeue routine
101  *
102  ****************************************************************************/
103 
104 static RF_DiskQueueSW_t diskqueuesw[] = {
105 	{"fifo",		/* FIFO */
106 		rf_FifoCreate,
107 		rf_FifoEnqueue,
108 		rf_FifoDequeue,
109 		rf_FifoPeek,
110 	rf_FifoPromote},
111 
112 	{"cvscan",		/* cvscan */
113 		rf_CvscanCreate,
114 		rf_CvscanEnqueue,
115 		rf_CvscanDequeue,
116 		rf_CvscanPeek,
117 	rf_CvscanPromote},
118 
119 	{"sstf",		/* shortest seek time first */
120 		rf_SstfCreate,
121 		rf_SstfEnqueue,
122 		rf_SstfDequeue,
123 		rf_SstfPeek,
124 	rf_SstfPromote},
125 
126 	{"scan",		/* SCAN (two-way elevator) */
127 		rf_ScanCreate,
128 		rf_SstfEnqueue,
129 		rf_ScanDequeue,
130 		rf_ScanPeek,
131 	rf_SstfPromote},
132 
133 	{"cscan",		/* CSCAN (one-way elevator) */
134 		rf_CscanCreate,
135 		rf_SstfEnqueue,
136 		rf_CscanDequeue,
137 		rf_CscanPeek,
138 	rf_SstfPromote},
139 
140 };
141 #define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
142 
143 static RF_FreeList_t *rf_dqd_freelist;
144 
145 #define RF_MAX_FREE_DQD 256
146 #define RF_DQD_INC       16
147 #define RF_DQD_INITIAL   64
148 
149 #include <sys/buf.h>
150 
151 static int
152 init_dqd(dqd)
153 	RF_DiskQueueData_t *dqd;
154 {
155 
156 	dqd->bp = (struct buf *) malloc(sizeof(struct buf),
157 					M_RAIDFRAME, M_NOWAIT);
158 	if (dqd->bp == NULL) {
159 		return (ENOMEM);
160 	}
161 	memset(dqd->bp, 0, sizeof(struct buf));	/* if you don't do it, nobody
162 						 * else will.. */
163 	return (0);
164 }
165 
166 static void
167 clean_dqd(dqd)
168 	RF_DiskQueueData_t *dqd;
169 {
170 	free(dqd->bp, M_RAIDFRAME);
171 }
172 /* configures a single disk queue */
173 
174 int
175 rf_ConfigureDiskQueue(
176       RF_Raid_t * raidPtr,
177       RF_DiskQueue_t * diskqueue,
178       RF_RowCol_t r,		/* row & col -- debug only.  BZZT not any
179 				 * more... */
180       RF_RowCol_t c,
181       RF_DiskQueueSW_t * p,
182       RF_SectorCount_t sectPerDisk,
183       dev_t dev,
184       int maxOutstanding,
185       RF_ShutdownList_t ** listp,
186       RF_AllocListElem_t * clList)
187 {
188 	int     rc;
189 
190 	diskqueue->row = r;
191 	diskqueue->col = c;
192 	diskqueue->qPtr = p;
193 	diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
194 	diskqueue->dev = dev;
195 	diskqueue->numOutstanding = 0;
196 	diskqueue->queueLength = 0;
197 	diskqueue->maxOutstanding = maxOutstanding;
198 	diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
199 	diskqueue->nextLockingOp = NULL;
200 	diskqueue->unlockingOp = NULL;
201 	diskqueue->numWaiting = 0;
202 	diskqueue->flags = 0;
203 	diskqueue->raidPtr = raidPtr;
204 	diskqueue->rf_cinfo = &raidPtr->raid_cinfo[r][c];
205 	rc = rf_create_managed_mutex(listp, &diskqueue->mutex);
206 	if (rc) {
207 		RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
208 		    __LINE__, rc);
209 		return (rc);
210 	}
211 	rc = rf_create_managed_cond(listp, &diskqueue->cond);
212 	if (rc) {
213 		RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
214 		    __LINE__, rc);
215 		return (rc);
216 	}
217 	return (0);
218 }
219 
220 static void
221 rf_ShutdownDiskQueueSystem(ignored)
222 	void   *ignored;
223 {
224 	RF_FREELIST_DESTROY_CLEAN(rf_dqd_freelist, next, (RF_DiskQueueData_t *), clean_dqd);
225 }
226 
227 int
228 rf_ConfigureDiskQueueSystem(listp)
229 	RF_ShutdownList_t **listp;
230 {
231 	int     rc;
232 
233 	RF_FREELIST_CREATE(rf_dqd_freelist, RF_MAX_FREE_DQD,
234 	    RF_DQD_INC, sizeof(RF_DiskQueueData_t));
235 	if (rf_dqd_freelist == NULL)
236 		return (ENOMEM);
237 	rc = rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
238 	if (rc) {
239 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
240 		    __FILE__, __LINE__, rc);
241 		rf_ShutdownDiskQueueSystem(NULL);
242 		return (rc);
243 	}
244 	RF_FREELIST_PRIME_INIT(rf_dqd_freelist, RF_DQD_INITIAL, next,
245 	    (RF_DiskQueueData_t *), init_dqd);
246 	return (0);
247 }
248 
249 int
250 rf_ConfigureDiskQueues(
251     RF_ShutdownList_t ** listp,
252     RF_Raid_t * raidPtr,
253     RF_Config_t * cfgPtr)
254 {
255 	RF_DiskQueue_t **diskQueues, *spareQueues;
256 	RF_DiskQueueSW_t *p;
257 	RF_RowCol_t r, c;
258 	int     rc, i;
259 
260 	raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
261 
262 	for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
263 		if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
264 			p = &diskqueuesw[i];
265 			break;
266 		}
267 	}
268 	if (p == NULL) {
269 		RF_ERRORMSG2("Unknown queue type \"%s\".  Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
270 		p = &diskqueuesw[0];
271 	}
272 	raidPtr->qType = p;
273 	RF_CallocAndAdd(diskQueues, raidPtr->numRow, sizeof(RF_DiskQueue_t *), (RF_DiskQueue_t **), raidPtr->cleanupList);
274 	if (diskQueues == NULL) {
275 		return (ENOMEM);
276 	}
277 	raidPtr->Queues = diskQueues;
278 	for (r = 0; r < raidPtr->numRow; r++) {
279 		RF_CallocAndAdd(diskQueues[r], raidPtr->numCol +
280 				 ((r == 0) ? RF_MAXSPARE : 0),
281 				sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
282 				raidPtr->cleanupList);
283 		if (diskQueues[r] == NULL)
284 			return (ENOMEM);
285 		for (c = 0; c < raidPtr->numCol; c++) {
286 			rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[r][c],
287 						   r, c, p,
288 						   raidPtr->sectorsPerDisk,
289 						   raidPtr->Disks[r][c].dev,
290 						   cfgPtr->maxOutstandingDiskReqs,
291 						   listp, raidPtr->cleanupList);
292 			if (rc)
293 				return (rc);
294 		}
295 	}
296 
297 	spareQueues = &raidPtr->Queues[0][raidPtr->numCol];
298 	for (r = 0; r < raidPtr->numSpare; r++) {
299 		rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
300 		    0, raidPtr->numCol + r, p,
301 		    raidPtr->sectorsPerDisk,
302 		    raidPtr->Disks[0][raidPtr->numCol + r].dev,
303 		    cfgPtr->maxOutstandingDiskReqs, listp,
304 		    raidPtr->cleanupList);
305 		if (rc)
306 			return (rc);
307 	}
308 	return (0);
309 }
310 /* Enqueue a disk I/O
311  *
312  * Unfortunately, we have to do things differently in the different
313  * environments (simulator, user-level, kernel).
314  * At user level, all I/O is blocking, so we have 1 or more threads/disk
315  * and the thread that enqueues is different from the thread that dequeues.
316  * In the kernel, I/O is non-blocking and so we'd like to have multiple
317  * I/Os outstanding on the physical disks when possible.
318  *
319  * when any request arrives at a queue, we have two choices:
320  *    dispatch it to the lower levels
321  *    queue it up
322  *
323  * kernel rules for when to do what:
324  *    locking request:  queue empty => dispatch and lock queue,
325  *                      else queue it
326  *    unlocking req  :  always dispatch it
327  *    normal req     :  queue empty => dispatch it & set priority
328  *                      queue not full & priority is ok => dispatch it
329  *                      else queue it
330  *
331  * user-level rules:
332  *    always enqueue.  In the special case of an unlocking op, enqueue
333  *    in a special way that will cause the unlocking op to be the next
334  *    thing dequeued.
335  *
336  * simulator rules:
337  *    Do the same as at user level, with the sleeps and wakeups suppressed.
338  */
339 void
340 rf_DiskIOEnqueue(queue, req, pri)
341 	RF_DiskQueue_t *queue;
342 	RF_DiskQueueData_t *req;
343 	int     pri;
344 {
345 	RF_ETIMER_START(req->qtime);
346 	RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
347 	req->priority = pri;
348 
349 	if (rf_queueDebug && (req->numSector == 0)) {
350 		printf("Warning: Enqueueing zero-sector access\n");
351 	}
352 	/*
353          * kernel
354          */
355 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
356 	/* locking request */
357 	if (RF_LOCKING_REQ(req)) {
358 		if (RF_QUEUE_EMPTY(queue)) {
359 			Dprintf3("Dispatching pri %d locking op to r %d c %d (queue empty)\n", pri, queue->row, queue->col);
360 			RF_LOCK_QUEUE(queue);
361 			rf_DispatchKernelIO(queue, req);
362 		} else {
363 			queue->queueLength++;	/* increment count of number
364 						 * of requests waiting in this
365 						 * queue */
366 			Dprintf3("Enqueueing pri %d locking op to r %d c %d (queue not empty)\n", pri, queue->row, queue->col);
367 			req->queue = (void *) queue;
368 			(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
369 		}
370 	}
371 	/* unlocking request */
372 	else
373 		if (RF_UNLOCKING_REQ(req)) {	/* we'll do the actual unlock
374 						 * when this I/O completes */
375 			Dprintf3("Dispatching pri %d unlocking op to r %d c %d\n", pri, queue->row, queue->col);
376 			RF_ASSERT(RF_QUEUE_LOCKED(queue));
377 			rf_DispatchKernelIO(queue, req);
378 		}
379 	/* normal request */
380 		else
381 			if (RF_OK_TO_DISPATCH(queue, req)) {
382 				Dprintf3("Dispatching pri %d regular op to r %d c %d (ok to dispatch)\n", pri, queue->row, queue->col);
383 				rf_DispatchKernelIO(queue, req);
384 			} else {
385 				queue->queueLength++;	/* increment count of
386 							 * number of requests
387 							 * waiting in this queue */
388 				Dprintf3("Enqueueing pri %d regular op to r %d c %d (not ok to dispatch)\n", pri, queue->row, queue->col);
389 				req->queue = (void *) queue;
390 				(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
391 			}
392 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
393 }
394 
395 
396 /* get the next set of I/Os started, kernel version only */
397 void
398 rf_DiskIOComplete(queue, req, status)
399 	RF_DiskQueue_t *queue;
400 	RF_DiskQueueData_t *req;
401 	int     status;
402 {
403 	int     done = 0;
404 
405 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
406 
407 	/* unlock the queue: (1) after an unlocking req completes (2) after a
408 	 * locking req fails */
409 	if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
410 		Dprintf2("DiskIOComplete: unlocking queue at r %d c %d\n", queue->row, queue->col);
411 		RF_ASSERT(RF_QUEUE_LOCKED(queue) && (queue->unlockingOp == NULL));
412 		RF_UNLOCK_QUEUE(queue);
413 	}
414 	queue->numOutstanding--;
415 	RF_ASSERT(queue->numOutstanding >= 0);
416 
417 	/* dispatch requests to the disk until we find one that we can't. */
418 	/* no reason to continue once we've filled up the queue */
419 	/* no reason to even start if the queue is locked */
420 
421 	while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
422 		if (queue->nextLockingOp) {
423 			req = queue->nextLockingOp;
424 			queue->nextLockingOp = NULL;
425 			Dprintf3("DiskIOComplete: a pri %d locking req was pending at r %d c %d\n", req->priority, queue->row, queue->col);
426 		} else {
427 			req = (queue->qPtr->Dequeue) (queue->qHdr);
428 			if (req != NULL) {
429 				Dprintf3("DiskIOComplete: extracting pri %d req from queue at r %d c %d\n", req->priority, queue->row, queue->col);
430 			} else {
431 				Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
432 			}
433 		}
434 		if (req) {
435 			queue->queueLength--;	/* decrement count of number
436 						 * of requests waiting in this
437 						 * queue */
438 			RF_ASSERT(queue->queueLength >= 0);
439 		}
440 		if (!req)
441 			done = 1;
442 		else
443 			if (RF_LOCKING_REQ(req)) {
444 				if (RF_QUEUE_EMPTY(queue)) {	/* dispatch it */
445 					Dprintf3("DiskIOComplete: dispatching pri %d locking req to r %d c %d (queue empty)\n", req->priority, queue->row, queue->col);
446 					RF_LOCK_QUEUE(queue);
447 					rf_DispatchKernelIO(queue, req);
448 					done = 1;
449 				} else {	/* put it aside to wait for
450 						 * the queue to drain */
451 					Dprintf3("DiskIOComplete: postponing pri %d locking req to r %d c %d\n", req->priority, queue->row, queue->col);
452 					RF_ASSERT(queue->nextLockingOp == NULL);
453 					queue->nextLockingOp = req;
454 					done = 1;
455 				}
456 			} else
457 				if (RF_UNLOCKING_REQ(req)) {	/* should not happen:
458 								 * unlocking ops should
459 								 * not get queued */
460 					RF_ASSERT(RF_QUEUE_LOCKED(queue));	/* support it anyway for
461 										 * the future */
462 					Dprintf3("DiskIOComplete: dispatching pri %d unl req to r %d c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->row, queue->col);
463 					rf_DispatchKernelIO(queue, req);
464 					done = 1;
465 				} else
466 					if (RF_OK_TO_DISPATCH(queue, req)) {
467 						Dprintf3("DiskIOComplete: dispatching pri %d regular req to r %d c %d (ok to dispatch)\n", req->priority, queue->row, queue->col);
468 						rf_DispatchKernelIO(queue, req);
469 					} else {	/* we can't dispatch it,
470 							 * so just re-enqueue
471 							 * it.  */
472 						/* potential trouble here if
473 						 * disk queues batch reqs */
474 						Dprintf3("DiskIOComplete: re-enqueueing pri %d regular req to r %d c %d\n", req->priority, queue->row, queue->col);
475 						queue->queueLength++;
476 						(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
477 						done = 1;
478 					}
479 	}
480 
481 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
482 }
483 /* promotes accesses tagged with the given parityStripeID from low priority
484  * to normal priority.  This promotion is optional, meaning that a queue
485  * need not implement it.  If there is no promotion routine associated with
486  * a queue, this routine does nothing and returns -1.
487  */
488 int
489 rf_DiskIOPromote(queue, parityStripeID, which_ru)
490 	RF_DiskQueue_t *queue;
491 	RF_StripeNum_t parityStripeID;
492 	RF_ReconUnitNum_t which_ru;
493 {
494 	int     retval;
495 
496 	if (!queue->qPtr->Promote)
497 		return (-1);
498 	RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
499 	retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
500 	RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
501 	return (retval);
502 }
503 
504 RF_DiskQueueData_t *
505 rf_CreateDiskQueueData(
506     RF_IoType_t typ,
507     RF_SectorNum_t ssect,
508     RF_SectorCount_t nsect,
509     caddr_t buf,
510     RF_StripeNum_t parityStripeID,
511     RF_ReconUnitNum_t which_ru,
512     int (*wakeF) (void *, int),
513     void *arg,
514     RF_DiskQueueData_t * next,
515     RF_AccTraceEntry_t * tracerec,
516     void *raidPtr,
517     RF_DiskQueueDataFlags_t flags,
518     void *kb_proc)
519 {
520 	RF_DiskQueueData_t *p;
521 
522 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
523 
524 	p->sectorOffset = ssect + rf_protectedSectors;
525 	p->numSector = nsect;
526 	p->type = typ;
527 	p->buf = buf;
528 	p->parityStripeID = parityStripeID;
529 	p->which_ru = which_ru;
530 	p->CompleteFunc = wakeF;
531 	p->argument = arg;
532 	p->next = next;
533 	p->tracerec = tracerec;
534 	p->priority = RF_IO_NORMAL_PRIORITY;
535 	p->AuxFunc = NULL;
536 	p->buf2 = NULL;
537 	p->raidPtr = raidPtr;
538 	p->flags = flags;
539 	p->b_proc = kb_proc;
540 	return (p);
541 }
542 
543 RF_DiskQueueData_t *
544 rf_CreateDiskQueueDataFull(
545     RF_IoType_t typ,
546     RF_SectorNum_t ssect,
547     RF_SectorCount_t nsect,
548     caddr_t buf,
549     RF_StripeNum_t parityStripeID,
550     RF_ReconUnitNum_t which_ru,
551     int (*wakeF) (void *, int),
552     void *arg,
553     RF_DiskQueueData_t * next,
554     RF_AccTraceEntry_t * tracerec,
555     int priority,
556     int (*AuxFunc) (void *,...),
557     caddr_t buf2,
558     void *raidPtr,
559     RF_DiskQueueDataFlags_t flags,
560     void *kb_proc)
561 {
562 	RF_DiskQueueData_t *p;
563 
564 	RF_FREELIST_GET_INIT(rf_dqd_freelist, p, next, (RF_DiskQueueData_t *), init_dqd);
565 
566 	p->sectorOffset = ssect + rf_protectedSectors;
567 	p->numSector = nsect;
568 	p->type = typ;
569 	p->buf = buf;
570 	p->parityStripeID = parityStripeID;
571 	p->which_ru = which_ru;
572 	p->CompleteFunc = wakeF;
573 	p->argument = arg;
574 	p->next = next;
575 	p->tracerec = tracerec;
576 	p->priority = priority;
577 	p->AuxFunc = AuxFunc;
578 	p->buf2 = buf2;
579 	p->raidPtr = raidPtr;
580 	p->flags = flags;
581 	p->b_proc = kb_proc;
582 	return (p);
583 }
584 
585 void
586 rf_FreeDiskQueueData(p)
587 	RF_DiskQueueData_t *p;
588 {
589 	RF_FREELIST_FREE_CLEAN(rf_dqd_freelist, p, next, clean_dqd);
590 }
591